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Nonlinear interaction of an intense surface acoustic wave (SAW) with a 2D electron–hole plasma generated by
light in a semiconductor quantum well near a piezoelectric crystal is investigated. It is shown that, in a strongly
nonlinear regime, the acoustoelectric interaction is enhanced because of the accumulation of carriers in the field
of an intense SAW. In addition, in a strongly nonlinear regime, the dissipation of the acoustic wave energy
increases and the sound velocity decreases. These dependences fundamentally differ from those observed in a
unipolar plasma. For high sound intensities, analytical results are obtained.                              
       
                                
Surface acoustic waves offer good possibilities for
studying of 2D electron systems [1] owing to the piezo-
electric interaction. In recent years, the so-called hybrid
structures have been developed [2]. A hybrid structure
(Fig. 1) consists of a submicron thin film (A3B5) with
an electron quantum well and a substrate made of a
piezoelectric crystal (LiNbO3). Such a system is a
quasi-monolithic one, because the film is tightly bound
to the piezoelectric crystal by the Van der Waals forces.
For a surface acoustic wave (SAW) in a hybrid struc-
ture, the electromechanical coupling constant  is
two orders of magnitude greater than in conventional
GaAlAs systems [2]. In a hybrid structure, the regime
corresponding to nonlinear acoustoelectric interaction
can be obtained in experiments. The experimental stud-
ies [3, 4] showed that the electron plasma (which was
induced in the cited experiments by a metal gate) could
be divided into strips in the piezoelectric field of a
SAW.
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In this paper, we theoretically investigate the non-
linear acoustoelectric interaction in a hybrid structure
in the presence of laser illumination, which generates
an electron–hole plasma at room temperature. In
hybrid structures, the acoustoelectric interaction is
mainly governed by the piezoelectric effect. In the
presence of a high-intensity SAW, the mean carrier
density increases and the plasma falls into electron and
hole strips. As the sound intensity increases, the
absorption of the SAW also increases and the SAW
velocity shift due to plasma decreases. These depen-
dences are related to a strong recombination nonlinear-
ity. The behavior of a unipolar plasma in an intense
acoustic wave is fundamentally different: the absorp-
tion of the acoustic wave saturates, and the sound
velocity increases [3–6].

In piezoelectric crystals with mobile electrons, the
nonlinearity of the acoustoelectric interaction may be
of a concentration character [5–7] or may occur as a
Fig. 1. Schematic diagram of a semiconductor–piezoelectric hybrid structure used for the experiments with SAW. The contacts to
the 2D plasma are closed. The SAW can induce an acoustoelectric current J in the circuit.
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result of the capture of electrons by traps [8]. In this
paper, we consider the combined effect of two mecha-
nisms of nonlinearity, namely, the concentration mech-
anism and the recombination one. In our model, the
recombination nonlinearity occurs in the case of the
luminescence of mobile electron–hole pairs in a direct
gap semiconductor and in the presence of permanent
illumination. The recombination nonlinearity in some
respect is similar to the nonlinearity due to traps,
because it also leads to a change in the mean density of
mobile carriers. However, there are some important dif-
ferences. We note that, in the cited papers [8], the non-
linearity associated with traps was considered in the
absence of illumination and for static traps. In our
model, both electrons and holes are mobile. This fact
plays a fundamental role, because the mobility leads to
a spatial separation of the carriers in the field of an
intense SAW.

In this paper, we consider the conventional case of
weak acoustoelectric interaction between an intense
SAW and the 2D plasma; i.e., we assume that ! 1.
In addition, the sample is considered to be short in the
sense that Γ L < 1 and long in the sense that L @ λ . Here,
Γ is the absorption coefficient for the SAW, L is the
sample length, and λ is the wavelength. When the con-
dition Γ L < 1 is valid, the contributions of higher har-
monics of the SAW play a negligible role. To solve the
problem in the framework of the aforementioned
approximations, it is sufficient to determine the nonlin-
ear response of the plasma to the piezoelectric potential
of a monochromatic SAW. In the nonlinear regime, the
SAW velocity shift due to the 2D plasma, δvs, and the
sound absorption coefficient Γ are determined by the
expressions [4]

(1)

where 〈…〉 denotes spatial averaging,  is the sound
velocity in the absence of plasma, I is the SAW inten-
sity, ΦSAW is the piezoelectric potential of the SAW,

is the electric field induced by the SAW in the
plane of the 2D plasma, and j is the current of the
charge carriers. A SAW that propagates in the x direc-
tion generates an electric field  = E0cos(qx – ωt)
and the corresponding piezoelectric potential ΦSAW =
−Φ0sin(qx – ωt), where Φ0 = E0/q, t is time, q is the
wave vector, and ω = q. Since we assumed that

! 1, we have δvs ! and Γ ! q.
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The current j = jn + jp is determined from the system
of hydrodynamic equations

(2)

where n and p are the 2D electron and hole densities,
respectively; jn and jp are the electron and hole currents;
e = –|e | is the electron charge; G is the rate of carrier
generation by the laser light; C is the recombination
constant; σn and σp are the electron and hole conductiv-
ities; and Dn and Dp are the electron and hole diffusion
coefficients. Here, the following relations are valid:σn = |e |µnn and σp = |e |µpp, where µn and µp are the
electron and hole mobilities and Dn/µn = Dp/µp = KT/|e |,
where T is temperature.

The electric field consists of two components: E =
ESAW + Eind. The field Eind is induced by the plasma and
determined from the Maxwell equation

(3)

where Dind = (z)Eind and z is normal to the system. The
2D plasma in the quantum well is modeled by theδ-function.

We will seek a steady-state periodic solution to the
system of Eqs. (2) and (3) as a function of the coordi-
nate x ' = x – t. We note that, in our system with
shorted contacts to the 2D plasma, we have 〈Ex〉 = 0 (see
Fig. 1) and the solution can be found in the form of a
periodic function of x '. To determine the numerical
solution, it is convenient to expand all functions in
Eqs. (2) and (3) in Fourier series in the x ' coordinate.
Neglecting the thickness of the film, we obtain  =
2π(enm + |e |pm)/eeff|qm|, where  represents the Fou-
rier coefficients; m = 0, ±1, ±2, …, qm = qm; and eeff =

(e + 1)/2. Here, e =  is the mean permittivity of
LiNbO3. The SAW intensity and the amplitude of the
potential Φ0 are related by the formula  =
(σmq/2)( /I), where σm = eeff /2π [4]. The coeffi-
cient  was calculated earlier in the framework of
the linear theory [2, 9].

The system of Eqs. (2) and (3) was solved numeri-
cally. The calculations were performed by using about
100 spatial harmonics and the following typical parame-
ters of the system at T = 300 K: µe = 2 × 103 cm2 /(V s),
µe/µp = 6,  = 3.9 × 105 cm/s, λ  = 60 µm,  =
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0.056, and e = 50. The recombination constant for non-
equilibrium electrons and holes was estimated by a for-
mula similar to Eq. (13) from [10]: C = 4 × 10−4 cm2/s,
which corresponds to the radiative recombination time

= 1/Cns0 = 250 ns for the electron and hole densi-
ties ns0 = ps0 = 1010 cm–2. At Φ0 = 0, the steady-state
carrier concentrations were ns0 = ps0 = . The
concentration ns0 was selected within the interval
109−1011 cm–2, which is typical of optical experiments
[10]. The corresponding luminous fluxes were within
10–2–102 W/cm2. The calculations were performed for
the amplitudes of the potential Φ0 ~ 1–10 V. The ampli-
tudes Φ0 ~ 3 V are typical of the experiments on hybrid
structures with metallic gates [3, 4]. In these experi-
ments, the input powers of SAW generation varied
from –10 to 30 dB m [3, 4]. In this paper, we consider
a gateless structure, for which the coefficient 
should be greater.

The inset in Fig. 2 shows the calculated functions
n(x ') and p(x ') for different values of Φ0. One can see
that, as Φ0 increases, the plasma becomes separated
into adjacent electron and hole strips. Electrons and
holes tend to screen the potential ΦSAW(x ') at all x ', but,
simultaneously, the functions n(x ') and p(x ') slightly
overlap. Only this type of carrier distribution can exist
in a steady-state regime with a strong recombination
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Fig. 2. Dependence of the sound absorption coefficient on
the amplitude of the SAW potential. Curves 1–5 correspond
to different intensities of optical pumping: ns0 = 109, 2 ×
109, 5 × 109, 1010, and 5 × 1010 cm–2. The inset shows the
profiles of the electron and hole concentrations for ns0 = 5 ×
109 cm–2 and for two different amplitudes Φ0 = 0.4 and 2 V.
nonlinearity, because the appearance of a noticeable
gap between the strips should lead to a nonstationary
accumulation of carriers. The absorption coefficient Γ
(Fig. 2) mainly decreases with increasing Φ0. The non-
monotonic behavior of Γ  at Φ0 ~ 1–2 V correlates with
the instant of noticeable separation of the plasma into
strips and with the onset of the increase in the mean
density N0 = 〈n(x ')〉 = 〈p(x ')〉 (the inset in Fig. 3). The
increase in N0 is a natural consequence of the spatial
separation of electrons and holes and of the suppression
of their recombination. When Φ0  ∞, the sound
absorption coefficient behaves as Γ  ∝ 1/Φ0 and the
absorbed energy is Q = IΓ  ∝ Φ0. The increase in Q with
growing sound intensity is related to the increase in the
mean carrier density N0 with Φ0  ∞ (the inset in
Fig. 3). Below, we will analytically derive the asymp-
totic expression for Q(Φ0).

The calculations were also performed for the mean
currents induced by the SAW. With increasing Φ0, the
current 〈jn(x ') + jp(x ')〉 first increased in magnitude and
then decreased, because the carriers were trapped by
the SAW. The mean velocities of electrons and holes
tend to  with Φ0  ∞.

The velocity shift δvs (Φ0) shown in Fig. 3 exhibits
a maximum at Φ0 ~ 1–2 V. This maximum is also
related to the onset of plasma separation into strips.
When Φ0  ∞, the velocity shift δvs decreases,
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Fig. 3. Dependence of the SAW velocity shift on the SAW
amplitude. The curves correspond to those in Fig. 2. The
inset shows the dependence of the mean concentration on
the SAW amplitude for different values of ns0.
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because the plasma becomes more and more dense and
strongly screens the field of the SAW.

From the curves shown in the inset in Fig. 3, one can
see that the transition to the nonlinear regime of carrier
accumulation depends on the initial density ns0 = ps0.
The characteristic value of Φ0 at which the density N0
begins to grow increases with ns0. The order of magni-
tude of this characteristic amplitude  can be
estimated in terms of the linear theory. Using the condi-
tion δρs ~ |e |ns0, where δρs is the perturbation of the 2D
charge, we obtain  ~ |e |ns0λ/eeff. This estimate is
valid on condition that σ0 > σm, where σ0 = |e |(µn +
µp)ns0. For ns0 ~ 1010 cm–2, we obtain  ~ 2V.

The asymptotic behavior of Γ  and δvs for Φ0  ∞
can be obtained analytically from the following consid-
eration. When Φ0  ∞, the plasma screens the SAW
field  at practically all points, and the density of
2D carriers can be determined from the simple integral
equation Ex =  +  = 0. In this case, the
electrons screen half of the wave in the region where
eΦSAW < 0, and the holes screen half of the wave in the
region where eΦSAW > 0. From the condition Ex = 0, we
obtain the asymptotic expression N0  qΦ0eeff/2π2|e |,
which adequately describes the numerical data given in
the inset in Fig. 3. According to the Drude model, the
local absorption of the SAW by the plasma has the form

where vn and vp are the velocities of electrons and
holes,  and  are the electron and hole effective
masses, and τn and τp are the corresponding relaxation
times. Since the electrons and holes are almost totally
trapped by the SAW and spatially separated, we have
vn .  for λ/2 < x < λ  and vp .  for 0 < x < λ/2.
The total absorption now takes the form

Thus, we derived the asymptotic expression Q ∝ N0 ∝Φ0 for Φ0  ∞. The small parameters corresponding
to Φ0  ∞ are /µnE0 ! 1 and /µpE0 ! 1. To
determine δvs for Φ0  ∞, we used similar small
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parameters and obtained the asymptotic expression
δvs/   – /2.

In the case of a unipolar plasma, which is induced,
e.g., by the gate, the quantity 〈n〉 will evidently be con-
stant for any Φ0. When Φ0  ∞, electrons form nar-
row strips and, on the whole, the screening of the SAW
field is reduced. In the limit Φ0  ∞, we have Q 
Qmax = 〈n〉 /τe and δvs ~ 1/Φ0  0 [4–6].

The experimental studies of acoustoelectric interac-
tion in 3D crystals in the presence of illumination were
performed in the regime corresponding to hopping pho-
toconduction and weak nonlinearity (see, e.g., [11]).
The acoustoelectric interaction between the SAW and
the photoexcited plasma in GaAs gave rise to a longitu-
dinal voltage between the gates [12]. A strongly nonlin-
ear acoustoelectric interaction in 2D systems was
experimentally studied at T = 4 K in the exciton ioniza-
tion regime [13, 14]. For example, a delay line for pho-
tons was realized in [13]: the incident photons were
converted to electrons and holes and then carried along
the sample by the SAW; at the final stage, the carriers
generated secondary photons. At T = 300 K, an intense
SAW was used to study a strongly nonuniform plasma
excited in a quantum well by a laser beam [15]. One
more class of experiments is related to the diffraction of
light by volume and surface acoustic waves [16].

The predicted nonlinear acoustoelectric interaction
applies to uniform illumination in an infinite sample. In
a finite sample, the density accumulated in the potential
wells of the SAW saturates when Φ0  ∞. In our sys-
tem, an intense SAW first separates the electrons and
holes and then carries them along the sample. At the
final stage, the carriers recombine as soon as they reach
the right contact. In other words, an intense SAW “col-
lects” the carriers over the whole sample length. The
maximum density accumulated by SAW is equal to
Nmax = GL/  = (L/ ) C = n0(t0/ ), where t0 =
L/  is the time of SAW propagation over the sample
length. Thus, in a finite system, each curve shown in the
inset in Fig. 3 is saturated at its own level Nmax(n0). The
described enhancement of the acoustoelectric interac-
tion in the nonlinear regime manifests itself when Nmax

> n0. The latter inequality is equivalent to t0 > .
These inequalities hold for the typical parameters of
our problem. For example, when n0 = 1010 cm–2 and L
= 2 mm, we obtain t0/  ~ 2.
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useful discussions. The work was supported by the
Volkswagen-Stiftung, the Russian Foundation for
Basic Research (project nos. 99-02-17019 and 99-02-
17127), and the State program “Physics of Solid-state
Nanostructures.”
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