
Tampere University of Technology

Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018
Workshop (DCASE2018)

Citation
Plumbley, M. D., Kroos, C., Bello, J. P., Richard, G., Ellis, D. P. W., & Mesaros, A. (Eds.) (2018). Proceedings of
the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018). Tampere
University of Technology.
Year
2018

Version
Publisher's PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:14.11.2019

https://tutcris.tut.fi/portal/en/persons/annamaria-mesaros(48bea19c-41eb-4fd0-b309-d886963bf7e8).html
https://tutcris.tut.fi/portal/en/publications/proceedings-of-the-detection-and-classification-of-acoustic-scenes-and-events-2018-workshop-dcase2018(42d6b7f2-d3ab-4bb6-84d5-f53bb0e94eaa).html
https://tutcris.tut.fi/portal/en/publications/proceedings-of-the-detection-and-classification-of-acoustic-scenes-and-events-2018-workshop-dcase2018(42d6b7f2-d3ab-4bb6-84d5-f53bb0e94eaa).html
https://tutcris.tut.fi/portal/en/publications/proceedings-of-the-detection-and-classification-of-acoustic-scenes-and-events-2018-workshop-dcase2018(42d6b7f2-d3ab-4bb6-84d5-f53bb0e94eaa).html

Tampereen teknillinen yliopisto - Tampere University of Technology

Mark D. Plumbley, Christian Kroos, Juan P. Bello, Gaël Richard, Daniel P. W. Ellis,
Annamaria Mesaros (eds.)
Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018

Workshop (DCASE2018)

Tampereen teknillinen yliopisto - Tampere University of Technology

Mark D. Plumbley, Christian Kroos, Juan P. Bello, Gaël Richard, Daniel P. W. Ellis,
Annamaria Mesaros (eds.)

Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2018 Workshop (DCASE2018)

Tampere University of Technology. Laboratory of Signal Processing
Tampere 2018

This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

ISBN 978-952-15-4262-6

http://creativecommons.org/licenses/by/4.0/

A multi-device dataset for urban acoustic scene classification
Annamaria Mesaros, Toni Heittola, Tuomas Virtanen

Towards perceptual soundscape characterization using event detection
algorithms
Felix Gontier, Pierre Aumond, Mathieu Lagrange, Catherine Lavandier,
Jean-François Petiot

Large-scale weakly labeled semi-supervised sound event detection in
domestic environments
Romain Serizel, Nicolas Turpault, Hamid Eghbal-Zadeh, Ankit Parag Shah

The Aalto system based on fine-tuned AudioSet features for DCASE2018
task2 - general purpose audio tagging
Zhicun Xu, Peter Smit, Mikko Kurimo

Acoustic scene classification using multi-scale features
Yang Liping, Chen Xinxing, Tao Lianjie

Acoustic scene classification using a convolutional neural network ensemble
and nearest neighbor filters
Truc Nguyen, Franz Pernkopf

Attention-based convolutional neural networks for acoustic scene classification
Zhao Ren, Qiuqiang Kong, Kun Qian, Mark Plumbley, Björn Schuller

General-purpose audio tagging by ensembling convolutional neural networks
based on multiple features
Kevin Wilkinghoff

A report on audio tagging with deeper CNN, 1D-ConvNet and 2D-ConvNet
Qingkai Wei, Yanfang Liu, Xiaohui Ruan

DCASE 2018 task 2: iterative training, label smoothing, and background noise
normalization for audio event tagging
Thi Ngoc Tho Nguyen, Ngoc Khanh Nguyen, Douglas L. Jones, Woon
Seng Gan

Acoustic event search with an onomatopoeic query: measuring distance
between onomatopoeic words and sounds
Shota Ikawa, Kunio Kashino

Sound event detection from weak annotations: weighted-GRU versus multi-
instance-learning
Léo Cances, Thomas Pellegrini, Patrice Guyot

General-purpose tagging of Freesound audio with AudioSet labels: task
description, dataset, and baseline
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P.W. Ellis, Xavier
Favory, Jordi Pons, Xavier Serra

9-13

14-18

19-23

24-28

29-33

34-38

39-43

44-48

49-53

54-58

59-63

64-68

69-73

4

Weakly labeled semi-supervised sound event detection using CRNN with
inception module
Wootaek Lim, Sangwon Suh, Youngho Jeong

Polyphonic audio tagging with sequentially labelled data using CRNN with
learnable gated linear units
Yuanbo Hou, Qiuqiang Kong, Jun Wang, Shengchen Li

Sound event detection using weakly labelled semi-supervised data with
GCRNNs, VAT and self-adaptive label refinement
Robert Harb, Franz Pernkopf

Ensemble of convolutional neural networks for general-purpose audio
tagging
Bogdan Pantic

Sample mixed-based data augmentation for domestic audio tagging
Shengyun Wei, Kele Xu, Dezhi Wang, Feifan Liao, Huaimin Wang,
Qiuqiang Kong

Multi-scale convolutional recurrent neural network with ensemble method for
weakly labeled sound event detection
Yingmei Guo, Mingxing Xu, Jianming Wu, Yanan Wang, Keiichiro
Hoashi

Exploring deep vision models for acoustic scene classification
Octave Mariotti, Matthieu Cord, Olivier Schwander

3D convolutional recurrent neural networks for bird sound detection
Ivan Himawan, Michael Towsey, Paul Roe

Audio feature space analysis for acoustic scene classification
Tomasz Maka

DNN based multi-level feature ensemble for acoustic scene classification
Jee-weon Jung, Hee-soo Heo, Hye-jin Shim, Ha-jin Yu

Data-efficient weakly supervised learning for low-resource audio event
detection using deep learning
Veronica Morfi, Dan Stowell

Applying triplet loss to siamese-style networks for audio similarity ranking
Brian Margolis, Madhav Ghei, Bryan Pardo

To bee or not to bee: Investigating machine learning approaches for beehive
sound recognition
Ines Nolasco, Emmanouil Benetos

Unsupervised adversarial domain adaptation for acoustic scene classification
Shayan Gharib, Konstantinos Drossos, Emre Cakir, Dmitriy Serdyuk,
Tuomas Virtanen

74-77

78-82

83-87

88-92

93-97

98-102

103-107

113-117

123-127

128-132

133-137

108-112

5

118-122

138-142

Acoustic bird detection with deep convolutional neural networks
Mario Lasseck

Vocal Imitation Set: a dataset of vocally imitated sound events using the
AudioSet ontology
Bongjun Kim, Madhav Ghei, Bryan Pardo, Zhiyao Duan

Fast mosquito acoustic detection with field cup recordings: an initial
investigation
Yunpeng Li, Ivan Kiskin, Marianne Sinka, Davide Zilli, Henry Chan,
Eva Herreros-Moya, Theeraphap Chareonviriyaphap, Rungarun
Tisgratog, Kathy Willis, Stephen Roberts

Using an evolutionary approach to explore convolutional neural networks
for acoustic scene classification
Christian Roletscheck, Tobias Watzka, Andreas Seiderer, Dominik
Schiller, Elisabeth André

Domain tuning methods for bird audio detection
Sidrah Liaqat, Narjes Bozorg, Neenu Jose, Patrick Conrey, Anthony
Tamasi, Michael T. Johnson

Robust median-plane binaural sound source localization
Benjamin R. Hammond, Philip J.B. Jackson

Iterative knowledge distillation in R-CNNs for weakly-labeled semi-
supervised sound event detection
Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer

Training general-purpose audio tagging networks with noisy labels and
iterative self-verification
Matthias Dorfer, Gerhard Widmer

An extensible cluster-graph taxonomy for open set sound scene analysis
Helen Bear, Emmanouil Benetos

Multi-level attention model for weakly supervised audio classification
Changsong Yu, Karim Said Barsim, Qiuqiang Kong, Bin Yang

Meta learning based audio tagging
Kele Xu, Boqing Zhu, Dezhi Wang, Yuxing Peng, Huaimin Wang,
Lilun Zhang, Bo Li

Audio tagging system using densely connected convolutional networks
Il-Young Jeong, Hyungui Lim

Convolutional neural networks and x-vector embedding for DCASE2018
Acoustic Scene Classification challenge
Hossein Zeinali, Lukas Burget, Jan Honza Cernocky

143-147

148-152

153-157

158-162

163-167

168-172

173-177

178-182

183-187

188-192

193-196

197-201

202-206

6

Combining high-level features of raw audio waves and mel-
spectrograms for audio tagging
Marcel Lederle, Benjamin Wilhelm

General-purpose audio tagging from noisy labels using convolutional
neural networks
Turab Iqbal, Qiuqiang Kong, Mark D. Plumbley, Wenwu Wang

DCASE 2018 Challenge Surrey cross-task convolutional neural network
baseline
Qiuqiang Kong, Turab Iqbal, Yong Xu, Wenwu Wang, Mark D.
Plumbley

207-211

212-216

217-221

7

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

USING AN EVOLUTIONARY APPROACH TO EXPLORE CONVOLUTIONAL NEURAL
NETWORKS FOR ACOUSTIC SCENE CLASSIFICATION

Christian Roletscheck, Tobias Watzka, Andreas Seiderer, Dominik Schiller, Elisabeth André

Augsburg University
Human Centered Multimedia
Augsburg, 86159, Germany

rolle.roletscheck@t-online.de,tobias.watzka@gmail.com,{seiderer, schiller, andre}@hcm-lab.de

ABSTRACT

The successful application of modern deep neural networks is heav-
ily reliant on the chosen architecture and the selection of the appro-
priate hyperparameters. Due to the large number of parameters and
the complex inner workings of a neural network, finding a suitable
configuration for a respective problem turns out to be a rather com-
plex task for a human. In this paper we, propose an evolutionary
approach to automatically generate a suitable neural network archi-
tecture and hyperparameters for any given classification problem.
A genetic algorithm is used to generate and evaluate a variety of
deep convolutional networks. We take the DCASE 2018 Challenge
as an opportunity to evaluate our algorithm on the task of acoustic
scene classification. The best accuracy achieved by our approach
was 74.7% on the development dataset.

Index Terms— Evolutionary algorithm, genetic algorithm,
convolutional neural networks, acoustic scene classification

1. INTRODUCTION

Deep neural networks (DNNs) have already proven their capability
to achieve outstanding performance in solving various classifica-
tion tasks. Therefore, it is reasonable to use them for acoustic scene
classification as well. This trend can be clearly seen in the DCASE
Challenge of 2016 [1] and 2017 [2]. However, designing the net-
work architecture and finding the corresponding hyperparameters
(learning rates, batch size etc.) remains a challenging and tedious
task, even for experts. Therefore, a lot of attention in recent re-
search has been payed on finding ways to automate this process
[3, 4, 5, 6]. Among others the neuro-evolution method, which re-
lies on evolutionary algorithms (EAs), has been a prominent choice
for the task of automatically generating neural networks (NNs). In
this work we are exploring the capabilities of neuro-evolution to dis-
cover an optimal DNN topology and its hyperparameters for the task
of acoustic scene classification. Furthermore, we are introducing
our novel self-adaptive EA which uses a genetic representation to
create DNNs: Deep Self-Adaptive-Genetic-Algorithm (DeepSAGA).

2. RELATED WORK

One of the earliest works using EAs to generate NNs, was con-
ducted by Miller et al. [7]. While their approach was originally
limited to only evolve the weights of the NN they also showed that
it could be advantageous to use an EA to generate a complete NN
architecture. In the year 2002 Stanley and Miikkulainen introduced
a method called NeuroEvolution of Augmenting Topologies (NEAT)

which evolves NN topologies along with the weights [8]. Till today
NEAT is the basis for many state-of-the-art algorithms in the field
of neuro-evolution.

Kroos and Plumbley proposed 2017 in [9] a modified version
of the NEAT algorithm. Their EA ”J-NEAT” generates small NNs
for sound event detection in real life audio. As participants of
the DCASE Challenge 2017 they demonstrated that their generated
small NNs are able to compete with other bigger networks, such as
the baseline approach. Their main concern, however, was the min-
imization of the total number of nodes used in the generated NN
rather than the maximization of the classification performance.

Real et al. [10] have shown in 2017 the capability of EAs to
create CNNs solving image recognition tasks. Their fully generated
models are capable of competing with the state-of-the-art models
manually created by experts. This boost in classification perfor-
mance, however, comes at the expenses of computational costs. The
discovery of the best model took a wall time of roughly 256 hours of
evolutionary search, distributed over 250 worker clients. While this
approach, therefore, demonstrates the general feasibility of utilizing
EAs to discover new DNN architectures it is also largely incapable
for most practical applications due to its extensive demand of com-
putation power.

Martin et al. [11] developed a novel EA that evolves the param-
eters and the architecture of a NN in order to maximize its classifi-
cation accuracy, as well as maintaining a valid sequence of layers.
Parameters related to their EA where empirically chosen by hand
and won’t change during a run.

The shown state-of-the-art approaches have demonstrated the
general feasibility of using EAs to discover new DNN topologies
and hyperparameters. However, given their respective specific char-
acteristics, none of them seems to be an optimal fit in our case.
Like the other algorithms mentioned here, DeepSAGA evolves the
architecture and hyperparameters of a NN as well, while using the
backpropagation algorithm [12] for weight optimization. Its main
goal lies on the maximization of the classification performance for
a given classification problem with a limited amount of disposable
compute power. In addition, its own parameters are included in the
evolutionary search process, making the search in advance for op-
timal start parameters obsolete and giving the algorithm the chance
to change its parameters autonomously during a run.

3. DEEPSAGA

For the development of our approach, we followed the guidelines
set forth by Eiben et al. [13] for designing executable evolution-
ary algorithms. The creation of an executable EA instance requires

158

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

the specification of its parameters. One of their guidelines suggests
using parameter control [13, Chap. 7.3] for finding suitable param-
eters easier, since the resulting values not only influence the finding
of an optimal solution, but also the efficiency. In our case, we use
the Self-Adaptive variant, as it is one of the possible Parameter-
Control techniques. In this variant the parameters to be adapted are
represented as a component of the genetics and are thus part of the
evolutionary search space. Therefore, has the potential to adapt the
algorithm to the problem while solving it [13, Chap. 8].

The following subsections describe the implementation of our
EA, while still taking the guidelines by Eiben et al. into account.
The representation and definition of our individuals, the used fit-
ness function and details to our population will be explained in the
subsections 3.1, 3.2 and 3.3 respectively. Other subsections in this
section are related to the typical steps, that will be excluded by an
EA during its run. In the entire course of this work, the term ses-
sion refers to the holistic process of an EA (from initialization to
termination), while the repetition of the steps, selection of parents,
recombination, mutation, evaluation of offspring and selection of
individuals to form the next population are called a cycle.

3.1. Representation and definition

To enhance readability, we have used a representation analogous to
biological genetics. Within biological terminology, a genome con-
tains all chromosomes and represents the entire genetic of a living
being. A chromosome is a bundle of several genes contained in the
organism, whereby genes determine the different characteristics of
that organism.

Input-Shape
Chromosome-Count

Net-Structure

Batch-Normalization
Activation-Function
Dropout
Neuron-Count

Dense-Layer

ES-Patience
ES-Minimum-Delta
CLR-Step-Size-Factor
CLR-Mode
CLR-Base-Lr
CLR-Max-Lr
SGD-Momentum
Batch-Size
Sequence-Length
Sequence-Hop-Size

Training-ParametersCrossover-Chance
Mutation-Chance

EA-Parameters

Conv-Block

Gene-Bundle-N

Gene-Bundle-0

Gene-Bundle-1

Conv-Block

Figure 1: Detailed overview of all chromosomes and genes listed in
a genome. ES: early stopping; CLR: cyclic-learning-rate.

In our work, a genome represents the genetic of a NN and de-
scribes its characteristics: its architecture and hyperparameters. The
genotype is expressed by our genome and the decoding, in our case,
the process of creating and training the network according to the
characteristics described by the genotype.

Figure 1 lists our chromosomes contained in each genome. The
Conv-Block is made up of at least one so-called Gene-Bundle.
For each Gene-Bundle a convolutional layer followed by a max-
pooling layer will be added to a NN architecture. It therefore con-
tains information (genes) about the number of filters, filter-shape
and filter-stride. In addition, each Gene-Bundle contains genes indi-

cating whether optional layers for zero-padding, dropout and batch-
normalization are included. Finally, a global-average-pooling or
flatten layer can be used to connect the Conv-Block with the out-
put or further classification layers.

An allele is a concrete expression of a gene. In our chosen
representation model, an allele for the Batch-Size-Gene could be,
for example, the integer number 128. Finally, Figure 2 illustrates
the overall design of our genome. An example for a genome with
filled in values can be seen in Figure 4, while Figure 5 displays said
genome generated CNN architecture.

Genome

N C-0 D-N ETD-1

Figure 2: Illustration of a genome. The squarelike objects are repre-
sentatives for the chromosomes Net-Structure, Conv-Block, Dense-
Layer, Training- and EA-Parameters.

3.2. Fitness function

In our case, the focus was mainly on the accuracy of a NN. However,
to speed up the evolutionary search process, the number of train-
ing epochs of a network was also taken into account. As a result,
our score value represents the total fitness of a population member,
meaning the higher the score the better the quality of a genotype.
The following formula illustrates the utilized fitness function:

score = 0.98 ∗ accuracy + 0.02 ∗ epochlimit − epoch

epochlimit
(1)

In this context, epochlimit stands for the maximum number of
epochs a net is permitted as training time and epoch for the number
of epochs with which the net was actually trained. The distribution
with 98 % on accuracy and 2 % on the other half, seems to be a solid
approach and is solely based on own empirical observations.

3.3. Population

A steady state model [13, Chap. 5.1] is used, to manage the pop-
ulation. To promote diversity and the self-adaptive property, the
population size is dynamic. However, since the available resources
are limited, the maximum population size is restricted to 90.

3.4. Parent selection mechanism

As described by Bäck and Eiben [14] the parents are determined by
a tournament selection procedure. The tournament depends on the
population of the current cycle. This also applies to the number of
population members who are allowed to participate in the tourna-
ment. To calculate said number Formula (2) was used, which takes
into account the maximum permitted population size.

participants = popsizelimit − popsizecurrent (2)

The tournament size is determined by Formula (3), where
toursizelimit always corresponds to one tenth of the popsizelimit.

toursize = toursizelimit ∗
popsizecurrent

popsizelimit
(3)

If the population limit is reached, the number of participants is
limited to two until the threshold value is undershot again.

159

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

3.5. Variation operators

Mutation

Genes of the category symbolic are mutated by replacing the orig-
inal allele with a randomly selected. However, the current allele
has a higher chance of being selected again than the other possible
alleles. This type of mutation is also called sampling.

An allele of the integer type is mutated by a creep mutation
[13, Chap. 4.3.1] or reset, whose chance is set to 5 %. In our
case the sigma value always corresponds to 0.025 (2.5 %) times the
limit. For example, if the maximum limit is 1000, the corresponding
sigma value would be 25.

Nonuniform mutation [13, Chap. 4.4.1] is used to mutate an
allele of the float type. This time, the sigma value is equated with
the individual’s chance of mutation.

Each population member has its own chance of mutation, which
is co-evolved according to the method described in [15]. Before all
other genes, the Mutation-Chance-Gene is mutated using the non-
uniform mutation method. The resulting new mutation chance is
the probability with which the remaining genes are mutated.

Recombination

Parent A

N

C-0

T

L-1

N

C-0

E

T

L-1

L-3

L-2

Parent B

L-2

E

E

L-2

Offspring A

N

E

L-1

L-2

N

C-0

T

L-1

L-3

Offspring B

C-0

T

Figure 3: Illustrated procedure of our uniform crossover

The probability with which a recombination (throughout this work
referred to as crossover) takes place depends on the crossover
chance. Since, in our work, the crossover chance is part of the
evolutionary process, it is represented by the Crossover-Chance-
Gene. Thus, each population member has an individual crossover
chance. The recombination process is based on the procedure de-
scribed in [13, Chap. 8.4.7]. The individual crossover chance pc of
a parent is compared with a random number r (r ∈ [0, 1]). One par-
ent is ”ready to mate” if pc > r applies. This opens up the following
possibilities:

1. When both parents are ready to mate, a crossover takes place.

2. If both parents are not ready to mate, they are cloned.

3. If only one parent is willing to mate, a clone of the unwilling
parent is created. For the remaining individual a new partner
is chosen randomly from the pool of parents, who is also
checked for its willingness to mate.

The recombination itself takes place in the style of a uniform
crossover [13, Chap. 4.2.2]. For example, offspring A first receives
all chromosomes of parent A, then each of the chromosomes of off-
spring A could be swapped with a chromosome of parent B, taking
the crossover chance of parent A into account. The exact procedure
is depicted in Figure 3.

3.6. Survivor selection mechanism

Our selection procedure follows an age-based [13, Cap. 5.3.1] re-
placement strategy. Thus, each newly created individual is assigned
a value (remaining lifetime, in short RLT) using Formula (4) as
described by Bäck [14]. The RLT is reduced by 1 after each cy-
cle, thus determining how long a population member remains alive.
Though, the lifetime of the individual with the highest fitness re-
mains unchanged. Where MinLT (α) and MaxLT (ω) stand for
the permissible minimum and maximum lifetime of an individual.
All other variables are linked to the current status of the population.
These variables are fitness (i), AvgFit (AF), BestFit (BF) and
WorstFit (WF). They stand for the fitness of the individual i , the
average fitness, the best fitness and the worst fitness of the current
population. The prefactor calculation is η = 1

2
· (ω − α).

RLT (i) =


α+ η · WF−fitness(i)

WF−AF
if fitness (i) ≥ AF

1
2
(α+ ω) + η · AF−fitness(i)

AF−BF
if fitness (i) < AF

(4)
The authorized minimum and maximum lifetime of an individ-

ual has been set to 1 and 7. If the fitness value of a newly created
individual i is better than the average fitness, it receives a lifetime
from 5 to 7, otherwise a lifetime from 1 to 4. Within these sub-
areas, the better individuals have a longer lifespan than the individ-
uals with a lower fitness.

3.7. Initialization and termination

The individuals of the first population are generated randomly.
Since the available resources are limited, the expressions of the re-
spective genes are bounded. These limits must not be exceeded by
variation operators either. The termination criterion is the comple-
tion of the 40th cycle, considering the optimum is, in our case, not
known in advance.

4. EXPERIMENTS

4.1. Setup

To evaluate the proposed genetic algorithm we use the TUT Ur-
ban Acoustic Scenes 2018 dataset from subtask A provided by the
DCASE 2018 Challenge [16]. The dataset consists of 10-seconds
audio segments from 10 different acoustic scenes. For every acous-
tic scene, audio was captured in 6 different cities and multiple loca-
tions. To train and measure the performance of the generated mod-
els we use the development dataset with the suggested partitioning
for training and testing.

To generate the input features for the NNs the stereo audio sam-
ples were first converted into mono channels. Thereafter, the librosa
library (v0.6.1) [17] was used to extract log mel spectrograms with
100 mel bands that cover a frequency range of up to 22050 Hz.
For the Short-Time Fourier Transform (STFT) a Hamming window
with a size of 2048 samples (43 ms) and a hop size of 1024 sam-
ples (21 ms) was used. The resulting spectrograms were divided
into sequences with a certain number of frames defining the se-
quence length. For the creation of the sequences an overlap of 50 %
was used. The sequence length can vary depending on the different
models generated by the genetic algorithm.

Due to the stochastic behaviour of the algorithm, two indepen-
dent sessions of 10 cycles each were initially completed. After-

160

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

wards, the best 30 models from each of these sessions were added
to the initial population of a final third session. This approach re-
sults in a population with a higher initial fitness while keeping a
certain degree of diversity. In order to speed up the process as a
whole, several computers were connected in a client-server concept
manner. The server distributes the genotypes from the current cy-
cle population to all available clients, on which side the decoding
takes place. Altogether, 15 clients, each equipped with an NVIDIA
GTX 1060 graphic card, were available for the NN training process.
Therefore, depending on the current population size, complexity of
the genomes and number of available clients a cycle took around
two to three hours. Overall the elapsed wall time was roughly 120
hours, 87 hours if excluding the two initially completed sessions.

At the end of the final session, the best NN was used for clas-
sification. In addition, an ensemble learning strategy was pursued.
From a cycle the 10 best individuals could also be selected to vote
together on the class of an audio sample. Individuals in higher ranks
have more votes to weight them higher. Finally, the class with the
most votes wins. In this paper this type of classification is referred
to as population vote.

4.2. Results

Table 1 illustrates the final results. At the end our best CNN (”Deep-
SAGA CNN”) reached an average accuracy of 72.8 % on the test
subset of the development dataset. For the population vote (”Pop.
vote”) strategy, on the other hand, an average accuracy of 74.7 %
was reached.

Scene label DCASE2018
Baseline

DeepSAGA
CNN Pop. Vote

Airport 72.9 % 84.9 % 85.7 %
Bus 62.9 % 63.2 % 67.4 %

Metro 51.2 % 71.3 % 71.6 %
Metro station 55.4 % 75.3 % 81.9 %

Park 79.1 % 81.0 % 82.2 %
Public square 40.4 % 53.2 % 56.0 %
Shopping mall 49.6 % 75.3 % 73.8 %
Street, pedest. 50.0 % 67.2 % 69.6 %
Street, traffic 80.5 % 85.0 % 86.2 %

Tram 55.1 % 72.0 % 72.4 %
Average 59.7 % 72.8 % 74.7 %

Table 1: The class-wise accuracy for task 1 subtask A evaluated on
the test subset of the development dataset.

Nr.1

Input: (48x100)
Chrom-Count: 2 Last-Layer: GAP

BN: True
Act-Fun: Softmax
Dropout: 0.3
Neurons: 10

ES-Patience: 39
ES-Min-Delta: 0.001
CLR-Step-Size: 4
CLR-Mode: Triangular
CLR-Base-Lr: 0.001
CLR-Max-Lr: 0.333
SGD-Mom: 0.232
Batch-Size: 126
Seq-Length: 48
Seq-Hop-Length: 24

Cross-Chance: 0.1
Mut-Chance: 0.2

Zero-Padding: (1x1)
BN: True
Dropout: 0.0
Conv: 50, (3x16), (1x6)
Max-Pool: (13x2), (1x1)

Gene-Bundle-0

Zero-Padding: (2x1)
BN: False
Dropout: 0.0
Conv: 163, (7x12), (1x1)
Max-Pool: (2x2), (1x1)

Gene-Bundle-1

Figure 4: Best genome of the session. GAP: Global-Average-
Pooling; BN: Batch-Normalization. The numbers in the brack-
ets are the filter size and the filter stride for the convolutional and
max-pooling layers and the first number for the convolutional layer
stands for the number of filters.

Audio­Input
(48x100)

Zero­Padding
(1x1)

Batch­
Normalization

Conv
(50, (3x16), (1x6))

Max­Pool
((13x2), (1x1))

Zero­Padding
(2 x 1)

Max­Pooling
((2x2), (1x1))

Global­
Average­
Pooling

Batch­
Normalization

Dropout
(0.3)

Dense
(Softmax, 10)

Conv
(163, (7x12), (1x1))

Figure 5: Architecture of ”DeepSAGA CNN”.

The genome of the ”DeepSAGA CNN” can be seen in Figure 4.
Figure 5 displays the generated architecture (taking its genome into
account) of said CNN. The used hyperparameters can be found in its
Training-Parameters-Chromosome, which is visible in Figure 4

5. DISCUSSION AND CONCLUSION

In this paper, we described how we developed a genetic algorithm
called DeepSAGA to automatically generate CNNs from scratch.
Once a session is started, it can be left unattended and offers a se-
lection of NNs after it terminated. We used the DCASE 2018 Chal-
lenge as an opportunity to evaluate our algorithm for its competitive
ability. With an accuracy of 74.7 % on the test subset the algorithm
showed promising results with this specific dataset.

Our investigations throughout an entire session showed that the
inclusion of hyperparameters in the search process was an important
decision. With regard to their hyperparameters, it often happened
that a clone differed (only in its Training-Parameter-Chromosome)
from its original only in a few places, but still led to a clear differ-
ence in their accuracy. These observations suggest that architectures
probably only work well with certain hyperparameter constellations
and hyperparameters only with certain architectures.

Throughout the sessions, the approach of population vote re-
sulted in a higher accuracy than that of the best model of the cor-
responding cycle. A possible reason for that, could be the nature
of the population vote itself. Selecting the 10 best CNNs from a
cycle, results in predicting with different suitable architectures and
hyperparameters simultaneously, while weighting the votes of mod-
els with a better fitness higher. Thus, leading to a better overall
accuracy as they counterbalance their weaknesses. However, there
were fluctuations in the accuracy difference.

In each of our generated CNNs, the ”public square” class al-
ways proved to have the lowest detection rate. This phenomenon
is also reflected in the baseline. A closer look revealed that this
class is often mistakenly recognized as a ”shopping mall” or ”street
traffic”. In all of these classes background talking is existing and
except for the shopping mall traffic noise is involved. Except for
adding additional data in future work it could be researched how
the evolutionary algorithm could be improved to especially handle
the problem with such classes.

Currently DeepSAGA is limited in that way that the architec-
ture after the input layer consists of a series of convolutional layers
followed by a series of dense layers. This limitation means that an
architecture such as a convolutional layer followed by a dense layer
followed by a convolutional layer cannot be created. Additionally,
architectures with recurrent layers were not included. Both addi-
tions could increase the classification accuracy but also introduce a
vast of new parameters that have to be tested by the algorithm if no
restrictions are made.

The approach of DeepSAGA is generic and not limitied to au-
dio. Nevertheless, in the future further investigations are required
to evaluate its performance with other types of data and data sets
so that it can be further optimized to get nearer to the goal to make
handcrafted NN architectures obsolete.

161

Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

6. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection.”
IEEE, 2016, pp. 1128–1132. [Online]. Available: http:
//ieeexplore.ieee.org/document/7760424/

[2] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “DCASE 2017 challenge
setup: Tasks, datasets and baseline system,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), 2017, pp. 85–92.

[3] M. Kim and L. Rigazio, “Deep clustered convolutional
kernels,” vol. abs/1503.01824, 2015. [Online]. Available:
http://arxiv.org/abs/1503.01824

[4] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empiri-
cal exploration of recurrent network architectures,” in Inter-
national Conference on Machine Learning, 2015, pp. 2342–
2350.

[5] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau,
M. Jaderberg, M. Lanctot, and D. Wierstra, “Convolution
by evolution: Differentiable pattern producing networks,” in
Proceedings of the Genetic and Evolutionary Computation
Conference 2016, ser. GECCO ’16. ACM, 2016, pp.
109–116. [Online]. Available: http://doi.acm.org/10.1145/
2908812.2908890

[6] G. Morse and K. O. Stanley, “Simple evolutionary op-
timization can rival stochastic gradient descent in neural
networks,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference 2016, ser. GECCO
’16. ACM, 2016, pp. 477–484. [Online]. Available:
http://doi.acm.org/10.1145/2908812.2908916

[7] G. F. Miller, “Designing neural networks using genetic algo-
rithms.” 1989.

[8] K. O. Stanley and R. Miikkulainen, “Evolving neural net-
works through augmenting topologies,” vol. 10, no. 2, pp. 99–
127, 2002.

[9] C. Kroos and M. Plumbley, “Neuroevolution for sound
event detection in real life audio: A pilot study,” in
DCASE 2017, T. Virtanen, A. Mesaros, T. Heittola,
A. Diment, E. Vincent, E. Benetos, and B. Elizalde, Eds.
Tampere University of Technology, 2017. [Online]. Available:
http://epubs.surrey.ac.uk/842496/

[10] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
J. Tan, Q. Le, and A. Kurakin, “Large-scale evolution
of image classifiers,” 2017. [Online]. Available: https:
//arxiv.org/abs/1703.01041

[11] A. Martn, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo,
and D. Camacho, “EvoDeep: A new evolutionary approach
for automatic deep neural networks parametrisation,” vol. 117,
pp. 180–191, 2018.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” vol. 323, p.
533, 1986. [Online]. Available: http://dx.doi.org/10.1038/
323533a0

[13] A. Eiben and J. Smith, Introduction to Evolutionary
Computing, ser. Natural Computing Series. Springer Berlin
Heidelberg, 2015. [Online]. Available: http://link.springer.
com/10.1007/978-3-662-44874-8

[14] T. Bäck and A. E. Eiben, “An emperical study on GAs
without parameters,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2000, pp. 315–
324. [Online]. Available: https://link.springer.com/chapter/
10.1007/3-540-45356-3 31

[15] T. Bäck, “The interaction of mutation rate, selection, and self-
adaptation within a genetic algorithm.” in PPSN, 1992, pp.
87–96.

[16] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” 2018.
[Online]. Available: http://arxiv.org/abs/1807.09840

[17] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python,” in Proceedings of the 14th python
in science conference, 2015, pp. 18–25. [Online]. Available:
http://www.academia.edu/download/40296500/librosa.pdf

162

