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LDA+DMFT, the merger of density functional theory in the local density approximation and dynamical
mean-field theory, has been mostly employed to calculate k-integrated spectra accessible by photoemission
spectroscopy. In this paper, we calculate k-resolved spectral functions by LDA+DMFT. To this end, we
employ the Nth order muffin-tin �NMTO� downfolding to set up an effective low-energy Hamiltonian with
three t2g orbitals. This downfolded Hamiltonian is solved by DMFT yielding k-dependent spectra. Our results
show a renormalized quasiparticle band over a broad energy range from −0.7 eV to +0.9 eV with small “kinks”
discernible in the dispersion below the Fermi energy.
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I. INTRODUCTION

Transition metal oxides show a diversity of challenging
physical phenomena, including superconductivity, metal-
insulator transitions, and colossal magnetoresistance, and are
therefore at the center of modern solid state research. Elec-
trons in many of these materials are strongly correlated due
to a large ratio of Coulomb interaction to bandwidth U /W,
resulting in complicated many-electron physics which makes
realistic calculations rather difficult. In particular, conven-
tional band structure calculations, e.g., in the local density
approximation �LDA�,1 fail because these effective one-
particle approaches do not contain many-body physics such
as the formation of Hubbard bands, quasiparticle renormal-
ization, and lifetime effects. In this respect LDA+DMFT, the
recent merger2–7 of LDA with the many-body dynamical
mean-field theory �DMFT�,8–11 is a promising new approach
which includes many-body aspects into realistic calculations.
It has been successfully applied, in particular to calculate the
total �k-integrated� spectra of transition-metal oxides like
LaTiO3,2,12 V2O3,13–15 Sr�Ca�VO3,15,17–22 LiV2O4,23

Ca2−xSrxRuO4,24,25 CrO2,26 but also of Ni,27 Fe,27 and
f-electron systems such as Pu28,29 and Ce.30–35

LDA+DMFT calculations for transition metal oxides
have mostly been restricted to the d bands around the Fermi
energy, employing a simplified calculational scheme based
on the LDA density of states �DOS� which holds for cubic
systems.3 Calculations with the full LDA Hamiltonian, in-
cluding all spdf valence orbitals in the DMFT have been
performed for Pu28,29 and Ce.30–33 Since the O2p-Me3d over-
lap is considerable for transition metal �TM� oxides, a full
LDA Hamiltonian calculation should also take into account
the rather large36–38 oxygen-TM and oxygen-oxygen Cou-
lomb interactions Upd and Up.

While a large number of interacting orbitals makes LDA
+DMFT calculations with the full spd Hamiltonian difficult,
they are feasible for the effective d bands around the Fermi

energy. To this end, a clear definition of the effective Hamil-
tonian for energies near the Fermi energy is mandatory. An
accurate construction of this effective Hamiltonian is pos-
sible by the downfolding procedure for third generation
muffin-tin orbitals39 �NMTOs� and has recently been em-
ployed in the LDA+DMFT context by Pavarini et al.19,22

Furthermore, Anisimov et al.15 recently proposed a projec-
tion scheme of the Bloch functions onto a Wannier functions
basis to obtain a few-orbital Hamiltonian. Also note a third
scheme, proposed by Solovyev,16 for generating Wannier
functions from LMTO Bloch functions. Such a downfolded
or projected Hamiltonian is required to calculate k-resolved
spectra.

Due to its simple crystal structure �cubic perovskite� and
the 3d1 electronic configuration the transition metal oxide
SrVO3 is ideal for testing new theoretical methods for the
realistic modeling of correlated materials. SrVO3 is a
strongly correlated metal with a pronounced lower Hubbard
and quasiparticle peak in the photoemission spectra40–42

�PES� as well as a pronounced quasiparticle and upper Hub-
bard band in the x-ray absorption spectrum.43 After the sub-
stitution of Sr by Ca, PES40 and Bremsstrahlung isochromat
spectra44 �BIS� originally suggested the onset of a Mott-
Hubbard metal-insulator transition. By contrast, thermody-
namic properties �Sommerfeld coefficient, resistivity, and
paramagnetic susceptibility�45 did not show significant ef-
fects upon Ca doping. An attempt to describe electronic
properties of SrVO3 by DMFT was made by Rozenberg et
al.46,47 for the one-band Hubbard model using phenomeno-
logical parameters. Recently, the puzzling discrepancy be-
tween spectroscopic and thermal properties has been solved
by new bulk-sensitive PES,41,42,48 showing similar spectra
for CaVO3 and SrVO3, in agreement with the thermody-
namic results. This was confirmed theoretically by LDA
+DMFT calculations.15,18–22 In this paper we present LDA
+DMFT �QMC� calculations for SrVO3 based on a NMTO
downfolded effective Hamiltonian for three orbitals of t2g
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symmetry crossing the Fermi energy. From this we calculate
k-resolved spectral functions and ARPES spectra. Recently
angular-resolved photoemission spectroscopy �ARPES� on
SrVO3 was performed;48,49 the data from Fujimori’s group49

allow for the direct observation of the quasiparticle mass
renormalization and band edge.

The paper is organized as follows. In Sec. II we briefly
discuss the crystal structure and calculate the effective t2g
Hamiltonian for SrVO3 by LDA/NMTO. In Sec. III, we dis-
cuss and compare two LDA+DMFT �QMC� calculations for
SrVO3, based on this effective t2g Hamiltonian and a simpli-
fied treatment using the DOS only. Finally, in Sec. IV the
LDA+DMFT �QMC� calculated self-energy on the real axis
���� and k-resolved spectral functions for SrVO3 are pre-
sented. The paper is summarized in Sec. V.

II. CONSTRUCTION OF FEW-ORBITAL HAMILTONIANS

Starting point of a first principle calculation is usually the
crystal structure. In our case, SrVO3 is a perovskite with an

ideal cubic Pm3̄m50 symmetry, containing one V ion in the
unit cell. This implies that the main structural element, the
VO6 octahedron, is not distorted. The electronic configura-
tion is 3d1, which follows from the formal oxidation V4+.
Due to the cubic symmetry, the d orbitals split into two sets:
three t2g and two eg orbitals. In our case of an octahedral
coordination with oxygen, the threefold degenerated t2g or-
bitals are lower in energy than the twofold eg orbitals. Since
these t2g and eg bands do not overlap we will later restrict our
calculation to an effective Hamiltonian with three t2g orbitals
filled with one electron per site.

For the LDA band structure calculations of SrVO3 we first
employed the LDA-LMTO �ASA� code version 47 which
uses the basis of nonorthogonal linearized muffin-tin orbitals
�LMTO; 2nd generation� in the atomic sphere approximation
�ASA�.51 Thereby, the partial waves were expanded to linear
order in energy around the center of gravity of the filled part
of the bands. The results are presented by thin solid lines in
Fig. 1 and show 2p oxygen bands below −1.5 eV, three t2g
bands at the Fermi energy between −1.5 eV and 1.5 eV, and
eg bands between 1.5 eV and 6 eV. The other bands of our

orbital basis set �O�3s ,3d� , V�4s ,4p� , Sr�5s ,5p ,4d ,4f��
are empty and lie far above the Fermi level.52

Second, with the same basis set we employed the third
generation MTO, also known as Nth order muffin tin orbitals
�NMTO�.39 We expanded the MTOs around the three points:
−2.72 eV, 0.68 eV, and 6.8 eV. Here and in the following,
all energies are measured relative to the Fermi energy at
0 eV. The NMTO results are shown as dashed lines in Fig. 1
and almost coincide with LMTOs in the region of interest,
i.e., O 2p and V 3d. The NMTO bands are found to be
slightly lower in energy which is not surprising since third
generation MTOs have the proper energy dependence in the
interstitial region and, moreover, more expansion points �N
+1=4� for the wave function than LMTOs where N=1 �lin-
ear approach�. For the high-lying empty bands, LMTO and
NMTO bands are quite different; the NMTO bands are again
lower in energy. As the third NMTO expansion point
�6.8 eV� is in this region, we expect NMTOs to be more
precise in this region than LMTOs, which are linearized at
energies corresponding to the center of gravity of the filled
parts of the bands. Hence, the LMTO expansion points are
below the Fermi energy, far away from these high-lying
empty bands. Moreover, the second generation LMTOs have
vanishing kinetic energy in the interstitial region.

A particular advantage of NMTOs is the possibility of

calculating an effective �downfolded� Hamiltonian Ĥeff�k�,
confined to a reduced set of orbitals in a reduced window of
energies. In the case of SrVO3, the t2g subset of the V 3d
orbitals is of particular interest as discussed above. Hence,

we downfolded39 to a 3�3 NMTO Hamiltonian Ĥeff�k� de-
scribing the three t2g orbitals. For optimizing the energy win-
dow with respect to these orbitals, we chose two MTO ex-
pansion points, �0=0.41 eV and �1=0.95 eV, at the energy
region of the t2g bands. At these energies, the NMTOs span
exactly the LDA eigenfunctions. Figure 2 shows the eigen-

values of Ĥeff�k� along some high-symmetry directions in
comparison with the NMTO results using the full orbital ba-
sis of Fig. 1. From the good agreement we conclude that

Ĥeff�k� describes the three t2g bands well. The slight discrep-
ancy at the bottom of the band could have been avoided by
choosing a smaller value of �0. If we increase the number of
these mesh points �i, the Hilbert space spanned by these

FIG. 1. Comparison of the LDA band structure of SrVO3 calcu-
lated by LMTO �thin solid line� and NMTO �dashed line� for the
full orbital basis set. Here, and in the following figures, the Fermi
energy corresponds to zero energy.

FIG. 2. Comparison of the NMTO downfolded t2g bands �full
line� with NMTO for the full orbital basis set �dashed line�.
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NMTOs will converge to that spanned by the t2g Wannier
functions; the orthogonalization of these NMTOs will yield
localized Wannier functions.

Figure 3 compares the DOS of Ĥeff�k� obtained via tetra-
hedron integration53 with the LMTO DOS. A minor differ-
ence to earlier calculations18,21 is that we used an orthogonal
representation of the LMTO method in Refs. 18 and 21, ne-
glecting the so-called combined correction term. Because of
this Refs. 18 and 21 yield a slightly different t2g band shape
with a discernible reduction of the sharp peak at �1 eV.
These differences are, however, small and unimportant for
the final LDA+DMFT results. For the LMTO DOS of Fig. 3,
we downfolded the band structure onto the t2g states which,
due to the oxygen 2p-t2g hybridization, also have a contribu-
tion between −7 eV and −2 eV. Vice versa, downfolding to
O-2p states gives a contribution around the Fermi energy. To
obtain the effective t2g orbitals at the Fermi energy �which
have primarily t2g character with a small 2p admixture� we
truncated the t2g contribution in the oxygen region between
−7 eV and −2 eV and renormalized the orbitals so that one
has again one electron per site and orbital. Figure 3 shows
that the DOS calculated by this procedure resembles the
downfolded NMTO DOS well. In particular, both DOSs have
the same features and bandwidth. The agreement with the
NMTO DOS of Ref. 19 is also very good.

III. LDA+DMFT CALCULATIONS USING
DOWNFOLDING AND HILBERT TRANSFORM

In this section, we will use two different methods to con-
struct the noninteracting, i.e., kinetic energy part, of the
three-band many-body problem: the NMTO downfolded t2g

Hamiltonian Ĥeff�k� and the LMTO DOS of Fig. 3. This part
of the Hamiltonian is then complemented by a local Cou-
lomb interaction

Ĥ = Ĥ0
eff + U�

m
�

i

n̂im↑n̂im↓

+ �
i

�
m�m�

�
���

�U� − ����J�n̂im�n̂im���. �1�

Here, the index i enumerates correlated lattice sites, m de-

notes orbitals, and � the spin. Ĥ0
eff is a one-particle Hamil-

tonian generated from the LDA band structure where an av-
eraged Coulomb interaction is subtracted to avoid double
counting of the Coulomb interaction.2,3 The local intraorbital
Coulomb repulsion is denoted by U and the Hund’s exchange
coupling by J. Rotational invariance then fixes the local in-
terorbital Coulomb repulsion U�=U−2J, see, e.g., Ref. 54.
For three orbitals, U� equals the averaged Coulomb interac-
tion Ū.3,12

The Hamiltonian �1� is then solved by the recently devel-
oped LDA+DMFT approach2 �for introductions see Refs. 3
and 6, for reviews see Refs. 4, 5, and 7�. In this approach the
solution of �1� is obtained by the dynamical mean-field
theory �DMFT�,9–11 a nonperturbative many-body method
based on the d=� limit.8

In this paper, Ĥ0
eff will be the NMTO downfolded �and

symmetrically orthonormalized� Hamiltonian of Sec. II. The
double counting correction is not relevant here since we con-
sider only the three correlated t2g orbitals.3,12 To calculate
Coulomb interaction parameters appearing in �1� we pre-
viously18,21 employed the constrained LDA method,55 yield-

ing an orbitally averaged Coulomb repulsion Ū=3.55 eV and
a Hund’s exchange coupling J=1.0 eV.

In our LDA+DMFT calculations, we self-consistently
solve the auxiliary DMFT impurity problem9–11 by multi-
band quantum Monte Carlo �QMC� simulations56 together
with the k-integrated Dyson equation

G��� = �
BZ

dk�� + 	 − ���� − h0
eff�k��−1. �2�

Here, G���, ����, and h0
eff�k� are 3�3 matrices in orbital

space, denoting the Green function, self-energy, and the

downfolded NMTO Hamiltonian Ĥ0
eff in reciprocal space, re-

spectively; 	 is the chemical potential. The simulations were
done for an inverse temperature 
=10 eV−1, using 40 imagi-
nary time slices ���=0.25� and 2�106 Monte Carlo sweeps.
Since QMC is formulated on the imaginary axis, we em-
ployed Eq. �2� for Matsubara frequencies and analytically
continued G�i�� to real frequencies by means of the maxi-
mum entropy method.57 We checked the accuracy of the cal-
culated maximum entropy method �MEM� spectral density
A��� by performing ten independent self-consistent DMFT

�QMC� runs, at given Ĥ0
eff and QMC parameters. The accu-

racy of the chemical potential is 0.005 eV; in the relevant
energy range ±0.5 eV around the Fermi energy, the MEM
accuracy is 0.05 eV in � and 2% in amplitude for A���.
Further away from the Fermi energy, the MEM accuracy
decreases. In our previous calculations,18,21 we used a sim-
plified scheme based on the LDA DOS only. Within a cubic
symmetry, the local DMFT self-energy becomes diagonal
and even orbital independent: �mm���̄���=�mm���������.
Then, the Green functions G��� of the lattice problem can be
expressed via the Hilbert transform of the LDA DOS N0���

G��� =� d�
N0���

� + 	 − � − ���� + i

, �3�

instead of Eq. �2�.

FIG. 3. Comparison of the t2g DOS calculated �i� by LMTO as
explained in the text �thin solid line� and �ii� by integrating the
down-folded NMTO Hamiltonian over the Brillouin zone �dotted
line�.
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In Fig. 4, we present a comparison between one-particle
LDA+DMFT �QMC� spectra for SrVO3 obtained by using
Eq. �3� with the Vanadium t2g LDA DOS �thin solid line in
Fig. 3; calculated as described in Sec. II� and Eq. �2� with
h0

eff�k�. Both methods give the same results, as is to be ex-
pected for a cubic system. One can see the generic “three-
peak” spectrum of a strongly correlated metal: the quasipar-
ticle peak slightly above the Fermi energy, and lower and
upper Hubbard bands to the left and right. The results pre-
sented here agree well with those reported in Refs. 15 and
18–22. The LDA+DMFT calculations of Ref. 17, with a
focus on bulk surface differences, used a somewhat lower

Coulomb interaction Ū=U−2J=2.6,2.9 eV.

IV. CALCULATION OF k-RESOLVED SPECTRA

The purpose of this paper is to calculate the k-resolved
spectral function A�k ,�� for SrVO3 within the LDA
+DMFT�QMC� scheme. Here

A�k,�� = −
1

�
Im Tr G�k,�� �4�

is determined by the diagonal elements of the Green function
matrix in orbital space

G�k,�� = �� − ���� − h0
eff�k��−1. �5�

From this definition one can see that the two necessary in-
gredients to calculate A�k ,�� are �i� the Hamiltonian matrix
h0

eff�k�, and �ii� the self-energy matrix ���� at real frequen-
cies. Similar schemes were recently used by Liebsch and
Lichtenstein24 to compute quasiparticle properties of
Sr2RuO4 and by Biermann et al. to describe the presence of
a lower Hubbard band in �-Mn.58 Angle-resolved photoemis-
sion spectra of the two-dimensional �2D� Hubbard model
were also investigated by Maier et al.59 in the framework of
the dynamical cluster approximation60 �DCA� and by Sa-

dovskii et al.61 within the so-called DMFT+�k approach.
Within DMFT the self-energy on the real axis was also cal-
culated in Refs. 15 and 62.

In our case of cubic symmetry, ���� is the same for all t2g

orbitals. Eqs. �2� and �5� are formulated in terms of a self-
energy ���� for real frequencies �. Since LDA+DMFT
�QMC� determines the self-energy ��i�n� for Matsubara fre-
quencies i�n, the calculation of ���� requires a separate cal-
culation. To this end we first employ the maximum entropy
method57 to obtain the k-integrated, spectral function A���
=− 1

� Im G��� with G�����G����mm, shown in Fig. 4. The
Kramers-Kronig relation

Re G��� = −
1

�
�

−�

�

d��
Im G����

� − �� + i

�6�

then determines the real part of the Green function. The com-
plex Green function and the complex self-energy are related
by the k-integrated Dyson Eq. �2�. We obtain the self-energy
as the numerical solution of Eq. �2�.

The unknown complex self-energy enters in the integrand
of Eq. �2�. After rewriting Eq. �2� as a system of two equa-
tions for the real �Re� and imaginary �Im� part of the Green
function G��� we solved the two equations iteratively for
each energy �. The convergence criterion was chosen as
	Re �i���−Re �i−1��� 	 + 	Im �i���−Im �i−1��� 	 ��, where
i denotes the iteration. The accuracy of the converged solu-
tion was �=0.001 eV for all energy points �also see Ref. 15
Appendix B�.

Figure 5 presents the resulting real and imaginary parts of
the self-energy ���� as a function of real frequencies �. The
calculated self-energy satisfies the Kramers-Kronig relation

Re ���� = −
1

�
�

−�

�

d��
Im ����
� − ��

+ cons. �7�

FIG. 4. Comparison of the LDA+DMFT �QMC� k-integrated
SrVO3 spectrum of the three t2g bands crossing the Fermi energy
obtained by NMTO �dotted line� and by the NMTO downfolded t2g

Hamiltonian �full line�, respectively. The local Coulomb interaction

was calculated by constrained LDA as Ū=3.55 eV and J=1.0 eV;
the temperature is 0.1 eV.

FIG. 5. �Color online� Real �black line� and imaginary �red
�gray� line� parts of the LDA+DMFT�QMC� self-energy ���� for
the vanadium t2g orbitals of SrVO3 �see text�. The inset shows the
magnification of Re ���� and Im ���� near the Fermi level. The
dotted line in the main panel indicates the linearization for the
whole range of the central peak �−0.8 to 1.4 eV; main figure�, while
the dashed line in the inset marks the strict quasiparticle regime
from −0.2 eV to +0.15 eV.
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The self-energy is highly asymmetric with respect to the
Fermi level, as expected for the present case of an asymmet-
ric LDA DOS and 1/6 band filling. At the energies �

 ±1.5 eV the real part of the self-energy, Re �, has ex-
trema, originating from the crossover from the central quasi-
particle peak to the lower and upper Hubbard bands. The two
extrema of Im �, which coincide with zeros of Re �, are
responsible for the strong incoherence of the lower and upper
Hubbard bands �see Fig. 4�.

Let us now turn from the Hubbard bands to the energy
regime of the central �quasiparticle� peak, ranging from
about −0.8 eV to 1.4 eV in Fig. 4. The imaginary part of the
self-energy Im ���� is still relatively small in this regime
and the real part of the self-energy can roughly be described
by a straight line �dashed line in Fig. 5, main panel�. This
line corresponds to a quasiparticle weight Z=m� /m=1
−� Re ���� /��	�=0=1.9, describing the reduction of the
quasiparticle bandwidth from approximately 3 eV in LDA to
1.5 eV in LDA+DMFT. This value for m� /m is in accord
with the one determined from the lowest Matsubara fre-
quency �0, i.e., m� /m=1− �Im ���0� /�0��2, and the esti-
mate from the overall weight of the central �quasiparticle�
peak �from −0.8 eV to 1.4 eV: 1/Z=m� /m�2.2�. It is also
close to the value m* /m=2.2 calculated in Refs. 19 and 22
and the value m* /m=1.8±0.2 obtained in recent ARPES
experiments.49 However, the inset of Fig. 5 reveals that,
strictly speaking, the Fermi liquid regime with Im ����

−�2 and Re ����
−� only extends from −0.2 up to
0.15 eV. In this energy range the slope of Re ���� �indicated
by a dashed line� is steeper than the slope of the dotted line
shown in the main panel of Fig. 5. The effective mass in this
low-energy regime is mlowE

* /m=3. This is somewhat larger
than the overall mass renormalization m* /m=1.9 describing
the reduction in bandwidth.

Next to this Fermi liquid regime, there are pronounced
shoulders in Re ���� at �=−0.25 eV and +0.25 eV, with
corresponding “kink”-like structures in Im ����, according
to the Kramers-Kronig relation �7�. These shoulders of
Re ���� will become important in the context of the quasi-
particle dispersion in Fig. 8.

Remarkably, similar “kink”-like structures on the scale of
0.1 eV below the Fermi energy were recently observed in
ARPES experiment on SrVO3 by Yoshida et al.49 Also note
that similar structures for Im ���� can be found in Ref. 62,
based on LDA+DMFT �QMC� calculations for LaTiO3.12

Because of the above-mentioned shoulders in Re ����,
Re ���� can be roughly approximated by a straight line
�dashed line of the main panel Fig. 5� in the overall energy
regime of the central quasiparticle peak.

With the knowledge of the self-energy on the real axis, we
are now in the position to calculate the k-resolved spectral
functions Eqs. �4� and �5� and the quasiparticle dispersion. In
Fig. 6, the LDA+DMFT �QMC� spectral functions A�k ,��
for SrVO3 are presented. In the energy regions �−3 eV,
−1 eV� and �1.5 eV, 5 eV� there is some broad, nondisper-
sive spectral weight corresponding to the incoherent lower
and upper Hubbard bands, which are hardly visible due to
their almost homogeneous distribution over the whole of the
Brillouin zone. Around the Fermi energy, A�k ,�� shows a

dispersive peak which is somewhat smeared out away from
the Fermi energy because of lifetime effects, �−1
�2; Fig. 7
shows a magnification in the vicinity of the Fermi energy.

The k-resolved spectral functions in turn allow us to de-
termine the LDA+DMFT �QMC� quasiparticle band, which
are shown as dots in Fig. 8 and compared to the bare LDA
bands �solid lines�. These dots are the maxima of the spectral
function from Figs. 6 and 7 around the Fermi level where the
quasiparticles are well defined. They resemble the LDA dis-
persion, albeit renormalized. This is to be expected for a
Fermi liquid, where

G��� = Z�
BZ

dk�� + Z	 − Zh0
eff�k��−1 �8�

in the quasiparticle region. Employing this Fermi liquid be-
havior, and using 1/Z=1.9, we can reconstruct the band
structure directly from the LDA spectrum. As seen from Fig.
8, the result �dashed curves� agrees well with the quasiparti-
cle band �dots�. However it should be noted that changes in
slope of the LDA+DMFT �QMC� dispersion occur at �
=−0.25 eV and �hardly discernible� �= +0.25 eV �see Fig.
8�. These kinks63,64 stem from the shoulders in the real part
of the self-energy �Fig. 5� and occur when the effective dis-
persion crosses over from the Fermi liquid regime with
mlowE

� /m�3 to the LDA band structure with constant renor-
malization m� /m�1.9. Similar “kink”-like structures were
recently found by us in DMFT calculations for the one-band
Hubbard model off half filling, with the numerical renormal-

FIG. 6. Spectral function A�k ,�� for the three V-3d�t2g� bands
of SrVO3 as calculated by LDA+DMFT�QMC�; for the behavior
around the Fermi energy see Fig. 7.
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ization group used as an impurity solver. Presumably these
kinks reflect interactions between correlated electrons and
local charge/spin fluctuations. The particular contribution of
each type of fluctuation at this energy interval is presently
under investigation. Strong interest in kinks of the dispersion
has followed their observation in various high-Tc super-
conductors,65 where they have been attributed mainly to
phonons. In electronic systems kinks in the dispersion have

also been found in theoretical studies of the 2D Hubbard
model within the fluctuation exchange approximation66 and
most recently within the self-consistent projection operator
method.67

When comparing with experiments, we note that for
k-resolved spectra the influence of PES matrix elements may
be stronger than for the k-integrated spectra. Nevertheless,
their inclusion affects the relative intensities but not their
position. We find qualitative agreement with recent ARPES
dispersions,49 where the renormalized band structure was ob-
served directly. In particular, we see from Fig. 8 that the
bottom of the quasiparticle band is located at approximately
�=−0.7 eV, in contrast to the LDA value of �=−1.2 eV.

V. CONCLUSION

In this paper, we presented LDA+DMFT �QMC� compu-
tations of k-resolved spectral functions of SrVO3. The nec-
essary input is an LDA-calculated Hamiltonian Ĥ0

eff and the
LDA+DMFT self-energy at real frequencies ����. We used

the NMTO downfolding to calculate Ĥ0
eff for the strongly

correlated V-3d�t2g� orbitals of SrVO3 crossing the Fermi
energy. This calculation gives essentially the same
k-integrated spectrum as our previous calculations18,21 based
on the t2g projected DOS.

The LDA+DMFT k-resolved spectral function A�k ,��
shows two incoherent Hubbard bands and a dispersive qua-
siparticle band. The latter is determined from the maxima of
A�k ,�� and resembles the LDA dispersion renormalized by a
constant factor m� /m=1.9. This effective mass renormaliza-
tion describes the overall reduction of the quasiparticle band-
width from approximately 3 eV in LDA to 1.5 eV in LDA
+DMFT, and agrees with the mass renormalization found in
ARPES experiments.49 However, close to the Fermi surface
the LDA+DMFT band structure no longer corresponds to an
LDA band structure which is simply renormalized by a con-
stant factor. Namely, the frequency dependence of the self-
energy shows that the Fermi liquid regime strictly extends
only from −0.2 eV to 0.15 eV. In this low-energy regime,
the effective mass is somewhat higher �mlowE

� /m�3�. Be-
yond this strict Fermi liquid regime the imaginary part of the
self-energy stays relatively small, while the real part devel-
ops a shoulder. This shoulder translates into a kink in the
effective quasiparticle dispersion, where the effective mass
crosses over from mlowE

� to m�.
We carefully analyzed these features to make sure that

they are not due to errors of QMC, MEM, or the inversion of
the Dyson equation to determine the self-energy. Our find-
ings, as well as the observation of similar features in numeri-
cal renormalization group calculations, prove that kinks in
the effective band structure may originate from purely elec-
tronic correlations, i.e., without the presence of phonons, at
least within the DMFT. In the mean time such kinks have
been observed by Yoshida et al.49 in the ARPES spectra of
SrVO3, albeit at energies somewhat closer to the Fermi level
than predicted by our calculations. The microscopic precon-
ditions for the existence of kinks reported in this paper are
currently under detailed investigation.

FIG. 7. Magnification of Fig. 6 around the Fermi energy �0 eV�;
the ARPES amplitude is five times smaller than in Fig. 6.

FIG. 8. �Color online� LDA+DMFT�QMC� dispersion for
SrVO3 �dots� compared with LMTO �full line� and quasiparticle
renormalization of the LMTO dispersion by Z=1/1.9 �dashed line�.
The ratio of bandwidths yields 1/Z=m� /m=1.9. The dashed line
represents a simple quasiparticle renormalization of the NMTO
bands by 1/Z=1.9. At �=−0.25 eV, we see a kink in the LDA
+DMFT�QMC� dispersion �dots�, clearly discernible as a deviation
from the simple renormalized LDA bands �dashed line�.
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