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ABSTRACT
Visual Question Answering (VQA) is a relatively new task, which
tries to infer answer sentences for an input image coupled with a
corresponding question. Instead of dynamically generating answers,
they are usually inferred by finding the most probable answer from
a fixed set of possible answers. Previous work did not address the
problem of finding all possible answers, but only modeled the an-
swering part of VQA as a classification task. To tackle this problem,
we infer answer sentences by using a Long Short-Term Memory
(LSTM) network that allows us to dynamically generate answers
for (image, question) pairs. In a series of experiments, we discover
an end-to-end Deep Neural Network structure, which allows us to
dynamically answer questions referring to a given input image by
using an LSTM decoder network. With this approach, we are able
to generate both less common answers, which are not considered
by classification models, and more complex answers with the ap-
pearance of datasets containing answers that consist of more than
three words.
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1 INTRODUCTION
In recent years, the machine learning community rapidly adapted
neural networks. Especially, Deep Convolutional Neural Networks
(DCNNs) developed into the main method for extracting representa-
tions from images. Over time, the models got deeper, more complex
[10, 22, 23] and achieved higher accuracies in the ImageNet Chal-
lenge [21]. Because these models are trained on a very large dataset
of images, they learn to extract a good feature representation of
images and, thus, are also used for other problems than image clas-
sification. Additionally, methods for interpreting language in form
of sentences were also not unaffected by the advances in neural
networks. Recurrent Neural Networks (RNNs) have become the
standard in extracting information from text or creating sentences.
Particularly, a special form of RNNs called Long Short-Term Mem-
ory (LSTM) [12] networks are nowadays used widely in natural
language processing.

A new task called Visual Question Answering (VQA) emerged
lately. In VQA, an image and a question regarding that image are the
inputs, and a sentence answering the question is the desired output.
In other words, the VQA task is a model that answers questions
asked for an input image. This task is challenging, because a good
understanding both of images and natural language is essential to
be able to predict the answer of a question asked regarding the
contents of the image. Its difficulty lies in fusing feature representa-
tions of the image and question into a joint representation, which
then makes it possible to generate an answer for that very image-
question pair. Unlike most other approaches, we use an LSTM
network to generate the answers for the VQA task. The general
practice is to extract the most common answers from the training
set and predict the answers by choosing the most likely answer out
of a fixed predefined set. Teney et al. [24] treat VQA as a multi-label
classification task, i.e., for a given image and question the answer
is predicted from a fixed set of answers. This strategy delivers good
scores as the official evaluation metric is the accuracy. Hence, a
fixed set of the most common answers has a greater influence on the
score than less common answers. We tackle the serious drawback
of leaving out the less common answers altogether. We deal with
this problem by constructing the answer with an LSTM network,
which can produce answers out of the entire vocabulary corpus.

Ourmain contributions are as follows: (1)We use a CNN network
to extract features from the input question, which has been shown
to work better than an LSTM encoding in our case. (2) We compare
different approaches, which embed the question and image features
into a joint semantic space. (3) We do not see the VQA task as a
classification problem but rather we see it as a more complex prob-
lem that can not be approximated by some 3000 possible answers.
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Natural language is more complex than a set of predefined answers,
thus, we replace the fully-connected classification layer with an
LSTM network, that can produce arbitrary sentences. Finally, (4)
we find out that our architecture is able to produce new answers
not contained in the training set at all, some of which we show in
a qualitative analysis.

2 RELATEDWORK
When it comes to VQA, we face the challenge to process image
data properly, process natural language and correctly fuse them in
order to answer the questions regarding the image accurately. In
this section, we give an overview of related work in all of those
research areas.

Natural language processing. Natural language processing is a
long-studied topic in computer vision. Barnard et al. [3] present
a statistical model that learns relationships between visual infor-
mation from images and text information coming with the images.
Farhadi et al. [6] infer triplets consisting of object, action and scene
from handcrafted image features and transfer them to text after-
wards. Similarly, Li et al. [17] use image features to compose sen-
tences from scratch by using a text corpus comprised of n-grams
gathered from the web. Lately, Recurrent Neural Networks (RNNs)
in form of Long Short-TermMemory (LSTM) [12] networks became
very popular in both understanding text and generating text.
The encoder/decoder structure used by current image captioning
approaches as well as our VQA model is heavily influenced by
machine translation networks that transform a sentence from one
language into another. For example, Google [27] uses LSTM-driven
neural networks for their translation system. Facebook [8] goes
into another direction and eliminates the LSTM layers by replac-
ing them through ordinary convolutional layers resulting in better
performance both in speed and accuracy.

Image Captioning. The image captioning task is closely related
to the VQA task. The goal of image captioning is to create a nat-
ural language sentence that describes a given input image. VQA
can be seen as a special case of image captioning, where the input
question modality is added to the model and answers instead of
descriptions should be generated. Different approaches appeared
over time which try to convert the content of images into text
fragments. State-of-the-art approaches still use the idea of extract-
ing features from an image and converting them into a natural
language sentence. They use modern image classification DCNNs
like [23] as a feature extractor. One such architecture is the Show
and Tell model by Vinyals et al. [25, 26], which makes use of re-
current neural networks for sequence modeling to convert image
features into human-like sentences. Also Karpathy et al. [15] utilize
neural networks for sequence modeling in form of a Bidirectional
Recurrent Neural Network to generate captions for images. They
refine their model to additionally describe parts of the image in-
stead of captioning the image as a whole and call this method dense
captioning [13, 14]. Different approaches and their performances
are reported on the website for the MSCOCO [4, 18] captioning
challenge.

Joint multimodal embeddings. There are a lot of approaches that
deal with combining multiple modalities in a joint embedding space.

Zhou et al. [30] propose a simple VQA architecture, which concate-
nates image and question modalities. Other models use simple
element-wise multiplication of question and image features [2, 24].
Fukui et al. [7] state that the outer product between question and
image modalities are more expressive than a vector concatenation
or an element-wise product and introduce a technique called Mul-
timodal Compact Linear pooling. However, the outer product is
infeasible due to its high dimensionality, hence they project the
outer product into a lower dimensional space. Yu et al. [28] also
use a bilinear pooling model to project the image and question into
a joint embedding space (see Section 5.3).

VQA architectures. For the original VQA [2] task, many architec-
tures have been presented. For example, Zhou et al. [30] proposed
a simple architecture, that uses a simple bag-of-words model as
question features and image feature vectors extracted by a CNN.
The creators of the original VQA dataset themselves introduced a
model that trains a classification model on the 1000 most frequent
answers. They use an LSTM model for the question embedding
and the VGGNet [22] as the image feature extractor DCNN. Finally,
Fukui et al. [7] won the VQA challenge by using Multimodal Com-
pact Linear pooling.
The VQA v2 [9] dataset, which is a balanced version of the VQA
dataset (see Section 3 for details), makes it harder to achieve high
scores. In their analysis, Goyal et al. found out that many VQAmod-
els take advantage of language priors to predict the target answers.
Teney et al. [24] present an architecture that uses soft scores as
ground truth targets instead of using one-hot targets as used in tra-
ditional classification. They also implement a bottom-up attention
to attend to specific regions of the images. With those and other
findings they won the 2017 VQA challenge. After the challenge has
ended, Yu et al. [28] even surpassed Teney et al. on the VQA-v2 open
ended challenge leaderboard by using the Multimodal Factorized
Bilinear pooling (MFB) approach.

3 DATASET
We train and test our model on the VQA-v2 [9] dataset, which is a
balanced version of the original VQA [2] dataset. The VQA dataset
is built upon the MSCOCO [18] dataset and contains (question, an-
swer) pairs for a subset of the MSCOCO images. Goyal et al. [9] bal-
anced the VQA dataset in such a way, that for every question there
are two similar images that have differing answers to that question
and, therefore, containing about twice the number of questions.
They also found out that models trained on the first version of the
dataset exploit language priors, thus, performing worse on the VQA-
v2 dataset. Their dataset contains 443K, 214K and 453K questions
in the train split, validation split and test split, respectively. The
test split is divided into four subsplits: test-dev, test-standard, test-
challenge and test-reserve. There is an online evaluation server1 for
generated answers on the test-dev and test-standard split known as
the VQA Real Image Challenge 2017 (Open-Ended). On average, the
VQA-v2 dataset contains 5.34 questions per image and 53.4 answers
per image, i.e., every question was answered by 10 different anno-
tators. Every question has a ground-truth of 10 answers, whereas
every answer is flagged, whether the annotator was confident to
1https://evalai.cloudcv.org/web/challenges/challenge-page/1/overview, test-dev allows
10 submissions per day, while test-standard is limited to 5 submissions in total.
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Question Q WeQ Q-CNN fq (q̃)

Attention ◦ LSTM
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fv (v̂)

R |V |×N R512×N
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R512

R512

RK×2048
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Figure 1: Architecture of ourVQAmodel.We embed the questionQ via theword embeddingmatrixWe and extract the question
features with a residual CNN. We attend to the image feature maps produced by the Inception-v3 network with an attention
mechanism producing a single weighted feature vector. We feed the image and question features through non-linear layers f
and extract a joint multimodal feature vector h by element-wise multiplication.

answer the question correctly. We only use confident answers, i.e.,
every question has 8.11 confident answers on average.
For our studies we rebalance the train and validation splits, so we
use the train split and 90% of the validation split as training set and
the remaining 10% of the validation split as the validation set. We
do this to have a larger training corpus available. For evaluating
the performance of our models, we use the standard VQA script by
Antol et al. [2]. This script calculates the overall accuracy and the
accuracies over three different answer categories. These are yes/no
answers (Y/N), number answers and other answers.
For some of our experiments, we extend the dataset by the popu-
lar Visual Genome [16] dataset, which contains an additional 1.7
million Visual Question Answers on 108,077 images.

4 MODEL
Our VQA model is composed of multiple components. We embed
the question into a feature vector via a CNN and extract a feature
vector from the corresponding image via a DCNN (Inception-v3 [23]
network in our case). We attend to the features of the input image
via the question and combine both feature vectors via multimodal
fusion into a single representation of the image-question pair. In-
stead of modeling the answering part as a classification task, we
generate the answer with an LSTM network. We depict our archi-
tecture with the decoder LSTM in Figure 1. In the following, we
describe each part of our architecture.

4.1 Question embedding
We add a start word <S> at the beginning and an end word </S> to
the end of each question. Additionally, we tokenize each question
by splitting it up into single words. We allow questions to be of any
length and construct our vocabularyV from all words contained in
the questions and answers (we tokenize answers the sameway aswe
do with the questions). Each word in the questionQ = (q0, . . . , qN )
of length N is represented by a one-hot vector qt , where t is the
time-step or the index of the current word in the input question.

We embed each word of the question into vectors

q̂t =Weqt , t ∈ 0 . . .N − 1 (1)

of dimenstionm = 512, whereWe ∈ R
512×|V | .

For getting a feature representation of the whole sentence, we
feed the sentence through a couple of convolutional layers. We use
gated convolutions in a residual architecture like Dauphin et al. [5].
In particular, they state that CNNs do not suffer from vanishing
and exploding gradients like RNNs do and, therefore, a forget gate
used in RNNs like LSTMs is not required in CNNs, which process
language. However, they find that allowing the network to control
what information should be propagated through the layers via
output gates is useful for language modeling and introduce the
gated linear unit (GLU), which learns which information should be
forwarded to the next layer. For each GLU we learn parameters for
two convolution operations (∗) with the same number of output
feature mapsm and calculate its result as

GLU (X) = (X ∗Wc1 + bc1) ◦ σ (X ∗Wc2 + bc2) (2)

where X ∈ RN×m is the input of the GLU and Wc1 ∈ Rk×m×n ,
bc1 ∈ Rn ,Wc2 ∈ Rk×m×n , bc2 ∈ Rn are learned parameters. Note
that k is the kernel size of the convolution, n = 512 are the number
of outputs and ◦ is the elementwise multiplication, so the output of
the GLU is of dimensionality RN×n . We visualize the architecture
of a GLU in Figure 2.

We feed our embedded question through a GLUwithn = 512,k =
5 followed by two residual blocks, each consisting out of two GLUs
with a skip connection from the input to the output. We depict
our question embedding architecture in Figure 3. Finally, we use
global average pooling across the question length N to reduce the
dimensionality of each question feature representation from RN×n
to q̃ ∈ Rn .

4.2 Image embedding
We also extract a feature representation from each input image
with a DCNN, namely, we use the Inception-v3 [23] architecture.
We obtain a feature vector of size K × 2048, where K = 8 × 8 = 64
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Figure 2: A gated linear unit (GLU). InputsX are fed through
a convolution layer twice with different parameter sets. One
convolution layer has a sigmoid activation function while
the other has no activation function. Their outputs are mul-
tiplied pointwise.

from the Mixed_7c layer in the case of the Inception-v3 network.
For our experiments we use (a) a global average pooled feature
representation of size 2048 or (b) the feature vector of size K × 2048
in the case of image attention (see Section 4.3).

4.3 Image attention
Similarly to Teney et al. [24], we use a simple form of image at-
tention that attends to certain areas of the image. We do not use
features from image regions extracted by a object detection pipeline
like Faster-RCNN [20], but only attend to spatial locations on the
feature map of the image. The feature map has a size of 8 × 8 with
2048 dimensions each, which corresponds to K = 64 image loca-
tions. We denote each location i = 1 . . .K by vi and concatenate it
with the question representation q̃ and feed them through a non-
linear layer fa (see Section 4.4) to learn a scalar attention weight
α i for each image location.

ai = Wa fa ([vi , q̃]) (3)
α = softmax(a) (4)

v̂ =

K∑
i=1

α ivi , (5)

whereWa ∈ R
K×2560 is a learned parameter matrix. In the case (b)

of no image attention, we use global average pooled feature map
as described in Section 4.2 (v̂ = avg_pool(v)).

4.4 Multimodal fusion
We need to project the question embedding and image embedding
into a joint semantic space to be able to produce answers dependent
both on the input image and the question. To do this, we first reduce
the dimensionality of the image embedding to match the question
embedding size of n = 512. Again, we use the non-linear layer f
from [24], which is defined as a function fθ : x ∈ Rµ → y ∈ Rν

qt Weqt GLU

GLU conv_1

GLU conv_2

+

Block 1

Gated Block 2avg_poolq̃

R |V |×N q̂t ∈ R512×N

Rn×N

Rn×NRn

Figure 3:We extract a feature representation out of the input
questionswith a convolutional architecture. First, we embed
each word of the question qt into a lower-dimensional rep-
resentation, which we feed through a GLU followed by two
post-activation residual blocks. After those blocks, we use
global average pooling to get one vector describing the ques-
tion.

ỹ = tanh(Wθ x + bθ ) (6)
g = σ (Wθ ′x + bθ ′) (7)
y = ỹ ◦ g, (8)

where Wθ ,Wθ ′ ∈ R
ν×µ are learned weight matrices and bθ , bθ ′ ∈

Rν are learned biases.
In particular, we use fv (v̂) with ν = 512 to reduce the dimensional-
ity to the dimensionality of the question embedding. As common
practice in the VQA community [2, 24], we then use the element-
wise product to fuse image and question features with

h = fq (q̃) ◦ fv (v̂). (9)

Note, that we also apply the non-linearity function to the question
embedding, where we set ν = µ = 512. We depict our model
including the multimodal fusion in Figure 1.

4.5 Output LSTM
As we pointed out, most other VQA models have the drawback of
leaving out the less common answers and model the problem of
predicting the answer to an (image, question) pair as a classification
task. To do otherwise, we use a classical approach coming from
image captioning models [25] and machine translation networks.
Generally speaking, those kind of models use an encoder-decoder
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structure, which encodes inputs (e.g. source language sentence or
input image) into a fixed-length vector representation and decodes
this feature vector into the target sentence.

In our case the input is the combination of question and input
image and is encoded in the vector h and the target is the answer
described by a sentence S = (s0, . . . , sM ), where st is the word
at time step t and M the length of the answer. Our model then
maximizes the probability p of the correct answer S , given h

Θ∗ = argmax
θ

∑
(h,S)

logp(S|h;Θ), (10)

where Θ are all variables of our model and Θ∗ is the optimal param-
eter set. Of course, each answer S consists of a variable number of
words and the model is optimized for each (question, image, answer)
triple. Therefore, for each training triple, the joint log probability

log(S|h) =
M∑
t=0

logp(st |h, s0, . . . , st−1) (11)

is maximized.
We can model the log probability pt =logp(st |h, s0, . . . , st−1) by
using an RNN, where the probability pt is the output of the RNN at
time step t . In particular, we use an LSTM network as the decoder
network, where we initialize the hidden state at time step t = −1
with the multimodal feature representation h of the question and
image. Note, that we only feed h once into the LSTM network. The
loss that defines the error signal is then given by the sum over the
log likelihoods of the correct word at each position, where log is
the natural logarithm applied element-wise to the vector pt :

L(h, S) = −
M∑
t=1
[logpt ] · st . (12)

4.6 Training
In all experiments, we use a stochastic gradient descent (SGD) solver
with a base learning rate of ηb = 2.0. The base learning rate applies
to the decoder LSTM network, while we use a reduced learning
rate for other parts of our model. For the question encoder CNN,
the image attention and the multimodal fusion, we use a learning
rate of ηQ-CNN = 0.005 · ηb , ηatt = 0.05 · ηb and ηfusion = 0.05 · ηb ,
respectively. At a varying number ϵ of epochs, we halve the learning
rate. When finetuning the Inception-v3 network in an end-to-end
fashion we set all learning rates to η = 0.0005. We use a batch-size
of β = 128 in most of our experiments and reduce the batch-size to
β = 32 when finetuning the Inception-v3 network. All experiments
were conducted on a single NVIDIA Titan X Pascal GPU.
For training we use each input (image, question, answer) triple
as one training example. Note, that we sample multiple training
examples from one (image, question) pair with multiple possible
answers to model the uncertainty between the annotators. Thus,
we get a slightly richer training signal because the model learns
that multiple answers could be correct.
Depending on the model, we halve the learning rate 2 to 4 times
and train for ϵ = 2 to ϵ = 4 epochs per learning rate. When using a
lower learning rate, we increase the number of epochs per learning
rate to 6. In the finetuning stage, we train until convergence for a

total of up to ϵ = 35 epochs. On our GPU, training in the first stage
with precomputed features takes 2 to 4 days. The finetuning stage
takes 8 to 10 additional days.

4.7 Implementation
We implemented our model in Tensorflow [1] and used the slim
module for a prebuilt Inception-v3 DCNN. Our model shares code
with the Show and Tell [25] model, which is publicly available as a
Tensorflow implementation.

5 EVALUATION
We conducted a series of experiments to conclude an architecture
producing best results for our scenario (see Table 1). In the following
we list some of our ablation experiments in order to justify our
hyperparameter selection. All models build upon an Inception-v3
DCNN pretrained on the ILSVRC 2012 corpus. We precomputed
the Inception-v3 features of the input images, since every image is
used multiple times and, thus, training is sped up. Except stated
otherwise, we report accuracies on our validation split of the VQA-
v2 dataset.

5.1 Question feature extraction
As we described in Section 4.1, we used a convolutional architecture
to extract a single feature vector out of a given question. In addition
to the post-activation layers we also conducted experiments with
pre-activation layers (similar to ResNet-v2 [11]), which performed a
little worse in our case. We also compared classification accuracies
for different number of residual blocks (see column # blocks). Here
we see that a larger number of residual blocks (4) does not improve
performance in comparison to our choice of using only 2 blocks.
Furthermore, in the first column of the feature extraction columns,
we show our different choices for the kernel size k of the question
convolutions. As a comparison, we also extract the question features
with a simple LSTM network (one LSTM cell with 512 units), which
decreases the validation accuracy about an absolute of 10 %. Note,
that we used GLUs for every model except for model 6. Therefore,
for the question feature extraction part of our model, we chose to
use 2 post-activation residual blocks with a kernel size of k = 5.

5.2 Image attention
We then added a simple image attention model (see Section 4.3) to
our model. As we still precompute the feature maps of the Inception-
v3 network, we cannot use the global average pooled feature maps
anymore, but precompute the direct output of the Mixed_7c layer.
In the table we mark models, that use attention with a checkmark
in the second column. In the results, we notice that our model also
profits by adding a simple form of attention. Attention improves
the accuracy by about 1% and applying the non-linear layer fq (see
Section 4.4) to the question features (q̃) also has a small positive
effect on the validation accuracy. If we also optimize parameters
of the Inception-v3 DCNN, we get an additional improvement of
about 3%.

5.3 Multimodal Factorized Bilinear pooling
In addition of fusing the question and image features simply by
calculating the element-wise product (see Section 4.4), we also
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Table 1: Studies on our test and validation splits of the VQA-v2 dataset. We analyze different combinations of hyperparamters
in ourmodel. The first column states the kind ofmodel, Att stands for Attention, FT for finetuning of all parameters (including
the Inception-v3 image feature extractionDCNN),MM-Fuse describes the kind ofmultimodal fusion used and decoder specifies
whether we used an LSTM or a fully-connected (FC) layer for generating the answers. The columns for validation performance
give the accuracies on our validation split (10 % of the VQA-v2 validation split).

Feature extraction Q MM-Fuse Decoder Validation Performance

Name Att FT VG k # blocks act fq (q̃) All Y/N Num Other

1 4 4 pre eltwise LSTM 52.02 71.69 34.82 41.38
2 4 4 post eltwise LSTM 52.42 71.57 35.98 42.05
3 4 1 pre eltwise LSTM 50.65 69.07 31.34 41.62
4 4 2 post eltwise LSTM 52.44 71.52 35.48 42.28
5 X 4 2 post eltwise LSTM 54.67 72.63 37.04 45.55
6 - LSTM - eltwise LSTM 41.48 63.69 28.18 27.95

7 X 5 2 post eltwise LSTM 53.54 73.33 34.81 43.34
8 X 5 2 post X eltwise LSTM 53.71 73.62 35.12 43.38
9 X X 5 2 post X eltwise LSTM 53.97 73.69 36.83 43.42
10 X X 5 2 post X eltwise LSTM 56.62 75.45 39.33 46.79

11 X 5 2 post X eltwise FC 49.16 72.82 33.41 35.26
12 X 5 2 post MFB LSTM 51.94 72.44 33.54 41.13
13 X X 5 2 post MFB LSTM 52.20 71.45 35.40 41.90

implemented the Multimodal Factorized Bilinear Pooling (MFB)
approach by Yu et al. [28, 29], which is currently ranked first in the
VQA-v2 open-ended challenge. They project the image features and
question features into a larger embedding space, i.e., our embedding
space is ∈ R5·512. These larger embedding spaces are combined via
an element-wise product and then reduced to R512 via sum-pooling,
i.e., blocks of 5 values are summed up. This vector is then power
normalized (z ← siдn(z)|z |0.5) and L2 normalized (z ← z/| |z | |2). Yu
et al. propose that MFB supports the exploitation of more complex
correlations between multimodal features. As we can see in the
MM-Fuse column of Table 1, using the MFB approach (Models 12
and 13) does not increase overall accuracy in our case and we stick
with using the simple fusing approach described in Section 4.4.

5.4 Classical VQA approach
As we use an LSTM network as the decoder instead of a fully
connected layer (FC) with a softmax cross-entropy loss function,
we still want to compare our architecture to the classical VQA
classification approach. For this reason, we extended our model
to be able to classify the 3000 most common answers of the train
split. When we evaluate this approach on our test set, accuracies
drastically decrease compared to the LSTM decoder (53.71 vs. 49.61).
This may be an indicator that the classification approach performs
worse than an LSTM decoder network.

5.5 Dataset extension
We also examine, whether the validation accuracy can be improved
by extending the dataset with the Visual Genome (VG) dataset.
Because we do not evaluate on the VG dataset, we include the
whole dataset into our train split. Models trained with the extended
dataset are indicated by the VG column. In contrast to models that
use the classification approach, we use the whole VG instead of
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Figure 4: The VQA-v2 dataset contains many short answers
(89.41% and 6.92% of all answers are of length 1 and 2 words,
respectively), while the the VG dataset contains more an-
swers with more words (52.47%, 21.86% and 16.70% of all an-
swers are of length 1, 2 and 3 words, respectively).

only using the part, which contains the same top answers as the
VQA-v2 dataset. In both experiments, in which we extended our
dataset by VG, we notice a slight improvement in the scores. This
is due to the fact that the VG dataset contains longer answers than
the VQA-v2 dataset, which mainly consists of one to two word
answers and we measure the performance on the validation split of
the VQA-v2 dataset. We depict the distribution of answer lengths
in Figure 4.
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Table 2: Fractions of unique answers generated by our mod-
els. LCA are less common answers left out altogether by clas-
sification models, MCA are most common answers, which
are the only answers generateable by classification models
and new answers are newly generated sentences by ourmod-
els not contained in the train split. The LCA accuracy de-
scribes the percentage of correctly generated answers out
of the LCA set, i.e., these are correct answers given by our
model, which classification models are not able to produce.

Name LCA LCA accuracy MCA new answers

9 14.97 % 11.91 % 62.73 % 22.30%
13 14.70 % 9.47 % 63.62 % 21.68 %
10 19.49 % 8.10 % 69.74 % 10.77 %
7 24.52 % 9.91 % 64.22 % 11.26 %

5.6 Less common answers
We use an LSTM network to generate answers, thus, in contrast to
classification models, we are able to generate answers which are
not part of the 3000 most common answers. Our train set contains
190,677 unique answers and the 3000most common answers (MCA)
comprise 90.5% of all answers in the dataset. Thus, classification
models with 3000 logits are unable to produce 9.5% of the less
common answers (LCA) of the train set. In contrast, our LSTM
model is able to produce every answer and even new answers. In
an experiment, we determined the fraction of MCA, LCA and new
answers of all uniquely generated answers of some of our models.
Our models generate between 14.70% and 24.52% LCA and between
11.26% and 22.30% new answers. With the official evaluation tool,
we also find that the accuracy of LCA is up to 11.91%. We visualize
these findings in Table 2. In qualitative analysis we depict some
of the new answers generated by our model in Figure 5. The first
row shows correct answers not detected by the official evaluation
script. The second row depicts incorrect answers, e.g. (e) and (f)
show answers being too short (due to the short answer bias of the
dataset) and (g) and (h) show wrong answers, even though the
answers are plausible given the scene.

5.7 Performance on the test set
In Table 3, we compare our model to other models on the test-dev
as well as on the test-std dataset split. We compare our model to the
MCB [7] approach as reported in [9] and the single network model
by Teney et al. [24]. We did not train an ensemble of networks
and did not implement attention on image regions by a object
detection model. Our models surpass the d-LSTM+n approach but
are worse than the best scoring approaches, since we focus more
on generating less common answers. Furthermore, our model can
produce more complex answers due to the LSTM decoder network
and could be seen as an approach for more complex VQA datasets
to come.

6 CONCLUSION AND FUTUREWORK
We presented an end-to-end architecture for the VQA task. In con-
trast to other approaches, we use an LSTM network to generate
the answers for the (image, question) pairs. We conducted a series

of experiments to find a good combination of hyperparameters for
our architecture. Competing approaches model the VQA task as a
classification task, where a fixed number of most common answers
are the possible classes, hence, they are not able to produce less
common answers. With our approach, we were able to generate
such less common answers with an accuracy of 11.91% and also
showed that our model generates answers not contained in the
training set. Some of these produced sentences answer questions
correctly. We also find out that the ground-truth answers of current
VQA datasets are biased towards a short number of words, i.e., more
than 90% of the answers have a maximum length of two words.
For datasets containing more complex answers, our model is more
suitable than models using the classification approach. Hence, we
want to focus our future research on finding a performance measure
to evaluate longer and more complex answers and extending the
datasets by more complex sentences.
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(a) Q: Where is the man?
A: in a restaurant

(b) Q: Where are the trees?
A: behind the elephants

(c) Q: Where is the bus?
A: on the street

(d) Q: Where is the red carpet?
A: on the ground

(e) Q: Who wears a cowboy hat?
A: the man on the

(f) Q: What is the woman doing?
A: feeding the

(g) Q: Where is the photo taken?
A: in a kitchen

(h) Q: Where is the boy looking?
A: at the beach

Figure 5: Images associated with question and generated answers by ourmodel. All answers shown are new ones not contained
in the training set. Figures (a) - (d) show correct answers not detected by the official evaluation script. The second row shows
wrong answers. Especially, (e) and (f) show sentences, where the end of sentence token was generated to early (dataset bias of
short answers). (g) and (h) show wrong answers.
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