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Abstract
A dimensional crossover of superconducting fluctuations in an external magnetic field, applied
parallel to the layers, has been found for superconductor/ferromagnet bilayers of Nb/Cu41Ni59.
By lowering the temperature, a reduction of the superconducting nuclei size occurs. As soon as
the size of the nuclei becomes smaller than the thickness of the superconducting bilayer
structure, the dimensionality changes. The temperature dependence of the fluctuation
conductivity exhibits a 2D behaviour in zero and weak magnetic fields in the vicinity of the
critical temperature, switching to a 3D behaviour in a strong magnetic field at low temperatures.

1. Introduction

There exists a fundamental reason for the resistive transition
broadening of a superconductor due to an intrinsic transition
width associated with thermodynamic fluctuations of the
superconducting order parameter. This intrinsic width, �Tc,
is given by the Ginzburg criterion [1], �Tc = Gi Tc, where

Gi ∼ a4
0/ξ

4
0 (1)

is the Ginzburg number, with a0 being the lattice parameter,
ξ0 = h̄vF/2πkB Tc the coherence length, vF the Fermi
velocity of the superconducting material and Tc the critical
temperature. The value of Gi is extremely small for pure
3D conventional superconductors like bulk Sn or Al (Gi3 ∼
10−13–10−14), rising by many orders of magnitude for dirty
and low-dimensional systems [2, 3]. For low-dimensional
superconductors, such as thin films or thin wires, with one
characteristic scale (thickness of the film or diameter of the
wire) comparable to the coherence length ξ0, the intrinsic width
�Tc may be much larger than for bulk material. In particular
for thin films with thickness d , electron mean free path l
and Ginzburg–Landau coherence length ξ(0) ∼ (ξ0l)1/2, the
value of the Ginzburg number Gi2 increases dramatically in
comparison with the respective value Gi3 for bulk material [2]:

Gi2 = (EF/kB Tc)[k3
Fξ(0)2d]−1 ≡ (Gi3)

1/2ξ(0)/d (2)

making the fluctuation effects observable experimentally, as
was investigated in detail in [4, 5]. Here, EF and kF are
the Fermi energy and wavenumber, respectively, and kB is
Boltzmann’s constant.

In many works the broadening of the resistive transition
of thin films and layered superconductors was interpreted in
terms of superconducting fluctuations, rising in the vicinity of
the critical temperature Tc [6–9]. The fluctuation or excess
conductance, σ ′ = σ(T ) − σn ≡ 1/R(T ) − 1/Rn (Rn

is the resistivity of the sample above the superconducting
transition at T � Tc) strongly depends on the superconductor
dimensionality. It is σ ′ ∼ (T/Tc − 1)m , with the critical
index m = (D − 4)/2, which depends on the superconductor
dimensionality D, leading to m = −1/2, −1 and −3/2 for 3D,
2D and 1D superconductors, respectively [6].

For a two-dimensional superconductor (D = 2) in the
weak fluctuation region, at temperatures T > Tc, the excess
conductance σ ′ ∼ (T/Tc − 1)m is inversely proportional to the
temperature. According to Aslamazov–Larkin [10] one gets

[σ ′(T )]−1 = (Rn/τAL)(T − T AL
c )/T AL

c (3)

where τAL = (R�
n e2)/16h̄, and R�

n is the normal state sheet
resistance of the film [7, 10] and T AL

c is the Aslamazov–Larkin
critical temperature [7].

In the critical fluctuation region at temperatures T ∼
Tc, the inverse fluctuation conductivity [σ ′]−1 is expected
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to be an exponential function of (1 − T/Tc)
−m [11]. For

a 2D superconductor with m = −1 the theory of critical
fluctuations [12] yields

[σ ′(T )]−1 ∼ Rn exp[−(1 − T/Tc)/Gi2]. (4)

For three-dimensional fluctuations the dependence with m =
−1/2 should occur [11]:

[σ ′(T )]−1 ∼ Rn exp{[−(1 − T/Tc)/Gi3]1/2}. (5)

The present paper reports data on the change of the critical
index specifying the temperature dependence of the fluctuation
conductivity σ ′ near the superconducting transition point for a
superconductor/ferromagnetic (S/F) bilayer of Nb/Cu41Ni59 by
a strong magnetic field, applied parallel to the layers.

In such an S/F contact, a quasi-one-dimensional Fulde–
Ferrel–Larkin–Ochinnikov (FFLO)-like state is established, in
which the pairing wavefunction not only decays exponentially
into the F metal (as in the usual superconductor/non-
magnetic-normal-metal (S/N) proximity effect), but in addition
oscillates. Interference effects of the pairing wavefunction
thus govern the superconducting behaviour of the S/F bilayer,
yielding, for example, a critical temperature, oscillating as a
function of the F metal layer thickness dF. This non-monotonic
dependence of the critical temperature on dF, which may even
lead to a reentrant behaviour of the superconducting state, has
been recently studied in detail in [13]. The present paper now
investigates the superconducting fluctuations in this system, in
which superconductivity is governed by the pairing function
flux through the S/F boundary.

The samples were prepared by magnetron sputtering on
commercial (111) silicon substrates at room temperature from
Nb (99.99%) and Cu40Ni60 targets. Rutherford backscattering
spectrometry (RBS) has been used to evaluate the thickness of
the Nb and the Cu1−xNix layers with an accuracy of ±5%. The
resistance measurements were performed by the DC four-probe
method using a 10 μA sensing current in the temperature range
0.4–10 K in an Oxford Instruments ‘Heliox’ 3He cryostat. For
further details see [13].

2. Results and discussion

Figure 1 presents the resistive transitions in a parallel magnetic
field B = B‖ for one of the investigated Nb/CuNi samples with
a 7.3 nm thick Nb layer and 1 nm thick CuNi layer.

The temperature dependence of the fluctuation conduc-
tance, σ ′(T ), in semilogarithmic coordinates is demonstrated
in figure 2, following a 2D behaviour with the critical index
m = −1 for zero and weak magnetic field (B = 0.5 T).
It can analytically be described as σn/σ

′ ∼ exp(−εB/Gi2),
with εB = 1 − T/Tc(B), where Tc(B) is the superconducting
transition temperature, determined as the midpoint of the re-
sistive transitions R(T ), in the magnetic field B [11, 14]. For
B‖ = 0 and 0.5 T we have Tc(B‖) ≈ Tc(0). For strong mag-
netic fields another behaviour was observed with the critical
index m = −1/2:

σn/σ
′ ∼ exp{(−εBαB/Gi3)

1/2},
where [15] αB = −(1 − B/Bc2‖(T )) (6)

Figure 1. Resistive transitions R(T ) in a magnetic field, parallel to
the layers, for the sample S3#29, which is an Nb(7.3 nm)/Cu41Ni59

(1 nm) bilayer. The value of the magnetic field is marked on the
curves.

corresponding to the 3D case in a magnetic field. This effect—
a crossover from a 2D behaviour of the Nb/CuNi bilayer in zero
and a weak magnetic field to a 3D behaviour in a strong parallel
magnetic field at low temperatures—is the main finding of the
present work.

From the slope of the straight lines in figure 2, the
Ginzburg number Gi can be evaluated. For zero and
small field, this is straightforward, because ln(σn/σ

′) =
(1/Gi2)(−εB) + const, yielding Gi2 = 1.67 × 10−2. For
high fields we get [ln(σn/σ

′)]2 = (αB/Gi3)(−εB) + const′,
yielding αB/Gi3 = 1.92 × 102, i.e. Gi3 = αB × 5.2 × 10−3.
To determine αB , we measured Bc2‖(T ). For the environment
below 9.5 T it is, in a linear approximation, Bc2‖(T ) ≈ 9.5 T−
(1.36 T K−1)(T −Tc(9.5 T)). For −(1−T/Tc(9.5 T)) = 0.15,
which is at the centre of the linear behaviour in figure 2(b), we
have T − Tc(9.5 T) = 0.31 K. This gives Bc2‖(T ) = 9.08 T
and thus αB = −(1 − 9.5 T/9.08 T) = 0.046. Then Gi3 =
0.046 × 5.2 × 10−3 = 2.4 × 10−4.

According to equation (2) it is Gi3 = Gi 2
2 (d/ξ(0))2.

As described in detail in [16], ξ(0) has been determined
from measurements of the temperature dependence of the
perpendicular critical magnetic field of the present sample,
yielding ξ(0) = 10 nm, so that d/ξ(0) = 7.3 nm/10 nm. This
results in Gi3 = (1.67 × 10−2 × 0.73)2 = 1.49 × 10−4, close
to the measured value of 2.4 × 10−4.

The change of the absolute value of the critical index
from 1 to 1/2 specifying the temperature dependence of the
fluctuation conductivity can be interpreted as a manifestation
of a dimensionality crossover of superconducting fluctuations
from two-dimensional in zero and low magnetic fields to three-
dimensional in a strong field. In the low magnetic field
region at high temperatures (in the vicinity of Tc) the size of
the superconducting nucleus, determined by the temperature-
dependent Ginzburg–Landau coherence length ξ(T ) =
ξ(0)(1 − T/Tc)

−1/2 of the superconductor, is much larger
than the thickness of the superconducting Nb/CuNi bilayer
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Figure 2. Temperature dependence of ln(σn/σ
′) and [ln(σn/σ

′)]2,
respectively. Data taken from figure 1. The slope of the lines
(marked by arrows) gives the value of the Ginzburg number:
(a) Gi2 = 1.67 × 10−2 for B = 0 and 0.5 T (2D behaviour) and
(b) Gi3 = 2.4 × 10−4 for B = 9.5 T (3D behaviour). For details see
the text. The insets give information about the sample number and
the superconducting transition temperatures at the mentioned
magnetic fields parallel to the surface of the Nb/CuNi bilayer.

and the sample demonstrates two-dimensional behaviour. By
lowering the temperature, a reduction of the superconducting
nucleus size takes place. As soon as the size of the nucleus
becomes smaller than the thickness of the superconducting
bilayer structure, the dimensionality changes, because the
nucleus is localized inside the superconducting layer [17] and
the three-dimensional behaviour occurs. The effective size of
the nucleus may be roughly estimated by the equation [18]

Seff ≡ ξ⊥ = [Bc2⊥(T )ϕ0/2π]1/2/Bc2‖(T ) (7)

with ϕ0 = h/2e the superconducting flux quantum (where
h is Planck’s constant and e the elementary charge) and the
superconducting coherence length ξ⊥ = ξ⊥(0)(1 − T/Tc)

−1/2,
which we estimated using the values of the measured critical
magnetic fields parallel to the sample plane, Bc2‖(T ), and
perpendicular to the plane, Bc2⊥(T ).

For the temperature T = 2.078 K (which is the transition
temperature of the sample in a parallel field of B = 9.5 T,

i.e. Bc2‖(2.078 K) = 9.5 T) the experimental value of the
perpendicular critical field is Bc2⊥(2.078 K) = 1.8 T. With
ϕ0 = 2.07 × 10−15 T m2 the value for the nucleus calculated
from equation (7) is Seff = 2.6 nm, which is less than the
Nb layer thickness of the sample, dNb = 7.3 nm. Thus,
the superconducting nucleus ‘considers’ the sample as bulk
material.

The corresponding 3D temperature dependence of the
fluctuation conductivity occurs at such low temperatures that
it causes the critical index m = −1/2. Alongside, as
the transition temperature decreases (for increased magnetic
field), the value of the Gi number, obtained from the slope
of the linear parts of the ln(σn/σ

′) and [ln(σn/σ
′)]2 versus

−(1 − T/Tc) dependences, changes from the value for 2D
fluctuations, Gi2 = 1.67 × 10−2, down to Gi3 = 2.4 × 10−4

for 3D fluctuations.

3. Conclusions

In conclusion, the temperature dependence of the fluctuation
conductivity exhibits a 2D behaviour in zero and weak
magnetic fields in the vicinity of the critical temperature,
changing to a 3D behaviour in strong magnetic fields at low
temperatures. In which way the crossover behaviour depends
on the properties of the bilayer (e.g. the thickness of the F metal
and thus the pairing function flux across the S/F interface)
cannot be concluded from these first measurements. More
detailed investigations have to be performed to answer this
question.

The dimensional 2D–3D crossover for layered samples
can also be detected in the temperature dependence of the
parallel critical magnetic field. This phenomenon was recently
observed for superconductor/ferromagnet bilayers [19]. A
correlation to the fluctuation dimensional crossover would be
an interesting issue.

Probably, a deep analysis of how far the S/F proximity
effect governs the fluctuation behaviour needs an extension
of the theoretical work on fluctuation regimes at the FFLO
transition [20] to the quasi-one-dimensional FFLO-like state
present in the investigated S/F bilayer.
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