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1 | INTRODUCTION

The growing amount of available output from climate
models over the last years also increases the need to evaluate
the quality and skill of the offered data. The newest ensem-
ble of state-of-the-art general circulation models and earth
system models from the Coupled Model Intercomparison

This study investigates the projected precipitation changes of the 21st century in
the Mediterranean area with a model ensemble of all available CMIP3 and CMIP5
data based on four different scenarios. The large spread of simulated precipitation
change signals underlines the need of an evaluation of the individual general circu-
lation models in order to give higher weights to better and lower weights to worse
performing models. The models' spread comprises part of the internal climate vari-
ability, but is also due to the differing skills of the circulation models. The uncer-
tainty resulting from the latter is the aim of our weighting approach. Each weight is
based on the skill to simulate key predictor variables in context of large and
medium scale atmospheric circulation patterns within a statistical downscaling
framework for the Mediterranean precipitation. Therefore, geopotential heights, sea
level pressure, atmospheric layer thickness, horizontal wind components and
humidity data at several atmospheric levels are considered. The novelty of this met-
ric consists in avoiding the use of the precipitation data by itself for the weighting
process, as state-of-the-art models still have major deficits in simulating precipita-
tion. The application of the weights on the downscaled precipitation changes leads
to more reliable and precise change signals in some Mediterranean sub-regions and
seasons. The model weights differ between sub-regions and seasons, however, a
clear sequence from better to worse models for the representation of precipitation
in the Mediterranean area becomes apparent.
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Project Phase 5 (CMIPS5, Taylor et al., 2012), for example,
allows the analysis of more than 50 different models.
Researchers like climatologists, hydrologists and impact
modellers often need to choose a sub-ensemble of models
for their work. Thus, there were several attempts over the
last years to figure out the skills of climate model data and
to form superior sub-ensembles.
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So far, a large number of different metrics for model
weighting were tested, first of all performance-based metrics
like the reliability ensemble averaging (Giorgi and Mearns,
2002), approaches with Bayesian statistics (Tebaldi er al.,
2005), the comparison of probability densities (Boberg
et al., 2009; Kjellstrom et al, 2010) and approaches that
analyse trends, extremes or the large- and meso-scale atmo-
spheric circulation (Christensen et al., 2010).

However, scientists often encounter similar problems,
like the necessity to make subjective decisions during the
model ranking process including the pre-processing of the
data, the choice of the metrics and their useful combination
(Gleckler et al., 2008). Questionable features are also the
inter-model similarities, the dependency between weighting
metrics and the quality of the observational or reanalysis
data used for comparison (Christensen et al,, 2010; Knutti
et al., 2017). Another important issue is the consistency of
model rankings over time and the applicability of weights on
climate projections (Whetton et al., 2007; Reifen and Toumi,
2009; Macadam et al., 2010; Réisdnen et al., 2010; Riisdnen
and Ylhiisi, 2012). A weighting scheme that is based on
incorrect assumptions may even cause a decline of the model
ensemble's performance (Weigel et al., 2010).

The goal of our study is to generate weights for all avail-
able CMIP3 and CMIP5 models with respect to the precipi-
tation changes in the Mediterranean area—a so-called hot
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spot of climate change (Giorgi, 2006)—at the end of the
21st century. The meaningful weighting of precipitation
change signals is expected to produce more reliable and in
the best case more precise results. The need of less manifold
projected precipitation changes is underlined by the exam-
ples in Figure 1, showing the extreme spread of projected
precipitation changes in the study area. The simulated
changes of the single ensemble members differ extremely,
even from negative to positive change signals within the
same sub-region and season. The spread comprises part of
the internal climate variability, but is also due to the differ-
ing skills of the circulation models. The uncertainty resulting
from the latter is the aim of our weighting approach.
Precipitation itself is not used to weight models in our
study, as state-of-the-art models still have major deficits in
simulating precipitation due to its complex generation mech-
anisms and the heterogeneous spatial and temporal distribu-
(e.g., Trigo and Palutikof, 2001; Mueller and
Seneviratne, 2014). However, more trustworthy modelled
climatological elements, representing the large and medium

tions

scale atmospheric patterns that cause precipitation, are ana-
lysed. Thus, key predictors for the Mediterranean rainfall are
identified with reanalysis data in a statistical downscaling
framework. The biases of the identified key predictors are
used as weights for the climate models. In this way, the
of the simulation of

problematic effects insufficient
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Precipitation changes in mm/month from 1950-1999 to 2070-2099 for four scenario runs from the single ensemble members of CMIP3 (A1B,
A2) and CMIPS5 (rcp4.5, rcp8.5) in (a)) sub-region 8 in winter (DJF), (b) sub-region 3 in spring (MAM), (c) sub-region 1 in summer (JJA) and (d) sub-region
7 in autumn (SON). For definitions of sub-regions see Section 2.1 and Figure 2
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precipitation in the models are avoided. Only the change sig-
nal from the downscaled model data is considered and there-
fore precipitation biases do not affect the weighting results.

The remainder of this paper is structured as follows:
Section 2 describes the data and methods, with the definition
of Mediterranean sub-regions in Section 2.1, the predictor
screening in Section 2.2, the downscaling approach in
Section 2.3, and the predictor description of the climate
model data in Section 2.4. The preparation of model weights
is presented in Section 3, followed by the application of
these weights on the Mediterranean precipitation changes in
Section 4. The continuance of model weights in time and
space is discussed in Section 5. The summary of this work
and conclusions are given in Section 6.

2 | DATA AND METHODS

2.1 | Regionalization of precipitation variability in the
Mediterranean region

Mediterranean sub-regions for the target variable precipita-
tion should meet the following conditions: They are deter-
mined by similar precipitation variations within a region and
they should be valid for all months and seasons. For this pur-
pose, the daily EOBS precipitation data (version 12, Haylock
et al., 2008) with a 0.25° x 0.25° grid size from 1950 to
2010 in the domain 12°W—40°E and 28°N—46°N was used.
The data set was conservatively interpolated to a 2° X 2°
grid. Grid boxes with more than 12 missing months were
removed beforehand with a missing month being defined as
one with more than two missing days (Hertig and Jacobeit,
2014). Grid boxes with large numbers of missing months are
mainly located in eastern Turkey and in North Africa.
Regionalization was done using a s-mode Varimax
rotated principal component analysis (PCA) based on a cor-
relation matrix with annually aggregated precipitation sums

in the Mediterranean domain. To take time-varying

of Climatology

climatological states into account, the precipitation time
series from 1950 to 2010 are bootstrapped 2000 times,
whereby 30 values are drawn at random and processed with
the PCA. The best result is achieved with eight principal
components, identified by the dominance criteria (Jacobeit,
1993). To unite the 2000 PCA results, a differentially initial-
ized k-means (DKM) cluster analysis is used (Enke and Spe-
kat, 1997). Figure 2 shows the result of the regionalization
process with following sub-regions: Greece-Turkey (1),
North-western area (2), Tyrrhenian Sea riparians (3), East-
ern Mediterranean (4), Iberian Peninsula (5), Balkans (6),
Maghreb (7) and Eastern Black Sea (8).

The seasonal (single-monthly) and spatially averaged
precipitation time series of these eight sub-regions serve as
predictand variables within the downscaling framework of
this study.

To test the robustness of the regionalization results, fur-
ther analyses with seasonal-split EOBS data and also reana-
lysis data (NCEP-NCAR) were made. Differences between
the regionalized areas of annual and seasonal EOBS and the
reanalysis data appear, however the coarse structure of the
sub-regions remains. To proof the robustness of the sub-
regions, further, we correlated the spatially averaged time
series based on the regionalization results of annual/seasonal
EOBS and the reanalysis. The correlation matrices showed
that the resulting precipitation time series of the same sub-
regions can be clearly assigned and correspond well to each
other (Spearman correlation, significant with p < 0.01). This
justifies the use of the annually-based regionalization result
from the EOBS data for the further research purpose.

2.2 | Predictor screening

Literature of downscaling approaches within the Mediterra-
nean region (e.g., Tatli er al,, 2004; Xoplaki et al, 2004;
Palatella et al., 2010; Lutz et al., 2012; Hertig and Jacobeit,
2013; Hertig et al., 2014; Jacobeit et al., 2014) provides a
first selection of possible important predictor variables for
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FIGURE 2  Area of investigation with sub-regions of homogeneous precipitation variability. Greece-Turkey (1), North-western area (2), Tyrrhenian Sea
riparians (3), Eastern Mediterranean (4), Iberian Peninsula (5), Balkans (6), Maghreb (7) and Eastern Black Sea (8)
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the predictand precipitation: geopotential heights at 700 and centres within the domain, the PC scores represent the corre-
500 hPa (zg700, zg500), the atmospheric layer thickness sponding time series and are used as predictor time series in
between 925 and 500 hPa (thick500-925) as a proxy for  this study.
atmospheric temperature of this layer, sea level pressure Table 1 shows the resulting number of PCs and the total
(psl), zonal and meridional wind velocities at 700 hPa  explained variances for the four seasons winter (DJF), spring
(ua700, va700), specific humidity at 850 and 700 hPa (MAM), summer (JJA) and autumn (SON).
(hus850, hus700) and relative humidity at 850 and 700 hPa
(hur850, hur700). 23
For the following analyses, NCEP-NCAR reanalysis data ] ) ] )
(Kalnay er al., 1996) for the period 1950-1999, re-gridded ~ 1© determine the most important atmospheric predictor
to a 2° x 2° spatial resolution, is used. Although there are variables from the reanalysis data for the eight precipitation
some other well-established reanalysis products, NCEP-
NCAR reanalysis seemed to be the best alternative for our

| Downscaling approach

sub-regions (= predictands, i.e., the seasonal and spatially
averaged precipitation time series from EOBS defined in

project, as it provides long-term data (compared to, Section 2.1), multiple linear regressions (MLRs) are com-

e.2., ERA-Interim) which are required for the solid calibra- puted considering some crucial points: The relationships

tion and validation of the multiple linear regressions and fur- ~ between predictor and predictand variables might be

thermore does not solely base on the assimilation of surface ~ Unsteady in time (1), the 10 chosen predictors from

variables (like for instance NOAA 20CR or ERA-20C). Section 2.2 and their PCs might be correlated (2), and the
The variables representing the large-scale atmospheric ~ requirements of the MLR method like normally distributed
circulation (zg, thick, psl, ua, va) cover the North-Atlanti-  input data as well as normal distribution, no autocorrelation
c/European sector from 50°W to 50°E and from 24°N to and homoscedasticity of the residuals must be fulfilled (3).
66°N. To capture the more regional influence of humidity To meet the first point (1), a bootstrapping method is

on precipitation, a smaller domain is chosen for hur and hus ~ applied, where 90 out of 150 time steps (3 months per sea-
(12°W—40°E and 28°N-46°N). To reduce these variables to son for 50 years are available at all) are randomly taken to
a set of manageable and physically meaningful predictors, calibrate the MLR. The remaining 60 values are used for the
seasonal (single-monthly) s-mode PCAs are computed for model validation. This random selection including calibra-
each variable. The PCAs involve the whole period from  tion and validation is repeated 800 times to generate down-
1950 to 1999, are based on the correlation matrix, and their scaling models that are valid for the whole investigation
results are Varimax rotated. The input time series are  period—independent from non-stationarities within the
weighted for their latitudes. The number of extracted PCs is  predictor-predictand relationships. To cope with possibly
determined by the dominance criteria after Jacobeit (1993) dependent predictor variables (point 2), a stepwise reduction
and Philipp (2003) with additional conditions: for at least  of predictors was developed.

one variable, a particular PC must dominate all other ones First, all PCs of the predictor variables from NCEP-
by at least more than one standard deviation of the corre- NCAR serve as input for the MLR, whereas successively
sponding loadings, the PC must also dominate the other ones one by one is set to zero. The predicted time series from all
at least at eight grid points to have a skilful scale, and the  regression models, calculated using the adjusted input, are
PC must explain at least 4% of the overall variance. The compared with the original validation time series and the
resulting PC loadings indicate the location of variability Mean Squared Error (MSE) is computed. It is assumed that

TABLE 1 Number of principal components (PCs) and explained variances (EVs) for the possible predictor variables of NCEP-NCAR from 1950 to 1999

DJF MAM JJA SON

PCs EV % PCs EV % PCs EV % PCs EV %
2g700 7 90 9 95 9 89 6 88
2g500 8 91 8 94 8 88 5 89
thick 9 91 5 89 8 88 5 93
psl 7 91 7 88 8 86 8 90
ua700 7 87 8 82 8 77 8 81
va700 9 86 9 82 9 71 7 75
hus850 4 75 7 89 6 76 7 89
hus700 7 85 6 85 6 69 7 87
hur850 6 78 6 84 8 86 5 79
hur700 8 84 8 79 8 80 7 80

Note. Chosen predictors are geopotential heights (zg) at 700 and 500 hPa, atmospheric layer thickness between 925 and 500 hPa (thick), sea level pressure (psl), zonal
and meridional wind components (ua, va) at 700 hPa, specific (hus) and relative (hur) humidity at 850 and 700 hPa.
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the predictor set to zero with the highest MSE has the greatest
influence on the predictand.

In a second step, all predictors are correlated and each
couple of correlated predictors that exceed r = 0.3 is checked
for the MSE from the first step. The predictor with the higher
MSE remains as important one, the predictor with the lower
MSE is removed from the predictors list. The remaining pre-
dictors are uncorrelated (below the defined threshold of 0.3,
according to a level of significance of 99.6%).

In a third step, the remaining uncorrelated predictors are
again, one by one, set to zero, the MLRs are calculated and
the respective MSEs between predicted and original precipi-
tation time series are determined.

To further reduce the number of predictors and to find
out the optimal set of predictors, MLRs are calculated with
at least five up to the maximum number of remaining uncor-
related predictors, containing the most important predictors
resulting from the MSEs from step three. The best validation
result, given by the R? between original and predicted pre-
cipitation time series, determines the optimal set of predictor
variables.

Now, on the one hand, the most important predictors for
the appropriate region and season are derived by the differ-
ence of the MSE, and on the other hand, the optimal set of
predictors is determined by the highest R? of the validation
periods.

The R? and the MSSS (Mean Squared Error Skill Score)
are calculated for the calibration and the validation periods.
Additionally, the residuals are checked for normal distribu-
tion (Shapiro test), autocorrelation (Durban-Watson test) and
heteroskedasticity (Breusch-Pagan test), which fulfils the
third requirement (3).

The stepwise reduction of predictors and the calculation
of a final MLR are repeated 800 times with randomly picked
calibration and validation values from 1950 to 1999. All
models that do not fulfil all requirements of the MLR (with
p-values >0.05 and the null hypothesis that the data is

of Climatology

normally distributed/not autocorrelated/no heteroskedasti-
city) are neglected, and from the remaining regression
models, only 25% of the best models are used to determine
the final predictor variables. Thereby, the performance of the
MLRs is calculated by the sum of R* and MSSS of the cali-
bration and validation results.

Now, the frequency of predictor values which pass the
predictor reduction process and which are contained in the
best MLRs, determines the importance of the single predic-
tor variables. The average optimal number of predictors,
resulting from the bootstrapping process, determines the
final number of key predictor variables (e.g., if the average
optimal number of predictors is 10, the 10 most frequent and
thus most important predictors become the key predictors).

For all seasons and sub-regions, valid regression models
could be found, except for region 4 (Eastern Mediterranean)
in summer (JJA) and autumn (SON), and for region
7 (Maghreb) in summer. The precipitation sums are too
small in the southernmost sub-regions in summer/autumn, so
that the calculation of valid MLRs was not possible.

For all successfully validated regions and seasons, the
final MLRs can be calculated with the key predictors from
the reanalysis data.

Table 2 shows an example of the key predictors and the
corresponding goodness of the MLR model (R?) for the win-
ter season for all eight sub-regions.

Table 3 shows the relative frequency of predictor vari-
ables for all four seasons. Pressure variables and in particular
the geopotential heights at 500 hPa dominate the chosen key
predictors. Over the year, they contribute more than 50% of
the key predictors. The second important group of atmo-
spheric predictors is the moisture variables of relative and
specific humidity at the 700 and 850 hPa levels with an
average frequency of almost 30% over the year. The most
frequently chosen moisture predictor is the relative humidity
of 700 hPa, followed by the specific humidity at the same
pressure level. However, the importance of moisture as

TABLE 2 Final key predictors and the R? of the corresponding MLR for winter (DJF) in alphabetical order

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

R? 57 73.6 62.2 56.2 76.6 74.8 59 65.5

1 hus700_4 hus700_6 hur700_6 hur700_5 hur700_6 hus700_6 hus700_3 ua700_6
2 hus700_6 hus850_2 ua700_6 hur850_1 hus700_3 hus850_2 hus700_7 va700_8
3 ua700_6 thick_6 va700_7 hus700_7 hus700_6 zg500_1 ua700_6 va700_9
4 va700_7 va700_7 va700_9 ua700_6 hus850_2 zg500_2 va700_7 zg500_1
5 va700_9 va700_8 zg500_2 va700_9 thick_6 zg500_3 zg500_1 zg500_2
6 zg500_2 zg500_2 zg500_3 7g500_3 zg500_1 7g500_4 7g500_3 7g500_3
7 zg500_3 7g500_3 zg500_4 7g500_4 7g500_2 zg500_5 7g500_4 zg500_5
8 zg500_5 zg500_4 zg500_5 zg500_5 zg500_3 zg500_6 zg500_6 zg500_6
9 zg500_6 zg500_5 zg500_6 zg500_7 zg500_5 zg500_7 zg500_7 zg500_7
10 zg700_3 zg500_6 zg500_7 zg500_7 zg700_3 zg700_2 zg500_8
11 zg700_1

Note. The number behind the variables and levels denotes the number of the PC. For variable abbreviations see Table 1.
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TABLE 3  Percentage frequencies of predictor variables from the final MLR setups for the four seasons
% zg500 zg700 Psl Thick500-925 va700 ua700 hur700 hur850 hus700 hus850
DIJF 53.8 5.0 0.0 2.5 12.5 6.3 3.8 1.3 11.3 3.8
MAM 443 114 2.5 1.3 13.9 0.0 10.1 1.3 8.9 6.3
A 47.8 4.3 22 33 43 0.0 20.7 9.8 33 43
SON 40.3 9.1 3.9 0.0 7.8 10.4 13.0 0.0 13.0 2.6
All 46.6 7.3 2.1 1.8 9.5 4.0 12.2 34 8.8 43

Note. For variable abbreviations see Table 1.

predictor variable varies through the seasons. It is most
important in summer providing almost 40% of all predictor
variables and less important in winter with about 20% at all.
The table also shows that specific humidity gains in impor-
tance in autumn and in winter compared to relative humidity.
The third frequent predictors are the zonal and meridional
wind velocities, whereby the meridional wind component is
more important than the zonal one, except for autumn. Simi-
lar to the atmospheric moisture, the importance of the wind
as a predictor for Mediterranean precipitation underlies a
seasonal variation, as it is most important in autumn and
winter and less significant in spring and especially in sum-
mer. The atmospheric layer thickness plays only a marginal
role within the key predictor setup and has its greatest influ-
ence in summer with 3.3%.

2.4 | Downscaling historical and future precipitation of
CMIP3 and CMIP5

The GCMs that will be weighted in this paper belong to the
third (Meehl ez al, 2007) and fifth (Taylor et al, 2012)
Coupled Model Intercomparison Projects (CMIP) from the
Intergovernmental Panel on Climate Change (IPCC). All
available data from CMIP3 and CMIPS are used in this
study. The availability of atmospheric variables limits the
number of investigated models to 22 from CMIP3 and
29 from CMIPS. Only the first realization of each model is
used. The chosen data include the second half of the 20th
century (1950-1999, called historical in CMIP5 and 20c3m
in CMIP3) as well as the end of the 2Ist century
(2070-2099) for four future climate scenarios (rcp4.5 and
rcp8.5 for CMIPS, A1B and A2 for CMIP3). Tables 4 and 5
list the CMIP models used in this study.

Equivalent to the EOBS data and the NCEP-NCAR rea-
nalysis, the CMIP model data is re-gridded to a 2° X 2° grid.
The fields of the modelled atmospheric variables are normal-
ized over the investigated time period 1950-1999/
2070-2099 (separately for each scenario) and then projected
onto the loading patterns of the PCAs from NCEP-NCAR
(from Section 2.2). The key predictors, defined by the reana-
lysis and observed data in Section 2.3, are used to drive the
MLRs. The resulting downscaled precipitation data from
CMIP3 and CMIPS5 models for the historical and the four
future scenario runs are used to calculate the precipitation
change signals in the eight Mediterranean sub-regions.

3 | GENERATING MODEL WEIGHTS

In contrast to the previous pre-processing of the CMIP pre-
dictors in Section 2.4, the fields of the historical modelled
atmospheric variables are normalized by the corresponding
mean and standard deviation of the NCEP-NCAR

TABLE 4 CMIP3 models used in this study

CMIP3

No. Model name Institution

1 bee-csml-1 Beijing Climate Center, China

2 bee-csml-1-m Beijing Climate Center, China

3 beer-bem2-0 Bjerknes Centre for Climate Research, Norway

4 cnrm-cm3 Météo-France/Centre National de Recherches
Météorologiques, France

5 csiro-mk3-0 CSIRO Atmospheric Research, Australia

6 csiro-mk3-5 CSIRO Atmospheric Research, Australia

7 gfdl-cm2-0 US Dept. of Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory, USA

8 gfdl-cm2-1 US Dept. of Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory, USA

9 giss-model-e-h NASA/Goddard Institute for Space Studies,
USA

10 giss-model-e-r NASA/Goddard Institute for Space Studies,
USA

11 iap-fgoals1-0-g LASG/Institute of Atmospheric Physics, China

Instituto Nazionale di Geofisica e
Vulcanologia, Italy

12 ingv-echam4

13 inmcm3-0 Institute for Numerical Mathematics, Russia

14 ipsl-cm4 Institut Pierre Simon Laplace, France

15 miroc3-2-hires Center for Climate System Research (The
University of Tokyo), National Institute for
Environmental Studies, and Frontier
Research Center for Global Change
(JAMSTEC), Japan

16 miroc3-2-medres Center for Climate System Research (The

University of Tokyo), National Institute for
Environmental Studies, and Frontier
Research Center for Global Change
(JAMSTEC), Japan

17 mpi-echam5 Max Planck Institute for Meteorology,

Germany

18 mri-cgem2-3-2a Meteorological Research Institute, Japan

19 ncar-ccsm3-0 National Center for Atmospheric Research,
USA
20 ncar-pcml National Center for Atmospheric Research,

USA

21 ukmo-hadem3 Hadley Centre for Climate Prediction and

Research/Met Office, UK

Hadley Centre for Climate Prediction and
Research/Met Office, UK

22 ukmo-hadgem1
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TABLE 5 CMIP5 models used in this study

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia

Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée en Calcul Scientifique,

CMIP5
No.  Model name Institution
1 ACCESSI1-0
2 ACCESSI1-3
3 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada
4 CCSM4 University of Miami-RSMAS, USA
5 CESM1-CAMS Community Earth System Model Contributors, USA
6 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy
7 CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy
8 CNRM-CM5
France
9 CSIRO-Mk3-6-0

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of
Excellence, Australia

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University, China

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais), UK

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo),

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo),

10 FGOALS-g2
11 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA
12 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA
13 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA
14 GISS-E2-H NASA Goddard Institute for Space Studies, USA
15 GISS-E2-R NASA Goddard Institute for Space Studies, USA
16 HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration, Korea
17 HadGEM2-CC Met Office Hadley Centre, UK
18 HadGEM2-ES
19 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France
20 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France
21 IPSL-CM5B-LR Institut Pierre-Simon Laplace, France
22 MIROCS
Agency for Marine-Earth Science and Technology, Japan
23 MIROC-ESM
and National Institute for Environmental Studies, Japan
24 MIROC-ESM-CHEM
and National Institute for Environmental Studies, Japan
25 MPI-ESM-LR Max Planck Institute for Meteorology, Germany
26 MPI-ESM-MR Max Planck Institute for Meteorology, Germany
27 MRI-CGCM3 Meteorological Research Institute, Japan
28 NorESM1-M Norwegian Climate Centre, Norway
29 NorESM1-ME Norwegian Climate Centre, Norway

reanalysis (grid box by grid box) and then projected onto
the loading patterns of the PCAs from NCEP-NCAR (from
Section 2.2). Thus, the bias of the modelled atmospheric
variables in comparison to the reanalysis data is repre-
sented in the resulting projected PC scores of the climate
models. These biases are used to determine the weights for
each investigated CMIP model. Therefore, the appropriate
key predictor PC scores are used to drive the final MLRs
that were defined by the reanalysis and observed data in
Section 2.3. As the projected PCs reflect the biases of the
original modelled atmospheric fields (through the nor-
malization with the reanalysis values), the resulting
mean of the CMIP precipitation time series differs from
the original mean of the fitted values from NCEP-NCAR
according to the bias of the input key predictors. The
absolute differences between the means of the two time
series are used as basis for the model weights. Large

differences of the means get lower weights than smaller
differences.

This is done separately for CMIP3 and CMIPS. The
basic weights are then normalized between O and 1. As a
result, each model has one weight per sub-region and
season.

Figure 3 shows the mean output values from the MLRs
and the corresponding weights for the example of the East-
ern Black Sea (8) sub-region.

4 | APPLICATION OF MODEL WEIGHTS
TO MEDITERRANEAN DOWNSCALED
PRECIPITATION CHANGES

The application of the weights on the model data leads to a
modified distribution of precipitation change signals which
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Mean CMIP output of precipitation sums from the MLRs, which were set up with the reanalysis, and corresponding model weights for sub-

region 8 in the historical period (1950-1999) in (a) DJF, (b) MAM, (c) JJA and (d) SON. Model weights reflect the absolute difference between modelled

mean values and the mean of NCEP-NCAR, normalized between O and 1

are potentially more reliable than the unweighted changes,
as the better performing models on current climate have
higher impact on the mean change signal than the worse per-
forming models. Figures 4 and 5 show the relative precipita-
tion changes at the end of the 21st century (2070-2099)
compared to the historical period (1950-1999) for the
weighted multi-model means (WMMM). The results for all
sub-regions and seasons that have valid MLRs are shown for
the four future scenario runs from the CMIP ensembles
(A1B, A2, rcp4.5, rcp8.5). In winter, precipitation is pro-
jected to increase almost in the whole study area except for
the Eastern Mediterranean (4). The largest increase (up to
70%) is expected to be at the Balkans (6), followed by the
Eastern Black Sea (8) and the Iberian Peninsula (5). The
increasing precipitation amounts persist in spring and sum-
mer at the northeastern parts of the investigated area: In
spring positive changes occur at the Balkans (6) and the
Eastern Black Sea (8), in summer slightly positive values
persist only in the latter region. All other sub-regions are
projected to have decreased precipitation amounts at the end
of the 21th century from spring to autumn. Particularly the
most southern part with the Iberian Peninsula (5),
Maghreb (7) and the Eastern Mediterranean (4) are subject
to the strongest precipitation decreases with up to 70%. The
four different scenario runs thereby show a consistent
change pattern.

The difference between unweighted and weighted pre-
cipitation changes are shown in Figure 6 for ensemble

means and the changes of the kernel density estimates
within the model ensemble exemplarily for the FEastern
Black Sea (8) in winter in Figure 7. These figures illustrate
on the one hand the diversity and spread of the climate
model ensemble and on the other hand the impact of the
weights on the ensemble member distribution. For the
Eastern Black Sea (8) sub-region in winter (see Figures 6
and 7) and autumn (see Figure 6d) the weighting of
CMIP3 leads to more positive projections, and the weight-
ing of CMIP5 leads to reduced positive change signals,
thus, the precipitation scenarios become overall more pre-
cise. The same effect of the weighting can also be seen in
the Greece-Turkey area (sub-region 1) in winter (see
Figure 6a).

In the Eastern Mediterranean (4) area, the weighting
process intensifies the negative precipitation changes in win-
ter uniformly among the scenarios and the positive precipita-
tion changes in the sub-regions Tyrrhenian Sea riparians
(3) and the Balkans (6) are shifted towards diminished and
intensified change signals, respectively. However, the abso-
lute effect of the weights is small compared to the variability
of the ensemble and the weights do not cause visibly more
precise change signals for all sub-regions in winter, for
example, at the Iberian Peninsula (5).

For the other seasons, there are also uniform shifts of
the change signals over all four scenarios (in MAM in all
sub-regions, in JJA in sub-regions 1, 2, 6 and 8, and in
SON in sub-regions 3 and 7) and a reduction of the spread
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FIGURE4 Downscaled and weighted precipitation changes in % from 1950-1999 to 2070-2099 for the scenarios A1B, A2, rcp4.5 and rcp8.5 in DJF

and MAM

and thus a more precise signal of the future precipitation
change (in JJA in sub-region 5, and in SON in sub-regions
2 and 8).

Characteristics of the modification of the change signals'
distributions for all scenarios and seasons can be seen in
Figure 8. The change of the mean on the x-axis shows the
direction of diminished or intensified precipitation changes

after weighting the climate models, whereas the change of
the standard deviations (SD) on the y-axis indicates a broad-
ening or narrowing of the inter-model ensembles' spread.
The changes of the ensemble spreads in winter and autumn
are quite uniformly distributed, however, increasing ensem-
ble ranges dominate in spring and decreasing ensemble
ranges in summer.
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Considering the distributions of the single scenarios
and the changes of the wMMM in Figures 6 and 8, the
intensified negative precipitation change signal of the East-
ern Mediterranean (4) sub-region in winter, the diminished
positive changes at the Tyrrhenian Sea riparians (3) in
winter and the confirmation of the negative change signals
at the Iberian Peninsula (5) and the Balkans (6) in

[ -
50 310 >2o@@w %

Downscaled and weighted precipitation changes in % from 1950-1999 to 2070-2099 for the scenarios A1B, A2, rcp4.5 and rcp8.5 in JJA
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summer become even more reliable through a smaller
spread of the single scenario ensembles combined with the
accordance or convergence of the scenario wMMM change
signals.

Overall, compared to the ensemble spread, the impact of
the weighting on the ensemble is rather small and coincidental
changes cannot be ruled out.
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S | CONTINUANCE OF MODEL WEIGHTS
IN TIME AND SPACE

The presented weighting metric results in eight (sub-regions)
by four (seasons) different assessments of model perfor-
mance for the entire Mediterranean area with respect to their

skill in representing Mediterranean precipitation. In view of
the multitude of weighting results, the question arises
whether these weights are comparable among different sea-
sons and sub-regions or whether the single model rankings
are rather unique. Therefore, ranking orders are set up to
prove the general applicability of the weighting results.

< A1B —— Unweighted
O~ e A2 — — Weighted
°| — rcp45
— rcp85
3 |
o
=
£q
T o
o
o
\ N
5 A\
O.%
S S T T et
-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Precipitation change (%), 1950—99 to 2070—99

FIGURE 7
rcp4.5 and rep8.5 at the Balkan sub-region (8) in winter

Kernel density estimates of unweighted and weighted precipitation changes in % from 1950-1999 to 2070-2099 for the four scenarios A1B, A2,
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the sub-regions (see Figure 2)

Figures 9 and 10 show ranking lists, aggregated over all sub-
regions (left panels) and over all seasons (right panels) for
CMIP3 and CMIPS5, respectively.

The tables can be read as follows: For example, in the
CMIP5 ensemble of Figure 10 the ACCESS1-0 model is the
overall best one in representing precipitation in the Mediter-
ranean area, because it has the lowest overall rank number,
averaged among all sub-regions and seasons. However, its
good performance is not equally distributed over all seasons
and sub-regions, as it shows weaknesses in winter and spring
and especially in the sub-region of the Eastern Mediterra-
nean (4). The second best CMIP5 model CESM1-CAM5
has very good ratings in winter, spring and summer seasons,
but the performance decreases in autumn.

Additionally, some model family specific features can be
detected. For example, the all in all well rated HadGEM2

model family with three ensemble members in CMIPS is dis-
tinguished by pronounced deficiencies in the Eastern Black
Sea (8) sub-region as well as the previous model ukmo-
hadgeml from CMIP3, whereas the even older ukmo-
hadcm3 model is characterized by the best ranking result for
this sub-region in CMIP3.

Another distinctive feature shows the French CMIP5
model family of IPSL-CMS5. The IPSL-CMSA models,
which are the direct followers of the worst ranked CMIP3
model ipsl-cm4, are noticeable through their below-average
rankings in sub-regions 4 and 7, whereas IPSL-CM5B with
a new atmospheric model and very different physical param-
eterizations achieves clearly better rankings in these two dry
and southernmost Mediterranean areas.

Looking at the lower ends of both tables, apparently some
models show very good performance for the North-western
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FIGURE 9 Ranking lists of all used CMIP3 models, resulting from the weighting metric used in this study. Single ranking results are aggregated over all

sub-regions (left panel) and over all seasons (right panel). Bright background colour indicates better ranking results than a dark background. The numbers

denote the overall ranking result

area (sub-region 2) in comparison to the other sub-regions.
Particularly affected are the CanESM2, CCSM4, GISS-E2-H
and GISS-E2-R models from CMIP5 and the bce-csml-1-m,
ncar-ccsm3, giss-model-e-h, iap-fgoalsl-0-g, ingv-echam4
and the ncar-pcm1 models from CMIP3. This may be due to
the chosen key predictors for this sub-region in summer
and/or autumn for the calculation of the MLR (not shown).
The by far most important key predictors for the MLRs of
these two seasons in the North-western area (sub-region 2)
are moisture variables (primarily relative humidity at
700 hPa). Usually, geopotential heights play the major role
within the set of key predictors and thus the weighting of the
single models. However, in this case the named models may
profit from an improved moisture modelling.

Despite the variability within the ranking of one model
in time and space, sub-groups of better and worse models
for the representation of Mediterranean precipitation are
clearly recognizable, indicated by the range of the overall
averaged ranks at the first columns in Figures 9 and 10. In

the CMIP3 ensemble, mri-cgcm2-3-2a, inmcm3-0 and
miroc3-2-hires and for the CMIP5 ensemble, ACCESS1-0,
CESM1-CAMS5 and MIROC-ESM show the overall best
results, whereas ingv-echam4, ncar-pcml and ipsl-cm4 in
CMIP3 and GISS-E2, MRI-CGCM3 and IPSL-CM5B-LR
from CMIP5 are the most inappropriate models to investi-
gate monthly precipitation in the Mediterranean area.

The varying skill of models between different regions
and seasons, but nonetheless an obvious overall ranking was
also recognized by former studies (Gleckler et al., 2008;
Sanchez et al., 2009; Kjellstrom et al., 2010; Masson and
Knutti, 2011; Réisdnen and Ylhiisi, 2012).

6 | SUMMARY AND CONCLUSIONS

We developed a new weighting approach for general cir-
culation and earth system models based on large and
medium scale atmospheric predictor information for the
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FIGURE 10  As Figure 9, but for CMIP5

Mediterranean precipitation within a statistical downscal-
ing framework. The spread of modelled precipitation
sums and also the spread of projected precipitation
changes at this hot spot of climate change underline the
need of a particular performance evaluation of state-of-
the-art general circulation models (here all available
models of CMIP3 and CMIP5) to gain more trustworthy
ensembles.

The novelty of this weighting metric consists in avoiding
the use of the precipitation bias by itself as a weighting
basis, as the modelling of precipitation amounts and their
spatial distribution is still a highly insufficient subject.
Therefore, significant and robust predictor-precipitation-
relationships are derived by means of particular MLRs. An
extensive and elaborated predictor screening with a

S

Region 1
Region 2
Region 3
Region 4
Region 5
Region 6
Region 7
Region 8

bootstrapping technique was developed to ensure almost
time-independent regression models and their applicability
to the future under the assumption of stationary biases.
Because our study avoids the use of direct CMIP precipita-
tion output, the potential bias of these data and its behaviour
in future scenarios have no influence on our results. How-
ever, the biases of our predictor variables may underlie a
time dependent magnitude as described by Christensen and
Boberg (2012) for temperature. In what sense potential
changing biases of the large scale atmospheric drivers might
influence the downscaled predictand through the MLR equa-
tion is a very interesting question and should be subject of
further research.

In our study, the biases in the historical period of the
identified key predictors, including pressure, moisture, wind
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and temperature proxy variables at different atmospheric
levels, determine the specific climate model weights. This is
done separately for the four seasons and eight Mediterranean
sub-regions, which are characterized by homogeneous pre-
cipitation variabilities.

The application of the model weights to the downscaled
precipitation changes at the end of the 21st century for four
different climate scenarios (A1B, A2, rcp4.5 and rcp8.5)
leads in some cases to either a shift or a concretion of the
change signals and thus to more reliable results. However, at
a few sub-regions and seasons, the weighting resulted in a
broadening of the change signal distribution. Overall, the
changes are due to the chosen type of weights (normalization
between 0 and 1) very small.

Finally, the 8 (sub-regions) by 4 (seasons) different
model rankings were analysed with respect to their continu-
ance in space and time. Thereby it is not possible to gain one
homogeneous and universal ranking of models over all sub-
regions and seasons, however, a clear sequence from better
to worse models for the representation of precipitation in the
Mediterranean area becomes apparent.
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