2016 MEERE st Intemmetiiomel] Wonksthops om Foumdbtioms amd Applications of Scliff* Systems

Towards Self-organizing Swarms of Reconfigurable Self-aware Robots

Oliver Kosak, Constantin Wanninger, Andreas Angerer, Alwin Hoffmann,
Alexander Schiendorfer, and Hella Seebach

Institute for Software & Systems Engineering, University of Augsburg, Germany

E-Mail: {kosak, wanninger, angerer, hoffinann, schiendorfer, seebach}@isse.de

Abstract—Designing complex adaptive systems for real world
applications is a delicate challenge, especially when support
for humans in crucial situations should be achieved. In this
position paper, we propose a multi-agent based approach for
physically reconfigurable, heterogeneous robot swarms. These
can be deployed when there is a need to search, continuously
observe and react, e.g. in disaster scenarios. We show first
results that validate the feasibility of our approach.

Index Terms—Multi-Agent Systems; Sensor Systems; Un-
manned Aerial Vehicles; Self Awareness; Robot Swarms

1. Introduction

Heterogeneous collective systems are becoming increas-
ingly popular (cf. [1], [2]), as it is appealing to combine the
strengths of different devices — especially for Search and
Rescue missions (cf. [3], [4], [5]). This problem class uses
collective systems of multiple, mostly flying robots to simul-
taneously search in different areas to reduce the time until,
e.g., missing persons are found. Another use of multiple
flying robots is the Observation of Critical Infrastructure
such as pipelines, railways, or wind turbines (cf. [6]). Here,
the area to cover is predefined and the collective system
has to simultaneously observe this known area. In each of
the abovementioned approaches, the system has to achieve
a small set of predefined tasks — in some cases, it has even
been designed exclusively for a certain task.

From our point of view, there is great potential for
collective multi-robot systems far beyond these application
areas. We have identified the application class of Search,
continuously Observe and React (ScORe) missions which
we consider a generalization of search and rescue missions
[3]. ScORe missions are characterized by the following
properties : (i) search multiple a priori unknown parameters;
(i1) continuously observe and track the relevant parameters;
(iii) both in a wide area; (iv) perform collective on-line
evaluation of gathered data; and (v) trigger reactions by user
input or due to abnormalities or patterns in evaluated data.

ScORe missions are necessary e.g. in chemical and
nuclear accidents, which is sketched in detail in Sect. 2. An-
other scenario where ScORe missions come into play is the
in-situ measurement of interacting climate parameters (such
as temperature, humidity and green house gas distribution)

204

where it is important to continuously gather consistent data
at different hot spots over a long period.

A multi-robot swarm that should accomplish a ScORe
mission faces several challenges that are to a large extent
antagonistic. The operation time of the swarm as a whole
should be maximized (cf. ScORe properties (ii) and (iii)).
Two ways to achieve this are reducing the power con-
sumption of the individual robots and adding more robots
to introduce redundancy. On the other hand, the swarm
size in terms of individual robots should be kept low for
economical and usability reasons: more robots are of course
more expensive and also more complex to transport and set
up. Thus, a way to increase the versatility of the swarm (cf.
ScORe properties (i) and (v)) is to equip individual robots
with more sensing and actuating capabilities, which has
negative effects on power consumption and thus operation
time in turn. This position paper proposes to introduce
physical reconfigurability on hardware level and integrate
this new ability in the design of a collective adaptive system.
In particular, we propose an architecture that provides the
following contributions: (a) enable physical reconfigurability
using knowledge-based self-awareness of hardware mod-
ules; (b) allow for interwoven optimization of task execution
and adaptation of the system’s hardware configuration to the
current task(s); (c) provide users with a high-level, domain-
specific and extensible task abstraction for controlling the
system; and (d) support simultaneous execution of multiple
tasks issued at runtime of the system.

In the next section, we give a ScORe mission example
that is used throughout the paper. Sect. 3 introduces the
main idea of our approach. In Sect. 4, we propose a generic
software architecture for robot swarms as sketched above.
Sect. 5 presents results of a first evaluation. Finally, a
conclusion and an outlook is given in Sect. 6.

2. Case Study

As illustrative example, consider a chemical accident
where fire fighters face the threat of toxic gases. The chal-
lenges in such a case are manifold. First of all, fire fighters
need to identify one or more hazardous gases that constitute
the gas cloud and measure their concentrations. This can be
feasible in road or train accidents, but very difficult, e.g., in
synthetic material plants. Subsequently, they must determine
the current dimensions of the gas cloud, and more important



predict its expansion and relevant concentrations. This is
necessary to identify endangered residential areas and to
evacuate the population.

Currently, fire fighters must make these observations
manually and take actions with limited, incomplete or even
wrong information [7]. For example, measurements of gas
concentrations are mainly done at the location where the
accident happened and a few other points close to the
ground. Based on these measurements, gas types and con-
centrations are identified and the dimensions of the gas
cloud are roughly estimated. Moreover, the expansion of the
gas cloud is predicted based on available data about local
weather conditions. However, this is difficult or imprecise,
e.g., due to few ground measurements, different expansion
patterns of gases, outdated weather data or not correctly
identified hazardous gases. Based on those rough and de-
ficient estimations, extensive decisions have to be made
whether to evacuate areas of residential houses, retirement
homes or even hospitals. To evacuate a certain area, fire
fighters drive around making loudspeaker announcements
to the population. As far as staff is available, they also ring
doorbells — particularly in large buildings. Still, it is not
easy to reach everyone in rural areas or urban recreation
areas where, e.g., people are out for walks. In such a case,
fire fighters often need to go into endangered areas to help
and rescue people exposing themselves to hazardous gases.

A swarm of (flying) robots could substantially improve
the way such accidents can be handled as shown by pre-
vious work (cf. [7], [8]). There, e.g., a swarm is respon-
sible for tracking the dimension of the gas cloud and the
concentrations of gases. At the same time, it improves
predictions of the gas cloud expansion by in-situ measure-
ments of weather conditions like temperature, wind direction
and wind strength. Furthermore, flying robots serve as a
communication relay to establish a robust wireless radio
network for fire fighters even under harsh conditions without
hindering their other activities (e.g., collision avoidance [9]).
We put our focus on physical reconfigurability to handle
ScORe missions like these, which has not been considered
by previous work.

3. Approach

We consider robots that consist of certain basic com-
ponents, e.g., a quadrocopter frame including motors, pro-
pellers and a flight controller or a mobile robot including
motors, wheels and a navigation controller. In order to be
functional, those basic components must be equipped with
a power source, usually a battery. We assume that, given
a power source, the basic components exhibit certain basic
functionality, i.e., flying or driving to a given point in space.

The robots may be extended with so-called cube mod-
ules containing a microprocessor and additional sensors or
actuators. Each of these modules contains self descriptive
information pertaining to the individual capabilities of the
module, which allows access to e.g. measurements without
prior knowledge of the sensor in question. Retaining the
correlation between sensor data and its meaning, combined

203

collect weather data
(volume x; continuously)

(%]
[ 4
(%}
8 measure wind measure T measure H
(vol. x; cont.) (points u,v,w in x; cont.) (vol. y © x; cont.)
e et a et v
et P ——
¢ e T, Lo
=) .
= fly meas. wind meas.H  meas. T
o drive meas. T
8 meas. T meas. H meas. A
©
© L) 4 4
| | |
1 |
(9}
o
©
3
=100
=
©
<

——p PrOpPS K> caps = =ereees » caps > task qualification

Figure 1. Three different device configurations, respective capabilities and
the resulting task qualification. Each quadrocopter has built-in sensors (i.e.,
the inertial measurement unit) that are required for flying, but may also be
employed to estimate quantities like wind speed and direction during flight.

with the additional computational power in each module,
offer great improvement over previous approaches, as e.g.
the Cubelets project [10]. Physical reconfigurability can be
performed by interchanging standardized cube modules.

In our case study, e.g., the swarm can start with a broad
variety of gas sensors. After identifying the type of the
toxic gas, it exchanges its sensors to only track the rele-
vant gas. Hence, a quadrotor can carry additional batteries,
sensors to record weather data (e.g., for temperature, or
humidity), or cameras for finding missing persons. In the
sudden case of an evacuation, robots could be equipped
with loudspeakers as actuators, increasing flexibility and
coverage of announcements to the population. Finally, if
necessary, swarm members with grippers can transport light
equipment such as gas masks or communication devices to
endangered persons.

We assume all components to be self-aware to allow the
system to reason about its current physical configuration. We
use the term properties to denote all known physical features
of a component (e.g., its weight) as well as specific features
(e.g., battery capacity or sensor resolution). Fig. 1 shows
three differently configured robots. The left robot is a mobile
ground robot equipped with power source and one cube
module with an air temperature sensor (T). Important prop-
erties include the maximum payload of this mobile robot,
the weight of each component, the battery capacity and the
sensor type contained in the cube module. The quadrocopter
in the bottom center of the figure is equipped with two cube
modules T and H, where H contains an air humidity sensor.
The built-in IMU is a further sensor of the quadrocopter.
Finally, the second quadrocopter (bottom right) is equipped
with an additional cube module A that contains a gas
sensor. The combination of basic components and further
cube modules that add functionality to a robot distinguishes
our approach from existing work regarding self-assembling
and self-reconfiguring robotic systems (cf. [11], [12]). We
believe that our more coarse-grained approach allows for
easier reasoning about the abilities of a robot depending on



collect weather data trace gas cloud communicate evacuation
- volume x - variable volume - volume z
- continuously - contil ) - contii ly

active
tasks

»en

capability
distribution

current distribution desired distribution

Fle o] o [T e e
e PO e e ]

current configuration

System
configuration

desired configuration

Figure 2. Self-organized system reconfiguration to optimize multi-task
fulfillment. After identifying the desired capability distribution for one part
of the swarm, this part reconfigures its hardware components accordingly.

its current configuration, as outlined below.

According to its physical configuration, a robot can have
different capabilities. A capability models the robot’s ability
to perform certain operations, e.g., driving, flying or mea-
suring a certain quantity. Fig. 1 also depicts the capabilities
of the three robots explained above. The deduction of those
capabilities is denoted by the mapping props — caps. This
mapping is non-trivial and depends on the properties of
all modules involved. For example, the left robot has the
capabilities drive and measure T, whereas the right robot
neither has the capability to fly nor to measure wind during
flight due to being overloaded.

The behavior of the collective system is defined by the
tasks it should achieve. Such tasks can be given at runtime
by users or emerge from inside the system itself. They may
be domain-specific and, moreover, may be composed of sub-
tasks. Some (sub-)tasks can be accomplished by single indi-
viduals configured in certain ways, while other tasks require
cooperation of multiple robots. Fig. 1 shows an example task
(i.e., collect weather data) that contains multiple sub-tasks
(e.g., measure wind). Tasks contain a specification that states
constraints for task fulfillment, like continuous operation for
a certain time in a certain area or at predefined points of
interest. Deciding which robot can contribute to which task
requires another mapping caps +— task qualification that
depends on the capabilities of the robot. Consider the left
and middle robot in Fig. 1. Both can contribute to fulfilling
the sub-task measure T for points u,v,w near the ground,
whereas only the middle robot can contribute to measure
wind and measure H as well. The right robot will not be
able to contribute to any task, as it is not able to take off
and change its position accordingly.

For the intended class of applications (i.e., SCORe mis-
sions), the system in most cases should fulfill multiple tasks
at the same time as depicted in Fig. 2 with three currently
available tasks. As discussed before, many robots will only
be able to contribute to some of the available tasks, and there
might even be tasks for which no robot is configured such
that it can contribute to those tasks. Thus, the system should

208

combine self-organization principles and physical reconfig-
urability to optimize itself in order to fulfill the current tasks.
To achieve this, we propose a two-stage approach: First,
the distribution of currently available capabilities should
be analyzed and optimized depending on the current tasks
on hand (cf. Fig. 2). To determine the current capability
distribution throughout the swarm, the system has to employ
mechanisms to cope with limited connectivity among its
individuals. Based on the desired capability distribution and
the current physical configuration, a new desired physical
configuration is calculated. This calculation should also con-
sider the effort involved for applying the reconfiguration. For
a quadrocopter, e.g., this might involve landing at a certain
place and having its cube modules replaced by the user or
an automated system. The same mechanism for optimizing
the system configuration may also be employed to integrate
new robots into the system (cf. the empty quadrocopter and
mobile robot in the bottom left part of Fig. 2) and decide
about their best physical configuration. In comparison to the
taxonomy of multi-robot task allocation given in [13], the
possibility for physical reconfiguration (e.g., dynamically
changing robot capabilities) further increases the complexity
of relations between robots and tasks. In general, well suited
planning mechanisms have to be found, that enable the
highly dynamic and distributed system to achieve the user-
defined tasks appropriately. As numerous literature on these
topics already exists (cf., [13], [14]), we are certain to
overcome this challenge.

4. Architecture

To empower a system with self-organizing properties
mentioned above, we propose a Multi-Agent system (MAS)
based architecture as presented in Fig. 3. We distinguish
between User Devices (UDs) and Self-organizing Devices
(SoDs). The latter, as a whole, represent the autonomous
part of the system. Each SoD is responsible for controlling
the robot it is detached to as well as for interacting with
other devices in the system. As functionality is encapsulated
in software agents, each SoD is required to run multiple
agents at once, i.e., to provide a MAS platform on its own
(we use the Jadex Active Components Framework [15]).
The system as a whole, therefore, can be described as
a System-of-Systems [16]. As great advantage over other
known approaches (cf., [3], [5]) our architecture intends to
be constructed for allowing to switch between completely
different tasks without having to modify each SoD’s MAS.
Modifications only have to be made to the knowledge base
of available capabilities as well as to the task definition, that
defines capabilities needed for its solving.

User Agent. The UD offers an interface for humans
to interact with SoDs. This functionality is encapsulated in
a User Agent running on a MAS platform compatible with
those on the SoDs. By complying with the MAS-specific
communication protocol, the User Agent is able to transfer
user-defined tasks to SoDs as well as to observe the execu-
tion and status of already submitted tasks. A task’s status can
be unsolved, requested, active, or solved. Additionally, how



User Device

Task

I User Agent |

Hardware Multi-Agent System

Cube 1 Agent ‘

cee
Cube m Agent

Hardware
Agent

Agent

v
£
]
2
@
o
)
s
£
]
]
2
@A

Capability
Agent

Self-organizing Device 1 000 Self-organizing Device n

Swarm
Individual Blackboard
Agent

Hardware Multi-Agent System

N Swarm
Cube 1 Agent :

Individual Blackboard

Agent Agent

Cube m Agent
Hardware
Agent

Capability
Agent

Figure 3. System-of-Systems architecture: Each of the n Self-organizing Devices (SoD) provides the platform for an equal set of agents that form a
Multi-Agent System running on the device. In addition to this, a User Device represents the instructional part, offering an interface to a human operator for
introducing new tasks. Solid lines indicate intra-device communication, dotted lines inter-device (wireless) communication for a scenario where the Swarm
Coordination Agent on SoD1 coordinates n Individual Coordination Agents on its local device as well as on remote devices. Each currently attached
hardware component is abstracted by the concept of a Cube that is represented by a software agent (Cube Agent) in the corresponding SoD’s MAS.

a task can be solved is defined by a dependency graph of
needed capabilities. New user-defined tasks are classified as
unsolved and transmitted from the User Agent to reachable
Blackboard Agents, located on every SoD. User-defined
tasks include possibilities for task decomposition. These
initial execution plans can be calculated by the User Agent
by using methods like those described in [13].
Blackboard Agent. Hence, Blackboard Agents have
the responsibility to distribute information about new tasks
and their status on an inter-device level by communicating
with other reachable Blackboard Agents. This is necessary
to reduce the risk of loosing information about tasks —
albeit there are no guarantees especially in dynamic wireless
communication networks [17] — as information loss could
reduce the system performance significantly (e.g., tasks are
re-executed although they were already solved, or tasks are
not executed at all). Therefore, Blackboard Agents gossip
relevant information as soon as their information status
has changed. Besides, the User Agent is included in this
information distribution process to be able to inform the user
about task execution and status as mentioned above. Fur-
thermore, a Blackboard Agent communicates on an intra-
device level with an Individual Agent and a Swarm Agent
located on the same SoD. While the former classifies its
SoD’s current qualification for each task, the latter tries to
find a cooperation structure for solving a task if necessary.
Capability Agent. To determine the current qual-
ification, the Individual Agent relies on the information
originating from the SoD’s Capability Agent (cf. Fig. 3).
To retrieve the current capabilities, this agent interacts with
Cube Agents that are currently running on the SoD. By
being an abstraction from low-level hardware protocols and
implementation, they represent the properties of sensors
and actuators (i.e., the Cubes) as software agents and offer
an interface for capability execution. As capabilities may
not only be directly associated to properties provided by
hardware!, the Capability Agent has access to a knowledge

1. The capability flying, e.g., may be lost as another cube with high
weight is connected, or the capability measure current height becomes
available as cubes providing temperature and pressure measurements are
connected.

base for deducing which capabilities can be made available.

Cube and Hardware Agents. To ensure that each
connected Cube is represented through an agent, the Hard-
ware Agent dynamically starts and stops Cube Agents as the
configuration of its SoD changes. In addition, the Hardware
Agent is also responsible for coordinating all hardware-
specific operations including the access on communication
buses or the addressing of underlying hardware.

Individual Agent. For every task, the Individual
Agent compares the Capability Agent’s information to the
task’s capability dependency graph. To decide the SoD’s
qualification for a task, we propose to use constraint solving
techniques. More specifically, the agent minimizes the num-
ber of required Cube changes, such that the device is suited
for the task afterwards. If no change is needed, the current
configuration is already an optimal solution; otherwise a
suggestion involving a minimal number of reconfigurations
is returned. In fact, this formulation can be encoded as a soft
constraint problem [18]. Thus, we have a decision variable
s; for every slot ¢ that maps to an available Cube or L if it is
empty. For each slot i, we have a soft constraint (s¢'4 = s;)
that is violated if we change the Cube attachment. Our
objective is to minimize the number of violated soft con-
straints (i.e., a Max-CSP). Hard constraints regulate that the
planned configuration offers all capabilities required for a
task. We plan to specify prioritized preferences regarding
reconfiguration decisions (e.g., which component exchange
is less likely to cause problems) with more precision using
constraint relationships [19]. For every task solvable by
reconfiguration, the Individual Agent creates a Reconfigu-
ration Request Task and uses the Blackboard Agent’s in-
formation distribution mechanism. Reconfiguration Request
Tasks include information about tasks that become solvable
through Cube exchanges on an SoD which in turn can be
used by Swarm Agents to suggest broader reconfiguration,
e.g., for a set of SoDs.

After classifying all tasks, the Individual Agent tries to
assign solvable tasks to its SoD. To avoid multiple task
assignments, the Blackboard Agent is used again. As every
Individual Agent informs its local Blackboard Agent before
actually assigning a task, conflicts can easily be handled:

20%



When receiving a task with status requested, Blackboard
Agents distribute this information in the known manner. In
case a further Individual Agent, located on another SoD, also
requested the assignment of this task, this can be resolved
by any established leader election heuristic for distributed
systems.

When an Individual Agent finally has assigned a task,
it is also responsible for its correct execution. Therefore,
according to the task’s dependency graph, the Individual
Agent requests capability execution from its local Capability
Agent which further triggers appropriate Cube Agents. Fur-
thermore, the Individual Agent is able to handle coordination
requirements that are defined in the tasks description — e.g.,
sending synchronization messages to a Swarm Agent after
executing a capability.

Swarm Agent. All tasks classified as not solvable by
the SoD alone, as well as known Reconfiguration Request
Tasks, are passed to the local Swarm Agent (cf. Fig. 3),
which tries to solve them. It is capable of transforming the
original task into a set of sub-tasks (cf. Sect. 3) containing
additional information, that each of them has to be solved
in cooperation with the Swarm Agent. These sub-tasks
are transmitted to the Blackboard Agent, that distributes
them. Individual Agents, capable of executing one of these
sub-tasks, handle them the usual way first (i.e., determine
the SoD’s task qualification) and subsequently inform the
Swarm Agent. When at least one Individual Agent is avail-
able for every sub-task, the Swarm Agent activates the
task and informs a suitable team of Individual Agents that
they now have to perform the sub-tasks cooperatively. The
execution of sub-tasks is coordinated by the Swarm Agent,
that is able to exchange information with its cooperation
partners — which is necessary to meet the tasks Capability
dependency graph. With the Swarm Agent taking the leader
role, the original task finally can be solved appropriately.
Having solved the task, (for continuous tasks: after the task
has been deactivated), the Swarm Agent dissolves the team
structure and informs the Blackboard Agent.

In addition to normal tasks, a Swarm Agent is able to
handle Reconfiguration Request Tasks that describe possible
local Cube reconfigurations or such originating from other
SoDs. Therefore, it tries to find a new over-all ensemble con-
figuration, enabling the system to solve as many currently
unsolvable tasks as possible (cf. Fig. 2). This creates a new
Reconfiguration Recommendation Task that is distributed
via the Blackboard Agent. As Swarm Agents on different
SoDs create Reconfiguration Recommendation Tasks, which
can be based on different knowledge each as explained
above, the best of these solutions can be selected. The
actual reconfiguration can be performed when appropriate
(e.g., if no task status changed over a defined time interval).
Reconfiguration Recommendation Tasks, like every other
task, rely on SoDs that are able to solve them. This can
be an SoD having the capability to reconfigure other SoDs
(e.g., a robot manipulator cube).

With the use of software agents, the proposed collective
system is able to autonomously solve user-defined tasks that
in general are solvable with the existing set of available

208

Cubes and SoDs. Hence, there is a solution if the collective
system is suitable to solve the task. However, one or more
reconfigurations may be necessary.

5. Evaluation

To substantiate the presented ideas with feasibility re-
sults, we performed a proof-of-concept evaluation on a
single board computer (SBC) that is capable of running
an SoD and can be mounted on robots like small UAVs,
as first experiments have shown. In particular, we con-
sider its ability to solve constraint optimization problems
as part of the internal reasoning. This evaluation addresses
the question whether it is feasible to use a state-of-the-
art constraint solver on an SBC for a practical problem.
Though this question addresses a relatively narrow part
of our complete approach, we consider it nevertheless an
important prerequisite for its feasability.

We choose a well-defined optimization problem, i.e., a
single-agent single-task allocation problem where n tasks
have to be assigned to n agents with given non-negative
costs for every agent/task pair. The objective is to minimize
the worst costs any agent encounters’. Formally:

minimize max Cli, t;] €))
1yeensbn i€{l,...n}
subject to i1£] =t #
t; € {1,,71}

where ¢; maps to the task agent ¢ performs and C[¢, j] is
the cost matrix. The problem’s only parameters are n and
C which makes it attractive to generate random instances.
Specifically, for a problem consisting of n agents and tasks,
we generate random 3D coordinates in a rectangular cuboid
with a width and length of 1000m, and a height of 200m
to represent a volume typical for a ScORe mission. We
implemented both a greedy algorithm that iteratively selects
the shortest agent/task pair as well as a MiniZinc [20] model
that is optimized using Gecode.> The solving behavior on
identical problems on a PC and the SBC with a 60s timeout
was explored. The problem size n ranged from 10 to 40,
with 15 problems generated for each value of n. Quantities
of interest are the time to find an optimal solution, the ratio
of problems optimally solved, and the achieved objectives.

Figure 4 visualizes that the performance gap is rather
low. For problems involving 10 or 15 agents, the average
runtime ranged between 0.5s and Is on the SBC, whereas
it ranged between 0.03s and 0.15s on the PC. For larger
problems, the average difference amounts to few seconds
until both platforms converge to the timeout. However, the
solving behavior is very similar with the SBC failing to

2. The problem models the assignment of agents to positions in a forma-
tion, minimizing the farthest distance any agent has to move. That way, we
find allocations that minimize the total duration to establish the formation.
Compared to a greedy algorithm, the constraint solver saved a significant
amount of flight time with comparatively few invest of calculation time.

3. Source code at https://git.io/vKeJx and http://www.gecode.org/. Eval-
uation devices were a PC (4 x 3.2 GHz, 16 GB RAM, Ubuntu 15.10) and
an SBC, i.e. an Odroid XU4 (8 x ARM A15/7, 2 GB RAM, Ubuntu 14.04).



70 T T
% 60| ® @ Odroid (ARM) o - o— 8
§ 50| ¢ 4 Desktop (x64) RS (1,1) i
< 40 7
o 40 27 (52) b
£ 30l (13,11) P ,
[t —_
= -==
S 20f _d-"" 099 iy
3 10| .7 |
= z

0 = M7 L L L L

10 15 20 25 30 35 40

Problem size (# aaents)

Figure 4. Runtime gap between an x64 PC and an Odroid. Standard
deviations are omitted for clarity. Values (x,y) indicate the number of
problems (out of 15) the PC (x) and Odroid (y) could prove optimal (close).
Forn € {10, 15}, all problems were closed, for n = 40, none was.

prove optimality in only five fewer cases compared to the
PC. The overhead of the objective values of the best found
solution on an SBC (after 60s) compared to the PC was
2%, averaged over all instances. Further experiments suggest
that, beyond n = 40, it becomes hard to prove optimality in
60s, even for the PC. We can conclude that there is only a
small performance gap towards an SBC which seems to have
little trouble proving optimality for problems involving up
to 20 agents. First experiments also confirm that the selected
SBC is not only capable of running a CSOP solver but also
to control real robots (UAV and ground robots) with our
MAS-based architecture (we use Jadex Active Components
[15]) in parallel.

6. Conclusion

In this paper, we have introduced the broad application
class of ScORe missions which benefits from a collec-
tive adaptive system of reconfigurable self-aware robots.
In particular, reconfigurability and self-organization can be
employed to (1) fulfill different tasks at the same time
such as tracking a gas cloud, gathering weather data, or
informing people about evacuation, (2) adapt the capabilities
of its individuals to optimally suit the current tasks, e.g.,
optimize the number and distribution of particular sensors,
and (3) establish robust continuous operation despite failures
and limited battery power. The proposed architecture can
achieve these goals and, thus, can be employed to any
ScORe mission. Moreover, an evaluation has shown that
it is feasible to use a constraint solver for optimization
on mobile robots despite very limited resources. Finally,
we have performed first experiments controlling real robots
with a MAS that have been very promising. Our next steps
include improvements concerning generic and extensible
task definition. The goal is to enable users of our swarm
to control it merely on task level We will also improve
mechnisms for task decomposition and assignment to further
increase the autonomy of our system. Further, consensus
mechanisms have to be integrated that hinder the system
from cyclically reconfiguring its overall structure as we
consider reconfiguration to be executed in a decentralized
manner.

References

(1]

(2]

(3]

(4]

(3]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Prorok, M. A. Hsieh, and V. Kumar, “Fast redistribution of a swarm
of heterogeneous robots,” in Proc. 9th EAI Intl. Conf. on Bio-inspired
Information & Comm. Technologies (BICT), 2015.

E. F. Flushing, L. M. Gambardella, and G. A. D. Caro, “A mathemat-
ical programming approach to collaborative missions with heteroge-
neous teams,” in Proc. 2014 IEEE/RSJ Intl. Conf. on Intel. Robots &
Systems (IROS). 1EEE, 2014.

R. R. Murphy et al., “Search and rescue robotics,” in Handbook of
Robotics, B. Siciliano and O. Khatib, Eds. Springer, 2008, ch. 50.

J. Scherer et al., “An autonomous multi-uav system for search and
rescue,” in Proc. Ist Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use (DroNet '15). ACM,
2015.

M. Dorigo et al., “Swarmanoid: A novel concept for the study of
heterogeneous robotic swarms,” IEEE RAM, vol. 20, no. 4, pp. 60—
71, 2013.

SNCF Réseau. Drones serving the needs of industry.

K. Daniel, B. Dusza, A. Lewandowski, and C. Wietfeld, “Airshield:
A system-of-systems muav remote sensing architecture for disaster
response,” in Proc. 3rd Annual IEEE Systems Conf. (SysCon), 2009.

N. Lewyckyj, J. Biesemans, and J. Everaerts, “OSIRIS: A european
project using a high altitude platform for forest fire monitoring,” in
Safety and Security Engineering II, ser. WIT Transactions on The
Built Environment. WIT Press, 2007, vol. 94, pp. 205-213.

N. M. Alexandrov and T. A. Ozoroski, “Design for survivability: An
approach to assured autonomy,” AIAA Aviation, 2016.

M. D. Gross and C. Veitch, “Beyond top down: Designing with
cubelets,” Tecnologias, Sociedade e Conhecimento, vol. 1, no. 1, pp.
150-164, 2013.

M. Yim et al., “Modular self-reconfigurable robot systems,” IEEE
RAM, vol. 14, no. 1, pp. 43-52, 2007.

H. Li, T. Wang, H. Wei, and C. Meng, “Response strategy to envi-
ronmental cues for modular robots with self-assembly from swarm
to articulated robots,” J. Intell. & Robotic Systems, vol. 81, no. 3, pp.
359-376, 2015.

G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495-1512, 2013.

F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, “What planner for
ambient intelligence applications?” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no. 1,
pp. 7-21, Jan 2005.

A. Pokahr, L. Braubach, and K. Jander, “The Jadex project: Program-
ming model,” in Multiagent Systems and Applications, ser. Intelligent
Systems Reference Library, M. Ganzha and C. L. Jain, Eds. Springer,
2013, vol. 45, pp. 21-53.

S. Mittal er al., “Modeling and simulation for systems of systems
engineering,” in Systems of Systems Engineering, M. Jamshidi, Ed.
Wiley, 2008.

K. P. Birman, “Network perspective,” in Guide to Reliable Distributed
Systems: Building High-Assurance Applications and Cloud-Hosted
Services. Springer, 2012, pp. 101-143.

P. Meseguer, F. Rossi, and T. Schiex, “Soft Constraints,” in Handbook
of Constraint Programming, F. Rossi, P. van Beek, and T. Walsh, Eds.
Elsevier, 2006, ch. 9.

A. Schiendorfer et al., “Constraint Relationships for Soft Constraints,”
in Proc. 33" SGAI Int. Conf. Innov. Techniques & Applic. of Artificial
Intelligence (AI'13). Springer, 2013.

N. Nethercote et al., “Minizinc: Towards a standard cp modelling
language,” in Principles and Practice of Constraint Programming—
CP 2007. Springer, 2007, pp. 529-543.



