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Surface acoustic waves accompanied by very large piezoelectric fields can be created in a
semiconductor/piezoelectric hybrid system. Such intense waves interact with the mobile carries in
semiconductor quantum well structures in a manner being strongly governed by nonlinear effects.
At high sound intensities, a formerly homogeneous two-dimensional electron system breaks up into
well confined stripes surfing the wave. As a result, we observe a strong reduction of electronic sound
attenuation. On the other hand, large momentum transfer between the electron system and the wave
results in nonlinear acoustoelectric effects and acoustoelectric amplification. We describe our
experimental findings in terms of a generalized theory of the acoustoelectric effect and discuss the
importance for possible device applications. 1©99 American Institute of Physics.
[S0003-695(199)02533-4

Over the last decade, interaction phenomena betweestructure allows for detailed investigations on the interaction
surface acoustic wavedSAW) and a two-dimensional elec- between SAW and 2DES at very large sound amplitudes and
tron system(2DES have attracted much interest. Rayleigh strong coupling.
wave modes on monolithic GaAs/AlGaAs heterostructures  When the SAW propagates through the semiconductor
were used to examine the magnetoconductivity properties dilm containing the electron system, the accompanying pi-
the electron system in the integer quantum hall rediarel  ezoelectric fieldEEgay generate dissipative currents, result-
gave the most striking evidence for the composite fermioring in an attenuation of the wavé,=(jEsaw)/I, wherel
picture of the fractional quantum hall effécThe piezoelec- denotes the SAW intensity and the brackets denote the aver-
tric fields accompanying the waves were also employed t@ging over one wave period. Neglecting carrier diffusion, the
convey single electrons through a quantum point cortactlocal dissipative current densityj is given by j
For all these experiments, however, the SAW were excited=neu(Esaw+ Eopes, WhereE pesis the electric field in-
and propagating on the relatively weak piezoelectric semiduced by the modulated electron systenis the local elec-
conductor substrate itself, in most cases GaAs. This implies tion density, andu is the mobility of the 2DES. For low
relatively weak coupling between mobile carriers in theSAW intensity the modulation of the carrier concentration is
semiconductor and the SAW, being quantified in a smalialso very small and the attenuation can be evaluated in a
electromechanical coupling coefficieit.> However, on linear approach, leading to the following equatioh:
strong piezoelectric substrates like LiNHGhis coupling co-
efficient is two orders of magnitude larger. Thus, hybridiza- o, m  alyoy
tion of a LiNbO; substrate and a thin GaAs-based quantum " UHN 14 (ol yo)?
well system provides a very large coupling coefficfeaunnd
we proceed into a new regime of nonlinear interaction beHere,Kﬁ| denotes the electromechanical coupling coefficient
tween SAW and 2DES, manifested in a large momentunof the hybrid® and \ is the sound wavelength. An electron
transfer from the SAW to the electrons and vice versa. Walrift parametery, which will be discussed in detail below, is
achieve the hybridization of the LiNkrystal and the thin set toy=1 at this time. At a certain conductivity,, the
layers of the semiconductor heterostructure with a thicknesslectron system absorbs a significant amount of the SAW
of 0.5 um by employing the epitaxial lift-off technique power. This is displayed in the inset of Fig. 1, where we plot
(ELO).S In this process, we remove the semiconductor filmthe measured attenuation of the SAW as a function of the
from its original GaAs substrate and transfer it onto agate voltageV, between gate and 2DES for various SAW
LiNbO3; SAW delay line*® The 2DES resides in a 12 nm powers at room temperature. Zero gate bias corresponds to a
Ing ,Ga&y gAs quantum well, where the distance between thehigh sheet conductivity; a large potential differen@eg.,
electron system and the hybrid interface is only 32 nm. AV =—10V) leads to a depletion of the quantum well. First,
thin metal field effect electrode on top of the ELO film actslet us consider the case for small SAW intenslty(P
as a gate to change the carrier densifyand the sheet con- =0.13mW): AroundV,=—8V energy is transferred from
ductivity o of the well. Interdigital transducer$DT) on the  the SAW to the 2DES resulting in an attenuation of the
LiINbO; serve as emitter and detector for the SA¥¢e Fig. SAW, being well described by E@l). For high SAW inten-

3), operating at an rf frequency éf= 340 MHz. This hybrid sity, however, the 2DES is strongly modulated resulting in a
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FIG. 1. Normalized SAW attenuatioli/T" 5, at constant gate voltagé,

=-8.25V as a function of the SAW potential amplitudg,. The inset
showsI'/T' .« as a function of the gate voltagg with the SAW potential
as parameter. The theoretical result of our model according t¢2Eg also
shown for comparison.

FIG. 2. Maximum of the acoustoelectric currégpf ,xand maximum of the
SAW attenuation’ ,/I'max 0 @s @ function of the applied rf powét. For
small P, the acoustoelectric current exhibits a linear behavior, which is
shown in the inset. The linear regression from the inset is also displayed in
the main figure, revealing the strong deviation from linearity. Also shown is
the ratiol ¢ max/P (Open symbolsto demonstrate the predicted universal

strong reduction of the SAW attenuatidh This phenom- proportionality betw_eelhI‘ and the acoustoelectric currgnt . | denotes the
enon can be explained in terms of a nonlinear th&foythe ~ 'endth of the ELO film.

2D case. In this model we calculate the local carrier concen-

tration n in the SAW potential. We find, that for high SAW an intense SAW field by a nonlocal and nonlinear equadtion.
intensity and small carrier density, the electrons are com- We assume thal’ is small compared to 1/ so that the
pletely trapped in the SAW potential. In this case, the carrieelectron densityr can be assumed to be periodically modu-
distribution n can be calculated analytically. The electronslated. The acoustoelectric current is then given by the aver-
are forming stripes moving at the speed of sduadd the aged current

absorbed SAW energyjEsay) Saturates. In this regime, the i) = Ecri i E _ E
attenuatiorl is reduced and is analytically given by Jae= (1 (1)) = €N (Esaw+Ezpeg)) = eu((NEsaw)
+(NEzpeg)- 3)

(20 E,pesis the electric field induced by the 2DEGE ,pe9) is
zero, because of the conservation of energy and therefore

wherewv is the SAW phase velocity areldenotes a constant leads to
correlating the SAW intensity and the square of the SAW . . _
potential amplitude®3. In Fig. 1 we show this behavior 0=(iE2pe9 =] o Eapes) ~€v(NEzped = ~€v(NEzpes-
experimentally, displaying the attenuation as a function of (4)
the SAW potential for fixed gate voltagé,= —8.25V, cor- The current density, results as a constant when inte-
responding to a fixed carrier density of abom=5.6 drating the continuity equatich.The averaged values
% 10° cm™2. This carrier concentration being determined by{(Esaw) and (Ezpeg vanish due to the periodicity of the
0n=3.6x10"°0"! and u~4000cm/Vs is sufficiently ~Problem and hence alsmE;peg vanishes[Eg. (4)]. The
low to satisfy the criteria for Eq2) at large SAW potential, first term in Eq.(3) can be expressed by the attenuatign
where the electrons have to be totally trapped. We also pigiince the SAW absorption is given ad’=(jEsaw)
the calculated attenuation according to E2). Theory and = Jjo{Esaw) —€¥(NEsaw) = —€1(nNEsaw). This gives us a
experiment are in excellent agreement. The change of corlhal expression for the acoustoelectric current
ductivity also produces a change in SAW velo¢ifySince ulT
the total value of the velocity change is not affected by the j,.=——, (5)
strong modulation ohg,® the effect of the reduced SAW v
attenuation is very interesting for SAW devices where thebeing independent of the SAW potential modulation. This
SAW velocity could be tuned by an applied gate bias. expression resembles the Weinreich reldflofor bulk

The transfer of power from the SAW to the 2DES is alsowaves and 3D electron systems. No matter, how strong elec-
related to momentum transfer from the acoustic wave to thérons are bunched in the moving SAW potentials, the relation
electron system. The resulting acoustoelectric curijgpt between the acoustoelectric current, the SAW intensity and
was studied before for small SAW power in variousthe attenuation remains the same.
experiments:® For a three-dimensionaBD) bulk system, Experimentally, we observe just this behavior when
the connection betwedn. andI’ had been described before measuring the acoustoelectric current in a geometry similar
by Weinreich!®!! For a two-dimensional electron system, to the sample geometry similar to the one described below.
this acoustoelectric current can be also calculated in a linedfor various different SAW intensities, the acoustoelectric
small signal modet? Here, we develop a nonlinear approach current and the attenuation were recorded as a function of the
for the two-dimensional case, and describe the dynamics igate biasV,. In Fig. 2 we show the measured maximum

_ (IEsaw) _ eny? _ eny?

T =
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T_300K Is ‘ ‘ ing E, . Amplification of 3.9 dB is achieved in this geom-
= 340 MHz 2 3948 |] etry. Theoretically, from Eq(1) and the sample parameters
- used, one would expect a maximum amplification of 7.9 dB
but one can show that the observed reduction is caused by
, pinch-off effects that create a conductivity gradient along the
ELOfim [ % -~V .
24 DT o 13.2 dB|1 chgnnel. We hope .to rt_—zduce these spurious effects by a better

i suited sample design in the near future.

-28 M@ @Mm E If the wave is launched from the other transducer, the
SAW is propagating in the opposite direction than the elec-

1 trons and therefore the wave is attenuated with increasing
longitudinal voltageV, . Employing these effects, a new
nonreciprocal SAW filter could be realized. In one direction,
the transmitted signal is amplified, in the other direction, it is
FIG. 3. Bidirectional SAW transmission;Sand S, as a function of a  attenuated. Using optimized and matched unidirectional
longitudinal voltageV, applied to the ohmic contacts. Depending on the transducer structures, the insertion loss of the devicé/for
direction of the SAW, either field-induced amplification or attenuation can __

A : . . “'=0 could be reduced to about 3—4 dB so that a net ampli-
be observed, resulting in a nonreciprocal acoustoelectric device. The |ns?|1

shows the sample geometry with the interdigital transdud&3) and the cation of an rf signal could be achieved.
ELO film. In summary, we have demonstrated several acoustoelec-

tric effects in the LiINbQ/GaAs layered system on which

) . large amplitude SAW can be coupled to mobile carriers in a
valug of the acoustoelectr]c curreh;e,max', together with the quantum well. We find that at large SAW amplitudes the
maximum of the attenuation as a function of the rf poWer gjectron density can be modulated very strongly, eventually
applied to the emitting transducer. For snfalwe observe a  preaking up into stripes. This leads to a significant reduction
linear behavior of the acoustoelectric current as a function ofs the SAW attenuation. In a nonlinear theory, we can de-
P, which is shown in the inset. However, for high the  gcripe this phenomenon quantitatively. Because of the high
acoustoelectric currert,e max does not follow this linear re-  ¢oypling coefficient, the SAW induce large acoustoelectric
gression, and increases in a sublinear fashion. At the samg, rents which exhibit a strong nonlinear behavior as a func-
time, the attenuation is strongly reduced wnr_] increasingjon of the amplitude of the SAW potential. We present a
SAW power. It should be noted, that the reduction is not agjeneralized theoretical description of the acoustoelectric ef-
large as in Fig. 1, because we measure the absolute maXisct in 2D which is in excellent agreement with our experi-
mum of the attenuation instead of the attenuation at a givefental observations. Finally, we demonstrate acoustic ampli-
gate bias(Fig. 1). To correlate these experimental findings fication in our hybrid system which makes nonreciprocal

with our model, we also show the ratige,ma /P being pro-  ga filters with monolithically integrated signal amplifica-
portional to] 4 max/!- Figure 2 displays clearly, that this ratio {5 feasible.

I ae,max/P is proportional to the attenuatidnas predicted by
Eq. (5). The observed nonlinearity in the acoustoelectric cur-  The authors gratefully acknowledge the technical assis-
rent can thus be very well understood in terms of our modeltance of S. Manus, T. Ostertag, and S. Berek and many valu-
At this point, we wish to point out the remarkable amplitudeable discussions with A. V. Kalameitsev and J. P. Kotthaus.
of the observed currents in our hybrid system. Because of thil.R. acknowledges financial support by Siemens and DFG
large hybrid coupling coefficient, it extends up kQemax (Wi 1091/4-2.
=0.7 mA.
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