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Abstract: Deep neural networks are successfully used for
object and face recognition in images and videos. In order
to be able to apply such networks in practice, for exam-
ple in hospitals as a pain recognition tool, the current pro-
cedures are only suitable to a limited extent. The advan-
tage of deep neural methods is that they can learn com-
plex non-linear relationships between raw data and tar-
get classes without limiting themselves to a set of hand-
crafted features provided by humans. However, the disad-
vantage is that due to the complexity of these networks, it
is not possible to interpret the knowledge that is stored in-
side the network. It is a black-box learning procedure. Ex-
plainable Artificial Intelligence (AI) approaches mitigate
this problem by extracting explanations for decisions and
representing them in a human-interpretable form. The aim
of this paper is to investigate the explainable AI methods
Layer-wise Relevance Propagation (LRP) and Local Inter-
pretable Model-agnostic Explanations (LIME). These ap-
proaches are applied to explain how a deep neural net-
work distinguishes facial expressions of pain from facial
expressions of emotions such as happiness and disgust.

Keywords: Explainable artificial intelligence, deep learn-
ing, emotion recognition, pain recognition.

Zusammenfassung: Tiefe neuronale Netze werden erfolg-
reich für die Objekt- und Gesichtserkennung in Bildern
und Videos verwendet. Die derzeiten Ansätze sind jedoch
nur begrenzt in der Praxis, zum Beispiel zur Schmerz-
erkennung, verwendbar. Der Vorteil von Deep Learning
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Methoden liegt darin, dass sie in der Lage sind, kom-
plexe, nichtlineare Zusammenhänge zwischen Rohdaten
und Zielklassen zu lernen, ohne dass sie auf händisch
durch Menschen generierte Merkmale angewiesen sind.
Der Nachteil dieser Netzwerke besteht darin, dass sie sehr
komplex sind und daher für Menschen schwer zu verste-
hen ist, warum das Netz zu seiner Entscheidung gekom-
men ist. Man bezeichnet diese Netzwerke deshalb auch
als black-boxes.Methoden der erklärbaren künstlichen In-
telligenz (AI) nehmen sich diesem Problem an, indem sie
Erklärungen für Entscheidungen generieren und diese für
Menschen in einer interpretierbaren Form darstellen. Das
Ziel dieses Artikels ist es, die erklärbaren AI Methoden
Layer-wise Relevance Propagation (LRP) und Local Inter-
pretable Model-agnostic Explanations (LIME) zu nutzen,
um die Entscheidungen eines tiefen neuronalen Netzes zu
erklären, dass schmerzhafte Gesichtsausdrücke von Freu-
de und Ekel darstellenden Gesichtern unterscheidet.

Schlagwörter: erklärbare künstliche Intelligenz, Deep
Learning, Emotionserkennung, Schmerzerkennung.

1 Introduction

Facial expressions are one of the most important human
non-verbal signals in interacting with other people and
thus contribute to the emergence and maintenance of so-
cial relationships [9]. One of the tasks of facial expressions
is to communicate emotions [2, 8]. This is of particular im-
portance when people are unable to express themselves
using speech (e. g., because of illness, accidents or con-
genital disabilities). For this reason, nursing staff in clinics
and care facilities are required to observe patients closely
in order to be able to read their emotions and take action, if
necessary. Due to the already significantly high number of
patients, especially in nursing homes, and the prognosis
that more and more people will be cared for in such facili-
ties in the future, it would be beneficial to deploy a system
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to support the nursing staff tomonitor a patient’s facial ex-
pressions and alert them when a pain episode is detected.
Additionally, humans often have problems in differentiat-
ing betweenpain andother facial expressions [3, 6]. There-
fore, in addition to the (classical) exploration of emotions
in a psychological context, research into a technical so-
lution for distinguishing emotions and pain has gained
greater importance in the last decade. A system, which
uses explainable AI methods to describe how pain differs
from other emotions, can be used to train nursing staff to
improve their ability to recognise pain correctly.

Towards this goal, in this paper we examine and ap-
ply the LRP [4] and the LIME method [21] to explain the
decisions made by a deep Convolutional Neural Network
(CNN) that is trained to distinguish facial expressions of
pain, happiness, and disgust.

2 Related work

One of the deep learning architectures that has been suc-
cessfully applied to image processing applications is CNN
[15], which processes images in a hierarchicalmanner [19].
Compared to approaches based on explicit facial activ-
ity descriptors [27], the features of deep learning do not
have to be handcrafted. Instead, the system learns the fea-
tures by itself by projecting information from bitmaps into
so-called convolutional layers. They can learn non-linear
relationships to model dependencies among the features
[23]. One disadvantage is that deep learning approaches
require a lot of sample data to extract features [14]. This
problem can be reduced by data augmentation methods
suchasflippingor rotation. Theother disadvantage is that,
due to its complexity, it is no longer comprehensible for
humans, what the network has learned and what it bases
its predictions on. In a practical application, it could be
shown that these systems were not going to be accepted,
because people do not blindly trust a system which they
do not understand [12]. Therefore, techniques that make
the black-box learning comprehensible to humans are nec-
essary. One of these techniques for explaining the black-
box deep learning is called Layer-wise Relevance Propa-
gation (LRP), which explains the network’s decisions by
pixel-wise decomposition [4]. In facial image analysis, LRP
can be used to explain which pixels were important for
the decision of the network. For this, LRP decomposes the
output of the model’s decision function f (e. g., a classi-
fication result), given an input x [13]. This decomposition
provides relevance values Rp for each component p of x

such that ∑p Rp = f (x). When applying LRP, different pa-
rameters can be set to improve the resulting heatmap. In
some cases, the resulting relevance scores for each pixel
generated by LRP can take on unbounded values [4]. To
adjust and stabilize the relevance scores, an ε value can
be used. Additionally, α and β values can be applied for
stabilization. Besides the stabilizing effect, α and β values
can be used to visualize positive and negative relevance-
activations of pixels [4]. With different values for α and β,
the strength of the influence of positive (α) and negative
(β) portions can be controlled [4, 17]. Besides these pa-
rameters, Kohlbrenner [11] showed that a ‘preset’ variant
of the LRP algorithm achieves optimal results in the calcu-
lation of relevance maps. Using the preset approach, the
relevance scores for all neurons of the lowest (first) layer
areuniformlydistributed to the input neuron insteadof us-
ing the α and β values [13]. To control the resolution of the
heatmaps generated by LRP, Bach et al. [5] describes an ap-
proach for ‘mapping influence cut-offpoint’. This point de-
scribes themoment fromwhich the forwardmapping func-
tion of the classifier no longer influences relevance propa-
gation, since only the receptive field of the classifier is rel-
evant. The cut-off at this point is called the ‘flat’ rule. The
reference of a receptive field is adapted from neuroscience
[10]. In a CNN, the convolutional and pooling layers are in-
spired by the biological receptive field [14].

Another approach to visualize predictions of a clas-
sifier is LIME [21]. This approach differs from the previ-
ously described LRP architecture in that it can be applied
to different machine learning classifiers, whereas LRP is
optimized for deep learning architectures and needs to be
adapted for other machine learning approaches. In order
to visualize the prediction of different classification meth-
ods for a given image, LIME learns an interpretable model
locally around the prediction. The generated explanation
is therefore not a description for the entire model, but for
the instance (e. g. image shown) that is presented to the
model. For this purpose, LIME divides the image, denoted
as x ∈ ℝd, to be classified into superpixels using a segmen-
tation algorithm. LIME then creates a permuted dataset
of the original image by greying out random superpixels.
LIME uses a binary vector x� ∈ {0, 1}d

�
as interpretable rep-

resentation of the image classification. 1 stands for an orig-
inal superpixel, while 0 stands for a greyed out superpixel.
The images of the permuted dataset are then presented
to the classifier. For the resulting prediction of the classi-
fier, K features (superpixels) are extracted, which gener-
ate the maximum likelihood for the predicted class. The
selection of the K features is calculated using a variation
of the Lasso algorithm [7] and then theweights are learned

Bereitgestellt von | Universitaetsbibliothek Augsburg
Angemeldet | katharina-blandina.weitz@stud.uni-bamberg.de Autorenexemplar

Heruntergeladen am | 19.12.19 10:18



406 | K.Weitz et al., Deep-learned faces of pain and emotions

using the least squares method. This procedure is named
K-LASSO [21].

3 Research questions

Answers should be found for the following research ques-
tions for automatic pain classification to become applica-
ble in real-life settings:
– Predictive performance: How well can facial ex-

pressions of pain be automatically distinguished from
those of disgust and happiness using self-learned spa-
tial features?

– Decision interpretation: How can the decisions
made by the model be presented to people in a com-
prehensible and transparent way?

– Feature explanation: How do the self-learned fea-
tures differ for the facial expressions of pain and those
of disgust and happiness?

This paper1 would like to provide answers of the questions
above. For this, a pre-trained VGG-Face model [18] imple-
mented with the Keras framework was finetuned to dis-
tinguish pain from happiness and disgust. For the fine-
tuning, images of theBioViddataset2 [26]were used. Then,
the Keras implementation of the LRP approach3 [1] was
used to generate heatmaps at pixel level to illustratewhich
pixels were relevant for the classification by the VGG-Face
model. For LIME, the Keras implementation4 of Ribeiro
et al. [20] was used. In a further step, heatmaps were gen-
erated from images of the UNBC-McMaster shoulder pain
expression archive database [16] and Actorstudy dataset5

in order to examine the generalization performance of the
network.

4 Material & procedure

The procedure of this study consisted of the following
steps: First, data preparation was done on the BioVid

1 This paper is based on the master’s thesis of the first author
submitted on August, 31, 2018 to the University of Bamberg. On-
line link: https://www.uni-bamberg.de/en/cogsys/research/theses/
advised-theses/
2 http://www.iikt.ovgu.de/BioVid.html
3 https://github.com/albermax/innvestigate
4 https://github.com/marcotcr/lime
5 Unpublished facial expression dataset from Intelligent Systems
Group, Fraunhofer IIS, Erlangen.

dataset [26]. After that, the VGG-Face CNNmodel was fine-
tuned for the three-class problem of distinguishing pain
from happiness and disgust.

In the data preparation step, frames were extracted
from the video sequences of pain, happiness, and dis-
gust in the BioVid dataset [26].The BioVid dataset con-
tains video sequences of participants who feel pain and
emotions (happiness, sadness, anger, disgust, fear, and
neutral). Pain was induced on the right arm using a ther-
mode. For the emotion induction, the International Affec-
tive Picture System (IAPS) was used. The IAPS pictures
were shown to the participants. To finetune the VGG-face
model, part A (pain stimulation without facial EMG) of the
BioVid dataset was used for the classification of pain. For
the classification of disgust and happiness, frames from
video sequences in part D (posed pain & basic emotions)
of the BioVid dataset were used. The video sequences for
the pain condition are each 5 seconds long (24,012 frames),
the video sequences for the emotions are each 1 minute
long (114,076 frames for disgust and 112,575 frames for hap-
piness). The dataset was balanced by manually selecting
3 × 107 frames from each of the happiness and disgust
sequences. One subject in the condition ‘disgust’ turned
away from the camera and talked to the study leaders and
showed no disgust expression. This subject was removed
from the dataset. In Table 1, the amount of frames selected
for each class after the data cleaning steps is provided.
This subset of the BioVid dataset was then used to fine-
tune VGG-Face. For the implementation, Tensorflow (ver-
sion 1.8) andKeras (version 2.2.0)were used. These are two
open source platforms that provide tools and libraries for
machine learning. After that, the explainable AI methods
LRP and LIME were applied to generate visualisations for
decision interpretation and feature explanation. For LRP,
the Keras implementation from [1] was adapted. For LIME,
also a Keras implementation6 was used.

Table 1: Extracted BioVid data after data cleaning steps.

Part Name Subjects Frames

Part A Pain intensity 3 87 12,006
Pain intensity 4 87 12,006

Part D Disgust 75 24,075
Happiness 75 24,075

6 https://github.com/marcotcr/lime
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5 Results
The VGG-Face CNN was fine-tuned and tested using 5-fold
cross-validation. Here, 4 folds were used for training the
model and the remaining fold was used to test the model.
The process was repeated four times using a different fold
each time for testing. The best performing test fold had
an accuracy of 0.67 and was used for generating expla-
nations using the LRP method. In Table 2, the class-wise
performance of the best fold is presented.When looking at
the confusion matrix (see Figure 1), it becomes clear that
the CNN had problems to classify happy faces as happy.
28% of the happy images were classified as pain. To take
a closer look at this problem, the LRP approach was used.
It was used to get an insight into the pixel-related areas of
the image which were important for decisions of pain and
happiness. To gain this insight, two test images from the
pain category were selected from the BioVid test fold. In
Figure 2, the first image displays the subject experiencing
pain intensity 3, and in the second image the same per-
son experiencing pain intensity 4. The first label above the
image refers to the true class, and the second label to the
predicted class.

Table 2: Class-wise results of the best performing fold.

Precision Recall F1-score #Images

Pain 0.62 0.69 0.66 4692
Disgust 0.70 0.73 0.71 4815
Happiness 0.67 0.57 0.62 4815
Average/Total 0.67 0.66 0.66 14322

Figure 1: Confusion matrix (without normalization) for the best test
fold of the 5-fold cross-validation. 28% of the images showing hap-
piness were classified as pain.

Figure 2: Original image from the test fold of the BioVid dataset.
First label indicates the true class, second label indicates the pre-
dicted class.

In Figure 3, the visualization generated using LRP
with different parameters are shown. In LRP-Z, the ba-
sic LRP approach without stabilizers is applied. Here, a
face is roughly recognizable. The noise due to the absence
of stabilizers is present. In comparison to the basic LRP
approach (LRP-Z), much less noise is represented using
the LRP-Epsilon method. In the visualizations using LRP-
PresetAFlat andLRP-PresetBFlat, redpixels indicate a pos-
itive contribution to the predicted class, and blue pixels in-
dicate a negative contribution. In comparison to the LRP-Z
heatmap, the visualization of preset-flat variants aremuch
more detailed and clearer. In the two preset variants, it can
be observed that highly positive pixel values (represented
by a higher intensity of redness) are important for the deci-
sionof theCNN. It becomes apparent thatwith the increase
of the α value (LRP-PresetAFlat), the positive pixel values
become more prominent. With the increase of the β value
(LRP-PresetBFlat), the intensity of the blue pixels becomes
more visible. When looking at the LRP PresetAFlat visual-
ization, it can be seen that mostly the same areas in the
face, namely the eyes, the nose and the mouth contribute
to the classification of happiness and pain. This could be
an indicationwhy the accuracy of the CNN is not very high.
When looking at the LRP PresetBFlat, slight differences in
the contribution of negative pixels for the classification are
visible. For pain, more negative pixels around the nostrils
and on the lower side of the eyebrows are detectable on the
heatmaps.

In comparison, the visualizations generated with
LIME show no fine-grained details but instead, coarse-
grained details in the form of the importance of certain su-
perpixels. On image (1) and (2) of Figure 4, the five most
important positive superpixels are presented.7 It can be

7 In the case of neighbouring relevant superpixels, LIME represents
these as a related area.
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Figure 3: Visualizations for applying LRP method with different parameters on two pain images. First label indicates the true class, sec-
ond label indicates the predicted class. The heatmap generated with the basic LRP approach (LRP-Z) is displayed in subimages (1) and (2).
Subimages (3) and (4) display the heatmap generated with the LRP-PresetAFlat variant. Subimages (5) and (6) display the heatmap gener-
ated with an ε stabilizer applied to LRP-Z. Subimages (7) and (8) are the results of applying LRP-PresetBFlat. The visualizations correspond
to the predicted class.

Figure 4: Visualizations for applying the LIME method on two pain images. First label indicates the true class, second label indicates the
predicted class. The superpixel generated in subimages (1) and (2) represent the five most relevant superpixels. Subimages (3) and (4) rep-
resent the five superpixels which are most relevant to improve the classification (green) or make the classification result worse (red). The
visualizations display the predicted class.

seen that, in (1) the area between the eyes is important.
Important superpixels can also be found outside the face.
On subimage (2), parts of the nose and eye are important.
Here too, areas outside the face are displayed as relevant
for thenetwork. The subimages (3) and (4) of Figure 4 show
the five most important positive or negative superpixels,
represented as red or green superpixels, respectively. Red
superpixels stand for areas of the image thatmake the clas-
sification worse, green superpixels for areas that are con-
ducive to the classification. Again in subimage (4), it can
be seen that part of the neck is highlighted as supportive
for the classification.

Besides test images from the BioVid dataset, im-
ages from the UNBC-McMaster shoulder pain expression
archive database for pain were used for visualization us-
ing the LRP method (see right part of Figure 5) and the

LIME method (see Figure 6). For happiness and disgust,
images from the Actorstudy dataset were used. The classi-
fication results for the subimages in Figure 5 showing emo-
tion (from (1) to (4)) and the subimage (5) showing pain are
correct. A misclassification can be seen in subfigure (6).
Here the pain image is classified as disgust.

The visualizations using the LRP-PresetAFlat ap-
proach are shown on the right part in Figure 5. Here it can
be seen that for happiness, the eyes and themouth are im-
portant areas for the classification. For disgust, the focus
lies on the nose and the eyes. This could be a reason that
the pain image (subimage 6) was misclassified as disgust.
For pain, the nostrils seem to be important.

When looking at the visualizations generated by LIME
(see Figure 6), the visualizations of the emotional expres-
sions seem to be consistent with what one would expect.
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Figure 5: Left: Input images 1–4 from Actorstudy dataset and images 5 & 6 from the UNBC-McMaster shoulder pain expression archive
database (©Jeffrey Cohn) to visualize LRP approach. Right: Visualizations for applying LRP PresetAFlat method. The visualizations display
the predicted class. First label refers to the true class, second label refers to the predicted class.

For disgust, areas of the nose are relevant, for happiness,
the mouth shaped for laughter and areas around the eyes
are important. It can be seen that areas of the background
are not conducive to the emotion classifications. The vi-
sualizations of the pain images are less coherent. In sub-
figure (5) of Figure 6 it can be seen that areas of the face
deteriorate the classification, while an area of the hair im-
proves the classification of pain. In subfigure (6), the clas-
sification of disgust is promoted due to the wrinkled nose.
The areas of the hair are relevant for the classification.

6 Discussion

For the topic of predictive performance, this paper
shows that the CNN could distinguish images of pain, dis-
gust, and happiness only with an accuracy of 67%. Above
all, happy faces were often misclassified as faces of pain.

For the part ofdecision interpretation, LRP is a help-
ful tool to generate a fine-granular heatmap of relevant

pixels. Theusageof LRPwith its variousparameters allows
a wide range of adjustments. The results presented here
for the categorization of pain, disgust, and happiness rep-
resent only an initial step into the research of making de-
cisions of black-box systems comprehensible for humans.
Lapuschkin et al. [13] already investigated the application
of LRP for the recognition of age and gender from images
of faces. They could show that the visualizations of rele-
vant pixels allow an interpretation of the relevant facial
areas to classify age and gender. However, when looking
at facial expressions of happiness, pain, and disgust it be-
comes clear that pixel activation alone cannot yet provide
a clear difference between the predicted classes for the hu-
man eye. Therefore, for the topic of feature explanation,
the relevant features for the classification are not easy de-
tectable by humans. The visualizations generated by LIME
are coarse-granular compared to LRP. This makes it eas-
ier to identify relevant areas on the face. The size of the
superpixels varies from image to image due to the seg-
mentation algorithm used. Therefore, the relevant super-
pixels differ from image to image. This makes it difficult
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Figure 6: Visualizations by applying LIME method. The visualiza-
tions display the predicted class. First label refers to the true class,
second label refers to the predicted class.

to compare the individual images. In the LIME visualiza-
tions, it becomes clear that the network pays attention to
areas outside the face. Additionally, in the pain images
of the UNBC-McMaster shoulder pain expression archive
database, areas of the hair are considered relevant. This
partly explains the poor classification capabilities of the
fine-tuned VGG-Face CNN. The classification accuracy of
67%must be taken into account when looking at the visu-
alizations.

Montavon et al. [17] describe some practical recom-
mendations to improve the visualizations generated by
the LRP method: using dropout as regularization tech-
nique, preferring sum pooling, instead of max pooling
and not using too many fully connected layers in the net-
work (whereas no definition is given for what is meant by
‘many’). In the case of LIME, one could try different seg-
mentation algorithms to generate superpixels to improve
the visualizations.

Nevertheless, additional information is needed for
a clearer interpretation [24]. Future research approaches
may focus on the implementation of such additional infor-

mation sources. Additional sources of information could,
for example, take the form of linguistic information, the
form of uncertainty formulations (e. g., pixel activations
for happiness have an uncertainty value of 20 out of 100,
while pixel activations for pain have an uncertainty value
of 90 out of 100) or the form of paralinguistic information
such as loudness, pitch, laughter, sighs, and crying. Lin-
guistic information can on the one hand emphasize the fo-
cus of relevant areas (e. g., ‘In this image, the eyes are im-
portant for the classification of happiness’). On the other
hand, linguistic information can also help to clarify spe-
cific characteristics of features (e. g., ‘The lids have to be
tightened for the classification of pain’) [22]. Due to the
special requirements in clinics and care facilities, where
verbal expressions of patients in form of speech are often
not possible, paralinguistic information besides facial ex-
pressions are relevant. A promising progress of deep learn-
ing approaches in the field of paralinguistic recognition
tasks is detectable, especially in the task of recognizing
affective states of disabled persons and infants [25]. The
combination of linguistic information to understand vi-
sual explanations with multimodal information like par-
alinguistics constitute an approach to develop an informa-
tive and interpretable system. Only when such a system is
archived, can a comprehensive application in real-life be
considered.
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