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The Hall resistance of a parabolic quantum well reveals suppressed quantum Hall plateaus at even-integer filling factors. This 
phenomenon is explained by the particular subband structure of the investigated system, which leads to a nonlinear Landau level 
fan diagram in a magnetic field. 

The integral quantum Hall effect is mostly 
studied in high mobility two-dimensional electron 
gase~ (2DEG) [1], where the extension of the 
wave function perpendicular to the 2DEG is typi- 
cally -- 10 nm. The subband separation in these 
systems is much larger than the cyclotron energy 
ho) c for moderate magnetic fields (B < 10 T). 
Furthermore, if an upper subband is populated, 
its carrier density N, t is much smaller (typically a 
factor of 10) than the carrier density N~ ) of the 
ground subband. 

In a parabolic quantum well (PBW) the situa- 
tion is completeiy different. The extent of the 
wave function can cover more than 0.5/xm [2,3] 
leading to subband separations below 1 meV. 
The carrier densities of two neighboring sub- 
bands can be within a factor of two and, in a 
magnetic field, they can even coincide, i.e. they 
can have the same filling factor. This interesting 
situation can be realized in our samples by an 
independent tuning of the total carrier density. N~ 
via a front gate voltage Vg and the subband 
densities via the magnetic field B. For low caFier 
densities in the upper subband N~ ~ << N~ ° a mag- 
netic field depopulates the upper subband com- 
pletely and quantum Hall plateaus appear as 
usual at even integer filling factors (spin splitting 
is neglected). Here we define u" as the filling 

factor in subband i given by the carrier density in 
this subband, v i=  N i h / e B .  For larger values of 
N, t<  N ° the carrier densities of both subbands 
can match at a given magnetic field and conse- 
quently both subbands have the same filling fac- 
tor v ° =  v I. In this case a quantu.;~ Hall plateau 
corresponding to v = v ° + v I is observed pro- 
vided v is an integer. At an intermediate situa- 
tion (between N, l << Ns ° and N, l _< N, °) the mag- 
netic field is not strong em_~t:gh to either depopu- 
late the upper subband or to match the two 
carrier densities and v ° and v ~ will not be an 
integer any more. Consequently the correspond- 
ing quantum Hall plateau will be suppressed. Th,; 
subband structure of the parabolic well is calcu- 
lated self-consistently by explicitly taking into ac- 
count the influence of the magnetic field on the 
density of states. The resulting nonlinear Landau 
level fan diagram explains nicely the experimen- 
tal observations. 

The GaAs/Al~Ga,_xAs  parabolic quantum 
well is grown by molecular beam epitaxy and has 
the following sequence: on top of the substrate 
there is a 400 nm GaAs buffer layer, then 200 nm 
Alo.3Gao.vAs, 16 nm Alo.3Gao.7As with Si-doping 
( N D = 2 . 5  × 1017 c m - 3 ) ,  20 nm Alo.3Gao.7As 
spacer, the 75 nm wide parabolic well with x 
varying 0 < x  < 0.1, 20 nm Alo.3Gao.vAs spacer, 
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Fig. 1. Hall resistance Pxr for different carrier densities. The 
arrows indicate the u = 4 plateau which vanishes and reap- 

pears in this range of N~. 

and 101 nm Si-doped ml0.3Ga0.7As ( N  D --2.5 x 
1017 cm-3). At 4.2 K the mobility of the electron 
gas in the well is /z = 100 000 c m2 / V  s and the 
carrier density N s = 5 x 10 tl cm -2. The mesa 
structure is a Hall geometry with a width of 50 
/zm and a spacing between the voltage probes of 
150 /~m. Ohmic contacts are made by alloying 
A u G e / N i  and a semi-transparent front gate 
(Ti /Au)  is evaporated onto the sample. This z~;- 
lows us to tune the carrier density in the parabolic 
well and with it the width of the electron system 
and the number of occupied svbbands [4]. The 
high quality of our sample and t' ,'eliability of 
the front gate are also demons zd in far-in- 
frared measurements  [5]. The DC-transport  mea- 
surements are performed in a superconducting 
magnet (0-10 T) and the sample is immersed in 
liquid helium at T = 2.2 K. The magnetic field is 
oriented perpendicular to the plane of the 2DEG. 
The samples are cooled down in the dark. 

Fig. 1 presents a series of Hall measurements 
for five different carrier densities. For a large 
negative bias V~ = - 0 . 4  V and consequently low 
carrier density N~ = 2.62 x 10 ~1 cm-2  oply one 
subband in this parabolic well is populated. The 
resulting Hall resistance p ~  shows clearly re- 
solved Hall steps for filling factors u = 4, 6, 8, 10. 
For increasing carrier density, the plateau at u = 4 
becomes weaker, vanishes and reappears again 
for large values of N~. A similar behavior, but less 
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Fig. 2. Summary of Pxx measurements for a series of carrier 
densities. The curves are vertically offset for clarity. The 
vertical arrows indicate the position of filling factor v = 4 and 

u = 6 for the total carrier density. 

strongly pronounced, is also observed for the 
u = 6 and u = 8 plateau. 

For all the measurements  the behavior of P x x  

and Pxy is clearly correlated. In case of a sup- 
pressed Hall plateau in Px~,, there is only a weakly 
pronounced minimum or even none for the corre- 
sponding filling factor in Pxx. Since the magne- 
toresistance P x x  is more sensitive and shows more 
structure reflecting the actual density of states, 
we will concentrate our discussior~ on the data 
presented in fig. 2. For a series of carrier densi- 
ties Pxx is plotted as a function of B. The curves 
are vertically offset with r.~spect to each other for 
clarity. The range of magnetic fields is chosen so 
that the minima r: : , , ted to s., = 4 and ~, = 6 domi- 
nate the spectrum. It is important to note that 
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Fig. 3. Calculated magnetoresistance from a self-consistent 
calculation taking into account the magnetic field dependent  
density of states. Positions of total filling factor v = 4 are 
indicated by arrows. The overall agreement with the experi- 

mental data in fig. 2 is remarkably good. 
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the positions of the minima do not coincide with 
the filling factor u related to the total carrier 
density of the sample. They can be related to the 
filling factors of the respective subbands. How- 
ever, since the carrier densities of the various 
subbands oscillate as a function of B, the filling 
factor of a certain subband depends on the gate 
voltage Vg as well as on B. Thus, we will focus 
our discussion on the total filling factor u being 
related to the total carrier density N S, which does 
not depend on B. The way we determine Ns, 
proceeds as follows: Every time a well-defined 
Hall plateau occurs in Pxy, the position of the 
Fermi energy and thus the number  of occupied 
Landau levels is unambiguous. In that case the 
corresponding minimum in Pxx occurs at a filling 
factor u related to the total carrier density N,. 
Repetition of this procedure for a series of Vg- 
values results in a smooth N~ versus Vg curve. 
This allows us to calculate the corresponding 
values of total N~ and total u for a measurement 
at a given Vg even though the minima in Pxx 
might not correspond to integer values of u. The 
interesting feature in fig. 2 is the position of 
u = 4 marked by the respective arrow with re- 
spect to the minima in Pxx. For low values of N, 
the position of u = 4 is very close to a minimum. 
However, for high carrier densities, the arrow 
points to a maximum of p.,.,. In agreement with 
the usual picture of the quantum Hall effect, 
which requires a pronounced minimum in Pxx for 
the occurrence of a Hall plateau, the Hall plateaus 
are suppressed in this range of carrier densities 
(see fig. 1). In addition there occurs a double 
minimum structure between B = 2 and 3 T corre- 
sponding to filling factors 4 < u < 6. Here the 
influence of the higher subband becomes promi- 
nent and the interplay of the Landau levels of 
different su~ bands is directly reflected in Pxx. 
Correspondingly, the quantum Hall plateaus for 
u = 6 and u = 8 are destroyed in this range of 
magnetic fields (see fig. 1). 

For a further understanding of this process, we 
solved self-consistently Poisson's and Schr6din- 
ger's equations in the presence of a magnetic 
field. All parameters  for this calculation are given 
by the structure design. The Landau levels are 
modelled by a Gaussian density of states (DOS) 

with a FWHM of F = 0 . 5  m e V x ( B [ T ] )  ~/2 [6]. 
These parameters describe reasonably well previ- 
ous magnetocapacitance measurements [7,8] on 
samples with similar mobilities. Consequently 
there are no adjustable parameters. We did not 
take into account complications such as spin split- 
ting of the Landau levels, a constant background 
DOS [9], a filling factor dependent DOS or a 
subbavd dependent  scattering time [10]. The re- 
suits are not qualitatively changed by a further 
refined model of the DOS. In contrast to refs 
[8,11], it is not sufficient to model the magnetic 
field dependent DOS on top of a field-indepen- 
dent subband structure. For a typical sample, the 
electrical confinement energies are smaller, due 
to the width of well, and thus comparable to the 
cyclotron energy h~o c even at moderate magnetic 
fields. This leads to a considerable influence of 
the magnetic field on the subband energies as 
well as on the subband carrier densities making a 
simple fan chart invalid. The results of the self- 
consistent calculation are depicted in fig. 4 for 
N, = 5.0 x 10 ~ cm -2. The upper most part (a) 
shows the carrier densities in the lowest three 
subbands as a function of magnetic field. All 
values of N, i depend strongly on B, and around 
B = 5 T, the two lowest subbands have almost the 
same amount of carriers. This situation corre- 
sponds to u = 4 = ~,1 + u2 = 2 + 2 and therefore 
the reappearance of the corresponding quantum 
Hall plateau. The lowest part of fig. 4 shows the 
calculated Landau level fan diagram and the cor- 
responding Fermi energy. The energies are plot- 
ted so that the Landau levels belonging to the 
lowest subband ( 0 1 j )  are linear. Consequently 
the Landau levels of the upper subband are highly 
nonlinear. A better way of plotting the same data 
is presented in the middle part of fig. 4. The 
r,z-ference energy in this case is the Fermi energy 
which is chosen to be E v = 0. The dashed lines 
indicate the Landau levels and the solid lines the 
subband energies. A Landau level of a subband is 
populated when it crosses the subband energy. It 
is obvious that the subband separation E i - E~ = 
E<~lj>-E<01j > depends on B and influences 
strongly the population of the various subbands. 

To compare our experimental results more 
closely with the calculation we evaluated directly 
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Fig. 4. Calculated subband carrier densities (a) and subband 
energies (b+c)  as a function of B. The carrier density in 
subband i is denoted by Ns i, the corresponding subband 
energy by E i. A Landau level j of subband i, denoted by 
(i I j) ,  is populated if it is below the Fermi level in (c), or, in 

(b), if the Landau level j is below the subband energy j. 

Pxx. From the DOS we can calculate the mag- 
netic field dependent conductivity trxx(B) [6,11]. 
Since the Hall resistance behaves almost classical 
Jn the regime of interest due to the suppression 
of the Hall plateaus, it is reasonable to assume 
'Z.,y = - e N J B  for the Hall conductivity. This al- 
lows us to calculate p.,x(B) as presented in fig. 
3b. Again the curves are vertically offset with 
respect to each other for clarity. The range of 
carrier densities presented here differs slightly 
(less than 10%) from fig. 2, because the ,detailed 
population behavior of the upner subband is a 

complicated process which depends on the partic- 
ular form of the exchange-correlation potential. 
'=--- "~'~:'^-~ discussion see ref. r,,, ,~,, a u,.taticu to]. Neverthe- 
less, this is expected to be a small effect and does 
not change the overall understanding of the ex- 
periment. The position of v = 4 with respect to 
the minima in Pxx as well ao~ the N,-independent 
position of the minima for intermediate carrier 
densities around B = 2.5 T are very well repro- 
duced by the calculation. Even the double mini- 
mum structure at 2.2 T < B  < 2.9 T is clearly 
visible in the theoretical results. However, the 
detailed curvature of the pxx-measurement as 
well as the height of the maxima in Pxx is very 
sensitive to the actual DOS, which was only ap- 
proximated in the present calculation. Neverthe- 
less, there is a good understanding of the overall 
behavior of Px~ and correspondingly of Pxy. The 
calculation shows, that even for a sample with 
infinite mobility at very low temperatures (delta 
function shaped Landau levels) there is a regime, 
where the position of v = 4 lies in a maximum of 
P~x- Consequently, the u = 4 Hall plateau cannot 
be recovered by lowering the temperature of the 
measurement. The suppression and recovery of 
the quantum Hall plateaus is a direct conse- 
quence of the subband structure in a parabolic 
well, which is inflvenced by the magnetic field. 

Our results relate previous experiments on 
heterostructures with two occupied subbands [12] 
and wide parabolic wells [2] where the disappear- 
ance of even integer quantum Hall Plateaus was 
reported. The suppression of quantum Hall states 
depends sensitively on the subband structure of 
the respective sample. 

In conclusion, we have observed the suppres- 
sion and recovery of quantum Hall plateaus in a 
parabolic quantum well. This phenomenon is ex- 
plained by the magnetic-field-dependent density 
of states, which directly influences the subband 
structu:e in a parabolic well in the case of multi- 
ple subband occupancy. 
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