
Using Object-Oriented Development for Planning
and Controlling Industrial Robot Systems

Alwin Hoffmann, Ludwig Nägele, Andreas Angerer, Andreas Schierl, Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, 86159 Augsburg, Germany

Email: {hoffmann, naegele, angerer, schierl, reif}@isse.de

I. INTRODUCTION

As physical devices or even items are getting more and
more embedded with electronics, software and sensors, they
are able to build a network of interconnected devices – the
Internet of Things (IoT) – Hence, these computational entities
are on the one hand in intensive connection with their physical
environment and on the other hand able to collect, process and
exchange data with other entities. By giving such a cyber-
physical systems self-awareness and intelligence through soft-
ware, they enable smart buildings, smart electric grid, or smart
manufacturing. In Industry 4.0 [6], the latter is based on cyber-
physical production systems which are comprised of a network
of intelligent automation components [10].

From our point of view, robotic system will play an
important role in future cyber-physical production systems
due to both their mechanical flexibility and their ability to
be freely programmable. However, robotics systems need to
be self-aware in order to adapt to new tasks at runtime or
autonomously plan collision-free motions or even whole as-
sembly tasks. Hence, the robotic system needs a virtual model
for each of its component (i. e., its manipulators, end-effectors,
mobile platforms and sensors). Together they form the virtual
model of the overall robotics systems which includes, for
example, important spatial features, 3D models, physical or
mechanical properties. To inherently integrate these virtual
models into robot programming, we propose to use object-
oriented software development for robotics, where real-world
entities are directly mapped to software objects.

The presented approach is based on the software architec-
ture (cf. Fig. 1) which was developed together with KUKA
in the research project SoftRobot. The approach is aimed at
realizing manipulation tasks of single robots or small teams of
robots. The main idea [4] is that robotics software is developed
against the modular Robotics API [1] and robot operations
are executed with hard real-time guarantees on the underlying
Robot Control Core (RCC). Thus, the RCC is responsible for
all real-time critical parts of the robotic systems – especially
for controlling robotic devices [14]. This separation is possi-
ble, because robot applications do not inherently have real-
time requirements for the application logic, but only for parts
of the program like motions or tools actions.

KUKA was applying this approach to its novel LBR iiwa
which is a lightweight robot designed as an intelligent indus-
trial work assistant. The LBR iiwa and its Java-based Sunrise

Robot Control Core
«real-time»

Device 
Modules

«real-time»

Calculation
Modules

Command Layer

Activity Layer

Actuator

R
o

b
o

ti
cs

 A
P

I
e.

g.
 p

la
in

 J
av

a

R
C

C
e.

g.
 C

+
+

Activity

PTP Robot

Action Command

Robot 
Applications

Domain-Specific 
Languages

Service-Oriented 
Manufacturing

Actuator InterfaceMeta Data

Fig. 1: The proposed software architecture for industrial
robotics: While the RCC is responsible for real-time device
control, the Robotics API allows object-oriented development.

controller form the core of Industry 4.0 applications such as
human-robot collaboration and smart platforms [3]. In parallel,
we develop this approach further towards an open frame-
work for the object-oriented software engineering of industrial
robotics cell and cyber-physical production systems [6]. This
paper highlights its key features for (i) modeling robot cells,
for (ii) planing tasks and collision-free motions as well as for
(iii) controlling industrial robots with real-time guarantees.

II. OBJECT-ORIENTED MODELING IN ROBOTICS

The Robotics API is a modular framework to model, pro-
gram and control industrial robotics applications in an object-
oriented manner. Its scope comprises both the modeling of
robotics cells (cf. Sect. II-A) and, based on that, the execution
of (real-time) robot commands (cf. Sect. II-B).

A. Modeling of robot cells

Robotic applications always need to describe some part of
the physical world or environment the robot is situated in.
In standard robot programming languages (e. g., the KUKA
Robot Language), one has to define at least points in space that
are necessary for the specification of robot motions. Moving
towards cyber-physical production systems [6], more infor-
mation about both the robotics system and the environment
is desired. For example, in assembly applications, the notion
of workpieces that have to be assembled can be helpful.
Moreover, a virtual model of the robot cell will facilitate
task and path planing. Therefore, the Robotics API allows the
definition of spatial points, geometric relations and physical

Paper accepted for Workshop on Recent Advances in Planning and Manipulation for Industrial Robots, Ann Arbor, Michigan, USA, 18 June 2016



(a) Real robot cell for safe human-robot-
interaction at Hannover Messe 2015

(b) Virtual model of the robot cell based on
the object-oriented description

(c) Virtual robot cell partly augmented with
collision hulls for path planning

Fig. 2: The Robotics API allows to create a virtual model of an industrial robotic cell with its physical objects.

objects as presented in Hoffmann et al. [5]. These entities
are represented as software object which can be connected to
form a scene graph and, thus, a virtual model of the industrial
robotics cell. Fig. 2a shows, e. g., a real robot cell for safe
human-robot-interaction at Hannover Messe 2015, whereas
Fig. 2b shows its virtual model based on the object-oriented
scene graph. As the Robotics API is extensible, this model
can be customized to fulfill the particular requirements.

In contrast to existing approaches (cf. [13]), our scene graph
is based on a graph of inter-connected frames. Frames are
(named) positions in space which can optionally belong to (the
software representation of) a device or in general a physical
object. Two frame can be connected by a relation with a given
semantics that defines the geometric transformation (cf. [1, 5]).
While a static relation defines a fixed transformation (e. g., a
given displacement between two objects), the transformation
of a dynamic relation can change over time. For example,
a revolute joint consists of two frames which are rotated
against each other according to the joint’s current position.
The transformation of dynamic relations will be automatically
provided by the framework. Besides static and dynamic re-
lations, we distinguish between connections and placements.
Where placements can be changed or removed at any time
(e. g., to indicate that some object is currently placed on a
table), connections are long-lasting relations between frames,
e. g., a (mechanical) connection between two joints.

Physical objects are software objects that have a counterpart
in the robot cell. They can be either passive objects such as
work-pieces or active objects (e. g., robots or tools). Physical
objects can consist of multiple parts (e. g., a robot arm consists
of links and joints) whereas their spatial relation is defined
through frames that belong to them. Moreover, different phys-
ical objects can be arranged to build up a robotics cell: a robot
arm is placed on a workbench and a tool adapter and a gripper
are mounted on its flange. By having semantically enriched
relations between frames, conclusions about the scene graph
can be drawn. For example, before grasping an object it can be
inspected whether it is placed on a table (using a placement)
or fixed to it (using a static connection).

B. Modeling of capabilities

The Robotics API has two mechanisms for making the ca-
pabilities of robots, sensors, or tool available (cf. Fig. 1). At
the Command Layer, there is a very abstract model of robotic
tasks, which consists of actions which can be performed by ac-
tuators. Assigning an action to an actuator yields a command,
which can be submitted to a RCC and executed there. Actions
can be for example point-to-point or linear motions, and an
actuator can be a specific type of robot arm. Actuators need
a corresponding driver and primitives in the RCC, whereas
actions usually map to a set of calculation modules which
together form the requested action [12]. Furthermore, multiple
commands can be combined using an event mechanism, e. g.,
to trigger tool operations based on sensor data.

In contrast, the Activity Layer provides an intuitive and more
convenient access to the capabilities of robotic devices. On this
level, actuators offer a set of interfaces, each providing specific
activities that the actuator may execute. For instance, robots
offer a MotionInterface, providing activities for different kinds
of motions (e. g., to absolute goals in space or to goals speci-
fied relative to the current position). An activity is defined as
a real-time critical operation, affecting one or more actuators
that supplies meta data about the state of each actuator during
or after the execution of the operation. However, the real-time
critical execution logic is completely implemented using the
above mentioned commands. Activities are characterized by a
particularly designed asynchronous execution semantics. This
semantics allows for easily specifying continuous execution
of real-time operations on a programming language level.
In addition, there exist some predefined ways of combining
activities (e. g., for parallel or conditional execution).

III. PLANNING BASED ON AN OBJECT-ORIENTED MODEL

This section shows with several examples how an object-
oriented model of an industrial robot system can be utilized
for different kinds of planing – either off-line for programming
and commissioning the system or at runtime to adapt to new
or changed tasks.



A. Process planning

There are robot-based production processes such as the man-
ufacturing of carbon-fiber reinforced polymers (CFRP) which
consist of many similar production steps that may slightly
differ in robot movements or end-effector control depending
on various parameters. However, some of these parameters can
be computed based on geometric information included in a
virtual model of the robot system. Other parameters are based
on domain expert knowledge and, thus, depend on user input
(e. g., the maximum speed during handling fragile carbon-fiber
textiles). Hence, we have developed an offline programming
platform [11] tailored to the requirements of CFRP manufac-
turing and integrated an approach [9] for semi-automatically
programming such manufacturing processes with industrial
robots. This approach uses the concept of task contribution
units which provide a flexible and extensible ecosystem of
planing modules. Each module can solve different task based
on the object-oriented model of the robot system and the
manufacturing process, e. g., to plan robot motions, to compute
end-effector poses, or query expert user input if automatic
planing is not feasible.

B. Path planning

The object-oriented description and, thus, the virtual model of
an industrial robot system can also be used for both on-line and
off-line path planning. For this purpose, the virtual model can
be augmented with approximate collision hulls (cf. Fig. 2c) or
if required with detailed collision models. These models are
used in a physics simulation which can be employed for col-
lision detection or even further physical computations. Based
on the collision detection, we implemented an efficient, single-
query, collision-free path planner. The planner incrementally
creates two rapidly-exploring random trees [8] rooted at the
start and the goal configurations. Moreover, the implementa-
tion uses path optimizers that improve the paths constructed
by the planner in terms of size and time. Experimental results
have shown that the path planner performs fast enough to be
used on-line. Hence, it can conveniently be accessed through
an CollisionFreeMotionInterface (see Sect. II-B).

Moreover, we have shown in Angerer et al. [2] that a CFRP
manufacturing process (i. e., the automated production of an
aircraft fuselage) involving cooperating robots can be planned
and simulated offline and, subsequently, can be deployed to the
real cell for execution without changes. The system contains a
collision-free path planner for cooperating robots which also
uses a simulation environment for collision detection. The
execution of cooperating robot motions is performed using
the Robotics API.

C. Grasp planning and optimization

In robot-based CFRP manufacturing, huge end-effectors are
used to handle, transform and drape carbon-fiber textiles [11].
Similar to classical grasp planning, a common problem is
to compute a draping position and end-effector deformation
which optimally fits the transformed gripper onto the target
position of the textile cut-piece. This is shown in Fig. 3a where

(a) Virtual gripper & cut-piece (b) Computed heat map

Fig. 3: Geometrical and physical grasp analysis and optimiza-
tion by heat map computation

the vacuum modules of the end-effector must be fitted onto
the cut-piece by either transforming the gripper or moving
the robot. Fig. 3b shows a heat map with the coverage of
gripping vacuum modules above the cutpiece. To compute
this heat map, a detailed collision model is extracted from the
object-oriented description of the robot manufacturing system.
Distances between vacuum modules and the cut-piece are
calculated by a physics engine. Subsequently, the coverage of
vacuum modules on the textile is determined which indicates
the quality of a draping position with different colors in
the heat map. Furthermore, the heat map was utilized to
automatically compute an optimal draping position with an
evolutionary optimization algorithm. This algorithm retrieves
genetic variations of possible draping positions of the gripper
along with their collision information from the physics engine.
The results are evaluated relating to their respective fitness,
i. e., the coverage of vacuum modules on the textile and their
collision distances to the form.

IV. REAL-TIME CONTROL OF ROBOTIC DEVICES

While the Robotics API allows to model the robot cell,
the Robot Control Core (RCC) takes care of all real-time
critical parts (cf. Fig. 1). The reference implementation – the
SoftRobot RCC – is implemented in C++ and is targeting
Linux Xenomai for robot control as well as Windows for
simulation purposes. It provides a flexible, generic interface:
the Realtime Primtives Interface (RPI) is a dataflow based
language, consisting of basic calculation modules, which can
be combined to form complex commands. Besides these
basic calculation modules, there are also device modules for
sending data to or retrieving data from sensors and actuators.
As mentioned in Sect. II-B, the Robotics API automatically
combines these calculation and device modules to create real-
time commands and submits them to the RCC for execution.

Once the RCC has fully received such a command, it period-
ically executes all modules with real-time guarantees. During
execution, sensor drivers provide (raw or processed) sensor
data at a high frequency. Calculation modules can further
process such sensor data, calculate set-points for trajectories,
or trigger tool actions. Finally, actuator drivers expect to



(a) Cooperation of two KUKA LBR 4 (b) Cooperation between a Staubli TX90L
and a KUKA KR16

(c) Cooperation between KUKA industrial
robots at the DLR-ZLP in Augsburg [7]

Fig. 4: Examples for cooperating industrial robots which are currently supported by the Robotics API.

receive set-points (e. g., position, velocity, acceleration) at a
high frequency (usually 1 kHz) from a running command.

Currently, it is possible to control a wide range of different
manipulators and end-effectors with the presented approach.
For example, the Robotics API supports the programming of
several light-weight robots (e. g., the KUKA LBR 4 and its
successor LBR iiwa), low payload industrial robots such as
a Staubli TX90L or a KUKA KR16 and even high payload
robots (e. g., KUKA KR 270). Moreover, different mobile
platforms and manipulators are included (e. g. Segway RMP,
KUKA youBot). Due to the flexible approach, it is even
possible to coordinate different kinds of industrial robots with
real-time guarantees. Fig. 4 shows several examples of robot
cooperation performed with the Robotics API1.

V. CONCLUSION

In this paper, we have shown how an object-oriented software
framework – the Robotics API – can be useful for modeling
industrial robot system. Based on that virtual software model
of the robot system, several planing algorithms can be applied.
Moreover, it is possible to directly control the devices with
real-time guarantees. From our point of view, using such
an inherently integrated approach can facilitate the software
development of cyber-physical production systems.

REFERENCES

[1] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif. Robotics API: Object-oriented software de-
velopment for industrial robots. J. of Softw. Eng. for
Robotics, 4(1), 2013.

[2] A. Angerer, A. Hoffmann, L. Larsen, M. Vistein, J. Kim,
M. Kupke, and W. Reif. Planning and execution of
collision-free multi-robot trajectories in industrial appli-
cations. In Proc. 47th Intl. Symp. on Robotics, Munich.
VDE, 2016.

[3] M. Haag. Kollaboratives Arbeiten mit Robotern – Vision
und realistische Perspektive. In Zukunft der Arbeit in
Industrie 4.0. Springer, 2015.

[4] A. Hoffmann, A. Angerer, Frank Ortmeier, M. Vistein,
and W. Reif. Hiding real-time: A new approach for the

1See also the video at: http://video.isse.de/spaghetti/

software development of industrial robots. In Proc. 2009
IEEE/RSJ Intl. Conf. on Intell. Robots and Systems, St.
Louis, USA, 2009.

[5] A. Hoffmann, A. Angerer, A. Schierl, M. Vistein, and
W. Reif. Service-oriented robotics manufacturing by
reasoning about the scene graph of a robotics cell. In
Proc. 45th Intl. Symp. on Robotics, Munich. VDE, 2014.

[6] H. Kagermann, W. Wahlster, and J. Helbig, editors.
Umsetzungsempfehlungen für das Zukunftsprojekt Indus-
trie 4.0. acatech, 2013.

[7] F. Krebs, L. L.en, G. Braun, and W. Dudenhausen.
Design of a multifunctional cell for aerospace CFRP
production. In Advances in Sustainable and Competitive
Manufacturing Systems, LNME. Springer, 2013.

[8] J. J. Kuffner and S. M. LaValle. RRT-connect: An
efficient approach to single-query path planning. In
Proc. 2000 IEEE Intl. Conf. on Rob. and Autom., San
Francisco, USA. IEEE, 2000.

[9] M. Macho, L. Nägele, A. Hoffmann, A. Angerer, and
W. Reif. A flexible architecture for automatically gener-
ating robot applications based on expert knowledge. In
Proc. 47th Intl. Symp. on Robotics, Munich. VDE, 2016.

[10] Laszlo Monostori. Cyber-physical production systems:
Roots, expectations and R&D challenges. Procedia
CIRP, 17:9–13, 2014.

[11] L. Nägele, M. Macho, A. Angerer, A. Hoffmann, M. Vis-
tein, M. Schönheits, and W. Reif. A backward-oriented
approach for offline programming of complex manufac-
turing tasks. In Proc. 6th Intl. Conf. on Autom., Robotics
and Applications, Queenstown, N. Zeeland. IEEE, 2015.

[12] A. Schierl, A. Angerer, A. Hoffmann, M. Vistein, and
W. Reif. From robot commands to real-time robot
control. In Proc. 9th Intl. Conf. on Inform. in Cont.,
Autom. & Robot., Rome, Italy, 2012.

[13] R. Smits. Robot Skills: Design of a constraint-based
methodology and software support. PhD thesis, KU
Leuven, 2010.

[14] M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and
W. Reif. Flexible and continuous execution of real-time
critical robotic tasks. Intl. J. Mechatronics & Autom., 4
(1), 2014.

http://video.isse.de/spaghetti/

	Introduction
	Object-oriented modeling in robotics
	Modeling of robot cells
	Modeling of capabilities

	Planning based on an Object-oriented Model
	Process planning
	Path planning
	Grasp planning and optimization

	Real-Time Control of Robotic Devices
	Conclusion



