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Coherent control of occupation numbers in quantum mechanical multilevel systems is widely
studied driven by its application in lasers and its prospects for quantum computational elements.
Here the authors present a nanoelectromechanical resonator equivalent to the coherent control of a
quantum mechanical two level system. The distinct eigenmodes of a nanomechanical beam
resonator represent the two levels whose amplitude mode occupation numbers are controlled by a
frequency matched acoustic excitation, mediated by a pulsed surface acoustic wave. They show that
similar to quantum mechanical systems it is possible to transfer occupation numbers from one mode
to another by matched acoustic pulses. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2432954�

A straightforward method to control occupation numbers
in quantum mechanical two level systems is to apply short
pulses of light, which are frequency matched to the transition
frequency between the two levels.1 The transfer of occupa-
tion number between two levels, usually termed as Rabi os-
cillations, relies on a system’s state which can be described
as a superposition of distinct modes, attributed eigenstates,
being coupled by an external perturbation of the system. This
pumping of atoms into an excited state results in an occupa-
tion inversion, which is the precondition for lasing operation.

Consequently, a mechanical analog can be realized once
eigenstates are identified and appropriately addressed. For
quantum electromechanical �QEM� systems, such as nano-
mechanical resonators, the different eigenstates correspond
to different vibrational modes. Any displacement of the reso-
nator can be described as a superposition of eigenmodes,
whereas each eigenmode j contributes with an amplitude or,
in analogy to the quantum mechanical counterpart, mode oc-
cupation number Aj to the overall motion. Usually, it is not
possible to directly control the mode occupation numbers Aj,
since thermal noise or nonlinear coupling determines the
mode distribution. In the macroscopic extreme classical cou-
pling of modes can occur for suspension bridges due to
pulsed wind excitation, as the Takoma bridge disaster has
shown2 or due to pedestrians crossing the Millenium Bridge
in London.3

In the experiment described here a surface acoustic wave
�SAW� of Rayleigh type,4 properly described as a nano-
quake, on GaAs is frequency matched to the transition fre-

quency between two eigenmodes of a nanomechanical beam
resonator �see Fig. 1�.5 In full equivalence to atoms pumped
by light, the resonator represents the multilevel system,
whereas the phonons excited by the acoustic wave corre-
spond to the photons. The amplitude of the resonator beam’s
first eigenmode shows similar behavior as observed for oc-
cupation numbers in the quantum mechanical equivalent,
namely, Rabi-like oscillations versus pump power and a
Rabi-like splitting.6

To demonstrate the mechanical equivalence to pumped
atoms, the suspended, gold covered nanobeam is placed in
the line of fire of the interdigitated transducer �IDT� gener-
ating the SAW. The comblike IDT structure allows genera-
tion of SAWs by the inverse piezoelectric effect, which con-
verts an applied radio frequency �rf� signal to the electrodes
into mechanical stress, as the electric potential drops be-
tween each finger pair. If the frequency fsaw of the signal
meets the resonance condition fsaw=vsaw/�, a coherent
acoustic sound wave is generated. The IDT, however, pro-
vides a certain bandwidth, being determined by the number
of finger pairs, hence allowing for a moderate frequency tun-
ing, as employed in Fig. 3, for example, Ref. 5. The fre-
quency is defined by the sound velocity vsaw=2865 m s−1

and the lithographically defined SAW wavelength � �corre-
sponding to the pitch between the SAW electrodes�. As the
length of the beam L is matched to � /2, the two clamping
points move in counterphase and the beam is periodically
stressed by this motion.

The setup is placed in a strong magnetic field, which
allows magnetomotive excitation and detection of the beam’s
off-plane eigenmode.7 Driving an alternating current at fre-
quency f with power Pres along the conduction top metallic
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layer causes a Lorentz force, which when in resonance ex-
cites the beam’s mechanical modes with an amplitude A. In
Fig. 2�a� we traced the power dependence of this amplitude
with A=Ares. The induced motion changes the beam’s acous-
toelectrical impedance Zbeam, which we measure as an effec-
tive amplitude of the oscillations A=Aosc in Fig. 2�b�. In turn
it exhibits a mechanical resonance in the reflected power.
Measuring the scattering parameter S11��1−Aosc� versus
driving frequency f reveals the fundamental mechanical
resonance, shown in Fig. 2.

For large amplitudes A�Ares, nonlinear effects come
into play and distribute energy among the beam’s eigen-
modes. This is shown in Fig. 2�a�, where we plot Ares against
the probe power Pres applied at the beam. Above P=
−56 dBm nonlinear effects kick in and higher eigenmodes
are excited �Ares�A1+A3�. The necessary adjustment of the
SAW frequency �saw=2�fsaw to the transition frequency of
the beam’s first eigenmode to its third harmonic f trans= f3

− f1��3−�1=�saw was calculated by finite element simula-
tions, achieving sufficient accuracy for the IDT’s bandwidth
�Fig. 1�.

For pumping the transition from the first to the third
eigenmode, short acoustic pulses were applied. The minimal
pulse length is determined by the pitch of the IDT and is of
the order of 100 ns. In Fig. 2�b� A=Aosc�A1 exhibits oscil-
lations against increased SAW pulse amplitude Asaw. This
effect is best visualized when coding the reflected signal
from the beam in a grayscale plot �Fig. 2�c��. These oscilla-
tions of S11��1−Aosc� vs Asaw are equivalent to oscillations
of occupation numbers in a two level system usually plotted
versus pump power; hence we term these oscillations as
acoustical Rabi-like oscillations �AROs�. Increasing the
magnetoimpedance probe power Pres, the AROs disappear
when increasing the power above the limit of nonlinear re-
sponse at −56 dBm �Fig. 2�b��. Pres corresponds to the power
of the network analyzer applied to the sample.

Another characteristic feature which the quantum elec-
tromechanical resonator reveals is the characteristic depen-
dence of the ARO on pump frequency fsaw as expected from
quantum mechanical systems. In Fig. 3�a� the measured am-
plitude A�A1 is plotted against a broad range of SAW fre-
quencies. This shows that the observed mode coupling only
occurs for a specific pulse center frequency Fsaw= f trans.
Comparing the measured curve to the Fourier transform of
the applied SAW signal AFT at f trans allows us to extract the
transition frequency of the first to the third eigenmode to be
302.9 MHz, which lies in the active frequency range of the
IDT. Here, we are able to cover a broader frequency range,
since we operate the IDTs in pulsed mode. Hence, we find
evenly spaced harmonics in the range of 280–340 MHz. The
shape of A vs fsaw around the transition frequency for two
different SAW powers shows the form of two separated reso-
nances �Fig. 3�b��. This again is expected for the coupling of
two states leading to Rabi-like splitting of the energy levels.

To model acoustic pumping of mode transitions we
adopt the theory developed for quantum mechanical systems
to the acoustic case. The amplitude of the beam resonator’s
mechanical amplitude A in the linear regime is described as a
superposition of eigenmodes Aj, whereas each mode j con-
tributes to it with specific wave function shapes �1 and �3.

FIG. 1. �Color online� Top and lower right show setup of the experiment.
The suspended beam is placed in the line of fire of a transducer which
generates a surface acoustic wave �SAW� of frequency fsaw. The SAW dis-
places the anchoring points of the resonator beam in counterphase and pe-
riodically stresses the beam. The inset right of the center shows an actual
SEM micrograph of the resonator beam and the clamping points. An in-
plane magnetic field B allows detection of the beam’s off-plane eigenmode
by impedance spectroscopy. Lower left: schematic representation of the
SAW induced pumping from the first to the third eigenmode of the beam
�3−�1=�saw.

FIG. 2. �a� Dependence of the resonator oscillation amplitude A=Ares on the
applied magneto impedance probe power Pres. Above −56 dBm the nonlin-
ear coupling to higher modes leads to a deviation from the linear increase.
�b� Upper part: amplitudes A=Aosc of acoustic Rabi-like oscillations �ARO�
for different probe powers Pres. The AROs start to vanish for probe powers
above the nonlinear limit of −56 dBm. Lower part: visualization of the ARO
in the reflectance S11��1−Aosc� at the beam vs acoustic pulse power Psaw.
In this plot an increased modal occupation A�A1 corresponds to darker
areas, whereas the lighter regions correspond to low A1, due to acoustic
coupling to a higher eigenmode A3.
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The SAW induced periodic stress acting on the beam is in-
cluded in the Euler-Bernoulli beam equations by an addi-
tional term,8,9 which will make the Aj become time depen-
dent. Using the orthogonality of eigenmodes10 in the rotating
wave approximation,5 which assumes that contributions from
eigenmodes with frequencies very different from f1+ f trans
can be neglected, we obtain the following coupled differen-
tial equation for the acoustically coupled eigenmodes A1 and
A3:

�2A1

�t2 + 2i�1
�A1

�t
= − �13

2 A3,

�2A3

�t2 + 2i�3
�A3

�t
= − �13

2 A1.

Here, � j =2�f j, and �13 is the acoustic Rabi-like frequency,
which is determined by the mass per unit length � of the
beam, the mismatch between the SAW frequency and the
transition frequency �= f trans− fsaw.

�13 = �
0

L

�1
�2

�x2�3dx
Fsaw

�
ei�t.

This integral depends on the mode shapes �1 and �3 of the
two coupled modes integrated over the length L of the beam
and the force Fsaw the SAW exerts on the beam. The force
can be calculated from simple beam theory with the assump-
tion of elliptic motion of the suspension points with ampli-
tude Asaw.

The two coupled modes will periodically exchange en-
ergy, whereas the acoustic Rabi frequency determines the
period of this exchange. The amplitude of the SAW can be
estimated by the acoustic power injected by the IDT, leading
to typical frequencies of �13 in the megahertz regime. This
corresponds to the observed Rabi-like splitting in Fig. 3,
which allows direct evaluation of �13. Solving the coupled
differential equation �Eq. �1�� leads to the theoretical curves

shown in Fig. 4. For the different traces the parameters A1
and A3 are varied in combination as A1+0.5A3, ensuring that
the fundamental mode at A1 and the higher harmonic at A3
are excited. The calculations resemble the experimentally ob-
served ARO in Fig. 4 for the range of applied SAW ampli-
tudes.

In summary, we demonstrated that in analogy to the con-
trol of occupation numbers in a quantum mechanical two
level system, the mode occupation numbers in quantum elec-
tromechanical resonators can be controlled by pulsed acous-
tic excitation. Hence, it is possible to coherently control the
mode occupation numbers in a nanomechanical resonator,
which can be exploited for achieving occupation inversion
necessary for a mechanical equivalent to lasers, termed the
“phaser.”
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FIG. 4. Simulated �top� and measured �bottom� AROs in amplitude A. To
model a contribution from the third eigenmode to the reflected signal to the
first one, a superposition of A�A1+0.5A3 was calculated for different SAW
pulse amplitudes. The simulation shows vanishing ARO for increased occu-
pation of A3 compared to A1, as observed in Fig. 2�a�.

FIG. 3. �a� ARO vs SAW frequency fsaw and calculated component of the
applied acoustic signal’s Fourier transform �AFT� at f = f trans. From this f trans

is evaluated to f trans=303.2 MHz. �b� Measured amplitude A for fsaw close to
f trans for two different SAW pulse powers. The acoustic frequency splitting
decreases for lower Psaw.
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