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We calculate the spectra and spin susceptibilities of a Hubbard model with two bands having different

bandwidths but the same on-site interaction, with parameters close to the orbital-selective Mott transition,

using dynamical mean-field theory. If the Hund’s rule coupling is sufficiently strong, one common energy

scale emerges which characterizes both the location of kinks in the self-energy and extrema of the

diagonal spin susceptibilities. A physical explanation of this energy scale is derived from a Kondo-type

model. We infer that for multiband systems local spin dynamics rather than spectral functions determine

the location of kinks in the effective band structure.
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The interactions in correlated metals lead to the emer-
gence of characteristic energy scales. Close to the Fermi
energy Landau Fermi-liquid theory [1] applies and the
effective electronic dispersion Ek is renormalized, but
remains linear as in the noninteracting case. The linear
dependence terminates at an excitation energy which can-
not be calculated within Fermi-liquid theory itself. With
increasing strength of the electron-electron interaction, this
Fermi-liquid coherence scale decreases and ultimately
vanishes at the Mott transition from a metal to an insulator.
At the same time charge excitations are shifted to higher
energies of the order of the interaction energy and are thus
suppressed. For the single-band Hubbard model with on-
site Coulomb interaction U, it was shown [2] in dynamical
mean-field theory (DMFT) [3] that the Fermi-liquid regime
terminates at an energy scale !� at which the real part of
the self-energy, Re½�ð!Þ�, and hence the effective disper-
sion Ek, has a rather sudden change in slope [4]. This
‘‘kink’’ does not require any coupling to external bosonic
degrees of freedom but is due to the correlated behavior of
interacting electrons. For the single-band model the Fermi-
liquid scale !� can be derived from the low-energy prop-
erties of the local spectral function [2]. Moreover, it was
demonstrated [5,6] that the energy scale!� is linked to the
characteristic energy scale !sp of spin fluctuations. Kinks

in the electronic dispersion were studied theoretically in a
variety of contexts [7–15].

In this Letter we explore the origin and characteristic
energy scale of kinks in the effective electronic dispersion
in a more general context. Employing the DMFTwe study
a two-band Hubbard model with two different bandwidths
Wm, m ¼ 1, 2, and the same on-site repulsion U for both
bands. The bands are coupled by an interorbital repulsion
U1 and a ferromagnetic Hund’s rule spin exchange J.
Thereby it is possible to capture orbital effects in correlated
materials that do not exist in single-band models. Indeed,
different kinks in the dispersion depending on the
orbital character are observed for Sr2RuO4 both

experimentally and theoretically [16,17]. We study the
model Hamiltonian

H ¼ X
ijm�

tij;md
y
im�djm� þHint;

Hint ¼ U
X
im

nim"nim# þ
X
i��0

ðU1 � ���0JÞni1�ni2�0

þ J

2

X
im�

dyim�ðdyi �m ��dim �� þ dyim ��di �m ��Þdi �m�; (1)

with spin index � ¼" , # and orbital index m ¼ 1, 2. Here a
bar over an index denotes the opposite spin or orbital. The
two bands do not hybridize but are coupled by the inter-
orbital interactions U1 and J. We consider U, U1, and J as
independent parameters which can take arbitrary values,
but U1 ¼ U� 2J [18] for d electrons. Half filling (n ¼ 2)
is assumed throughout. As in the single-band case the
correlation strengths of the two bands may be roughly
parametrized by the ratios U=W1 and U=W2, which are
assumed to be unequal. Because of this difference in the
relative interaction strengths, an orbital-selective Mott
transition (OSMT) occurs upon increase of U [19–36].

We assume semielliptic densities of states, �mð�Þ ¼
ð8=�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðWm=2Þ2 � �2

p
=W2

m, with bandwidths W1 <W2.
Since the hopping amplitudes tij;m are diagonal in the

band index, so are the single-particle Green functions
and self-energies. Off-diagonal contributions only occur
in two-particle and higher-order correlation functions, e.g.,
spin and charge susceptibilities.
DMFT can be viewed as the effective theory that results

from integrating out all sites except one, which maps a
lattice model with local interactions onto an impurity
problem in a self-consistently determined host. Thus (1)
is mapped onto the following two-impurity Anderson
model (TIAM) [29,36]
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HTIAM ¼ X
km�

�kmc
y
km�ckm� þX

m�

�mnm�

þ X
km�

ðVkmc
y
km�dm� þ H:c:Þ þHloc

int ; (2)

where the local interaction Hloc
int has the same form as Hint,

but without the index i. The DMFT self-consistency con-
ditions demand that the band energies �km and hybrid-
izations Vkm are determined such that Green functions
and self-energies of (2) equal the corresponding local
lattice quantities,

Gmð!Þ ¼
Z

d�
�mð�Þ

!þ i0� �m � �mð!Þ � �
; (3a)

�m�ð!Þ ¼ !þ i0� �m � 1

Gmð!Þ � �mð!Þ; (3b)

which take the same form as for two decoupled one-band
models due to the absence of interorbital hopping. Here
the hybridization function is defined as �mð!Þ ¼P

kjVkmj2=ð!þ i0� �kmÞ. We solve the impurity model
using the numerical renormalization group, which allows
us to obtain previously inaccessible dynamical quantities at
zero temperature on the real frequency axis (see
Supplemental Material [37]). With this we compute the
spectral functions Amð!Þ ¼ �Im½Gmð!Þ�=�, self-
energies �mð!Þ, and spin susceptibilities �sp

m ð!Þ ¼
ð�1=�ÞImhhSzm; Szmii! for the two bands in the metallic
phase close to the OSMT and monitor the behavior as a
function of the Hund’s rule coupling J. The different
correlation strengths of the orbitals lead to different behav-
ior of the spectral functions and self-energies which are
shown in Figs. 1 and 2. The overall behavior corresponds to
that of two Fermi liquids with different mass renormaliza-
tions, reminiscent of two uncoupled one-band Hubbard
models with different local interactions. In all cases the
single-particle spectra A1ð!Þ and A2ð!Þ differ signifi-
cantly, especially close to the OSMT when the spectral
function of the narrow band has a very sharp central peak.
Because the spectrum of each band depends mostly on the

correlation strength U=Wm but not much on Hund’s rule
exchange J, the latter was previously characterized as a
‘‘band decoupler’’ [27], at least for the charge degrees of
freedom, in the sense that the spectrum of each of the bands
tends to be similar to the single-band case. Quantum
Monte Carlo results [22,24,26,29,33] suggest that at
T ¼ 0 the low-frequency behavior of Re½�m� and �sp

m is
then also different. Figure 1 shows that this is indeed the
case, but only for J ¼ 0 and U1 � 0.
Indeed, a finite Hund’s rule coupling leads to a funda-

mentally different low-energy behavior of Re½�m� and �sp
m .

Namely, as the system approaches the OSMT we find
that at low energies these quantities become proportional,
i.e., Re½�1ð!Þ� / Re½�2ð!Þ� and �sp

1 ð!Þ / �sp
2 ð!Þ; the

consequences for other dynamical quantities are discussed
in the Supplemental Material [37]. As illustrated in
Figs. 2(b), 2(b0), 2(d), and 2(d0), this striking result cannot
be inferred from the spectral functions Amð!Þ since the
shape and the characteristic energy scales of the latter
differ considerably and thus suggest a decoupled behavior.
The characteristic energy scale of the spin fluctuations is
given by the locations !

sp
m of the extrema in the spin

susceptibilities �
sp
m ð!Þ. The proportionalities discussed

above imply that the system has identical spin fluctuation
energy scales (!

sp
1 ¼ !

sp
2 ), Fermi-liquid energy scales, and

kinks (!�
1 ¼ !�

2 ), irrespective of the different correlation

strengths of the bands. Furthermore, the self-energy kinks
and the strongest spin fluctuations occur at the same energy

FIG. 1 (color online). For J ¼ 0 and U1 � 0 the difference
in the correlation strength of the two bands is observed not
only in the shape of the spectral function Amð!Þ (a), but also
in the corresponding band-resolved self-energies and spin
susceptibilities (b), (b0).

FIG. 2 (color online). In the metallic phase close to the OSMT
a striking proportionality, Re½�1� / Re½�2� and �

sp
1 / �

sp
2 [(b),

(b0), (d), (d0)] is seen to emerge for J > 0, which is in marked
contrast to the decoupled behavior in Fig. 1. Very close to the
OSMT (d), (d0) even a weak exchange coupling J leads to a
common low-energy scale. Note that U1 has little influence on
the qualitative low-energy behavior. The system enters the
OSMT phase for U & 1:3W1 (a) and U < 1:25W1 (c).
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in each band, !�
m ’ !sp

m (as observed also in the single-
band case [5]), which means that for the two-band model
(1) a single common low-energy scale emerges for kinks
and spin fluctuations in both bands. For our numerical data

we define the kink scale !�
m as the energy for which the

extrapolated linear dispersion near the Fermi energy devi-
ates from Re½�mð!Þ� by 20%, which agrees well with the
perceived location of the kinks in Figs. 2(b) and 2(d). The
corresponding momentum-resolved spectral function
Akð!Þ and effective dispersions Ekm are shown in Fig. 3.
We observe that although the slope of the Fermi-liquid
dispersion is very different for the two bands, the linear
regimes terminate at the same energy scale, which, how-

ever, slightly deviates from !�
m due to band structure

effects.
By comparing the results for J ¼ 0 in Fig. 1 with J � 0

in Figs. 2(b), 2(b0), and 2(c), it is clear that U1 cannot be
responsible for the common energy scale. This effect only
appears in the presence of the Hund’s rule coupling J,
whereas U1 merely leads to quantitative modifications.
We will therefore consider only U1 ¼ 0 in the following
in order to better resolve the effect of the Hund’s rule
coupling J. (Additional data for U1 ¼ U� 2J are pro-
vided in the Supplemental Material [37].) Starting from
J ¼ 0 we study the continuous evolution of the two ini-
tially uncoupled Hubbard models into the ‘‘locked’’
regime. To this end we obtain spin fluctuation scales

!sp
m ðJÞ and self-energy kinks !�

mðJÞ for the two orbitals
for two different values ofU=W1 [Figs. 4(a) and 4(b)]. As J
is increased, both orbital-resolved energy scales approach
each other and finally merge into a single scale, as seen in
Figs. 2(c), 2(d), and 2(d0). Comparing Figs. 4(a) and 4(b),
we observe that this common low-energy scale appears at a
threshold value which decreases for increasing U. We also
notice the very close correspondence between kink ener-
gies and spin fluctuation scales, especially in the more

strongly correlated case [Fig. 4(b)]. This observation can
be understood in terms of local Fermi-liquid theory [38]:
similarly to the single-band case [5,6], the linear regime in

Re�ð!Þ must terminate at the frequency !�
m ’ !sp

m , when
the spin fluctuations become strong enough to destroy the
local Fermi liquid. As expected, the kink energy scale
derived in Ref. [2], !?

m ¼ 0:2ZmWm, applies only to the
narrow band with its well-developed three-peak spectral
function and not to the wide band [cf. solid and dashed
lines in Fig. 4(b) corresponding to 0:8!?

m [39]].
In the vicinity of the OSMT the characteristic energies

!
sp
m ðJÞ and!�

mðJÞ represent equivalent energy scales. It thus
suffices to discuss the J dependence of!sp

m ðJÞ in the follow-
ing. To explain the locking of the low-energy scales for the
two bands we proceed in two steps; see Figs. 4(c) and 4(d).

FIG. 3 (color online). Intensity plot of the total spectral density
Akð!Þ deep inside the central peaks as a function of �k and !
[parameters as in Figs. 2(a) and 2(b)]. The effective dispersion
Ek;m is defined by its local maxima [light gray (blue) or dark

gray (red) line for the wide or narrow band]. It is linear (dashed
lines) in the Fermi-liquid regime close to the Fermi surface and
has kinks at the same energy �� 0:0028W1 for both bands
(horizontal lines).

FIG. 4 (color online). (a), (b) Orbitally resolved kink energies
!�

1;2ðJÞ and extrema !sp
1;2ðJÞ of the spin susceptibilities as calcu-

lated within DMFT for different Hubbard interactions U.
Sufficiently large U leads to !�

mðJÞ ¼ !
sp
m ðJÞ and sufficiently

large J leads to !�
1 ðJÞ ¼ !�

2 ðJÞ and !
sp
1 ðJÞ ¼ !

sp
2 ðJÞ. The

dashed lines in (b) mark the single-band estimates for !�
m [2]

which match well for the narrow but not the wide band (see text).
(c) A simplified Anderson impurity model and (d) a related two-
impurity Kondo model, both with a behavior similar to the
DMFT solution. Note that the system in (b) enters the OSMT
phase at approximately J ¼ 0:2U; in (a) the transition occurs for
unrealistically high values J * 1:1U.
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First we establish that the locking is an intrinsic property of
the underlying TIAM Hamiltonian and is only quantita-
tively modified by the DMFT self-consistency equations
(3). Then we compare with the results for a Kondo-type
model that allows us to identify the competing couplings
and elementary excitations. For the first step we solve the
impurity model (2) with different but constant hybridiza-
tion functions [�2ð!Þ¼1:4�1ð!Þ¼ const] and extract
!

sp
m ðJÞ from �

sp
1 ð!Þ. The result is depicted in Fig. 4(c)

for two values of U, showing very good qualitative agree-
ment with the DMFT results in Figs. 4(a) and 4(b). In
particular, the common low-energy scale emerges at a
value of J which decreases with increasing U in a similar
fashion. We conclude that the DMFT self-consistency
induces only minor modifications as long as the system
remains in the metallic phase.

In a second step we focus on the low-energy spin dynam-
ics close to the OSMT. In this regime charge excitations
are strongly suppressed. This limit of (2) is described by
the following two-impurity Kondo model (2IKM) [40–42],

H2IKM ¼ X
km�

�kmc
y
km�ckm�þ

X
m

Jmsm �Sm�JS1 �S2; (4)

where Sm are the impurity spin operators. The antiferro-
magnetic couplings Jm stem from superexchange processes
and decrease with increasing U while J > 0 is the Hund’s
exchange interaction of (2). Thus (4) also represents the
low-energy sector of (1), but with Jm determined by the
DMFT self-consistency equations. We take J2�2ð0Þ ¼
1:4J1�1ð0Þ, starting from !

sp
1 ð0Þ � !

sp
2 ð0Þ for J ¼ 0. The

J dependence of !sp
m ðJÞ is shown in Fig. 4(d). The qualita-

tive agreement among the results obtained for all three
models (DMFT, TIAM with constant hybridization,
2IKM) confirms that Eq. (4) already describes the essential
processes that lead to the emergence of the joint low-energy
scale. In the 2IKM the spins will align for low-excitation
energies and form a composite spin-1 state [40]. This
happens roughly when the energy gain !

sp
1 ðJÞ þ!

sp
2 ðJÞ

due to Kondo screening of the two impurities is overcome
by J=4, the approximate energy gain due to the ferromag-
netic exchange. Hence the locking of the low-energy
scales sets in at about J � !

sp
m ðJÞ=8, as seen in Figs. 4(a)

(J � 0:2W1) and 4(b) (J � 0:1W1). We conclude that two
impurity spins exhibit joint low-energy fluctuations and
hence proportional �

sp
m ’s if J dominates over the individual

spin fluctuation scales !sp
m and are essentially independent

otherwise. Regarding the influence of U, we note that the
antiferromagnetic couplings between the spins and the
baths decrease with increasing interaction; i.e., more corre-
lated systems exhibit stronger locking of their spins and
their low-energy scales. Thus, J couples the low-energy
scales more effectively for stronger correlations, as seen in
Figs. 4(a)–4(c). Thus, any nonzero J > 0 will lead to this
locking as U approaches the OSMT, as then J1 vanishes in
(4). We note that for this mechanism the ratio W2=W1 of

bandwidths and the value of the density interactionU1 play
only a minor role (see further data in the Supplemental
Material [37]).
To explicitly verify the physical picture described above,

we investigate the correlation functions

��
spð!Þ ¼ � 1

�
ImhhSz1 � Sz2jSz1 � Sz2ii! (5)

in DMFT. They describe the dynamics of the composite
local triplet [�þð!Þ] and the ‘‘residual’’ singlet [��ð!Þ],
respectively, and are plotted in Fig. 5(a). As expected, for
both susceptibilities the positions of their maxima
decreases with increasing interaction. However, only the
triplet susceptibility shows a resonance that also increases
in amplitude. In Fig. 5(b) we plot the weight ��

part ¼R
�!
0 ��ð!Þd! as a function of J for several values of the

cutoff �!. Especially for larger values of J the residual spin
contributes only little to the total low-energy spin response
�
sp
1 þ �

sp
2 of the system, which is thus well described by

�þð!Þ. This establishes the formation of the composite
spin-1 state as the physical origin for the emergence
of the common energy scale. Namely, as the OSMT is
approached by increasing U, the antiferromagnetic super-
exchange of the narrow and wide band both decrease until
J becomes the dominating scale, at least for the spins in the
narrow band. The spins align and exhibit joint low-energy
dynamics, leading to the proportionalities of Re½�mð!Þ�
and �sp

m ð!Þ for the two bands. We note that for this mecha-
nism the ratio W2=W1 of bandwidths and the value of U1

play only a minor role (see Supplemental Material [37] for
further data for other parameter values).
In summary, we showed that the physical picture devel-

oped previously for single-band systems close to the Mott
transition is significantly modified for a two-band model
with Hund’s rule coupling, due to the formation of a local
spin-1 state. As a consequence, a common low-energy
scale emerges for the two bands at which kinks in the

FIG. 5 (color online). The correlation functions �þ
spð!Þ and

��
spð!Þ indicate the creation of a composite spin-1 state for large

J [light gray (green) curves in (a) and in the inset have about the
same magnitude; also note the different scales in (a) and the
inset]. Accordingly, the partial spectral weight fraction
�þ
part=�

�
part in (b) grows strongly with J and is only quantitatively

affected by the upper limit �!. Here, !0 ¼ max½!sp
1 ðJÞ; !sp

2 ðJÞ�.
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self-energies and maxima of the spin susceptibilities
appear. Moreover, these quantities for the two bands are
proportional to each other over a wide frequency range. In
practice, if the angle-resolved photoemission spectroscopy
spectrum of a correlated material exhibits kinks at the same
binding energy in bands with different correlation strengths
(as in Fig. 3), this may indicate that J is sufficiently large to
lock these energy scales and the system is close to an
OSMT.
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