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Transverse regularizations of central force
problems by Hamiltonian structure

Urs Frauenfelder and Lei Zhao

1. Central force problems

A central force problem in R
d is given by a Newtonian system of the

form

q̈ = ∇U(q),

for which q ∈ R
d, and the force function U(q) ∈ C∞(Rd \ O,R) is radial,

i.e. depends only on the radial length |q| of the position q. The potential of
the system is the negative of the force function V (q) = −U(q). Note that
we have normalized all involved masses of the particles to 1.

Central force problems are also Hamiltonian systems with Hamiltonian

H(p, q) =
|p|2
2

− U(q),

in which we have denoted by p ∈ R
d the conjugate momenta to q ∈ R

d \O.
Examples of central force problems include

• The Hooke problem of isotropic harmonic oscillators: U(q) = −|q|2;
• The Kepler problem: U(q) = |q|−1;
• general homogeneous potentials: U(q) = ±|q|α, α ∈ R, where the
sign tells whether the force is attractive or repulsive. When α = 0,
we conventionally set U(q) = ± log |q|;

• Manev’s problem U(q) = |q|−1 + |q|−2;
• The problem with potential U(q) = exp(−|q|).

Such systems have been widely studied since the time of Newton, and still
attract the attention of many researchers today. Interests in such systems
arise since they serve as a class of relatively simple completely integrable
systems, and also as local to-be-perturbed models of multiple particle in-
teractions when two out of the many particles are sufficiently close. Even
when we only consider the motion of one particle, additional effects such as
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an exterior force or the presence of a magnetic field can be taken into ac-
count and we get systems which resemble central force problems, for which
techniques used to study central force problems may be applied.

For homogeneous potentials with α ≤ 0, we see that the potential is
singular at the origin. The flow is incomplete, and the velocity explodes
when a particle moves close to the collisions. This makes it hard to study the
underlying geometry of the system as well as to understand perturbations
of such central force problems, or when one tries to apply recent techniques
from symplectic topology to study related systems. These techniques often
require the system under study to carry a complete flow. For numerical
purpose, it is also better to have a regularized system in which the velocity
does not explode: According to P. Cartier, the interest of Kustaanheimo and
Stiefel in regularizing the spatial Kepler problem has its root in designing
missions to fly to the Moon.

For these reasons, it is better to work with certain regularized systems
in which the original singularities are properly transformed such that the
regularized system regularly extends through. Many, but not all, of these
regularization methods extends to regular perturbations, or other kinds of
modifications of central force problems as well.

Moreover, it is often desirable to have that the regularizing flow extends
transversally through the transformed set of collisions: we call such regular-
izations transverse regularizations. Important regularization techniques due
to McGehee [29] slow down the flow at the collisions so that the flow takes
infinite time to reach the collisions. This is not a transverse regularization
and has distinct features, which we shall not discuss here.

The aim of this survey is to summarize certain ways of transversally
regularizing some central force problems, using the relatively new formula-
tion of Hamiltonian structures, as well as some applications based on these
regularization techniques. In the end we shall also very roughly discuss the
issue of simultaneous regularization of multiple centers. The list of references
provided is meant to be indicative and by no means exhaustive.

2. Regularization by Hamiltonian structure

Since these central force systems are autonomous Hamiltonian systems,
the energy H is conserved along orbits and thus we may analyze the dynam-
ics and geometry of the system energy hypersurface by energy hypersurface.

Definition 2.1. A Hamiltonian structure (sometimes also referred to
as an odd symplectic form) on an odd dimensional manifold Σ is a closed
two form ω such that kerω is a one dimensional distribution on Σ. The tuple
(Σ, ω) consisting of an odd dimensional manifold together with a Hamilton-
ian structure is referred to as a Hamiltonian manifold (or sometimes as well
as an odd symplectic manifold).

The way Hamiltonian manifolds usually arise is the following. Suppose
that (M,ω) is a symplectic manifold, H : M → R a smooth Hamiltonian,
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and −f a regular value of H. If we abbreviate by Σf = H−1(−f) the energy
hypersurface, then the pair (Σf , ω|Σf

) is a Hamiltonian manifold. Given a
Hamiltonian manifold (Σ, ω), the restriction of ω to the quotient bundle
TΣ/ kerω is symplectic. In particular, the quotient bundle is orientable. If
Σ is orientable, it follows that the bundle kerω is orientable as well. The
choice of a continuous orientation of the one-dimensional distribution kerω
gives a direction field on Σ which determines a dynamical system up to
time-parametrization.

Definition 2.2. A submanifold L with codimension at least one in a
Hamiltonian manifold (Σ, ω) is called transverse if it is transverse to kerω
in the sense that kerω is never tangent to L. A transverse submanifold L ⊂ Σ
is called Legendrian if for each x ∈ L, under the canonical projection

πx : TxΣ → TxΣ/ kerωx,

the vector subspace
πx(TxL) ⊂ TxΣ/ kerωx

is Lagrangian.

If (Σ, ω) is a Hamiltonian manifold, then a covering by a Hamiltonian

manifold φ : (Σ̃, ω̃) → (Σ, ω) is a covering of manifolds φ : Σ̃ → Σ with the
additional property that φ∗ω = ω̃. Similarly an embedding into a Hamil-
tonian manifold ι : (Σ, ω) → (Σ, ω) is an embedding of manifolds ι : Σ → Σ
satisfying ι∗ω = ω.

Definition 2.3. Given a Hamiltonian manifold (Σ, ω), a regularization
by a Hamiltonian manifold consists of a covering by a Hamiltonian manifold

φ : (Σ̃, ω̃) → (Σ, ω)

which may be trivial, together with an embedding of Hamiltonian manifolds

ι : (Σ̃, ω̃) → (Σ, ω)

such that
L := Σ \ ι(Σ̃)

is a non-empty transverse submanifold of Σ. In this case, (Σ, ω) is called
a regularizing Hamiltonian manifold for (Σ, ω) and L is referred to as the
collision manifold.

In the following examples of central force problems, we shall see that
the transverse submanifold is actually Legendrian. This, together with the
stronger hypothesis that the Hamiltonian manifold is actually closed and
a contact manifold, brings and may still lead to further dynamical conse-
quences of various mechanical systems via the use of techniques from sym-
plectic topology.

In the sequel we shall make some notational simplifications: If Σ is a hy-
persurface in a symplectic manifold (M,ω) we shall write (Σ, ω) for (Σ, ω|Σ),
and even omit ω when writing a Hamiltonian structure in case this 2-form
is clear from the context.

               



4 U. FRAUENFELDER AND L. ZHAO

  
  
  
  
  
  
  
  
  

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

3. Examples of tranverse regularizations of central force
problems via Hamiltonian structures

We now illustrate this idea of regularization by Hamiltonian structures
in some examples.

3.1. One-dimensional mechanical central force systems. In a
sense, one-dimensional systems such as

q̈ = α qα−1, α < 0

with q > 0 should carry a natural regularization by elastic bouncing. We
now make this more precise in the framework of Hamiltonian structures.

The energy, or Hamiltonian, of the system reads

H(p, q) =
p2

2
− qα

in which (p, q) ∈ R× R+ and the energy hypersurface Σf is formed by two
branches of curves. As α < 0, these branches of curves are both unbounded
in the p direction when q → 0, and we have p → +∞ on one of these
branches while p → −∞ on the other branch.

We now observe that

Σf =

{
p2

2
− qα + f = 0

}
∼=

{
q−αp2

2
+ fq−α = 1, q > 0

}
In this case, it is possible to embed these two branches into one curve. Note
that since Σf is one-dimensional it carries a canonical Hamiltonian structure,
namely the zero two-form, regardless of whether the change of variables is
canonical or not. We take p′ = q−α/2p, so that we get on Σf , that{

p′2

2
+ fq1−α = q, q > 0

}
.

This can be further embedded into the one dimensional smooth manifold{
p′2

2
+ fq1−α = q

}
of the (p′, q)-space. This brings us the regularization by elastic bouncing.

Note that only rescaling the p-variable without changing q amounts to
rescaling time. Here we prefer to view this change of variables as a geometric
transformation.

For extensions and adaptations of this type of regularization to other
cases, we note that it is direct to extend this method to non-homogeneous
potentials with a leading term at q = 0 homogeneous with degree α < 0.
A similar idea is also partially extendable to one-dimensional systems which
depend periodically on time, such as systems with a periodic external force:
this is carried out, together with certain studies of dynamics based on such
regularizations, in [37, 41] for the Kepler potential and in [38] for general
homogeneous potentials.
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3.2. Moser’s regularization. Moser’s regularization of the Kepler
problem in R

d provides an embedding of the negative energy hypersurface
of a Kepler problem into the energy hypersurface of the geodesic flow on
S
d as a dense open submanifold without touching one cotangent fiber. The

energy hypersurface of the geodesic flow on S
d carries a natural Hamiltonian

structure, which brings a regularization of the incomplete flow of the Kepler
problem in a negative energy hypersurface.

To be more precise, we consider the Kepler problem in R
d with Hamil-

tonian

H(p, q) =
|p|2
2

− 1

|q|
and its −1/2 energy level Σ−1/2. The other negative energy levels of the
problem carry a flow which rescales into the flow on Σ−1/2, therefore this is
not restrictive.

On Σ−1/2, we may write the equality

((|p|2 + 1)

2

)2 |q|2
2

=
1

2
.

Performing a canonical change of variables (p,−q) 	→ (q, p), we see that this
equality reads ((|q|2 + 1)

2

)2 |p|2
2

=
1

2
.

Moser [32] observed that this is the same as the projection of the Hamilton-
ian of the geodesic flow on S

d with energy 1/2 under a proper stereographic
projection, say, from the North pole of the sphere Sd. We may thus consider
the pre-image of Σ−1/2 in T ∗

S
d, which is just the 1/2-energy hypersurface

of the geodesic flow without the fibre over the North pole. Now adding this
fibre back, we get a dense and open embedding of the energy hypersurface
into a regularizing Hamiltonian structure.

Similar constructions can be done for zero and positive energies [4, 36].
It also extends to regular perturbations of Kepler problems.

Applications of Moser’s regularization are enormous. The fact that the
regularization is done via a transverse Legendrian manifold was used as a
key step in [18] to establish the existence of either a periodic or infinitely
many distinct consecutive collision orbits on the bounded component of the
energy hypersurface of the planar circular restricted three-body problem
below the first critical value based on Rabinowitz-Floer homology. To make
this possible, these Hamiltonian manifolds also have to be contact, which
has been verified in this case in [2].

3.3. Levi-Civita regularization. We again consider the Kepler prob-
lem, this time in dimension 2 and identify the phase space T ∗(R2 \O) with
C × (C \ O). The variables (p, q) are thus considered as complex numbers.
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The Hamiltonian reads

H(p, q) =
|p|2
2

− 1

|q| .

On Σf := {H(p, q) + f = 0},1 we again first present a streching of

the variable p =
√
|q|−1

p′. We have that in the (p′, q)-variables, the energy
hypersurface now reads

Σf :=

{
1

|q|
|p′|2
2

+ f − 1

|q| = 0

}
∼=

{
|p′|2
2

+ f |q| − 1 = 0, |q| 
= 0

}
,

on which the flow is given by the restriction of the symplectic form

�{dp′ ∧ dq} =
√
|q|−1�{dp̄ ∧ dq},

which however determines the same direction field as that of �{dp̄ ∧ dq}.
Now if we pull-back Σf by the Levi-Civita regularization mapping

L.C. : (z, w) 	→
(
p′ =

w

2z̄
, q = z2

)
which is just the cotangent lift of the complex square mapping

C \O → C \O, z 	→ z2

we have that

L.C.∗Σf :=

{
|w|2
8

+ f |z|2 − 1 = 0, |z| 
= 0

}
which can thus be embedded openly and densely into the regularizing Hamil-
tonian structure ({

|w|2
8

+ f |z|2 − 1 = 0

}
,�(dw̄ ∧ dz)

)
.

Note that the mapping L.C. is a regular 2-to-1 covering mapping and
thus we have actually embedded a double cover of Σf into a regularizing
Hamiltonian structure. By quotienting out this additional Z2-symmetry, we
obtain Moser’s regularization for the planar Kepler problem.

We see that what we have done, is actually to embed a double cover of Σf

into the zero-energy hypersurface of a pair of isotropic harmonic oscillators,
with mass factor f .

The correspondence between the planar Kepler problem and the planar
isotropic harmonic oscillators has been known to Mclaurin [30], Goursat [19]
and was popularized by Levi-Civita as a method of regularizing the Kepler
flow in [25, 26].

This regularization extends to regular perturbations of the planar Kepler
problems, which includes planar restricted and non-restricted three-body

1We choose to write the right hand side to be zero also for the reason that rescaling the
time by a factor depending only on q on such an energy surface is the same as multiplying
the left hand side, seen as the Hamiltonian, by a factor depending only on q and consider
its zero-energy hypersurface. This is equivalent to what we proceed with later on.
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problems. Many studies of the geometry and dynamics of these systems are
done based on this regularization. We may just list [5, 10, 8] and [15] for
some examples. This was also the key in [1] to establish disklike global sur-
faces of section in the restricted planar circular three-body problem based
on contact topology: a disklike global surface of section allows a reduction of
the flow on the three-dimensional energy hypersurface to an area-preserving
diffeomorphism of a two-dimensional open disk. This can only be obtained
after completing the flow on the energy hypersurface by a regularization.
After this, the powerful theory of pseudo-holomorphic curves which help
to construct such a global surface of section can be applied in view of the
Hamiltonian structure [21]. It was also the key in [9] to establish J+-like
invariants for periodic orbits of one-center Stark-Zeeman systems, in which
Levi-Civita regularization allows to extend Arnold’s definition of J+ invari-
ants to collisional orbits.

3.4. Elliptic orbits. The Levi-Civita regularization allows one to give
a simple geometric proof that the non collisional trajectories of the Kepler
problem for negative energy are ellipses. As was pointed out by Arnold [3]
this proof is morally already contained in Newton’s Principia in his geometric
derivation of the elliptic law, although in the Principia of course no complex
numbers were used. The book by Arnold led Needham to discuss in depth
Newton’s geometric way of thinking [34], and this study inspired his book
on Visual Complex Analysis [35]. The connection between Visual Complex
Analysis and Celestial Mechanics is explained in Section X of Chapter 5 of
his book.

Solutions for a pair of isotropic harmonic oscillators are given by ellipses
with center in the origin and line segments through the origin. After a ro-
tation and maybe shifting time we can parametrize an ellipse with center in
the origin by

z(t) = Aeiωt +Be−iωt

such that the parameters A,B are real and satisfy A > B > 0. Applying the
squaring map to such an ellipse we obtain

z(t)2 = (Aeiωt +Be−iωt)2 = A2e2iωt +B2e−2iωt + 2AB.

The first two terms on the right are still an ellipse with center in the origin.
However, the third term geometrically is a translation to the focal point of
the ellipse. Therefore z(t)2 now parametrizes a Kepler ellipse, namely an
ellipse with focal point in the origin.

The other type of solutions of the isotropic harmonic oscillator are line
segments through the origin. The origin is mapped under the squaring map
to the origin, where it corresponds to collisions. However, note that for
the isotropic harmonic oscillator there is no singularity at the origin at all.
Therefore collision orbits are now regularized. Because the Levi-Civita regu-
larization 2-to-1 covers the Moser regularization one can as well understand
what happens with collision orbits in the Moser regularization. Under the
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squaring map the line segment through the origin is mapped to a line seg-
ment which has one end point at the origin. The collision orbit in Moser
regularization becomes a bouncing orbit which bounces back and forth on a
line segment ending in the origin.

3.5. McGehee’s regularization for homogeneous central force
systems. The above construction has been generalized by McGehee [28] to
regularize certain other homogeneous central force potentials in the plane,
by replacing the mapping

C \O → C \O, z 	→ z2

in the Levi-Civita regularization by the mapping

C \O → C \O, z 	→ zk, k ∈ N.

The cotangent lift of this latter mapping is (z, w) 	→ (q = zk, p =
w

kz̄k−1
).

This mapping is k-to-1, and can be seen to regularize the energy hypersurface
of the system

H(p, q) =
|p|2
2

− 1

|q|2−2/k
.

The regularization is done by embedding a k-fold cover of Σf openly and
densely in the zero-energy hypersurface of a system with (2k − 2)-homo-
geneous potential.

We remark that McGehee’s regularization has a natural link with cor-
responding central force problems, which are central force problems which
can be transformed from one to another which induces an orbital correspon-
dence between them. When the corresponding central force problem of a
singular central force problem has no singularity at the origin, then it brings
a regularization of the original singular central force problem. Such a reg-
ularization allows to apply global techniques from e.g. symplectic topology
in this content in the future, in the spirit of Subsection 3.3.

Note that corresponding central force problems were already known to
McLaurin [30].

3.6. Generalizations of Levi-Civita regularization to higher di-
mensional Kepler problem. Levi-Civita regularization has been gener-
alized to dimension 3 by Kustaanheimo and Stiefel [24]. The regularizing
mapping in configuration space can now be written as

H \O → IH \O, z 	→ z̄iz

where H and IH denote respectively the space of quaternions and the space
of purely-imaginary quaternions, i.e. quaternions with vanishing real part.
The mapping now has continuous S1-fibres and the direct method of com-
puting its cotangent lift does not work since it is not reversible, and has
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to be done in a slightly more subtle way.2 A conceptual way to understand
this regularization is via symplectic reduction [42]. Kustaanheimo-Stiefel
regularizations have been used to study various problems, and in particu-
lar serve as a basis in finding quasi-periodic almost-collision orbits of the
spatial three-body problem in [43], along which two particles can get ar-
bitrarily close without collisions, as well as in [7] to find periodic orbits
for periodically forced Kepler problems. In both of these works, the regu-
larization removed the collision singularities and made the application of
various dynamical and geometrical techniques possible. The understanding
of the aforementioned symplectic reduction procedure was also technically
important in these works. The relationship between Kustaanheimo-Stiefel
regularization and Moser’s regularization in dimension 3 has been investi-
gated by Kummer [23].

A generalization of Kustaanheimo-Stiefel in yet higher dimensions has
been done by Cordani [11] using Clifford algebras. Up to our knowledge there
does not seem to have been any generalization of McGehee’s regularization
for homogeneous central forces to higher dimensions.

3.7. Ligon-Schaaf regularization and the Delaunay variables.
The Ligon-Schaaf regularization of the Kepler problem in R

d regularizes the
Kepler flow by a different geodesic flow on the sphere Sd, without changing
time (in our setting, this is equivalently to rescale the linear momenta and
conformally change the symplectic form) or energy hypersurface by energy
hypersurface. After the work of Ligon and Schaaf [27], Cushman and Duis-
termaat [12] and Heckman and de Laat [20] gave further interpretations
of this construction. In particular, Heckman and de Laat [20] explained an
elegant way to understand this construction from Moser’s regularization.
Recently, a convex embedding for the bounded components of the energy
hypersurfaces of the planar rotation Kepler problem below the first critical
value into R

4 has been carried out in [17], based on a combination of Levi-
Civita and the Ligon-Schaaf regularizations. The interest in finding convex
embeddings of energy hypersurfaces comes from symplectic topology: The
existence of a convex embedding implies that the energy hypersurface is dy-
namically convex, meaning that the Conley-Zehnder indices of all periodic
orbits are at least 3. This property prevents breaking of pseudo-holomorphic
curves and is a crucial ingredient e.g. for the construction of global surfaces
of sections. We refer to the book [16] for more informations on symplectic
topology and recent applications to celestial mechanics.

We shall not recall the formula of Ligon and Schaaf. Rather, we shall
explain that this can be seen as a regularization of the Kepler flow with
negative energy associated to its Action-Angle variables: The Delaunay vari-
ables. To illustrate this, it is enough to consider the planar problem. A set

2The passage from Levi-Civita regularization to Kustaanheimo-Stiefel regularization
can also be considered as a complexification in the sense of Arnold, where the fibre type
changes from S0, the unit circle in R, to S1, the unit circle in C.
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of Delaunay variables for the higher dimensional Kepler problem has been
constructed in [33], which allows to take the following planar illustration
over to higher dimensional Kepler problems.

Recall that Keplerian orbits with negative energy are (possibly degener-
ate) ellipses. For (non-degenerate) ellipses with eccentricity 0 < e < 1 and
semi major axis a, the Delaunay variables (L, l,G, g) are defined, so that

L =
√
a,G = ±L

√
1− e2

in which the sign is positive if the motion is prograde, i.e. the particle
moves in the same orientation as the plane, and is negative if the motion is
retrograde, i.e. the particle moves in the opposite orientation as the plane.
The angle g is the argument of the pericenter, namely the angle from the
fixed first coordinate axis to the pericenter direction. The angle l is 2π times
the ratio of the swept area by the particle from the pericenter over the
enclosed area of the elliptic orbit. At a rectilinear orbit, the orbit encloses
no area and therefore the angle l is not well-defined with this definition. It
can still be defined by considering a sequence of non-degenerate ellipses with
the same semi major axis and pericenter direction with eccentricity tending
to zero. This sequence approximates the degenerate rectilinear orbit, and
we can then extend the definition of l by a limiting process. This agrees
with defining the angle l by the Kepler equation l = u − e sinu, where u is
the eccentricity anomaly, which is well-defined for rectilinear motions up to
collision.

Since rectilinear orbits are not closed, there do not exist action-angle
variables around them. However, the angle l is still defined by the Kepler
equation continuously. We may thus extend the set of variables (L, l,G, g)
to the case of rectilinear orbits G = 0 and at collisions l = 0 by declaring
that they form a smooth chart even in a neighborhood of collisions. Topo-
logically, this means to glue up non-compact fibers to form compact fibers,
thus brings a topological change to the integral foliation of the problem by
the actions (L,G) and also causes a smoothness issue at G = 0, l = 0: We
see from the Kepler equation, that the mapping S1 → S1, u 	→ l is a smooth
bijection which does not admit a smooth inverse at l = 0. This is still a reg-
ularization of the Kepler flow and we have seen that to each negative energy
hypersurface Σf of the Kepler problem, we switch to Delaunay variables and
write Σf as

Σf :=

{
−f = − 1

2L2
, (G, l) 
= (0, 0)

}
which can be embedded openly and densely into the regularizing Hamilton-
ian structure {

−f = − 1

2L2

}
.

In contrast to Moser or Levi-Civita regularizations, due to the change of
differential structure near the collisions, regular perturbations to the Kepler
problem might become non-smooth and care should be taken once one would
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like to study perturbations of the Kepler problems. It is applicable in the
case when the perturbation written in Delaunay variables does not depend
on the angle l, but might not be suitable for other cases.

The Ligon-Schaaf regularization is global and manifests the hidden sym-
metry of the Kepler problem, thus it is unlikely that there is a natural gen-
eralization of it to other central force problems. The above regularization by
Action-Angle variables could in principle be applied to other central force
problems as well. We do not know any works done along this line of research
though.

3.8. Systems with more centers. The N -center problem models the
motion of a particle under the influence of several fixed centers. The New-
tonian two-center problem is integrable and has been separated in suitable
coordinates by Euler [14]. For such systems, it is always possible to locally
regularize collisions with one of the centers. To regularize simultaneously all
centers is a more global task and there are many ways of doing this for two
centers, among which a way of simultaneously regularizing collisions with
both centers for the planar problem has been given by Birkhoff [5], which
is generalized to the spatial case by Waldvogel [39]. In [40], Waldvogel ex-
plained a way to see Levi-Civita regularization and Birkhoff regularization as
being conjugate by Möbius transformations on the Riemann sphere C∪{∞}.
In [13], Erdi explained that the Birkhoff regularization is a common basis
for all other simultaneous regularizations of the two center problem.

A simultaneous regularization of the Newtonian planar N -center prob-
lem has been proposed in [22]. An abstract simultaneous regularization of
the Newtonian spatial N -center problem has been proposed in [6]. We re-
mark that all these regularizations can be understood also from the view-
point of Hamiltonian structures.

It is unknown to us if there exist higher dimensional generalizations of
these simultaneous regularizations, as well as simultaneous regularizations
for non-Newtonian N -center problems in the plane or in the space.

Acknowledgements. We thank Rafael Ortega, Alain Chenciner, and
the anonymous referees for helpful discussions and suggestions.
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