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We investigate the phase diagram of an array of Josephson junctions at finite temperatures. The capacitive interactions 
of charges on the superconducting islands and the associated quantum mechanical effects, as well as the flow of normal 
currents due to single electron tunneling, are taken into account. Using a quantum Ginzburg-Landan theory we derive the 
fluctuation conductivity above the critical temperature. Depending on junction parameters we find fluctuation broadened 
superconducting transitions, reentrant, or quasireentrant behavior. This may be related to the resistivity minima seen in 
thin granular films. 

1. Introduction 

Recent experiments on granular thin films [1, 2] and three-dimensional granular samples [3] have 
increased the interest in superconducting arrays or networks. These experiments have demonstrated the 
fundamental role of quantum effects and dissipation in thin films characterized by the normal state 
sheet resistance R n. Due to highly developed submicron techniques it is now also possible to fabricate 
regular arrays of junctions with parameters such that the quantum effects are significant. In square 
regular arrays the normal state resistance R n can directly be identified with the normal state resistance 
of a single junction as a simple consequence of Kirchhoffs laws. The most remarkable result of the 
experiments of the Minnesota group [1] on thin films is the existence of a threshold value R c for Rn, 
close to the quantum of resistance R 0 = h/4e 2 = 6.45 kfl. Films with R n < R c establish global supercon- 
ductivity at low temperatures, while the resistance of films with R n > R c remains finite at low 
temperatures, showing quasireentrant or semiconducting behavior. The fact that the same threshold 
was found for Sn, Pb and (amorphous) Ga films with presumably different microstructures has raised 
the speculation of a universal threshold resistance, although more recent experiments seem to indicate a 
lower critical sheet resistance for granular aluminum films [4]. 

2. The model 

In this paper we consider a regular cubic array of superconducting islands. This may serve as a 
model for the granular disconnected films. We neglect fluctuations in the modulus of the superconduct- 
ing order parameters of the individual islands, assuming that we are well below the single grain 
transition temperature (but see also the article by G. Giaquinta [5]). The relevant degrees of freedom 
are the phase differences of the order parameters on neighboring islands and the charges accumulating 
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on the electrodes. The quantum statistical properties of this system are characterized by an effective 
action in imaginary times 0 ~< r ~< h/3 : 

~t3 

o " Or 2 Or + Ej(1 -- cos(goo(r)) } + SD[qq , (1) 

where % = ~o i - q~s" For example, the partition function, 

Z =  IT f Dq~iexp(-S[qq/h) , (2) 

or expectation values can be expressed by Feynman path integrals, weighted by exp(-S[~0]/h). Cis is 
the capacitance matrix describing the Coulomb energies of the charges on the islands and Ej is the 
Josephson coupling energy arising from Cooper pair tunneling between nearest neighbor grains. The 
diagonal matrix elements of Cis correspond to a capacitive coupling to the ground plane, while the 
off-diagonal elements describe the Coulomb interaction between charges on different islands, which is 
long ranged if no screening effects are incorporated. Two limiting versions of the charging energy are 
commonly used: the self-charging model (sc) considers only diagonal elements, i.e. Cis = CSij, and the 
nearest neighbor model (nn) considers only the interaction of charges on neighboring grains. The 
corresponding charging energies may be equally well important depending on the physical situation 
[6, 7]. For definiteness in what follows we use the sc model; the extension to nn charging energies is 
straightforward. 

A complete description of the junction array also has to take into account the flow of normal 
currents, which gives rise to dissipation. In a microscopic treatment of a single junction between two 
BCS superconductors all the microscopic electronic degrees of freedom can be integrated out [8], 
leading to an effective action of the form (1) with 

SD[~O]= f d~ ' f  d T ' E  ~qp('/'--~")(1--COS~Oi/('r)2~J(T') ) .  
0 0 (ij) 

(3) 

This nonlocal interaction term expresses in a fully quantum mechanical way the dissipation due to the 
tunneling of single quasiparticles. The kernel aqp(Z) is given by [8]: 

2ITI: d~  d~R h: f f o(., .06(-.,  p.) (2~'h) 3 (2~rh) 3 (4) 

where G(¢, p) is the diagonal component of the Nambu Green's function with Fourier transform: 

ihto m + ep 2 A 2 : ,  E p = % +  . (5 )  a(tom, p) = - h  (~tom) 2 "4- Ep 

Here, to m are the fermionic Matsubara frequencies tom = (2m + 1)1r/h/3, T is the tunnel matrix element 
and the subscripts R and L refer to the two (identical) BCS electrodes of the junction. Using the ideal 
BCS density of states, corresponding to vanishing subgap conductance, the momentum integrals in (4) 
can readily be performed. For temperatures low compared to the energy gap A the Fourier transformed 
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kernel has the limiting forms [8] (with the bosonic Matsubara frequency to~, = 21r/x/h/3): 

O/qp(tO ) = 

3ahto2 
32A for htoj, ~ 2A, 

for hto~, ~> 2A. "B" 

(6) 

Here we have defined a = h/4e2Rn with normal state conductance 1/R n = 4~e21TI2N2(0)/h, N(O) is the 
density of states at the Fermi level. The low-frequency part leads to a renormalization of the nearest 
neighbor capacitance which, for ideal tunnel junctions at zero temperature, is given by: 

8C 37rh 
C - 32ARnC" (7) 

Depending on the spectrum of the quasiparticles (especially on the existence of a well-defined 
energy gap) or the dissipative mechanism it may be appropriate to use different kernels a(r) to account 
for the given physical situation. 

(i) If the subgap conductance is nonzero, the kernel aqp(tO~,) acquires an Ohmic contribution linear 
in I,o 1 also at small frequencies: 

h 
aqp(t%)-  2e2Rqp (8) 

Here, 1/Rqp is the subgap conductance for small voltages V--~0. In order to describe both the ideal 
energy-gap-dependent nonlinear conductance and the nonideal subgap conductance of the quasiparticle 
current, we have to add the kernel (8) to the ideal form mentioned above. This contribution linear in 
It% [ gives rise to infrared singularities and can induce (dissipative) phase transitions by itself. The phase 
diagram for this situation has been studied by means of a variational calculation in ref. [9]. 

(ii) For an ideal superconducting tunnel junction with vanishing subgap conductance a gradient 
expansion (in imaginary times) may be performed provided the phases vary slowly on the time scale 
h/A [10]. This approximation leads to 

1 h 37rh ! ( ~ j ) ( ~ ) 2  
SD[~°]--2 4e 2 32AR n d~- .. . (9) 

In contrast to (i) this quadratic low-frequency form cannot induce phase transitions by itself but instead 
yields only quantitative corrections to existing transitions. 

(iii) If the flow of normal currents is not due to the tunneling of quasiparticles, but is due to shunt 
resistors between the islands, the trigonometric function in the dissipative term SD[~0 ] is replaced by its 
quadratic expansion and the kernel is of the form of eq. (8) with Rqp replaced by the shunt resistor R s 
[11]. This Ohmic dissipation is equivalent to the phenomenological model of Caldeira and Leggett [12], 
where the phase degrees of freedom are linearly coupled to a bath of harmonic oscillators with a 
suitably chosen spectral density. 

In this paper we now use the full microscopic quasiparticle kernel as given in (4). But instead of 
using the ideal equilibrium Green's function G(tom, p) we explicitly incorporate the effects of tempera- 
ture-dependent and temperature-independent scattering mechanisms and replace G by [13]: 
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ih/2 m + ep 
as(OJm, p) = - h  2 (h/~m) 2 W Ep 

(10) 
~m = O')m -~- /~ sign(~°m) • 

The pair-breaking parameter F can be represented by the sum of inverse scattering times corresponding 
to electron-phonon or electron-electron scattering and other pair-breaking terms [13, 14]: 

1 1 
F = 2%--p + ~ + " "  "pair breaking". (11) 

In general, F depends on the temperature. It may, for example, display the temperature dependence of 
the inverse electron-phonon scattering time (see, for example, ref. [15]). In the presence of (magnetic) 
impurity scattering, F will have a finite value even at zero temperature. F is directly related to the 
broadening of the BCS density of states which can be expressed as [13, 16]: 

E + i F  
N ( E )  = Re ((E + iF)  2 - A2) 1/2 " (12) 

As is obvious from (12), pair-breaking mechanisms lead to a finite subgap conductance. 
Using the Green's function G s we obtain for the quasiparticle damping kernel: 

" f i e  { ~arn(~Om -- ~O)/~ ) /$2)]1/2 (h/~m)2 } 
aqp(~O ) = 2e2Rnfl m [(~{"~m) 2 -'F A2)((h~"~m -- h(.og.) 2 + (hi)m) 2 + A2 , (13) 

which is now explicitly temperature dependent. In fig. 1 this kernel is plotted for different values of F. 
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Fig. 1. Plotted is the quasiparticle damping kernel aqp(O~t,)=-(]/2eZR.)2~'kTao(oJ~,) as a function of /~ =ho~ , / 2~kT  for 
A/~ rkT  = 20, and different ( f ixed) values of F o = F/~rkT:  (a) To = 0; (b) T o = 10; (c) F o = 20; (d) Fo = 30. The dashed line is the 
Ohmic result a o = h [~ , ]  /27rkT. 
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If aqp(T) is short ranged, i.e. if the subgap conductance vanishes, one can approximate the 
trigonometric function in SD[~] by its quadratic expansion, provided the phases vary slowly on the time 
scale A/h (see ref. [10]). Furthermore, in our previous analysis [9] we found that even in the case where 
aqp0") is long ranged, i.e. if the subgap conductance 1/Rqp is finite, the effect of dissipation by 
quasiparticle tunneling and of an equivalent Ohmic shunt resistor with R s ~ Rqp on the phase diagram 
differ only quantitatively. We therefore replace in the following the dissipative part of the effective 
action by: 

h SD[(P]- 4/3 ~ aqp((o~,)(z- 3'Dlq~(k, %,)12. 
k,~ 

(14) 

The quantity 

z - 3'k = ~ [1 - cos(keia)] (15)  
i=1 

is the usual dispersion for nearest neighbor couplings on a lattice with coordination number z and lattice 
spacing a. In what follows we consider a simple-cubic lattice in two dimensions where z = 4. 

3. Mean field phase transition 

Analogous to the coarse graining approach [17] we now introduce local field variables 0,- which 
couple to ~ = exp(i~)  by means of the conventional Hubbard-Stratonovich procedure. In this way the 
partition function can be rewritten as: 

2/3 (16) 

where 

e# ~p 
l 1 

F[qJ] = ~ f dr  ~ (Ej3,,/2)-l,,(r)~b.(r)-ln(exp(-~ ~ f d~-[,,(z)~b,0-)+ h.c.]))o.  
0 0 

(17) 

The zero order part Z 0 is expressed by the quadratic action: 

So[ ] = Y_. - - v . )  I (k, k,. \ 8Ec (18) 

which contains the charging energy E c = e2/2C in the self-charging limit and the dissipation. The 
expectation value in the logarithm is taken with S 0. Since the expectation values of ~b i and exp(iq~i) are 
closely related, we can identify ~b~ as an order parameter for the phase coherence and perform a 
cumulant expansion of the free energy functional (17) close to the phase boundary. Above the 
transition temperature a second-order expansion is sufficient. For a slowly varying order parameter field 
~b~(~') we can further expand to lowest order in k and t% and obtain [18, 19]: 
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2 F[~b] = ~,  (r + (ak)2/z + CotO ~,)lO(k, t%)l 2 
k,~t 

(19) 

with the coefficients: 

z E j  f r = l -  "~-  dr  g(z),  
0 

CO m 

f d~" ~'2g(z) 
0 

h/3 

2 f dr g(z) 
0 

(20) 

All the information about quantum effects and dissipation is contained in the correlation function: 

l _  1 1 - cos(t% ~') i )  g(T) = (exp(i[~i(z)-  ~i(0)])) 0 =exp  h2~Np ~,  2 - - - - -  • 
k,tx £0/~ 

(21) 

The mean field phase diagram is determined by the condition r = 0. In fig. 2(a) the critical temperature 
is plotted as a function of the ratio E j / E  c for different strengths of the dissipation. Here we have used 
for simplicity an exponential form for F(T)  = F(T = 0) + F 1 e x p ( - A / k T )  and assumed a finite value for 
F ( T  = 0) of 0.1A(T = 0). The same value is chosen for F 1, which is a characteristic scale for F according 
to the experimental data of Dynes et al. [16]. The temperature dependence of the energy gap is 
neglected and A is fixed at its zero temperature value. In any case the position of the phase boundary 
line is not crucially sensitive to different choices of F. An important feature of the phase boundary is 
the reentrant-type behavior at low temperatures for all values of a. For comparison, fig. 2(b) shows the 
corresponding curves for strictly Ohmic damping. For a = 0, of course, the phase boundaries are 
identical and in this case of vanishing dissipation we recover the reentrant behavior recently found in a 
quantum Monte Carlo simulation [20] for a square array of Josephson junctions, including self-charging 
Coulomb effects. For the Ohmic damping case the reentrance rapidly vanishes with increasing a, while 
the reentrance is still present even for large values of a, if the dissipation is due to quasiparticle 
tunneling. This difference between the two dissipative mechanisms arises from the different low- 
frequency behavior of the damping kernels, which becomes most important at low temperatures. 
Furthermore, the pair-breaking parameter F monotonously decreases with decreasing temperature. The 
density of states therefore approaches its ideal form, and the quasiparticle tunneling and thus the 
subgap conductance is considerably reduced. (For further discussion of the phase diagram see also ref. 
[9].) 

In the experiments by Jaeger et al. [1] a logarithmic dependence of the superconducting transition 
temperature on the normal state sheet resistance was found. For comparison with the experimental 
result Tc is plotted as a function of In( l /a)  = ln(Rn/Ro)  in fig. 3. An approximate logarithmic behavior 
is realized for a broad range of the ratio A / E  c. 

Both finite temperature phase diagrams, fig. 2 and fig. 3, show no evidence of a universal threshold 
value for a. Only for a limited range of the ratio E j / E  c the criterion whether the film or the array 
becomes superconducting at low temperatures is fixed by a > 1 or a < 1. Since the microstructure of the 
thin films of ref. [1] could not be studied in situ, very little is known about the parameters E j / E  c in 
these samples. Therefore the above results do not necessarily contradict the experimental findings. 
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Fig. 2. (a) Mean field phase boundary for quasiparticle dissipation for different strengths of the dissipation a = h/4e2R~. (b) 
Same as in (a) for Ohmic dissipation. 

4. Fluctuation conductivity 

The free energy functional (19) can be used to derive the fluctuation conductivity above the critical 
temperature. Performing the analytical continuation to real times, a time-dependent (quantum) 
Ginzburg-Landau (TDQGL) equation can be deduced from (19): 

O~b, a2$k (22) 
- T  O --if/- = r(1 + [~klZ)~b, + Co at 2 , 
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Fig. 3. Mean field phase boundary for quasiparticle dissipation for different values of the ratio A /E c • A /E  c = 1.0 (I), 1.4 (I I) ,  1.8 
(III),  2.2 (IV). 

with a correlation length ~2= aE/zr. A phenomenological relaxation term has been added on the 
left-hand side in order to account for the decay of order parameter fluctuations around the absolute 
minimum $ - 0 of the free energy functional F[~b]. Since a microscopic derivation of the relaxation time 
is beyond the scope of the present paper, we choose for T O the same characteristic time scale of 
relaxation as for ordinary homogeneous (BCS) films, ~0 = r rh /8kT  [21], which is determined by the 
temperature only. Contrary to the conventional TDGL equation, the equation of motion (22) also 
involves the second derivative in time. This is reminiscent of the quantum fluctuations of $,.(~-) and 
leads, for example, to small oscillations around the stable minimum of the free energy functional below 
T c with a frequency of the order of the Josephson plasma frequency (EjEc/]i2) 1/2. 

We may now follow the standard procedure [22] and consider only fluctuations of the supercurrent: 

2ec o 
js = - ~  ($*V~O - 0V0").  (23) 

The longitudinal fluctuation conductivity is given by the Fourier transform of the supercurrent 
correlation function: 

o-xx(to ) = fl f dt(jxs(O)jxs(t)) cos(tot). 
0 

(24) 

In the overdamped limit To/C o >> (ak) 2 of the equation of motion (22) we obtain for the static fluctuation 
conductivity: 

o,o=0, , ko,2 [1 ZC2o 1 + (~k) 2 ~ coth , (25) 
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with Doniach's plasmon mode frequency /22 = (r/Co)(1 + [~k]2). The corresponding conductance for 
two-dimensional arrays close to the transition (r ~ 1) is thus given by: 

e 2 1 
2 D ( ~  =0)  = 16h r '  (26) 

and diverges as 1/r as the phase boundary is approached. (Note that the inclusion of the oscillatory 
behavior in the underdamped, limit gives rise to another weakly diverging contribution ~ln(1/r).) For 
large capacitance junctions E j / E c ~ I  quantum effects can be neglected and r ~  T / ( T - T c )  with 
T c ~ zEj/2.  In this limit we recover the temperature dependence of the Aslamasov-Larkin result for 
homogeneous (BCS) superconducting films [23]. 

Adding the fluctuation contribution to the normal conductance 1/Rqp arising from the tunneling of 
quasiparticles between the superconducting islands, we obtain for the resistivity of the array: 

R ( T )  = Rqp 
zr R___p_p f { r ;  (h/3)2/Co)} ' (27) 

1+ 32---~ R n 

with the dimensionless function: 

(F "1- X) 2 c° th2  [ r  + x]  1/2 , 

0 

which in the limit r ~  1 simply reduces to f (r ,  ~2)~ 1/r. 
The resistivity R is plotted as a function of temperature in fig. 4 for a given ratio E j / E  c and different 

values of a. For simplicity Rqp is modeled by: 

-1 ( Rqp=\ F(T=O) R ~ l + e x p  R . -  a ~ a 

to interpolate between low temperatures where Rqp is determined by R n ( A / F )  2, and high temperatures 
where Rqp approaches the normal state sheet resistance when the local superconductivity in the islands 
vanishes. The remarkable feature is that the experimental scenario is qualitatively reproduced, showing 
ordinary fluctuation broadened superconducting transitions for films or arrays with a >~ 1.0, quasireen- 
trant behavior with a resistivity minimum for a ~ 0.5 and semiconducting behavior for a ~< 0.4. True 
reentrant behavior is realized for intermediate values 0 .6~ < a <~ 0.8. But any kind of disorder will 
presumably wash out the true reentrance, restoring a quasireentrant behavior and percolation type 
arguments will become important. Again we have to stress that no evidence exists for a universal 
threshold. For a different value of E j / E  c the same qualitative behavior as described above appears, 
however, for different values of a. 

The low-temperature resistance of those films which do not become superconducting is given by the 
-1 subgap conductance Rqp to be taken from the I - V  characteristics. This explains the rapid increase of 

the resistance by orders of magnitude at low temperatures (disregarding the observed flattening off). 
The Josephson coupling energy Ej depends explicitly on ot and the temperature, as given by the 

Ambegaokar-Baratoff formula [24]: 

(a) E j = T t a n h  " (28) 
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Fig. 4. (a) Temperature dependence of the resistivity, measured in units of h/4e2R,, for Ej/E c = 0.4 and different values of a:  (a) 
a = 0.2; (b) a = 0.5; (c) a = 1.0; (d) a = 2.0. (b) Same as in (a) for different values of a: (a) a = 0.4; (b) a = 0.5; (c) ct = 0.6; (d) 
a =0.7. 

T h e  resis t ivi ty  is p l o t t e d  again  in fig. 5 on  a l oga r i t hmic  scale as a func t ion  of  t e m p e r a t u r e ,  m e a s u r e d  in 
uni ts  of  the  ene rgy  gap ,  for  a cons t an t  va lue  o f  A / E c  = 1.0. H e r e ,  the  f o r m u l a  (28) has  b e e n  used  in its 
l o w - t e m p e r a t u r e  a p p r o x i m a t i o n  Ej  ~-- t~A/2. 

5. Summary and concluding remarks 

In this p a p e r  we have  s tud ied  the  inf luence  of  the  quas ipa r t i c l e  d i s s ipa t ion  on  the  finite t e m p e r a t u r e  
phase  t r ans i t ion  in J o s e p h s o n  junc t ion  ar rays .  T h e  full  mic roscop ic  expres s ion  for  the  d a m p i n g  k e r n e l  
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Fig. 5. T'emperat'ure tt~epen,a'ence tr£ ~ resimWt'y-l~br R I'E" c = L& any aitf~erenr v aires-or'a: gay a = d~,  ~6)" a = tf.t~. (c)" ,~ = L tY; 
(d) a = 1.4. 

has been used including also the effects of scattering mechanisms. The mean field phase diagrams show 

damping mechadtsm. As a consequence, the i~uctuation condmctWtty may "nave a nonmonotofftc 
temperature ~epen~teace. ~epenfftrtg on the jtuncfton parameters E,~ E~ an~ ~. "~fts offers a ,nossib~e 
explanation for the experimentally observed resistivity minima in granular samples or thin disconnected 
films and further supports the relevance of dissipative junction array models for these systems. 

The relaxation mechanisms of order parameter fluctuations requires further study to remove the 
ambiguity for the choice of the characteristic relaxation time. A real-time analysis is in order and will be 
the subject of future work. 
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