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Since the discovery of the vanishing transmittivity of 
a tunnel barrier in a one-dimensional (1 D) wire due 
to the repulsive electron-electron interaction [l] new 
interest has emerged in the transport properties of ID 
electron systems [2-lo]. Indeed, the influence of the 
electron correlations shows up strikingly in non-linear 
current voltage relations which are investigated exper- 
imentally in narrow, semiconducting wires [l 11. Local 
interactions, v(x - x’) = v&(x - x’) are described 
within the Luttinger model for which the power-law 
v-51 

ev a&?1 
I(V)= 2 co, ( > (1) 

has been predicted for the current-voltage relation 
through a tunnel barrier with tunnel resistance RT , at 
zero temperature T = 0. A similar behaviour has been 
found for the linear conductance - T2/gm2 as a funo 
tion of temperature [I, 2,5]. The exponent depends on 
the strength vg of the interaction, g = (I+ vo /TTVF)-~/~ 
( vF : Fermi velocity). Repulsion corresponds to g < 1. 

The Luttinger model limits the energies to values 
well below the upper cut-off (u, which can be identi- 
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fied with the Fermi energy and can be small in semi- 
conducting devices at low electron densities. At larger 
voltages, equation (1) formally describes currents that 
exceed even the value V/RT for non-interacting elec- 
trons. This indicates that some new energy or length 
scale must become important at higher energies. Here 
we shall identify the finite range of the e-e-interaction 
to cause an asymptotic approach of the current to- 
wards V/ RT at large voltages. In the case of very strong 
interaction the cross-over can occur in an oscillatory 
manner while for more realistic interaction strengths 
the current stays below V/RT for all voltages. The 
low energy, and hence long wave length properties, are 
well described within the Luttinger model where the 
range of the interaction I/ o( is assumed to be shorter 
than even the inter-electron spacing a = rrVF/2w, for 
spinless electrons. Finite voltages, however, introduce 
a wave length 1 JAk = vF/eV on which eventually a 
finite value for 1/ o( can be experienced. Large volt- 
ages change the momenta at the Fermi points by I Akl 
that exceeds the scale o( on which the Fourier com- 
ponents of the interaction vanish, O(Ak > (x) = 0 so 
that V > cxvF/e suppress the effect of interactions. 

Accordingly, at high temperatures T > o(VF , I(V) 
becomes independent of T so that the differential con- 
ductance approaches the constant ~/RT, like in the 
non-interacting case (we do not consider the effect of 
lattice vibrations here [12]). Finite temperatures may 
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even reduce the current. Both the voltage and the tem- 
perature dependencies of the current show the impor- 
tant common feature of a crossover which in principle 
allows to extract the range 1 / o( of the interaction. 

The importance of finite range interactions has been 
found already in zero dimensional systems, quantum 
dots, where ‘crystallisation’ of the charge density dis- 
tribution can occur leading to qualitative changes in 
the low energy excitation spectra [13-l 51 as compared 
to what is expected for a contact interaction [16]. 

For convenience we concentrate on the interaction 
1171 

v(x - x’) = vo-e a --LyIx-%‘I 
2 ’ (2) 

In the presence of metallic gates close to the 1D chan- 
nel a more realistic form would vary - Jx - x’ I -3 
at large distances, however, we expect qualitatively the 
same results for the latter finite range interaction as 
for (2), cf. below. The non-Fermi liquid behaviour of 
the charge excitations in a ID wire is expressed most 
conveniently by the Hamiltonian [9,18-201 

H,=$ 
I dx ]@I(x))~ + (UW)21 + (3) 

&- jdx dx’ (&@(x))v(x - x’)(&Q(x’)) 

where the Fermi-fields are expressed [I, 181 through 
Bose fields, II(x) = a,+(x) and Q(x) , with 
[+(x), 0(x’)] = -(i/2)sgn(x - x’) . The spatial 
derivative, a,0 , measures the fluctuations of the 
charge density, and the time derivative, a,8 , is pro- 
portional to the current. 

Here, we account for the dispersion relation of the 
charged modes in the wire, as it can be obtained from 
(3) by spatial Fourier transform 

w(k) =vFlkl J K’c) l+- 
7TVF. 

The Fourier transform of the interaction potential (2) 

lx2 
C(k) = vo- 

k2 + & 
is constant G(k) = vo in the limit o( - a) of the 
Luttinger liquid used in previous calculations where it 
merely renormalizes the sound velocity - vr/g . 

The tunnel barrier can be described [l] by 

Hb = u,, [1 - COS(24%(X = o))] . (6) 

Furthermore, we assume an electrostatic potential 
( V/2) sgn (x) dropping discontinuously at the location 
x = 0 of the tunnel barrier, 

Hv = “vecx = O), 
fi 

as in [l-3,7,8, lo]. In the limit of weak tunnelling 
it has been demonstrated [9] that the selfconsistently 
adjusted chemical potential indeed varies most pro- 
nouncedly close to x = 0. 

The DC-current 

I= -5 (&q(t)) (7) 

can be expressed in terms of the field 8 at x = 0, 

q(t) = e(t, x = 0) 

where both, the quantum average and the dynamics 
refer to the full Hamiltonian H, + Hb + HV . 

Since Hw is purely quadratic in Q(x) all of the 
contributions away from the impurity x # 0 can be 
integrated out to obtain the reduced dynamics for q(t). 
We are interested in the probability for transitions of 
q from a value 8i to 0r during the time t which can 
be expressed as a double integral 

& 

I s 
Dq Bi Dq’ exp (iS[ql) exp (-iSEq’1) 3Iq, q’l (8) 

6 4 
over paths q and q’ with endpoints q(0) = q’(t) = Bi 
and q(t) = q’(0) = 0f . The action S[q] contains 
all contributions to the Hamiltonian at x = 0 while 
the influence of the bulk modes, x # 0, is exactly 
accounted for in the functional [21] 

I r 

F[q, q’] = exp - 
I I 

dt’ dt” (Q(f) - q’(f)) x 

0 0 

where 

(w(t’ - t”)l#“) - w*(t’ - ,“)$(f”)) 

(9) 

m 

w(t) = I dw Bw - cos wt) coth 2 + i sin cut 
I 

, 

0 

(10) 
and 1 / 6 is the temperature. It will be important for 
the following that the non-linear dispersion (4) of the 
bulk modes, shown in the inset of Fig. 1, cause a non- 
Ohmic dissipative influence. The function J(w) in- 
cludes all of the details of the environmental modes 
in their efficiency to damp the frequency co of the 
motion of 0(x = 0, t) . 

Within the Feynman-Vernon technique [21] the 
quantum state for q is assumed to be initially known 
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(e.g. 0i = q(0) = 0 ) before the exact time evolution 
is switched on. With time t , q acquires probability 
l&(t) to assume the value & = m,/iY (cf. (8)) where 
m elementary charges have been transferred through 
the barrier. The long, time behaviour of the probability 
density distribution defines the stationary De-current 

according to (7), assuming ergodicity for the whole 
system. 

For large & the potential (6) has deep minima at 
8 = m,/iY so that integer m contribute mainly to 
the saddle points of the action S[q] in (8). In this 
limit the charge is transferred in integer units. Step like 
instantons dominate the path integral (8) [22,23] for 
the low current properties, each instanton contributing 
with a factor &iA/2 proportional to the tunnelling 
amplitude * . 

The influence functional y[q, q’] (9) introduces a 
temperature dependent coupling w(ti - ti) between 
instantons centred at times ti and tj so that the sum 
over all possible instanton configurations in general 
cannot be performed analytically. For a barrier of low 
transmittivity the most important configurations are 
instanton - anti-instanton pairs that contribute in or- 
der A2. This leads to an expression for the current [3] 

when the detailed balance property &P-i = dci”& P+ 1 
is used [24]. 

For the case of Ohmic dissipation, J(w) CC LO ,
corresponding to a contact interaction, considerable 
progress has been made. To order A2 the current has 
been calculated in [3] and to any order for weak inter- 
action 1 - g -=s 1 in [25]. Recently, the extension to 
arbitrary interaction strength has been achieved using 
conformal field theory techniques [7] and by system- 
atically exploiting the duality symmetry between low 
and high transmittivities [lo]. 

How the electron-electron interaction influences 
the transport properties is determined by J(cu) (cf. 
(10,ll)). Its relationship to the bulk mode dispersion 
w(k) can most easily be deduced from the partition 
function of the wire (3) 

Z = Tr e-fiHw = I D[O(x, T)] e-sw[el 

23&k, T)] e-sw1B1 (12) 

* The value of A can be related to ub , cf. [IO]. Through the 
one instanton action, A depends in principle also on 01. 

4 

0 
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Fig. 1. Effective density J(w) of charged modes in 
the wire that damp the motion of 0(x = 0, t) at the 
frequency LC) , according to equation (17) for different 
g . J(w) is the crucial ingredient for the non-linear 
current. The inset shows the dispersion relation w(k) 
according to equation (4). Natural units for wave vec- 
tors and frequencies are o( and o(vF , respectively. 

where 

B 

X J dr &k, 7) (-a$ + d(k)) i)(k, T) 

0 

with &k, T) = jdx 6(x, r)efi, 
The modes 0(x # 0, T) act as a harmonic thermal 

environment on the mode of interest, q(T) 5 Q(x = 
0.7) , 

z JD[q(T)] JD[B(x # 0, T)] e-sw[el 

= D[ql ekl. J (13) 

The functional 

B B 
ekl K q-i J J dr dr’ q(T)k(T - T’)q(T’) (14) 

0 0 

for the reduced density contains the retarding effects, 
described by the Kernel [26] 

B 
K(w,) = j- dr &(r)e-iW”r 

0 

dk VF 1 
-1 = 

%u;+w2(k) (15) 
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with urn = 2rrn/fi . Analytic continuation, 

J(w) = -tlm l& X(-iw + 6) 

relates J(w) directly to X(w,) [24]. 

(16) 

The asymptotic behaviours J(o - 0) = 21~1 /g 
and J(w - 00) - 2w can readily be deduced from 
(15)inviewofco2(]k] < LX) = $cz/$andw2(lk] > 
o() = v$@ . Here, g = (1 + v~/rrvr;)-“~ has been 
defined in analogy to the Luttinger model with vo = 
v”(k = 0) (cf. (5)). For w(k) as in (4) the integration 
(15) with (16) can be carried out analytically, yielding 

J(b) (N+ (Cl + hlv- (a))M(a,) 
- = 2Jio(1 + 69)(IN+(&)~2 + IN-(cJ),)12) ffVF 

(17) 

M(k) = J4 &2 + (ti2 - l/g2)2 

N+(iil) = 1 -G2 + l/g2 + M(O) 1 1’2 

Iv_(&) = 1 --412 + l/g2 - M(ti) I”‘. 

The time (o(vF)-i for electrons of velocity VF needed 
to traverse the interaction range establishes the natural 
frequency scale of the problem, ii, = co/o(VF . 

Figure 1 illustrates the result (17). At small w < 
o(vF , J(w) - 2w/g and the current-voltage relation 
(1) is recovered at long wave lengths and low energies. 

With large w > o(VF , J(w) approaches the lin- 
ear behaviour, J(w) - 2w , that corresponds to the 
non-interacting case, g = 1 , for the reasons moti- 
vated initially. Note, however that J(w) does not sim- 
ply interpolate between either of the Ohmic asymp- 
totics but crosses the value 2w so that the damping 
J(cu 2 o(vF) < 2w is smaller than it would be in the 
absence of interactions. 

The current-voltage relation, obtained according to 
(11) for zero temperature, is depicted in Fig. 2. The 
crossover behaviour of J(w) shows up in a transition 
from the power law at low voltages, Z(V) - V2/gP1 to 
the linear tunnel resistance behaviour, Z(T/) - v/&r. 
It takes place on the voltage scale avp(2/g - 1)/e. 
The high voltage limit does not show any offset that 
would correspond to a Coulomb blockade since the 
charging energy 

Kidw (F-2)=0 (18) 
0 

vanishes. The proportionality in (18) follows from the 
short time behaviour of w(t) to the order - t2 (cf. 10) 

g =0.4 - 
8 g  ~ 0 .7  ---- 

0  2  4  8  8  10  

eV/avF 

Fig. 2. Current through the tunnel barrier versus ap- 
plied voltage for different g , A’ = A/w, . The 
power-law at low voltages agrees with the Luttinger 
liquid behaviour. The crossover to the linear relation, 
Z(V) = V/ RT , manifests the finite range of the e - e- 
interaction. 

and the right hand side expression vanishes since, for 
any dispersion (4), ] dm J(w) /2w equals the num- 
ber of modes in the wire, cf. (15,16). Two conditions 
are usually considered as being sufficient to establish a 
Coulomb blockade [27,28] : the suppression of quan- 
tum fluctuations of the charges by low transmittivities 
and the presence of a nearby dissipative environment 
of high impedance for which the bulk modes serve [3]. 
Although both conditions are fulfilled in the present 
system no charging effects appear. The vanishing lat- 
eral extension of a 1D wire does not suffice to accu- 
mulate charging energy. Near a single barrier, a finite 
cross section is required for the capacitance C to be 
finite so that Z(V) - (V - EC/e) / RT at high voltages, 
with E, = e2/2C [29]. This is consistent with the re- 
sult for a selfconsistent determination of the charge 
distribution along the wire [9]. 

Equation (18) holds for any interaction poten- 
tial of finite range. Another example is the screened 
Coulomb interaction v(x - x’) = e2e-alx-x”/ 
K~(X - x’)2 + d2 ( K : dielectric constant, d : 
width of the wire) which is again determined by 
two parameters, o( and cxv0/2 - e2/Kd . At low 
voltages Z(V) obeys a power law and at V > 
%(xvF(,b + 2e2f&(ad)/K7TVF - 1)/e (& : modified 
Bessel function) a crossover to the effectively non- 
interacting behaviour occurs, Only true long-range 
interaction o( - 0 changes the power-law behaviour at 
low voltages [6,19,30] and the divergence of O(k - 0) 
suppresses the crossover. 

In principle, we can also infer the current-voltage 
characteristics for the case of a weak barrier and at- 
tractive, finite-range interactions by taking advantage 
of the exact duality relation [3 l] between the weak and 
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Fig. 3. Temperature dependence of the differen- 
tial conductance for different voltages eY/aVF = 
O.l,..., 5 as indicated. In a and b g = 0.7 and g = 0.4, 
respectively. At low temperatures and low voltages the 
power law behaviours [1] are recovered. 

the strong barrier limit as it has been proven [32] for 
arbitrary J(w) . In our case, the dual J(w) inter- 
polates between J(w < o(vF) = 2gw and J(co >> 
o(VF) = 2w , since g maps to 1 /g , so that the inter- 
action strength again vanishes at high energies. Corre- 
spondingly, to second order in the barrier height, the 
current exhibits a crossover from the Luttinger liquid 
behaviour I(V) - (1 - c(U,,) V2gT2) V at small volt- 
ages to the Ohmic behaviour, I(V) - (1 - c(Ui))V, 
at large voltages. 

Also the temperature dependence of the differential 
conductance 31/3V, Fig. 3, reveals a crossover around 
T = cq(2/g - 2) as can be deduced from a high 
temperature expansion up to the cubic term in (10) 
and (11). At small T the linear conductance varies 
- T2/sm2, in agreement with [l], while the non-linear 
conductance can even decrease with temperature. At 
high temperatures aI/aV approaches the constant 
value 1 / RT , irrespective of the voltage, as has been 
demonstrated already for weak interaction [5]. 

To summarise, we have shown that finite ranges of 
the e - e-interaction change the non-linear current 
through a tunnelling barrier in a ID wire qualita- 
tively, compared to the simple power-law behaviour. 
The latter is usually considered to be the main char- 
acteristic for one-dimensionality, but is only valid for 
short range interactions. .At high voltages the influ- 
ence of the interaction disappears and no Coulomb 
blockade remains. Similarly, the differential conduc- 
tance becomes independent of high temperatures and 
assumes the value 1 /RT for all voltages. 

Careful determination of the current voltage char- 
acteristics and also of its temperature dependence 
would allow to measure directly the range of the 
electron-electron interaction. This quantity is difficult 

to access by other experimental means. 
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