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Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly suc-

cessful for many materials, but miss important aspects of the physics and energetics of strongly correlated 

electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating 

and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a 

modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough 

for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, 

a LDA + DMFT calculation yields the weakly correlated LDA results, a strongly correlated metal, or a 

Mott insulator. In this paper, the basic ideas and the set-up of the LDA + DMFT(X) approach, where X is 

the method used to solve the DMFT equations, are discussed. Results obtained with X = QMC (quantum 

Monte Carlo) and X = NCA (non-crossing approximation) are presented and compared, showing that the 

method X matters quantitatively. We also discuss LDA + DMFT results for two prime examples of corre-

lated materials, i.e., V
2
O

3
 and Ce which undergo a Mott–Hubbard metal– insulator and volume collapse 

transition, respectively. 
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1 Introduction 

One of the most important challenges of theoretical solid state physics is the development of tools for the 

accurate calculation of material properties. In this respect, density functional theory (DFT) within the 

local density approximation (LDA) [1–3] turned out to be unexpectedly successful, and established itself 

as the method for realistic solid state calculations in the last century. This is surprising because LDA is a 

serious approximation to the Coulomb interaction between electrons. In particular the correlation but also 

the exchange contribution of the Coulomb interaction is only treated rudimentarily, i.e., by means of a 

local density and by a functional obtained from the jellium model, a weakly correlated problem. The 

success of LDA shows, however, that this treatment is sufficient for many materials, both for calculating 

ground state energies and band-structures, implying that electronic correlations are rather weak in these 

materials. However, there are important classes of materials where LDA fails, such as transition metal 

oxides or heavy fermion systems, i.e., materials where electronic correlations are strong. For example, 

LDA predicts La2CuO4 and V2O3, to be metals [4, 5] whereas, in reality, they are insulators. The physics 

of these Mott insulators is dominated by the formation of Hubbard bands, an effect of electronic correla-

tions which splits the LDA bands into two sets of bands, separated by a local Coulomb repulsion U. Such 

Mott insulating behavior occurs already in the paramagnetic phase, with magnetic order setting in at 

lower temperatures. The Mott physics and the associated energy gain is completely missing in the LDA. 

It can, however, be described by the LDA + U method, at least for ordered systems. But, the energy gain 

due to the formation of Hubbard bands is so large in LDA + U that for realistic values of U it almost 

automatically yields split bands and (ordered) insulating behavior, even if this is not correct. The reason 

for this is that the energy of the correlated metal is strongly overestimated. Hence, LDA + U is a good 

method for describing Mott insulators, but not for calculating strongly correlated metals or systems in the 

vicinity of a Mott–Hubbard metal–insulator transition. Missing in both LDA and LDA + U is the qua-

siparticle physics, which even at a rather large Coulomb interaction U (or at U = •  with a non-integer 

number of interacting electrons per site) still gives a metallic behavior determined by quasiparticles with 

a larger effective mass than the LDA electrons. This mass enhancement ranges from a moderate increase 

in many transition metal oxides to the high effective masses observed in 4f-based heavy fermion com-

pounds. LDA and also LDA + U fail to account for this kind of physics and the associated Kondo-like 

energy scale gained in comparison with the Mott insulator. 

LDA + DMFT does not only include the correct quasiparticle physics and the corresponding energet-

ics but, at the same time, reproduces the LDA and LDA + U results in the limits where these methods are 

valid, see Fig. 1. For weakly correlated systems, we know that LDA provides the correct description, as 

does the LDA + DMFT approach which gives the same results as LDA if the local Coulomb interaction 
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Fig. 1 With increasing strength of the local Coulomb repulsion U (relative to the LDA bandwidth W ), 

one observes a weakly correlated metal (left density of states), a strongly correlated metal with a quasipar-

ticle peak at the Fermi energy (middle), and a Mott insulator (right). The weakly correlated metal and the 

(ordered) Mott insulator are correctly described by LDA and LDA + U, respectively. LDA + DMFT gives 

the correct answer for all values of U and subsumes the LDA valid for small U/W and the LDA + U re-

sults for the Mott insulator appearing at large U/W. 

U is small. On the other hand, LDA + DMFT agrees with the LDA + U results for symmetry-broken 

Mott insulators at large Coulomb interaction U. In addition, however, LDA + DMFT also describes the 

correlated metals occurring either at somewhat smaller Coulomb interactions U or when Mott insulators 

are doped. Thus, LDA + DMFT provides the correct physics for all Coulomb interactions and dopings, 

whereas LDA yields an uncorrelated metal even if the material at hand is a strongly-correlated metal or a 

Mott insulator. Similarly, LDA + U yields an insulator for the ab initio-calculated U-values of 3d transi-

tion metal oxides, even for materials which should be metallic. 

With the ability of LDA + DMFT to describe the full range of materials from weakly to strongly cor-

related metals to Mott insulators, it is not astonishing that it has proved to be a breakthrough for the cal-

culation of correlated materials. Since more and more physicists from the band-structure and many-body 

communities show interest in this novel method, we would like to present here, as a 
k

ψ  scientific high-

light of the month, an introduction to LDA + DMFT. We also present results for two of the most famous 

strongly correlated materials, i.e., the transition metal oxide V2O3 which is the prime example of a sys-

tem undergoing a Mott–Hubbard metal–insulator transition, and the 4f-electron system Ce with its vol-

ume collapse transition. The presentation is following in many parts the conference proceedings Ref. [6], 

also see the conference proceedings Ref. [7]. 

In Section 2 the LDA + DMFT approach is presented, starting with the ab initio electronic Hamilto-

nian in Section 2.1, continuing with DFT in Section 2.2, LDA in Section 2.3, the construction of a model 

Hamiltonian in Section 2.4, and DMFT in Section 2.5. As methods used to solve the DMFT we discuss 

the quantum Monte Carlo (QMC) algorithm in Section 2.6 and the non-crossing approximation (NCA) 

in Section 2.7. A simplified treatment for transition metal oxides is introduced in Section 2.8. Exten-

sions and alternatives to the LDA + DMFT approach are discussed, focusing on a self-consistent 

LDA + DMFT scheme in Section 3.1, spectral density functional theory in Section 3.2, cluster extensions 

of DMFT in Section 3.3, and the GW + DMFT approach in Section 3.4. As a particular example, the 

LDA + DMFT calculation for La1–xSr
x
TiO3 is discussed in Section 4, emphasizing that the method X to 

solve the DMFT matters on a quantitative level. Our calculations for the Mott–Hubbard metal–insulator 

transition in V2O3 are presented in Section 5, in comparison to the experiment. Section 6 reviews our 

recent calculations of the Ce α– γ -transition, in the perspective of the models referred to as Kondo vol-

ume collapse and Mott transition scenarios. A summary of the LDA + DMFT set-up and applications 

followed by a discussion of future prospects closes the presentation in Section 7. 
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2 The LDA + DMFT approach 

2.1 Ab initio electronic Hamiltonian 

Within Born–Oppenheimer approximation [8] and neglecting relativistic effects, electronic properties of 

solid state systems are described by the electronic Hamiltonian 

2

3

ion

e
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2

H r V
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σ

Ψ σ ∆ Ψ σ
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Here, ˆ ( )Ψ σ
+

,r  and ˆ ( )Ψ σ,r  are field operators that create and annihilate an electron at position r  with 

spin σ , ∆ is the Laplace operator, 
e

m  the electron mass, e the electron charge, and 
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denote the one-particle ionic potential of all ions i  with charge 
i

eZ  at given positions 
i

R , and the elec-

tron–electron interaction, respectively. 

While the ab initio Hamiltonian (1) is easy to write down it is impossible to solve it exactly if more 

than a few electrons are involved. Numerical methods like Green’s Function Monte Carlo and related 

approaches have been used successfully for relatively modest numbers of electrons. Even so, however, the 

focus of the work has been on jellium and on light atoms and molecules like H, H2, 
3He, 4He with only a 

few electrons. Because of this, one has to make substantial approximations to deal with the Hamiltonian 

(1) like the LDA approximation or the LDA + DMFT approach which is the subject of the present paper. 

2.2 Density functional theory 

The fundamental theorem of DFT by Hohenberg and Kohn [1] (see, e.g., the review by Jones and Gun-

narsson [3]) states that the ground state energy is a functional of the electron density which assumes its 

minimum at the electron density of the ground state. Following Levy [9], this theorem is easily proved 

and the functional even constructed by taking the minimum (infimum) of the energy expectation value 

w.r.t. all (many-body) wave functions 
1 1

( . . . )
N

ϕ σ σ,
N

r r  at a given electron number N which yield the 

electron density ( )ρ r : 

1

ˆ[ ] inf | | | δ( ) | ( )

N

i

E Hρ ϕ ϕ ϕ ϕ ρ

=
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= · Ò · - Ò = .Ì ˝
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Â i

r r r  (3) 

However, this construction is of no practical value since it actually requires the evaluation of the Hamiltonian 

(1). Only certain contributions like the Hartree energy, i.e., 3 31

Hartree ee2
[ ] d d ( ) ( ) ( ),E r r Vρ ρ ρ= -¢ ¢ ¢Ú r r r r  

and the energy of the ionic potential 3

ion ion
[ ] d ( ) ( )E r Vρ ρ= Ú r r  can be expressed directly in terms of the 

electron density. This leads to 

kin ion Hartree xc
[ ] [ ] [ ] [ ] [ ]E E E E Eρ ρ ρ ρ ρ= + + + , (4) 

where 
kin
[ ]E ρ  denotes the kinetic energy, and 

xc
[ ]E ρ  is the unknown exchange and correlation term 

which contains the energy of the electron–electron interaction except for the Hartree term. Hence all the 

difficulties of the many-body problem have been transferred into 
xc
[ ]E ρ . Instead of minimizing [ ]E ρ  

with respect to ρ  one minimizes it w.r.t. a set of one-particle wave functions 
i

ϕ  related to ρ  via 

2

1

( ) | ( ) | .

N

i

i

ρ ϕ

=

=Âr r  (5) 
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To guarantee the normalization of 
i

ϕ , the Lagrange parameters 
i
ε  are introduced such that the variation 

{ }3[ ] 1 d ( ) /δ ( ) 0
i i i

E rδ ρ ε ϕ ϕÈ ˘+ - | | =Î ˚Ú r r  yields the Kohn–Sham [2] equations: 

2
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These equations have the same form as a one-particle Schrödinger equation and yield a kinetic energy for 

the one-particle wave-function ansatz, i.e., 2

kin min e

1

[ ] | (2 ) |

N

i i

i

E mρ ϕ ∆ ϕ�

=

= - · / ÒÂ  where 
i

ϕ  denote the self- 

consistent (spin-degenerate) solutions of Eqs. (6) and (5) with lowest “energy” 
i
ε . However, this kinetic 

energy functional gives not the true kinetic energy of the correlated problem which would require that 

the exact 
xc

δE  also comprises the difference. Also note, that the one-particle potential of Eq. (6), i.e., 

3 xc

eff ion ee

δ [ ]
( ) ( ) d ( ) ( )

δ ( )

E
V V r V

ρ
ρ

ρ
= + - + ,¢ ¢ ¢Úr r r r r

r

(7) 

is only an auxiliary potential which artificially arises in the approach to minimize [ ]E ρ . Thus, the wave 

functions 
i

ϕ  and the Lagrange parameters 
i
ε  have no physical meaning at this point. Altogether, these 

equations allow for the DFT/LDA calculation, see the flow diagram Fig. 2. 

Fig. 2 Flow diagram of the DFT/LDA calculations. 
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2.3 Local density approximation 

So far no approximations have been employed since the difficulty of the many-body problem was only 

transferred to the unknown functional 
xc
[ ]E ρ . For this term the local density approximation (LDA) 

which approximates the functional 
xc
[ ]E ρ  by a function that depends on the local density only, i.e., 

3 LDA

xc xc
[ ] d ( ( ))E r Eρ ρÆ ,Ú r  (8) 

was found to be unexpectedly successful. Here, LDA

xc
( ( ))E ρ r  is usually calculated from the perturbative 

solution[10] or the numerical simulation [11] of the jellium problem which is defined by 
ion
( ) constV =r . 

In principle, DFT/LDA only allows one to calculate static properties like the ground state energy or its 

derivatives. However, one of the major applications of LDA is the calculation of band structures. To this 

end, the Lagrange parameters 
i
ε  are interpreted as the physical (one-particle) energies of the system 

under consideration. Since the true ground-state is not a simple one-particle wave-function, this is an 

approximation beyond DFT. Actually, this approximation corresponds to the replacement of the Hamil-

tonian (1) by 

2 LDA

3 3 xc

LDA ion ee

e
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For practical calculations one needs to expand the field operators w.r.t. a basis 
ilm

Φ , e.g., a linearized 

muffin-tin orbital (LMTO) [12, 13] basis (i  denotes lattice sites; l  and m are orbital indices). In this 

basis, 

†ˆ ˆ( ) ( )
ilm ilm

ilm

c
σ

Ψ σ Φ
+

, =Âr r  (10) 

such that the Hamiltonian (9) reads 

†

LDA
ˆ ˆ ˆˆ( )ilm jl m ilm ilm jl m ilm jl milm

ilm jl m

H t c cn
σ σ σ

σ
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, ¢ ¢,
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Here, †
ˆ ˆ ˆ

ilm ilm ilm
n c c
σ σ σ
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2 LDA

3 xc

ion ee

e
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2 δ ( )
ilm jl m ilm jl m

E
t V r V

m

∆ ρ
Φ ρ Φ

ρ

�
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 (12) 

for ilm jl mπ ¢ ¢  and zero otherwise; 
ilm
ε  denotes the corresponding diagonal part. 

As for static properties, the LDA approach based on the self-consistent solution of Hamiltonian (11) 

together with the calculation of the electronic density Eq. (5) [see the flow diagram Fig. 2] has also been 

highly successful for band structure calculations – but only for weakly correlated materials [3]. It is not 

reliable when applied to correlated materials and can even be completely wrong because it treats elec-

tronic correlations only very rudimentarily. 

2.4 Supplementing LDA with local Coulomb correlations 

Of prime importance for correlated materials are the local Coulomb interactions between d- and f-elec-

trons on the same lattice site since these contributions are largest. This is due to the extensive overlap 

(w.r.t. the Coulomb interaction) of these localized orbitals which results in strong correlations. More-

over, the largest non-local contribution is the nearest-neighbor density-density interaction which, to lead-

ing order in the number of nearest-neighbor sites, yields only the Hartree term (see Ref. [14] and also 

Ref. [15]) which is already included in the LDA. To take the local Coulomb interactions into account, 

one can supplement the LDA Hamiltonian (11) with the local Coulomb matrix approximated by the 
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(most important) matrix elements 
mm

U
σσ ¢

¢

(Coulomb repulsion and Z-component of Hund’s rule coupling) 

and 
mm

J
¢

 (spin-flip terms of Hund’s rule coupling) between the localized electrons (for which we assume 

d
i i=  and 

d
l l= ): 
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Here, the prime on the sum indicates that at least two of the indices of an operator have to be different, 

and ( )σ = Ø ≠  for ( )σ = ≠ Ø . In principle, also a pair hopping term of the form 

† †1
2

,

ˆ ˆ ˆ ˆ

d d

mm ilm ilm ilm ilm

i i l l m m
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σ σ σ σ

σ
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= = , ¢
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would occur in Eq. (13). This term has not yet been included in LDA + DMFT calculations because one 

commonly assumes that configurations where one orbital is doubly occupied while another is empty are 

rare if the Hund’s exchange and the hopping terms are included. In typical applications we have 

mm
U U

≠Ø
∫ , 

mm
J J

¢

∫ , 2
mm

U U J J
σσ

σσ
δ

¢

¢ ¢

= - -  for m mπ ¢  (here, the first term 2J  is due to the reduced Cou-

lomb repulsion between different orbitals and the second term J
σσ

δ
¢

 directly arises from the Z-com-

ponent of Hund’s rule coupling). With the number of interacting orbitals M , the average Coulomb inter-

action is then 

( 1) ( 2 ) ( 1) ( 3 )

2 1

U M U J M U J
U

M

+ - - + - -
= .

-

(14) 

The last term of the Hamiltonian (13) reflects a shift of the one-particle potential of the interacting orbi-

tals and is necessary if the Coulomb interaction is taken into account. This last term led to some criticism 

and we would, thus, like to discuss the origin of this term in more detail below. 

The calculation of the local Coulomb interaction U , or similarly the Hund’s exchange constant J , is 

not at all trivial and requires additional approximations. Presently, the best method available which takes 

into account screening effects is the constrained LDA method [16]. The basic idea of constrained LDA is 

to perform LDA calculations for a slightly modified problem, i.e., a problem where the interacting d- or 

f-electrons of one site are kinetically decoupled from the rest of the system, i.e., their hopping matrix 

elements 
dil m jl mt , ¢  are set to zero, see Fig. 3. This allows one to change the number of interacting electrons 

on this site. At the same time screening effects of the other electrons, which are redistributed if the num-

ber of d- or f-electrons is changed on the decoupled site, are taken into account. In a LDA + DMFT cal-

culation, one expects an average number 
d
n  of interacting electrons per site on average; typically nd is 

close to an integer number. Then, one can do constrained LDA calculations for 1n - , n, and 1n +  elec-

trons on the decoupled site, leading to three corresponding total energies, see Fig. 3. The LDA Hamilto-

nian 
LDA

ˆH  which was calculated at a fixed density ( )rρ  would predict a linear change of the LDA energy 

with the number of interacting electrons, i.e., LDA

0
( )

d d d
E n E nε= +  with LDA LDA

d /d
d d

E nε = . This does not 

take into account the Coulomb interaction U  which requires a higher energy cost to add the ( 1n + )th 

electron than to add the nth electron. This effect leads to the curvature in Fig. 3 and is taken into account 

in the Hamiltonian (13) which yields LDA

0
( ) (1 2) ( 1) ( ∆ )

d d d d d
E n E Un n nε ε= + / - + + . Note, that part of 

d
εD  just arises to cancel the Coulomb contribution (1 2) [ ( 1)] d ( 1 2)

d d d d
d Un n n U n/ - / = - / . We can, there-

fore, determine U  and 
d

εD  by fitting these parameters to reproduce the constrained LDA energies. That 

is, we require that Hamiltonian (13) correctly reproduces the LDA energy for three different numbers of 

interacting electrons on the decoupled site. Similarly, the Hund’s exchange J can be calculated by con-

strained LDA calculations with the spin polarization. One should keep in mind that, while the total LDA 

spectrum is rather insensitive to the choice of the basis, the constrained LDA calculations of U  strongly 
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n–1 n+1

E

n

Fig. 3 Left: In the constrained LDA calculation the interacting d- or f-electrons on one lattice site are 

kinetically decoupled from the rest of the system, i.e., they cannot hop to other lattice sites or to other or-

bitals. By contrast, the non-interacting electrons can still still hop to other sites (indicated by dashed 

lines). Right: This allows one to constrain the number n  of interacting d- or f-electrons on the decoupled 

site and to calculate the corresponding LDA energies ( )E n  (circles); the dashed line sketches the behavior 

of 
LDA

ˆH  defined in Eq. (11). 

depends on the shape of the orbitals which are considered to be interacting. E.g., for LaTiO3 at a Wigner 

Seitz radius of 2.37 a.u. for Ti a LMTO-ASA calculation [17] using the TB-LMTO-ASA code [12] 

yielded 4 2U = .  eV in comparison to the value 3 2U = .  eV calculated by ASA-LMTO within orthogonal 

representation [18]. Thus, an appropriate basis is mandatory and, even so, a significant uncertainty in U  

remains. 

In the following, it is convenient to work in reciprocal space where the matrix elements of 0

LDA

ˆH , i.e., 

the LDA one-particle energies without the local Coulomb interaction, are given by 

0

LDA LDA
ˆ( ( )) ( ( )) .

d dqlm q l m qlm q l m qlm q l m ql q l d dH H nδ δ ε, ¢ ¢ ¢ , ¢ ¢ ¢ , ¢ ¢ ¢ ,= - Dk k  (15) 

Here, q is an index of the atom in the primitive cell, 
LDA

( ( ))qlm q l mH , ¢ ¢ ¢k  is the matrix element of (11) in k-

space, and 
d
q  denotes the atoms with interacting orbitals in the primitive cell. The non-interacting part, 

0

LDA

ˆH , supplemented with the local Coulomb interaction forms the (approximated) ab initio Hamiltonian 

for a particular material under investigation: 

0 † †1 1
LDA 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
d d

d d

mm ilm ilm mm ilm ilm ilm ilm
i i l l m m

i i l l m m

H H U n n J c c c c
σσ

σ σ σ σ σ σ

σ σ

σ

¢

¢ ¢ ¢ ¢ ¢ ¢
= , = , ¢ ¢

= , = , ¢

¢
¢= + -Â Â Â Â  (16) 

2.5 Dynamical mean-field theory 

The many-body extension of LDA, Eq. (16), was proposed by Anisimov et al.[19] in the context of their 

LDA + U approach. Within LDA + U the Coulomb interactions of (16) are treated within the Hartree-

Fock approximation. Hence, LDA + U does not contain true many-body physics. While this approach is 

successful in describing long-range ordered, insulating states of correlated electronic systems it fails to 

describe strongly correlated paramagnetic states. To go beyond LDA + U and capture the many-body 

nature of the electron–electron interaction, i.e., the frequency dependence of the self energy, various 

approximation schemes have been proposed and applied recently [20–25]. One of the most promising 

approaches, first implemented by Anisimov et al. [20], is to solve (16) within DMFT [14, 26–33] 

(“LDA + DMFT”). Of all extensions of LDA only the LDA + DMFT approach is presently able to de-

scribe the physics of strongly correlated, paramagnetic metals with well-developed upper and lower 

Hubbard bands and a narrow quasiparticle peak at the Fermi level. This characteristic three-peak struc-

ture is a signature of the importance of many-body effects [29, 30]. 

During the last ten years, DMFT has proved to be a successful approach for investigating strongly 

correlated systems with local Coulomb interactions [33]. It becomes exact in the limit of high lattice 

coordination numbers or dimension d , i.e., it is controlled in 1 d/ , [14, 26] and preserves the dynamics of 
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lm

1
2

DMFT

  Σ   (ω)σ

Fig. 4 If the number of neighboring lattice sites goes to infinity, the central limit theorem holds and fluc-

tuations from site to site can be neglected. This means that the influence of these neighboring sites can be 

replaced by a mean influence, the dynamical mean-field described by the self energy ( )
lm

σ

Σ ω . This 

DMFT problem is equivalent to the self-consistent solution of the k-integrated Dyson equation (19) and 

the multi-band Anderson impurity model Eq. (18). Similar in nature are the coherent potential approxima-

tion (CPA) for disorder and the Weiss mean-field theory for spin systems. Indeed, DMFT reduces to these 

approximations if there is disorder and no Coulomb interaction or if the electrons can be described effec-

tively as localized spins, respectively. 

local interactions. Hence, it represents a dynamical mean-field approximation. In this non-perturbative 

approach the lattice problem is mapped onto an effective single-site problem (see Fig. 4) which has to be 

determined self-consistently together with the k -integrated Dyson equation connecting the self energy Σ  

and the on-site (or in-cell) Green function G  at frequency ω : 

3 0 1

LDA

B

1
( ) d ([ ( ) ( )]) .qlm q l m qlm q l mG k H

V
ω ω µ Σ ω

-

, ¢ ¢ ¢ , ¢ ¢ ¢= + - -Ú k1 1  (17) 

Here, 1 is the unit matrix, µ  the chemical potential, the matrix 0

LDA
( )H k  is defined in (15), ( )Σ ω  denotes 

the self energy matrix which is non-zero only between the interacting orbitals, 1
[ . . . ]

-  implies the inver-

sion of the matrix with elements n (=qlm), ( )n q l m=¢ ¢ ¢ ¢ , and the integration extends over the Brillouin 

zone with volume 
B

V . 

The DMFT single-site problem depends on (the Weiss field) 1 1( ) ( ) ( )Gω ω Σ ω
- -

= +G  and is equiva-

lent [29, 30] to an Anderson impurity model (the history and the physics of this model is summarized by 

Anderson in Ref. [34]) if its hybridization ( )∆ ω  satisfies 1( ) d ( )/( )ω ω ω ∆ ω ω ω
-

= - -¢ ¢ ¢ÚG . The local 

one-particle Green function at a Matsubara frequency (2 1) π/i i
ν

ω ν β= +  (β : inverse temperature), or-

bital index m (
d

l l= , 
d

q q= ), and spin σ  is given by the following functional integral over Grassmann 

variables ψ  and *ψ  (for an introduction to anti-commuting Grassmann variables see Ref. [35]): 

1
[ ]1 *[ ] [ ] e

A

m m m
G D D

σ σ σ ψ ψ

ν ν ν
ψ ψ ψ ψ

-

, ,**= - .Ú G

Z
 (18) 

Here, 1[ ] [ ] exp ( [ ])
m m

D D
σ σ

ν ν
ψ ψ ψ ψ ψ ψ

-* * *= , ,ÚZ A G  is the partition function and the single-site action 

A has the form (the interaction part of A  is in terms of the “imaginary time” τ , i.e., the Fourier trans-

form of 
ν

ω ) 

1 1[ ] ( )
m m m

m

σ σ σ

ν ν ν

ν σ

ψ ψ ψ ψ
- -

, ,

* *, , = ÂA G G  

1

2

0

d ( ) ( ) ( ) ( )
mm m m m m

m m

U

β

σσ σ σ σ σ

σ σ

τψ τ ψ τ ψ τ ψ τ
¢ ¢ ¢

¢ ¢ ¢
, ¢

¢ **- Â Ú  

1

2

0

d ( ) ( ) ( ) ( )
mm m m m m

m m

J

β

σ σ σ σ

σ

τψ τ ψ τ ψ τ ψ τ¢ ¢ ¢
,

¢ * *+ .Â Ú  (19) 
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Fig. 5 Flow diagram of the DMFT self-consistency cycle. 

This single-site problem (18) has to be solved self-consistently together with the k-integrated Dyson 

Eq. (17) to obtain the DMFT solution of a given problem, see the flow diagram Fig. 5. 

Due to the equivalence of the DMFT single-site problem and the Anderson impurity problem a variety 

of approximate techniques have been employed to solve the DMFT equations, such as the iterated 

perturbation theory (IPT) [29, 33] and the non-crossing approximation (NCA) [36–38], as well as 

numerical techniques like quantum Monte Carlo simulations (QMC) [39–42], exact diagonalization 

(ED) [33, 43], or numerical renormalization group (NRG) [44]. QMC and NCA will be discussed 

in more detail in Sections 2.6 and 2.7, respectively. IPT is non-self-consistent second-order perturba- 

tion theory in U  for the Anderson impurity problem (18) at half filling. It represents an ansatz that 

also yields the correct perturbational 2
U -term and the correct atomic limit for the self energy off 

half filling [45], for further details see Refs. [20, 21, 45]. ED directly diagonalizes the Anderson im- 

purity problem at a limited num-ber of lattice sites and orbitals. NRG first replaces the conduction 

band by a discrete set of states at n

DΛ
-  (D : bandwidth; 

s
0n = , . . ., N ) and then diagonalizes this problem 

iteratively with increasing accuracy at low energies, i.e., with increasing 
s

N . In principle, QMC and 

ED are exact methods, but they require an extrapolation, i.e., the discretization of the imaginary time 

0τD Æ  (QMC) or the number of lattice sites of the respective impurity model 
s

N Æ• (ED), respec-

tively. 

In the context of LDA + DMFT we refer to the computational schemes to solve the DMFT equations 

discussed above as LDA + DMFT(X) where X = IPT [20], NCA [25], QMC [17] have been investigated 

in the case of La
1 x-

Sr
x
TiO

3
. The same strategy was formulated by Lichtenstein and Katsnelson [21] as 

one of their LDA++ approaches. Lichtenstein and Katsnelson applied LDA + DMFT(IPT) [46], and 

were the first to use LDA + DMFT(QMC) [47], to investigate the spectral properties of iron. Recently, 

among others V
2
O

3
 [48, 49], Ca(Sr)VO

3
 [50], LiV

2
O

4
 [51], Ca

2 x-
Sr

x
RuO

4
 [52, 53], CrO

2
 [54], Ni [55], 

Fe [55], Mn [56], Pu [57, 58], and Ce [59–61] have been studied by LDA + DMFT. Realistic investiga-

tions of itinerant ferromagnets (e.g., Ni) have also recently become possible by combining density func-

tional theory with multi-band Gutzwiller wave functions [62]. 
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2.6 QMC method to solve DMFT 

The self-consistency cycle of the DMFT (Fig. 5) requires a method to solve for the dynamics of the sin-

gle-site problem of DMFT, i.e., Eq. (18). The QMC algorithm by Hirsch and Fye [39] is a well estab-

lished method to find a numerically exact solution for the Anderson impurity model and allows one to 

calculate the impurity Green function G  at a given 1-
G  as well as correlation functions. In essence, the 

QMC technique maps the interacting electron problem Eq. (18) onto a sum of non-interacting problems 

where the single particle moves in a fluctuating, time-dependent field and evaluates this sum by Monte 

Carlo sampling, see the flow diagram Fig. 6 for an overview. To this end, the imaginary time interval 

[0 ]β, of the functional integral Eq. (18) is discretized into Λ  steps of size /τ β ΛD = , yielding support 

points 
l

lτ τ= D  with 1. . .l Λ= . Using this Trotter discretization, the integral 
0

d

β

τÚ  is transformed to 

the sum 
1l

Λ

τ

=

DÂ  and the exponential terms in Eq. (18) can be separated via the Trotter–Suzuki formula 

for operators ˆA  and ˆB [63] 

ˆ ˆˆ ˆ( )

1

e e e ( )A B A B

l

Λ

β τ τ
τ

- + -D -D

=

= + D ,’ O  (20) 

which is exact in the limit 0τD Æ . The single site action A of Eq. (19) can now be written in the dis-

crete, imaginary time as 

1

1 2 1

0

[ ] ( )
m mlml

ml l

l l

Λ

σ σσ

σ

ψ ψ τ τ τ ψψ

-

- -

¢

, ¢=

**, , = D D - D¢ÂA G G  

1

1

2

0

mm ml m lml m l

m m l

U

Λ

σσ σ σσ σ

σ σ

τ ψ ψψ ψ

-

¢ ¢¢
¢ ¢¢

, ¢ ¢ =

¢ * *- D ,Â Â  (21) 

where the first term was Fourier-transformed from Matsubara frequencies to imaginary time. In a second 

step, the (2 1)M M -  interaction terms in the single site action A are decoupled by introducing a classical 

auxiliary field 
lmm
s
σσ ¢

¢

: 

2exp ( )
2

mm ml m lml m l
U

σσ σ σσ σ
τ

ψ ψψ ψ

Ï ¸
Ô Ô¢ ¢¢
Ì ˝¢ ¢¢Ô Ô
Ó ˛

D * *
- =  { }

1

1
exp ( )

2
lmm

lmm lmm ml m lml m l

s

s

σσ

σσ σσ σ σσ στ λ ψ ψψ ψ
¢

¢

¢ ¢ ¢¢

¢ ¢ ¢¢

=±

* *D - ,Â  (22) 

where cosh ( ) exp ( /2)
lmm mm

U
σσ σσ

λ τ
¢ ¢

¢ ¢

= D  and M  is the number of interacting orbitals. This so-called discrete 

Hirsch–Fye–Hubbard–Stratonovich transformation can be applied to the Coulomb repulsion as well as 

the Z-component of Hund’s rule coupling [64]. It replaces the interacting system by a sum of 

(2 1)M MΛ -  auxiliary fields 
lmm
s
σσ ¢

¢

. The functional integral can now be solved by a simple Gauss integra-

tion because the Fermion operators only enter quadratically, i.e., for a given configuration { }
lmm
s
σσ ¢

¢

=s  of 

the auxiliary fields the system is non-interacting. The quantum mechanical problem is then reduced to a 

matrix problem 

1 2 1 2

1

1

1 1
det[( ) ]

2
lm m

ml l mm l l

ml m m s

G M
σ σ

σ σσ

σσ σ

�
�

�
�

¢¢ ¢

¢¢ ¢

-

¢ ¢, ¢¢ ¢¢ =±

¢
= Â Â Â ’ ss

M
Z

(23) 

with the partition function Z , the matrix 

2
e 1 em m

m m m

σ σ

σ σ σ λ λ
τ Σ

� �
�

�

- -= D + + -È ˘Î ˚
s s

s

M G  (24) 

and the elements of the matrix 
m

σ

λ�
s

mmll mm lmmmll

m

s
σ σσ σσσσ

σ

δ λ σλ� �

¢ ¢¢

¢¢ ¢ ¢¢

¢ ¢

= - .Âs

 (25) 
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Fig. 6 Flow diagram of the QMC algorithm to calculate the Green function matrix G using the proce-

dure MC-sweep of Fig. 7. 

Here 2 ( [ ] 1)
mm

m m
σσ

σσ
σ Θ σ σ δ�

¢

¢ ¢

= - + - -¢ ¢  changes sign if ( )mσ  and ( )m σ¢ ¢  are exchanged. For more 

details, e.g., for a derivation of Eq. (24) for the matrix M , see Refs. [33, 39]. 

Since the sum in Eq. (23) consists of (2 1)
2

M MΛ -  addends, a complete summation for large Λ  is compu-

tationally impossible. Therefore the Monte Carlo method, which is often an efficient way to calculate 

high-dimensional sums and integrals, is employed for importance sampling of Eq. (23). In this method, 

Fig. 7 Procedure MC-sweep using the Metropolis [65] rule to change the sign of 
lmm
s
σσ ¢

¢

. The recalculation 

of G
cur

, i.e., the matrix M of Eq. (24), simplifies to 2( )ΛO operations if only one 
lmm
s
σσ ¢

¢

 changes sign [33, 39]. 
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the integrand ( )F x  is split up into a normalized probability distribution P  and the remaining term O: 

d ( ) d ( ) ( )
P

x F x x O x P x O〈 〉= ∫Ú Ú  (26) 

with 

d ( ) 1 and ( ) 0x P x P x= ≥ .Ú  (27) 

In statistical physics, the Boltzmann distribution is often a good choice for the function P : 

1
( ) exp( ( ))P x E xβ= - .

Z
(28) 

For the sum of Eq. (23), this probability distribution translates to 

1
( ) det

m

m

P
σ

σ

= ’ s

s M
Z

(29) 

with the remaining term 

1 2 1 2

1( ) [( ) ]
ml l m l l

O M
σ σ� �

� �

-

= .
s

s  (30) 

Instead of summing over all possible configurations, the Monte Carlo simulation generates configura-

tions 
i
x  according to the probability distribution ( )P x  and averages the observable ( )O x  over these 

i
x . 

Therefore the relevant parts of the phase space with a large Boltzmann weight are taken into account to a 

greater extent than the ones with a small weight, coining the name importance sampling for this method. 

With the central limit theorem one gets for N  statistically independent addends the estimate 

2 2

( ) 1

1 1
( )

i

P i P P

x P x i

O O x O O〈 〉 〈 〉 〈 〉
Œ =

= ± - .Â
N

N N
(31) 

Here, the error and with it the number of needed addends N  is nearly independent of the dimension of 

the integral. The computational effort for the Monte Carlo method is therefore only rising polynomially 

with the dimension of the integral and not exponentially as in a normal integration. Using a Markov 

process and single spin-flips in the auxiliary fields, the computational cost of the algorithm in leading 

order of Λ  is 

32 (2 1) number of MC-sweepsaM M Λ- ¥ , (32) 

where a is the acceptance rate for a single spin-flip. 

The advantage of the QMC method (for the algorithm see the flow diagram Fig. 6) is that it is (nu-

merically) exact. It allows one to calculate the one-particle Green function as well as two-particle (or 

higher) Green functions. On present workstations the QMC approach is able to deal with up to seven 

interacting orbitals and temperatures above about room temperature. Very low temperatures are not 

accessible because the numerical effort grows like 3 3
1/TΛ µ . Since the QMC approach calculates ( )G τ  

or ( )
n

G iω  with a statistical error, it also requires the maximum entropy method [66] to obtain the Green 

function ( )G ω  at real (physical) frequencies ω . 

2.7 NCA method to solve DMFT 

The NCA approach is a resolvent perturbation theory in the hybridization parameter ( )ωD  of the effec-

tive Anderson impurity problem [36]. Thus, it is reliable if the Coulomb interaction U  is large compared 
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to the band-width and also offers a computationally inexpensive approach to check the general spectral 

features in other situations. 

To see how the NCA can be adapted for the DMFT, let us rewrite Eq. (17) as 

10

LDA

1
( ) ( ) ( ) ,

k

G z z H z
N

σ σ
Σ

-

= - -È ˘Î ˚Â
k

k  (33) 

where 0z iω µ
+

= + + . Again, 0

LDA
( )H k , ( )z

σ
Σ  and, hence, 0 ( )G

σ
ζ  and ( )G z

σ
 are matrices in orbital 

space. Note that ( )zΣ  has nonzero entries for the correlated orbitals only. 

On quite general grounds, Eq. (33) can be cast into the form 

0

1
( )

( ) ( )
G z

z E z z
σ

σ σ
Σ ∆

=

- - -

(34) 

where 

0 0

LDA

1
( )

k

E H
N

= Â
k

k  (35) 

with the number of k  points 
k

N  and 

lim { ( )} 0e i
σ

ω

∆ ω δ
Æ±•

¬ + = . (36) 

Given the matrix 0
E , the Coulomb matrix U  and the hybridization matrix ( )z

σ
D , we are now in a 

position to set up a resolvent perturbation theory with respect to ( )z
σ

D . To this end, we first have to 

diagonalize the local Hamiltonian 

† 0 1
local 2 d d d dqlm qlm q l m qlm mm q l m q l m

qml q m l m m

H c E c U n n
σσ

σ σ σ σ

σ σ σ

¢

, ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢

= +Â Â Â Â Â  

† †1
2 d d d d d d d dmm q l m q l m q l m q l m

m m

J c c c c
σ σ σ σ

σ

¢ ¢ ¢

¢

- Â Â  

E
α

α

α α=Â  (37) 

with local eigenstates α  and energies E
α
. In contrast to the QMC, this approach allows one to take into 

account the full Coulomb matrix plus spin–orbit coupling. 

With the states α  defined above, the fermionic operators with quantum numbers ( )q l mκ = , ,  are 

expressed as 

†

,

*( ) ,c D
κσ

κσ αβ

α β

α β=Â  (38) 

,

( ) .c D
κσ

κσ αβ

α β

α β=Â  

The key quantity for the resolvent perturbation theory is the resolvent ( )R z , which obeys a Dyson equa-

tion [36] 

0 0( ) ( ) ( ) ( ) ( )R z R z R z S z R z= + , (39) 

where 0 ( ) 1/( )R z z Eαβ α αβδ= -  and ( )S zαβ denotes the self energy for the local states due to the coupling 

to the environment through ( )zD . 
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The self energy ( )S zαβ can be expressed as power series in the hybridization ( )z∆  [36]. Retaining only 

the lowest-, i.e. 2nd-order terms leads to a set of self-consistent integral equations 

d
( ) ( ) ( ) ( )( )

π
S z f R z DD

κκ κ σκσ
αβ σ α β β βα α

σ κκ α β

ε
ε Γ ε ε

¢ ¢

¢ ¢ ¢¢

¢ ¢ ¢

*
= +Â Â Â Ú  

d *(1 ( )) ( ) ( ) ( )
π

f D R z Dκσ κκ κ σ

α α σ α β β β

σ κκ α β

ε
ε Γ ε ε

¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢

+ - -ÂÂ Â Ú  (40) 

to determine ( )S zαβ , where ( )f ε  denotes Fermi’s function and ( ) { ( 0 )}m iΓ ε ε
+

= -¡ D + . The set of 

Eq. (40) is in the literature referred to as non-crossing approximation (NCA), because, when viewed in 

terms of diagrams, these diagrams contain no crossing of band-electron lines. In order to close the cycle 

for the DMFT, we still have to calculate the true local Green function ( )G z
σ

. This, however, can be done 

within the same approximation with the result 

local

1 d e
( ) ( ) ( )( )

2π

z

z
G i D R z R z iD

Z i

β
κκ κσ κ σ
σ αα αν α ννν

α α ν ν

ω ω
�

-
¢ ¢

¢ ¢ ¢¢

, ¢ , ¢

*
= + .Â Â Ú  (41) 

Here, 
local

d e
( )

2π

z

z
Z R z

i

β

αα

α
�

-

=Â Ú  denotes the local partition function and β  is the inverse temperature. 

Like any other technique, the NCA has its merits and disadvantages. As a self-consistent resummation 

of diagrams it constitutes a conserving approximation to the Anderson impurity model. Furthermore, it is 

a (computationally) fast method to obtain dynamical results for this model and thus also within DMFT. 

However, the NCA is known to violate Fermi liquid properties at temperatures much lower than the 

smallest energy scale of the problem and whenever charge excitations become dominant [38, 67]. Hence, 

in some parameter ranges it fails in the most dramatic way and must therefore be applied with consider-

able care [38]. 

2.8 Simplifications for transition metal oxides with well separated 
g
e - and 2gt -bands 

Many transition metal oxides are cubic perovskites, with only a slight distortion of the cubic crystal 

structure. In these systems the transition metal d-orbitals lead to strong Coulomb interactions between 

the electrons. The cubic crystal-field of the oxygen causes the d-orbitals to split into three degenerate 2gt - 

and two degenerate 
g
e -orbitals. This splitting is often so strong that the 2gt - or 

g
e -bands at the Fermi 

energy are rather well separated from all other bands. In this situation the low-energy physics is well 

described by taking only the degenerate bands at the Fermi energy into account. Without symmetry 

breaking, the Green function and the self energy of these bands remain degenerate, i.e., ( )qlm q l mG z, ¢ ¢ ¢ =  

( ) qlm q l mG z δ , ¢ ¢ ¢  and ( ) ( )qlm q l m qlm q l mz zΣ Σ δ, ¢ ¢ ¢ , ¢ ¢ ¢=  for 
d

l l=  and 
d

q q=  (where 
d
l  and 

d
q  denote the electrons 

in the interacting band at the Fermi energy). Downfolding to a basis with these degenerate 
d
q -

d
l -bands 

results in an effective Hamiltonian 0 eff

LDA
H  (where indices 

d
l l=  and 

d
q q=  are suppressed) 

3 0 eff 1

LDA

1
( ) d ([ ( ) ( )] ) .

mm mm

B

G k H
V

ω ω µ Σ ω
-

¢ ¢
= + - -Ú k1 1  (42) 

Due to the diagonal structure of the self energy the degenerate interacting Green function can be ex-

pressed via the non-interacting Green function 0 ( )G ω : 

0

0 ( )
( ) ( ( )) d

( )

N
G G

ε
ω ω Σ ω ε

ω Σ ω ε
= - = .

- -
Ú  (43) 

Thus, it is possible to use the Hilbert transformation of the unperturbed LDA-calculated density of states 

(DOS) 0 ( )N ε , i.e., Eq. (43), instead of Eq. (17). This simplifies the calculations considerably. With Eq. (43) 
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also some conceptual simplifications arise: (i) the subtraction of ˆ

d d

ilmd

i i l l m

n σ

σ

ε

= , =

DÂ Â  [see Eq. (13)] only 

results in an (unimportant) shift of the chemical potential in (43) and, thus, the exact form of 
d

εD  is ir-

relevant; (ii) Luttinger’s theorem of Fermi pinning holds, i.e., the interacting DOS at the Fermi energy is 

fixed at the value of the non-interacting DOS at 0T =  within a Fermi liquid; (iii) as the number of elec-

trons within the different bands is fixed, the LDA + DMFT approach is automatically self-consistent. 

3 Extensions and modifications of LDA + DMFT 

3.1 Self-consistent LDA + DMFT calculations 

In the present form of the LDA + DMFT scheme the band-structure input due to LDA and the inclusion 

of the electronic correlations by DMFT are performed as successive steps without subsequent feedback. 

In general, the DMFT solution will result in a change of the occupation of the different bands involved. 

This changes the electron density ( )ρ r  and, thus, results in a new LDA-Hamiltonian 
LDA

ˆH  (11) since 

LDA

ˆH  depends on ( )ρ r . At the same time also the Coulomb interaction U  changes and needs to be de-

termined by a new constrained LDA calculation. In a self-consistent LDA + DMFT scheme, 
LDA

ˆH  and U  

would define a new Hamiltonian (16) which again needs to be solved within DMFT, etc., until conver-

gence is reached: 

LDA

DMTF
( ) , ( ) .

ilm
H U nρ ρÆ ææææÆ Ær r  

Without Coulomb interaction ( 0U = ) this scheme reduces to the self-consistent solution of the Kohn–

Sham equations. A self-consistency scheme similar to Eq. (44) was employed by Savrasov and Kotliar 

[58] in their calculation of Pu (without self-consistency for U ). The quantitative difference between non-

self-consistent and self-consistent LDA + DMFT depends on the change of the number of electrons in 

the different bands after the DMFT calculation, which of course depends on the problem at hand. E.g., 

for the Ce calculation presented in Section 6, this change was very minor in the vicinity of α–γ  transition 

but more significant at lower volumes. 

In this context, we would also like to note that an ab initio DMFT scheme formulated directly in the 

continuum was recently proposed by Chitra and Kotliar [68]. 

3.2 LDA + DMFT as a spectral density functional theory 

Our derivation of the LDA + DMFT method was physically motivated. That is, we started from the as-

sumption that the Kohn–Sham equations, i.e., the LDA part, yield the correct results for the weakly 

correlated s- or p-bands, while the DMFT-part takes into account the local Coulomb interactions of the 

strongly correlated d- or f-bands. Using the effective action construction by Fukuda et al. [69], Savrasov 

et al. [7, 57, 58] embedded LDA + DMFT in a functional theory with a functional [ ( ) ( )]
dil m

E G rω ρ,

which depends on the electron density ( )rρ  and the local Green function ( )
dil m

G ω  (thus coining the name 

spectral density functional theory [7]). This is in the spirit of density functional theory with the 

LDA + DMFT equations emerging from the minimization of [ ( ) ( )]
dil m

E G rω ρ, w.r.t. ( )
dil m

G ω  and ( )rρ . 

If the functional [ ( ) ( )]
dil m

E G rω ρ, were known exactly one would obtain the exact ground state energy. 

However, since the exact functional is unknown one has to introduce approximations. Then, LDA + DMFT 

is a workable approximation to the spectral density function theory, similar to LDA within DFT. 

3.3 Cluster extensions of DMFT 

DMFT reliably describes local correlations in terms of the local (or, equivalently k-independent) self 

energy ( )
il m il md d

Σ ω
, ¢

. For some problems like, e.g., fluctuations in the vicinity of a phase transition or the 

(44) 
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formation of a spin-singlet on two neighboring sites, non-local correlations are important. The standard 

DMFT described in Section 2.5 neglects such non-local correlations because only a single site with local 

correlations in an average environment (a dynamical mean-field) is considered. However, in principle, 

DMFT can also treat more than one site, i.e., a cell of sites, in an average environment. E.g., if the primi-

tive contains several sites with interacting d- or f-orbitals a natural choice for the DMFT cell would be 

this cell. Then, non-local correlations ( )
d dil m jl mΣ ω, ¢ would be taken into account if i  and j  are within 

the cell, whereas such correlations would be neglected if i  and j  are located in different cells. Further-

more, even if the primitive contains only one interacting site one may consider a larger DMFT cell with 

several interacting sites, treating non-local correlations within that cell but not between different cells. 

This is the basic idea of cluster DMFT approaches [33, 70–72]. 

An alternative scheme, named dynamical cluster approximation (DCA), has been proposed by Hettler 

et al. [73]. The DCA has the advantage of preserving the translational symmetry. While cluster DMFT 

can be best understood in real space, it is instructive to go to k -space for DCA. Within DCA the first 

Brillouin zone is divided into 
c

N  patches around k-vectors K , assuming the self energy to be constant 

within each patch only (in contrast to DMFT, where the self energy is constant for all k-vectors). In real 

space, the DCA cluster has periodic boundary conditions instead of open boundary conditions for the 

cluster DMFT scheme. In addition, the dynamical mean-field couples to every site of the cluster, whereas 

within cluster DMFT it couples exclusively to the boundary sites. Whether cluster DMFT or DCA pro-

vides a better scaling w.r.t. cluster size 
c

N Æ• is still a matter of debate and likely depends on the prob-

lem at hand (both approaches give the correct behavior of any finite-dimensional problem for 
c

N Æ•). 

It is important to note, and not a matter of course, that all these approaches [70–73] lead to physically 

correct (causal) Green functions. 

A third route was proposed by Schiller et al. [74]. It is a natural extension of DMFT in the sense that it 

takes into account all diagrams to next order in 1 d/  (d : spatial dimension), i.e., up to order 1 d/ . This 

leads to a theory with a single-site and a two-site cluster whose Green functions have to be subtracted. 

Cluster extensions of DMFT have been applied successfully to a couple of model systems. For exam-

ple, d-wave superconductivity in the two-dimensional Hubbard model mediated by spin-fluctuations was 

found [71, 75]. In the context of LDA + DMFT cluster extensions of DMFT are still work in progress. 

3.4 GW + DMFT 

A possible alternative to LDA + DMFT is the GW + DMFT [77] approach, which uses Hedin’s GW 

approximation [76] instead of the LDA to generate the multi-band many-body problem Eq. (16) in Sec-

tion 2.4. From a pure, theoretical point of view, GW + DMFT has the advantage of being a fully dia-

grammatic approach. This allows a better understanding of what one is actually calculating and is par-

ticularly appealing to the many-body community. One might consider GW + DMFT as the minimum set 

of diagrams which are necessary to realistically describe correlated materials: It contains the Hartree and 

exchange diagrams together with the RPA-like screening of the Coulomb interaction and, via DMFT, the 

important local diagrams leading to the Kondo-like and Mott-insulating physics of correlated systems. 

However, whether these theoretical principles can be maintained in actual calculations still needs to be 

seen. Problems already arise in mere GW calculations of weakly correlated systems where Coulomb 

interactions are (often) calculated from the (non-diagrammatic) LDA wave function instead of the self-

consistent GW wave functions. GW + DMFT calculations for real materials are still work in progress [77]. 

4 Comparison of different methods to solve DMFT: 

the model system  La
1 x-

Sr
x
TiO

3

The stoichiometric compound LaTiO
3
 is a cubic perovskite with a small orthorhombic distortion 

( °Ti O Ti 155– - - ª ) [78] and is an antiferromagnetic insulator [79] below 125
N

T =  K [80]. Above 
N

T , 

or at low Sr-doping x, and neglecting the small orthorhombic distortion (i.e., considering a cubic struc- 
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Fig. 8 Densities of states of LaTiO3 calculated with LDA-LMTO. Upper figure: total DOS; lower fig-

ure: partial t2g (solid lines) and eg (dashed lines) DOS (reproduced from Ref. [17]). 

ture with the same volume), LaTiO
3
 is a strongly correlated, but otherwise simple paramagnet with only 

one 3d-electron on the trivalent Ti sites. This makes the system a perfect trial candidate for the 

LDA + DMFT approach. 

The LDA band-structure calculation for undoped (cubic) LaTiO
3
 yields the DOS shown in Fig. 8 

which is typical for early transition metal oxides. The oxygen bands, ranging from 8 2- .  eV to –4.0 eV, 

are filled such that Ti has a 1
d  configuration. Due to the crystal- or ligand-field splitting, the Ti 3d-bands 

separate into two empty 
g
e -bands and three degenerate 2gt -bands. Since the 2gt -bands at the Fermi energy 

are well separated also from the other bands we employ the approximation introduced in Section 2.5 

which allows us to work with the LDA DOS [Eq. (43)] instead of the full one-particle Hamiltonian 0

LDA
H  

of Eq. (17). In the LDA + DMFT calculation, Sr-doping x is taken into account by adjusting the chemi-

cal potential to yield 1 0 94n x= - = .  electrons within the 2gt -bands, neglecting effects of disorder and the 

x-dependence of the LDA DOS (note, that LaTiO
3
 and SrTiO

3
 have a very similar band structure within 

LDA). There is some uncertainty in the LDA-calculated Coulomb interaction parameter U ~ 4–5 eV (for 

a discussion see Ref. [17]) which is here assumed to be spin- and orbital-independent. In Fig. 9, results 

for the spectrum of La
0 94.

Sr
0 06.

TiO
3
 as calculated by LDA + DMFT(IPT, NCA, QMC) for the same LDA 

DOS at 1000T ≈  K and 4U =  eV are compared [17]. In Ref. [17] the formerly presented IPT [20] and 

NCA [25] spectra were recalculated to allow for a comparison at exactly the same parameters. All three 

methods yield the typical features of strongly correlated metallic paramagnets: a lower Hubbard band, a 

quasi-particle peak (note that IPT produces a quasi-particle peak only below about 250 K which is there-

fore not seen here), and an upper Hubbard band. By contrast, within LDA the correlation-induced Hub-

bard bands are missing and only a broad central quasi-particle band (actually a one-particle peak) is 

obtained (Fig. 8). 
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Fig. 9 Spectrum of La
0 94.

Sr
0 06.

TiO
3
 as calculated by LDA + DMFT(X) at 0 1T = .  eV ( 1000ª  K) and 

4U =  eV employing the approximations X = IPT, NCA, and numerically exact QMC. Inset left: Behav-

ior at the Fermi level including the LDA DOS. Inset right: X = IPT and NCA spectra at 80T =  K (repro-

duced from Ref. [17]). 

While the results of the three evaluation techniques of the DMFT equations (the approximations IPT, 

NCA and the numerically exact method QMC) agree on a qualitative level, Fig. 9 reveals considerable 

quantitative differences. In particular, the IPT quasi-particle peak found at low temperatures (see right 

inset of Fig. 9) is too narrow such that it disappears already at about 250 K and is, thus, not present at 

1000T ª  K. A similarly narrow IPT quasi-particle peak was found in a three-band model study with 

Bethe-DOS by Kajueter and Kotliar [45]. Besides underestimating the Kondo temperature, IPT also 

produces notable deviations in the shape of the upper Hubbard band. Although NCA comes off much 

better than IPT it still underestimates the width of the quasi-particle peak by a factor of two. Further-

more, the position of the quasi-particle peak is too close to the lower Hubbard band. In the left inset of 

Fig. 9, the spectra at the Fermi level are shown. At the Fermi level, where at sufficiently low tempera-

tures the interacting DOS should be pinned at the non-interacting value, the NCA yields a spectral func-

tion which is almost by a factor of two too small. The pinning of the interacting DOS mentioned above 

holds for the situation here where only degenerate bands are involved and the system is a Fermi liquid. It 

is due to the k -independence of the self-energy; nonetheless, the effective mass is renormalized: 

0 0
/ 1 ( )/ |m m

ω
Σ ω ω

=

* = - ∂¬ ∂ . The shortcomings of the NCA-results, with a too small low-energy scale 

and too much broadened Hubbard bands for multi-band systems, are well understood and related to the 

neglect of exchange type diagrams [82]. Similarly, the deficiencies of the IPT-results are not entirely 

surprising in view of the semi-phenomenological nature of this approximation, especially for a system 

off half filling. 

This comparison shows that the choice of the method used to solve the DMFT equations is indeed 

important, and that, at least for the present system, the approximations IPT and NCA differ quantita-

tively from the numerically exact QMC. Nevertheless, the NCA gives a rather good account of the quali-

tative spectral features and, because it is fast and can often be applied at comparatively low temperatures, 

can yield an overview of the physics. 

Photoemission spectra provide a direct experimental tool to study the electronic structure and spectral 

properties of electronically correlated materials. A comparison of LDA + DMFT(QMC) at 1000 K [83] 
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with the experimental photoemission spectrum [84] of La
0 94.

Sr
0 06.

TiO
3
 is presented in Fig. 10. To take 

into account the uncertainty in U  [17], we present results for 3 2U = . , 4 25.  and 5 eV. All spectra are 

multiplied with the Fermi step function and are Gauss-broadened with a broadening parameter of 0.3 eV 

to simulate the experimental resolution [84]. LDA band structure calculations, the results of which are 

also presented in Fig. 10, clearly fail to reproduce the broad band observed in the experiment at 1–2 eV 

below the Fermi energy [84]. Taking the correlations between the electrons into account, this lower band 

is easily identified as the lower Hubbard band whose spectral weight originates from the quasi-particle 

band at the Fermi energy and which increases with U . The best agreement with experiment concerning 

the relative intensities of the Hubbard band and the quasi-particle peak and, also, the position of the 

Hubbard band is found for 5U =  eV. The value 5U =  eV is still compatible with the ab initio calculation 

of this parameter within LDA [17]. One should also bear in mind that photoemission experiments are 

sensitive to surface properties. Due to the reduced coordination number at the surface the bandwidth is 

likely to be smaller, and the Coulomb interaction less screened, i.e., larger. Both effects make the system 

more correlated and, thus, might also explain why better agreement is found for 5U =  eV. Besides that, 

also the polycrystalline nature of the sample, as well as spin and orbital [85] fluctuation not taken into 

account in the LDA + DMFT approach, will lead to a further reduction of the quasi-particle weight. 

5 Mott–Hubbard metal–insulator transition in V2O3 

One of the most famous examples of a cooperative electronic phenomenon occurring at intermediate 

coupling strengths is the transition between a paramagnetic metal and a paramagnetic insulator induced 

by the Coulomb interaction between the electrons – the Mott–Hubbard metal–insulator transition. The 

question concerning the nature of this transition poses one of the fundamental theoretical problems in 

condensed matter physics [86]. Correlation-induced metal–insulator transitions (MIT) are found, for 

example, in transition metal oxides with partially filled bands near the Fermi level. For such systems 

bandstructure theory typically predicts metallic behavior. The most famous example is V2O3 doped with 

Cr as shown in Fig. 11. While at low temperatures V2O3 is an antiferromagnetic insulator with mono-

clinic crystal symmetry, it has a corundum structure in the high-temperature paramagnetic phase. All 

transitions shown in the phase diagram are of first order. In the case of the transitions from the high-

temperature paramagnetic phases into the low-temperature antiferromagnetic phase this is naturally ex-

plained by the fact that the transition is accompanied by a change in crystal symmetry. By contrast, the 

crystal symmetry across the MIT in the paramagnetic phase remains intact, since only the ratio of the 

c a/  axes changes discontinuously. This may be taken as an indication for the predominantly electronic 

Fig. 10 Comparison of the experimental photo-

emission spectrum [84], the LDA result, and the 

LDA + DMFT(QMC) calculation for La
0 94.

Sr
0 06.

TiO
3
 (i.e., 6% hole doping) and different Coulomb 

interactions 3 2U = . , 4 25. , and 5 eV (reproduced 

from Ref. [17]). 
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origin of this transition which is not accompanied by any conventional long-range order. From a model 

point of view the MIT is triggered by a change of the ratio of the Coulomb interaction U  relative to the 

bandwidth W . Originally, Mott considered the extreme limits 0W =  (when atoms are isolated and insu-

lating) and 0U =  where the system is metallic. While it is simple to describe these limits, the crossover 

between them, i.e., the metal–insulator transition itself, poses a very complicated electronic correlation 

problem. Among others, this metal-insulator transition has been addressed by Hubbard in various ap-

proximations [88] and by Brinkman and Rice within the Gutzwiller approximation [89]. During the last 

few years, our understanding of the MIT in the one-band Hubbard model has considerably improved, in 

particular due to the application of dynamical mean-field theory [90]. 
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Fig. 11 Experimental phase diagram of V2O3 

doped with Cr and Ti (reproduced from Ref. [87]). 

Doping V2O3 affects the lattice constants in a simi-

lar way as applying pressure (generated either by a 

hydrostatic pressure P, or by changing the V-con-

centration from V2O3 to V2–yO3) and leads to a 

Mott–Hubbard transition between the paramag-

netic insulator (PI) and metal (PM). At lower tem-

peratures, a Mott–Heisenberg transition between 

the paramagnetic metal (PM) and the antiferromag-

netic insulator (AFI) is observed. 
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Both the paramagnetic metal V2O3 and the paramagnetic insulator 
0 962 0 038 2 3

(V Cr ) O
. .

have the same 

corundum crystal structure with only slightly different lattice parameters [91, 92]. Nevertheless, within 

LDA both phases are found to be metallic (see Fig. 12). The LDA DOS shows a splitting of the five 

vanadium d-orbitals into three 2gt  states near the Fermi energy and two 
g
e
σ states at higher energies. This 

reflects the (approximate) octahedral arrangement of oxygen around the vanadium atoms. Due to the 

trigonal symmetry of the corundum structure the 2gt  states are further split into one 1ga  band and two 

degenerate π

g
e  bands, see Fig. 12. The only visible difference between 

0 962 0 038 2 3
(V Cr ) O

. .

and 
2 3

V O  is a 

slight narrowing of the 2gt  and 
g
e
σ bands by 0 2ª .  and 0 1.  eV, respectively as well as a weak downshift of 

the centers of gravity of both groups of bands for 
2 3

V O . In particular, the insulating gap of the Cr-doped 

system is seen to be missing in the LDA DOS. Here we will employ LDA + DMFT(QMC) to show ex-

plicitly that the insulating gap is caused by electronic correlations. In particular, we make use of the 

simplification for transition metal oxides described in Section 2.8 and restrict the LDA + DMFT(QMC) 

calculation to the three 2gt  bands at the Fermi energy, separated from the 
g
e
σ and oxygen bands. 

While the Hund’s rule coupling J  is insensitive to screening effects and may, thus, be obtained within 

LDA to a good accuracy ( 0 93J = .  eV [18]), the LDA-calculated value of the Coulomb repulsion U  has 

a typical uncertainty of at least 0.5 eV [17]. To overcome this uncertainty, we study the spectra obtained 

by LDA + DMFT(QMC) for three different values of the Hubbard interaction ( 4 5 5 0 5 5U = . , . , . eV) in 

Fig. 13. From the results obtained we conclude that the critical value of U  for the MIT is at about 5 eV: 

At 4 5U = .  eV one observes pronounced quasiparticle peaks at the Fermi energy, i.e., characteristic me-

tallic behavior, even for the crystal structure of the insulator 
0 962 0 038 2 3

(V Cr ) O
. .

, while at 5 5U = .  eV the 

form of the calculated spectral function is typical for an insulator for both sets of crystal structure pa-

rameters. At 5 0U = .  eV one is then at, or very close to, the MIT since there is a pronounced dip in the 

DOS at the Fermi energy for both 1ga  and π

g
e  orbitals for the crystal structure of 

0 962 0 038 2 3
(V Cr ) O

. .

, while 

for pure 
2 3

V O  one still finds quasiparticle peaks. (We note that at 0 1T ª .  eV one only observes metallic-

like and insulator-like behavior, with a rapid but smooth crossover between these two phases, since a 

sharp MIT occurs only at lower temperatures [40, 90]). The critical value of the Coulomb interaction 

5U ª  eV is in reasonable agreement with the values determined spectroscopically by fitting to model 

calculations, and by constrained LDA, see Ref. [48] for details. 

To compare with the 
2 3

V O  photoemission spectra by Schramme et al. [93] and Mo et al. [94], as well 

as with the X-ray absorption data by Müller et al. [95], the LDA + DMFT(QMC) spectrum at 300T =  K 

Fig. 13 LDA + DMFT(QMC) spectra for para- 

magnetic 
0 962 0 038 2 3

(V Cr ) O
. .

(“ins.”) and 
2 3

V O  

(“met.”) at 4 5U = . , 5 and 5 5.  eV, and 

0 1T = .  eV 1160=  K (reproduced from Ref. [48]).
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Fig. 14 Comparison of the LDA + DMFT(QMC) spectrum [48] at 5U =  eV and 300T =  K below (left figure) 

and above (right figure) the Fermi energy (at 0 eV) with the LDA spectrum [48] and the experimental spectrum (left: 

photoemission spectrum of Schramme et al. [93] at 300T =  K and Mo et al. at 175T =  K [94]; right: X-ray absorp-

tion spectrum of Müller et al. at 300T =  K [95]). Note that Mo et al. [94] use a higher photon energy ( 500hν =  eV) 

than Schramme et al. [93] ( 60hν =  eV) which considerably reduces the surface contribution to the spectrum. 

is multiplied with the Fermi function and Gauss-broadened by 0 09.  eV to account for the experimental 
resolution. The theoretical result for 5U =  eV is seen to be in good agreement with experiment (Fig. 14). 
In contrast to the LDA results, our results do not only describe the different bandwidths above and below 
the Fermi energy ( 6ª  eV and 2 3ª -  eV, respectively), but also the position of two (hardly distinguish-
able) peaks below the Fermi energy (at about –1 eV and –0.3 eV) as well as the pronounced two-peak 
structure above the Fermi energy (at about 1 eV and 3–4 eV). In our calculation the ge

σ states have not 
been included so far. Taking into account the Coulomb interaction 2 3U U J= - ª eV and also the dif-
ference between the ge

σ - and 2gt -band centers of gravity of roughly 2 5.  eV, the 
g
e
σ -band can be expected 

to be located roughly 5 5.  eV above the lower Hubbard band (–1 5.  eV), i.e., at about 4 eV. From this 
estimate one would conclude the upper X-ray absorption maximum around 4 eV in Fig. 12 to be of 
mixed ge

σ and π

ge  nature. 
While LDA also gives two peaks below and above the Fermi energy, their position and physical origin 

is quite different. Within LDA + DMFT(QMC) the peaks at –1 eV and 3–4 eV are the incoherent Hub-
bard bands induced by the electronic correlations whereas in the LDA the peak at 2–3 eV is caused en-
tirely by (one-particle) ge

σ states, and that at –1 eV is the band edge maximum of the 1ga  and π

ge  states 
(see Fig. 12). Obviously, the LDA + DMFT results are a big improvement over LDA which, as one 
should keep in mind, was the best method available to calculate the V2O3 spectrum before. Still there 
remain some differences between theory and experiment which might, among other reasons, be due to 
the fact that every V ion has a unique neighbor in one direction, i.e., the LDA supercell calculation has a 

pair of V ions per primitive cell, or due to short-range antiferromagnetic correlations in the vicinity of 
the antiferromagnetic transition (175 K is close to the Néel temperature). 

Particularly interesting are the spin and the orbital degrees of freedom in 
2 3

V O . From our calculations 
[48], we conclude that the spin state of 

2 3
V O  is 1S =  throughout the Mott–Hubbard transition region. 

This agrees with the measurements of Park et al. [96] and also with the data for the high-temperature 
susceptibility [97]. But, it is at odds with the 1/2S =  model by Castellani et al. [98] and with the results 
[99] for a one-band Hubbard model which corresponds to 1/2S =  in the insulating phase and, contrary to 
our results, shows a substantial change of the local magnetic moment at the MIT [90]. For the orbital 
degrees of freedom we find a predominant occupation of the π

ge  orbitals, but with a significant admixture 
of 1ga  orbitals. This admixture decreases at the MIT: in the metallic phase at 0 1T = .  eV we determine the 
occupation of the ( 1ga , π

g1e , π

g2e ) orbitals as (0.37, 0.815, 0.815), and in the insulating phase as (0.28, 0.86, 
0.86). This should be compared with the experimental results of Park et al. [96]. From their analysis of 
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the linear dichroism data the authors concluded that the ratio of the configurations π π π

g g g 1g:e e e a  is equal to 
1:1 for the paramagnetic metallic and 3:2 for the paramagnetic insulating phase, corresponding to a one-
electron occupation of (0.5, 0.75, 0.75) and (0.4, 0.8, 0.8), respectively. Although our results show a 
somewhat smaller value for the admixture of 1ga  orbitals, the overall behavior, including the tendency of 
a decrease of the 1ga  admixture across the transition to the insulating state, are well reproduced. In this 
context we would also like to note the work by Laad et al. [49] who started from our LDA DOS for 

2 3
V O  

and found, within DMFT(IPT), that it is possible to trigger a Mott–Hubbard metal–insulator transition 
by shifting the π

ge -band with respect to the 1ga -band. 
In the study above, the experimental crystal parameters of 

2 3
V O  and 

0 962 0 038 2 3
(V Cr ) O

. .

have been taken 
from the experiment. This leaves the question unanswered whether a change of the lattice is the driving 
force behind the Mott transition, or whether it is the electronic Mott transition which causes a change of 
the lattice. For another system, Ce, we will show in Section 6 that the energetic changes near a Mott 
transition are indeed sufficient to cause a first-order volume change. 

6 Cerium volume collapse: an example for a 4f-electron system 

Cerium exhibits a transition from the γ - to the α-phase with increasing pressure or decreasing tempera-
ture. This transition is accompanied by an unusually large volume change of 15% [100], much larger 
than the 1–2% volume change in 

2 3
V O . The γ -phase may also be prepared in metastable form at room 

temperature in which case the γ–α-transition occurs under pressure at this temperature [101]. Similar 
volume collapse transitions are observed under pressure in Pr and Gd (for a recent review, see 
Ref. [102]). It is widely believed that these transitions arise from changes in the degree of 4f-electron 
correlations, as is reflected in both the Mott transition [103] and the Kondo volume collapse (KVC) 
[104] models. 

The Mott transition model envisions a change from itinerant, bonding character of the 4f-electrons in 
the α-phase to non-bonding, localized character in the γ -phase, driven by changes in the 4f–4f inter-site 
hybridization. Thus, as the ratio of the 4f Coulomb interaction to the 4f-bandwidth increases, a Mott 
transition occurs to the γ -phase, similar to the Mott–Hubbard transition of the 3d-electrons in 

2 3
V O  

(Section 5). 
The Kondo volume collapse [104] scenario ascribes the collapse to a strong change in the energy scale 

associated with the screening of the local 4f-moment by conduction electrons (Kondo screening), which 
is accompanied by the appearance of an Abrikosov–Suhl-like quasiparticle peak at the Fermi level. 
In this model the 4f-electron spectrum of Ce would change across the transition in a fashion very similar 
to the Mott scenario, i.e., a strong reduction of the spectral weight at the Fermi energy should be 
observed in going from the α- to the γ -phase. The subtle difference comes about by the γ -phase having 
metallic f-spectra with a strongly enhanced effective mass as in a heavy fermion system, in contrast 
to the f-spectra characteristic of an insulator in the case of the Mott scenario. The f-spectra in the Kondo 
picture also exhibit Hubbard side-bands not only in the γ -phase, but in the α-phase as well, at least 
close to the transition. While local-density and static mean-field theories correctly yield the Fermi-level 
peaks in the f-spectra for the α-phase, they do not exhibit such additional Hubbard side-bands, which is 
sometimes taken as characteristic of the “α-like” phase in the Mott scenario [103]. However, this behav-
ior is more likely a consequence of the static mean-field treatment, as correlated solutions of both Hub-
bard and periodic Anderson models exhibit such residual Hubbard side-bands in the α-like regimes 
[105]. 

Typically, the Hubbard model and the periodic Anderson model are considered as paradigms for the 
Mott and KVC model, respectively. Although both models describe completely different physical situa-
tions it was shown recently that one can observe a surprisingly similar behavior at finite temperatures: 
the evolution of the spectrum and the local magnetic moment with increasing Coulomb interaction show 
very similar features as well as, in the case of a periodic Anderson model with nearest neighbor hybridi-
zation, the phase diagram and the charge compressibility [105, 106]. From this point of view the distinc- 
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tion between the two scenarios appears to be somewhat artificial, at least at temperatures relevant for the 
description of the α–γ -transition. 

For a realistic calculation of the cerium α–γ -transition, we employ the full Hamiltonian calculation 
described in Sections 2.3, 2.4, and 2.5 where the one-particle Hamiltonian was calculated by LDA and the 
4f Coulomb interaction U  along with the associated 4f site energy shift by a constrained LDA calculation 
(for details of the two independent calculations presented in the current Section see Refs. [59–61, 102]). 
We have not included the spin–orbit interaction which has a rather small impact on LDA results for Ce, 
nor the intra-atomic exchange interaction which is less relevant for Ce as occupations with more than one 
4f-electron on the same site are rare [ 0J =  in Eq. (13)]. Furthermore, the 6s-, 6p-, and 5d-orbitals are 
assumed to be non-interacting in the formalism of Eq. (13), Section 2.4. Note, that the 4f-orbitals are even 
better localized than the 3d-orbitals and, thus, uncertainties in U  and the 4f site energy [

d
εD  in (13)] are 

relatively small and would only translate into a possible volume shift for the α–γ -transition. 
The LDA + DMFT(QMC) spectral evolution of the Ce 4f-electrons is presented in Fig. 15. It shows 

similarities to 
2 3

V O  (Fig. 13, Section 5): At a volume per atom 20V =  Å3 , Fig. 15 shows that almost the 
entire spectral weight lies in a large quasiparticle peak with a center of gravity slightly above the chemi-
cal potential. This is similar to the LDA solution; however, a weak upper Hubbard band is also present 
even at this small volume. At the volumes 29 Å3  and 34  Å3  which approximately bracket the α–γ -
transition, the spectrum has a three peak structure. Finally, by 46V =  Å3 , the central peak has disap-
peared leaving only the lower and upper Hubbard bands. However, an important difference to 

2 3
V O  is 

that the spd -spectrum shows metallic behavior and, thus, cerium remains a metal throughout this transi-
tion monitored by a vanishing 4f quasi-particle resonance. 

To study the energetic changes associated with the rapid change of the quasiparticle weight at the 
Fermi energy, we calculate the DMFT energy per site for the model Hamiltonian (13) 

00

DMFT LDA f
Tr( ( ) ( )) e n

i

n

nk

T
E H G i U d

N

ω

σ

ω

+

= + .Â k

k

k  (45) 

Fig. 15 Evolution of the 4f spectral function ( )A ω  with 

volume at 632T =  K ( 0ω =  corresponds to the chemical 

potential; curves are offset as indicated; 0 11τD = .  eV 1- ). 

Coinciding with the sharp anomaly in the correlation 

energy (Fig. 16), the central quasiparticle resonance disap-

pears, at least at finite temperatures (reproduced from 

Ref. [61]). 
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is a generalization of the one-band double occupation for multi-band models. 
Figure 16a shows our calculated DMFT(QMC) energies 

DMFT
E  as a function of atomic volume at three 

temperatures relative to the paramagnetic Hartree Fock (HF) energies 
PMHF

E  [of the Hamiltonian (13)], 
i.e., the energy contribution due to electronic correlations. We also present the polarized HF ener- 
gies which basically represent a (non-self-consistent) LDA + U calculation and reproduce 

DMFT
E  at large 

volumes and low temperatures. With decreasing volume, however, the DMFT energies bend away from 
the polarized HF solutions. Thus, at 0 054T = .  eV 600ª  K, a region of negative curvature in 

DMFT PMHF
E E-  is evident within the observed two phase region (arrows). 

Figure 16b presents the calculated LDA + DMFT total energy 
tot LDA DMFT
( ) ( ) ( )E T E T E T= +  

mLDA
( )E T-  where 

mLDA
E  is the energy of an LDA-like solution of the Hamiltonian (13) [107]. Since both 

LDA
E  and 

PMHF mLDA
E E-  have positive curvature throughout the volume range considered, it is the nega-

tive curvature of the correlation energy in Fig. 16a which leads to the dramatic depression of the 
LDA + DMFT total energies in the range V = 26–28 Å3  for decreasing temperature, which contrasts to 
the smaller changes near 34V =  Å3  in Fig. 16b. This trend is consistent with a double well structure 
emerging at still lower temperatures (prohibitively expensive for QMC simulations), and with it a first-
order volume collapse. This is in reasonable agreement with the experimental volume collapse. Further 
physical quantities like the free energy and the specific heat are presented in Ref. [61]. Also note that a 
similar scenario has been proposed recently for the δ–α-transition in Pu on the basis of LDA + DMFT 
calculations [57], which solves DMFT by an ansatz inspired by IPT and includes a modification of the 
DFT/LDA step to account for the density changes introduced by the DMFT [58]. 

In the LDA + DMFT(QMC) and in a separate LDA + DMFT(NCA) [59] calculation for Ce, we have 
obtained a number of physical quantities for both phases which may be compared to experimental values. 
Various static properties extracted from the calculations and their counterparts extracted from experi-
ments are collected in Table 1 and show an overall fair to good agreement in the tendencies and, except 

Fig. 16 (a) Correlation energy 
DMFT PMHF

E E-  as a 
function of atomic volume (symbols) and polarized 
HF energy 

AFHF PMHF
E E-  (dotted lines which, at large 

V, approach the DMFT curves for the respective tem-
peratures); arrows: observed volume collapse from the 
α - to the γ-phase. The correlation energy sharply 
bends away from the polarized HF energy in the re-
gion of the transition. (b) The resultant negative curva-
ture leads to a growing depression of the total energy 
near 26V =  – 28  Å3 as temperature is decreased, 
consistent with an emerging double well at still lower 
temperatures and thus the α -γ  transition. The curves 
at 0 544T = .  eV were shifted downwards in (b) by 
0.5-  eV to match the energy range (reproduced from 

Ref. [60]). 
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Table 1 Comparison between LDA + DMFT(QMC) [61] and LDA + DMFT(NCA) [59] calculated pa-
rameters for both α - and γ-phase and experimental values [108, 109]. 

0
P , 

1
P  and 

2
P  are partial probabili-

ties for an empty, singly and doubly occupied 4f-state, 
f
n  is the f-electron occupancy, 

K
T  the estimated 

Kondo temperature, and χ  the magnetic susceptibility. 

α-Ce α-Ce  α-Ce  γ -Ce γ -Ce γ -Ce 

LDA + DMFT

(QMC) 

LDA + DMFT 

(NCA) 

exp 

[108, 109] 

LDA + DMFT 

(QMC) 

LDA + DMFT

(NCA) 

exp 

[108, 109] 

P0  0 12 0 03. ± .  0.126  0.1558 0 01 0 02. ± .   0.0150  0.0426 

P1  0 77 0 03. ± .  0.829  0.8079 0 94 0 03. ± .  0.9426  0.9444 

P2  0 11 0 01. ± .  0.044  0.0264 0 05 0 01. ± .  0.0423  0.0131 

nf  0 99 0 01. ± .  0.908  0 8 . . . 0 861. .  1 04 0 02. ± .  1.014  0 971. . .1.  

TK, [K] ≈2100  1000  945 . . . 2000 n.a.  30  60 . . . 95 

χ , 3 emu
10

mol

-
È ˘
Í ˙Î ˚

 
n.a.  1.08  0 53 . . . 0 70. .  n.a.  24  8 0 . . .12.  

for the susceptibility, the absolute values. The differences between LDA + DMFT(QMC) [61] and 

LDA + DMFT(NCA) [59] are most likely due to the different method employed to solve the DMFT self-

consistency equations. But also, difference in the LDA treatment and, for α-Ce, in the Coulomb interac-

tion U  might matter (in Ref. [59], U  was assumed to be the same for α- and γ -Ce, whereas the ab initio 

determination of U  in Ref. [102] which was employed in Refs. [60, 61] yield a slightly smaller U-value 

for α- than for γ -Ce). Since the calculation of the magnetic susceptibility χ  in Ref. [59] was based on 

simplifying assumptions, the absolute numbers cannot be expected to match experiment. However, the 

general tendency and especially the ratio between α- and γ -Ce is in good agreement with experiment. It 

is interesting to note that the experiments predict a finite Kondo screening-scale for both phases, which 

actually would point toward the KVC scenario. 

Finally, let us compare the spectral functions calculated with the LDA + DMFT(QMC) approach to 

experimental data [110]. The photoemission spectrum for α-Ce (upper part of Fig. 17) shows a main 

structure between 3 eV and 7  eV, which is attributed to 2
4f  final state multiplets. In the calculated spec-

trum all excitations to 2
4f  states are described by the featureless upper Hubbard band. As a consequence 
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Fig. 17 Comparison between combined photoemis-

sion [110] and BIS [111] experimental (circles) and theo-

retical LDA + DMFT(QMC) total spectra (solid line) for α - 

(upper part) and γ-Ce (lower part) at 580T =  K. The ex-

perimental and theoretical spectra were normalized and the 

theoretical curve was broadened with resolution width of 

0 4. eV (reproduced from Ref. [61]). 
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of the simplified interaction model all doubly occupied states are degenerate. This shortcoming in our 

calculation is responsible for the sharply peaked main structure. The neglected exchange interaction 

would produce a multiplet structure, which would be closer to the experiment. The calculated f-spectrum 

shows a sharp quasiparticle or Kondo resonance slightly above the Fermi energy, which is the result of 

the formation of a singlet state between f- and conduction states. We thus suggest that the spectral weight 

seen in the experiment is a result of this quasiparticle resonance. In the lower part of Fig. 17, a compari-

son between experiment and our calculation for γ -Ce is shown. The most striking difference between the 

lower and the upper part of Fig. 17 is the absence of the Kondo resonance in the γ -phase which is in 

agreement with our calculations. Nonetheless γ -Ce remains metallic with spectral weight arising from 

the spd -electrons at the Fermi energy. Altogether, one can say that the agreement with the experimental 

spectrum is very good, and comparable to the LDA accuracy for much simpler systems. 

7 Conclusion and outlook 

At present LDA + DMFT is the only available ab initio computational technique which is able to treat 

correlated electronic systems close to a Mott–Hubbard MIT, heavy fermions, and f-electron materials. 

The physical properties of such systems are characterized by the correlation-induced generation of small, 

Kondo-like energy scales which are missing in the LDA and which require the application of genuine 

many-body techniques. 

In this paper we discussed the set-up of the computational scheme LDA + DMFT which merges two 

non-perturbative, complementary investigation techniques for many-particle systems in solid state phys-

ics. LDA + DMFT allows one to perform ab initio calculations of real materials with strongly correlated 

electrons. Using the band structure results calculated within local density approximation (LDA) as input, 

the missing electronic correlations are introduced by dynamical mean-field theory (DMFT). On a techni-

cal level this requires the solution of an effective self-consistent, multi-band Anderson impurity problem 

by some numerical method (e.g. IPT, NCA, QMC). The comparison of the photoemission spectrum of 

La
1 x-

Sr
x
TiO3 calculated by LDA + DMFT using IPT, NCA, and QMC reveals that the choice of the 

evaluation method is of considerable importance. Indeed, only with the numerically exact QMC quantita-

tively reliable results are obtained. The results of the LDA + DMFT(QMC) approach were found to be in 

good agreement with the experimental photoemission spectrum of La
0 94.

Sr
0 06.

TiO
3
. 

We also presented results of a LDA + DMFT(QMC) study [48] of the Mott–Hubbard metal–insulator 

transition (MIT) in the paramagnetic phase of (doped) 
2 3

V O . These results showed a MIT at a reasonable 

value of the Coulomb interaction 5U ≈  eV and are in very good agreement with the experimentally 

determined photoemission and X-ray absorption spectra for this system, i.e., above and below the Fermi 

energy. In particular, we find a spin state 1S =  in the paramagnetic phase, and an orbital admixture of 
π π

g g
e e  and π

g 1ge a  configurations, which both agree with recent experiments. Thus, LDA + DMFT(QMC) 

provides a remarkably accurate microscopic theory of the strongly correlated electrons in the paramag-

netic metallic phase of 
2 3

V O . 

Another material where electronic correlations are considered to be important is cerium. We reviewed 

our recent investigations of the Ce α–γ -transition, based on LDA + DMFT(QMC) [60, 61] and LDA + 

DMFT(NCA) [59] calculations. The spectral results and susceptibilities show the same tendency as seen 

in the experiment, namely a dramatic reduction in the size of the quasiparticle peak at the Fermi level 

when passing from the α- to the γ -phase. While we do not know at the moment whether the zero-

temperature quasiparticle peak will completely disappear at an even larger volume (i.e., in a rather Mott-

like fashion) or simply fade away continuously with increasing volume (i.e., in a more Kondo-like fash-

ion), an important aspect of our results is that the rapid reduction in the size of the peak seems to coin-

cide with the appearance of a negative curvature in the correlation energy and a shallow minimum in the 

total energy. This suggest that the electronic correlations responsible for the reduction of the quasi-

particle peak are associated with energetic changes that are strong enough to cause a volume collapse in 

the sense of the Kondo volume collapse model [104], or a Mott transition model [103] including elec-

tronic correlations. 
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We also discussed the embedding of LDA + DMFT in a spectral density functional theory, and exten-

sions like self-consistent LDA + DMFT calculations, LDA + cluster DMFT, and GW + DMFT. These 

extensions are still work in progress which have been applied to model systems or, in the case of self-

consistent LDA + DMFT, to Pu where a fast IPT-inspired DMFT solver has been employed [57, 58]. A 

systematic analysis of the effect of these extensions in the context of realistic calculations is still manda-

tory and certainly depends on the system at hand. E.g., one would certainly expect the non-local correla-

tions taken into account by cluster DMFT approaches to be much more important for effectively one- 

and two-dimensional systems than in three dimensions. 

Another important aspect of future investigations is the calculation of other physical quantities. In the 

first LDA + DMFT publications, mainly the local spectral function (Green function) was calculated be-

cause it arises naturally in the DMFT self-consistency scheme. Nonetheless, in the near future more 

physical quantities will be calculated by LDA + DMFT: thermodynamic properties like the specific heat 

or entropy, which have been already calculated for f-electron systems but not yet for transition metal 

oxides; transport properties like the electrical, optical, and thermal conductivity; magnetic, orbital and 

other susceptibilities; calculations will also be performed within symmetry broken phases and phase 

diagrams will be obtained. 

Physicists from two strong solid state communities, i.e., the DFT bandstructure and the many-body 

community, have finally joined forces to develop and apply LDA + DMFT. The outcome is a powerful 

tool for future investigations of electronic properties of real materials with strong electronic correlations. 
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