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Adapting a Robot’s Linguistic Style Based on Socially-Aware
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Abstract— When looking at Socially Interactive Robots,
adaptation to the user’s preferences plays an important role
in today’s Human-Robot Interaction to keep interaction in-
teresting and engaging over a long period of time. Findings
indicate an increase in user engagement for robots with adaptive
behavior and personality, but also that it depends on the task
context whether a similar or opposing robot personality is
preferred. We present an approach based on Reinforcement
Learning, which gets its reward directly from social signals
in real-time during the interaction, to quickly learn about
and dynamically address individual human preferences. Our
scenario involves a Reeti robot in the role of a story teller talking
about the main characters in the novel “Alice’s Adventures in
Wonderland” by generating descriptions with varying degree
of introversion/extraversion. After initial simulation results, an
interactive prototype is presented which allows to explore the
learning process adapting to the human interaction partner’s
engagement.

I. INTRODUCTION

With Socially Interactive Robots becoming more and more
important in many research areas such as education, health
and elderly care or in the context of domestic companions,
creating customized and individualized interaction tailored
to the human is one important challenge to increase robot
acceptance. In the long run, a relationship between user and
robot should be established, which is more likely to be achie-
ved if the robot is equipped with a compelling personality,
as this makes interaction more interesting and desirable [7]].
However, there are different findings regarding personality
preferences: research done by Aly and Tapus [1] indicates
that adaptation of the robot’s to the human’s personality
profile makes interaction more engaging and that humans
prefer robots with similar personality [6], [S] to their own.
In contrast, results by Joosse et al. [12] indicate that the task
context plays a key role for giving an answer on whether
a similar or opposing personality is preferred. Thus, it is
not easy to tell which personality a robot should express in
a given interaction scenario as this may depend on several
factors, including the task itself and the user’s preferences,
which may also change over time.

To address this problem and to equip the robot with a
personality tailored to the individual user’s needs, this work
proposes an autonomous learning process to find and adjust
the optimal robot personality automatically, as, in general,
adaptation is required to keep interaction engaging [27].
Several requirements have been taken into account: the
process needs to run in real-time without any additional
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interaction as well as be unobtrusive to not disrupt the actual
interaction, it should work in many application scenarios and
also adapt accordingly if the human’s preferences change.

While humans do not switch their personality in a very
short time, they are able to a certain extent to portray a
particular personality trait if required. For example, introvert
persons may express enthusiasm in a similar way as extravert
persons in order to advance their projects [17]. In a similar
manner, the robot should be able to adapt its behavioral style
if the situation calls for it.

A key challenge when implementing adaptation in Human-
Robot Interaction (HRI) is to get feedback from the user
to evaluate the robot’s behavior. This is done in human-
human interaction subliminally all the time by interpreting
and reacting to gestures, mimics and other social signals
expressed by the dialog partner. For a robot, it is much
more complicated to get significant information suitable as
an indicator on whether its behavior is pleasing, interesting,
supportive or engaging for the user. Thus, many adaptation
approaches rely on task-related information like the user’s
performance in a learning scenario to customize the robot’s
behavior. However, in some applications, there is no such
relatively easy measurable data, especially when no explicit
interaction goal exists, e.g. when the user does not have
to solve a task like learning vocabularies or performing an
exercise. As an example, the presented application at hand
involves a Reeti robot which acts as story teller talking about
characters in the novel “Alice in Wonderland” while the
human is primarily listening.

To solve this problem, our adaptation approach combines
traditional Reinforcement Learning (RL) [25] with sublimi-
nal feedback from the human: social signals. RL is used for
real-time learning about the optimal robot personality and
adapting to the desired profile over time instead of asking
the user explicitly, sticking to a fixed personality or relying
on mirroring the (opposite) user profile. The reward signal
required for RL comes directly from the user’s engagement,
which is estimated based on multimodal social signal data.

This paper includes simulation results as well as an
interactive human-robot dialog prototype to explore the adap-
tation process. A Reeti robot acts as story teller talking about
characters in the novel “Alice in Wonderland”. The robot’s
personality is expressed via linguistic style by generating
utterances with varying amount of extraversion in real-time
using Natural Language Generation (NLG). Based on the hu-
man’s social signals, the online learning process controls and
optimizes the robot’s personality to keep the user engaged.

In section [Tl we discuss related work covering the com-



bination of social signals or rather personality and RL for
adaptation in the context of HRI. Section explains how
the learning process works and how the RL task is modeled,
as well as initial simulation results. Subsequently, section
presents details on the prototype including sensing user
engagement and NLG.

II. RELATED WORK

In HRI, adaptationﬂ may tackle different goals and address
varying aspects of an interaction, for example learning long-
term adaptation with focus on empathic supportive strate-
gies [16] or affective behavior of a tutoring robot [L1],
adapting personality in the assistive domain for post-stroke
users [28] or children with autism [18], where the system
also has to be able to deal with the user’s disabilities. While
RL is often used as a learning framework, research that
incorporates human social signals in the learning process,
e.g. as a reward signal, is scarce. In this section, related
work using RL in combination with social signals as well as
adaptation of personality is discussed.

Liu et al. [18] use RL in the context of a basketball game
for children with autism spectrum disorder. They adapt the
robot’s behavior to the child’s affective state. To this end,
the predicted liking level of the robot’s behavior, which is
estimated based on physiological signals, is used as a reward
function. QV-Learning [31] was selected for RL.

Ferreira and Lefevre [9] promote the concept of socially
inspired rewards for online RL in a robot Dialog Mana-
gement scenario. They suggest the use of human behavior
cues as an additional reward signal at each dialog turn
to speed up the policy optimization process and to enable
adaptation to different users. This shaping reward, which
is based on user appraisal, is added to the environment
reward. In consequence, the reward signal is a combination
of task-related data and human social signals. Throughout
their experiments, the authors do not use real social signals,
but a five-star rating bar on the user interface as workaround.
Kalman temporal differences [10]] is used for RL.

Leite et al. [[16] use RL in the context of a chess compa-
nion for children which adapts its behavior to maximize the
child’s positive valence. The iCat robot learns the most ef-
fective empathic response depending on the child’s affective
state, which is determined by considering affective cues
(smile, gaze) and task-related features (game evolution, chess
board configuration from the child’s perspective). This data
allows to estimate the probability of positive feeling after
and before employing different supportive strategies. The
difference of those probabilities serves as reward for learning.
Similar to Ferreira et al. [9]], reward is a combination of
task-related information as well as human social signals. The
learning algorithm is based on n-armed bandit problems [25]].

I Adaptation does not necessarily involve learning: there is research using
robots in combination with social signals and/or biosignal information (such
as in [26])) where the robot reacts (e.g. with a supportive reaction) to human
behavior (e.g. a drop in user engagement) but does not learn its own behavior
(e.g. which of the possible reactions is the best for the particular interaction
partner). For the scope of this paper, we focus on work incorporating both
adaptation and learning for personalization purposes.

While the research discussed above defines rewards as a
combination of perceptible behavioral cues and task-related
information, there are also RL approaches that compute re-
wards on the basis of perceptible behavioral cues alone. The
later approaches are in particular suitable for applications in
which humans communicate with robots just for the sake of
interaction without a specific task in mind.

Gordon et al. [11] use RL in a student tutoring scenario
with a smartphone and the Tega robot to maximize long-
term learning gains. They estimate a child’s valence and
engagement based on facial expressions. Similar to Leite
et al. [16], Gordon et al. do not use posture or gesture
information. The state space includes the affective state of the
child (discretized valence and engagement) as well as task-
related information (whether the child interacted within the
last 5 seconds and whether the last response was correct),
while reward is based on child’s valence and engagement
only. By learning the robot’s verbal and non-verbal behavior,
the affective policy of the robot is personalized to the child.
Traditional SARSA algorithm [23] is used for RL.

Barraquand and Crowley [3] learn appropriate behavior
(politeness) depending on the current social situation. They
rely on tactile feedback for reward and punishment, which
can be triggered by caressing or tapping the AIBO robot’s
head or back. Classical Q-Learning [25], as well as multiple
modifications, are used as learning algorithms.

Kim and Scassellati [13] use prosodic feedback to teach
their Nico robot social waving behavior. The estimated
prosodic affect is used as reward signal (approving or disap-
proving). Q-Learning is used to learn the optimal amplitude
and frequency during waving of the elbow.

Mitsunaga et al. [22] realize adaptation of the Robovie-
IT robot’s behavior to individual preferences in terms of
interaction distance, gaze meeting, motion speed and timing.
Their reward function is based on small discomfort signals
from the human interaction partner, which are measured by
the human’s amount of movement and time spent gazing at
the robot. Overall goal of the learning process is to mini-
mize the user’s discomfort. Mitsunaga et al. use the Policy
Gradient Reinforcement Learning (PGRL) [15] algorithm.

Tapus et al. [28] use RL for behavior adaptation of an as-
sistive therapist robot to the human’s preferences. The robot’s
personality is expressed in terms of extraversion/introversion
through vocal content and para-verbal cues. The authors use
PGRL to manipulate movement speed, interaction distance
and therapy style of the robot. Reward is calculated depen-
ding on the exercises performed throughout a time span, they
do not take social signals into account.

To our best knowledge, the only work using RL to learn
personality of a social robot is the one from Tapus et al. [28]],
where reward is calculated based on task-related information.
However, the natural language utterances matching a particu-
lar personality style of the user have not been automatically
generated in real time. We are not aware of any work that
dynamically adapts linguistic style of a robot’s automatically
generated spoken utterances solely based on social signals
that are interpreted as a reward.



Our contribution explores and implements the concept
of reward based on social signals for real-time adaptation
and personalization in application scenarios with hardly
any measurable task-related information suitable as reward.
In our prototype, we rely on user engagement, which is
estimated by multimodal input including gesture and posture.

IIT. ADAPTATION PROCESS AND SIMULATION

There are five main requirements for our adaptation
process: 1. real-time (run in parallel to the interaction,
no waiting until the end to fill out a questionnaire, etc.)
2. no additional user interaction (e.g. rating current user
experience) 3. unobtrusiveness (human user should not notice
the existence of an adaptation process at all) 4. task-indepen-
dence (should not rely on information dependent on the task)
5. reaction to changes in human’s preferences over time.

We address the last requirement by using RL as a machine
learning framework (see below) and the first four by making
use of social signals for our adaptation approach. This data
occurs in real-time during interaction anyways, which allows
for adaptation without any extra effort which would interrupt
the current task. Another important fact is that social signals
are independent of the task. In their studies, Joosse et al.
found out that it may depend on the task context whether a
similar or opposing personality is preferred [12]. Since we
do not know which personality profile is appropriate in a
new application scenario without more ado, we do not stick
to one personality but let the robot find out on its own. Our
learning approach tries to maximize user engagement, which
is applicable to many human-robot scenarios.

Inspired by the ARIA-VALUSPA project [29], we deve-
loped a dialog scenario with a Reeti robot as interaction
partner that is able to hold a prolonged dialog with the
user about the novel “Alice in Wonderland” by Lewis Caroll.
Figure [I] illustrates the application: the robot presents facts
about the main characters to the human user. Its personality
is manipulated during interaction to find out whether the
user prefers an introvert or extravert robot. For this purpose,
descriptions are not predefined but generated by a NLG mo-
dule at runtime: facts from the book context are transformed
into utterances with varying amount of extraversion, one
of the “Big Five” [20] personality dimensions. In parallel,
social signals from the user are captured and analyzed with
the Social Signals Interpretation (SSI) framework, which
estimates current user engagement based on gesture, posture
and video information. Changes in user engagement serve as
reward signal for a RL process which optimizes the robot’s
personality to keep the user engaged.

RL is our algorithmic method of choice for learning about
and adapting to the human user’s personality preferences.
This is due to two facts: first, RL is able to react to and learn
about changes in human’s preferences. Second, when relying
on social signals, we have to handle different kinds of noise.
The sensing hardware itself is subject to physical restrictions
which limit the signals which can be perceived. Moreover,
the interpretation process of sensed data can only be an
approximation of the real user’s engagement. Finally, the
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Fig. 1: Adaptation process.

human’s reaction to the personality expressed by the robot
may vary from time to time as preferences may change, too.
By using RL, which is an unsupervised learning approach,
the robot is able to cope with this kinds of uncertainty. It
is independent of instructive feedback since it explores the
scenario autonomously based on trial and error.

A. Problem definition

From the perspective of the RL robot, goal of the adapta-
tion approach is to maximize user engagement. User enga-
gement at time ¢ is defined as F;. E; > 0 indicates that
the user is engaged, E; < O that he or she is not happy
with the interaction. Another important measurement is the
change of user engagement between two sequent points in
time ¢ — 1 and ¢, which is defined as AE; = E; — E,_;. This
value indicates by which the amount of engagement changed
during presentation of the last description. We expect an
increase in engagement, i.e. AF; > 0, when the description
was generated with a level of extraversion that is close to
the user’s actual preferences, and a decrease otherwise.

The robot’s extraversion is defined as X, a value discreti-
zed in the integer interval [—2; 4-2], which can be interpreted
as very introvert, introvert, neutral, extravert and very extra-
vert. X influences NLG parameters which cause the robot’s
utterances to be generated more introvert or extravert.

1) State space: The state space is kept as small as possible
to realize quick exploration and adaptation. It is build up
by two dimensions: estimated user engagement as well as
the robot’s current extraversion X, both integer values in
the interval [—2;42]. This allows the adaptation process to
learn about the relationship between the robot’s expressed
personality and the user’s engagement.

2) Action space: Since we concentrate on the extraver-
sion/introversion dimension of the robot’s personality, there
are three actions to control the robot’s personality: X can
be increased or decreased by one or remain untouched. This
limitation has two important advantages: 1. it prevents the
robot from changing X too fast, which would cause genera-
tion of very diverging descriptions in terms of linguistic style
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Fig. 2: Initial Q-Learning results.

within a very short time 2. it allows for faster learning since
there are only three instead of five actions (when extraversion
could be set to a specific value).

3) Reward: The reward signal for the adaptation approach
is derived directly from social signals. It is defined as the
change in user engagement A F; mentioned above. If AF} is
greater than zero, engagement increased during presentation
of the last description. Values smaller than zero indicate
that engagement decreased, which means that the robot gets
punished. The user’s choice when accepting or rejecting a
character suggestion does not influence the learning process
at all, reward is based on user engagement exclusively.

B. Experiments

We conducted initial experiments based on Q-Learning
with e-greedy exploration to simulate the learning process.
We use exploration rate € = 0.2 (high enough for handling
noise) and learning rate « = 0.5 (low enough to not eliminate
all previous knowledge in case of noise). The simulated
user’s engagement increases when the robot’s personality
matches the actual preferences and decreases otherwise.
Since such a deterministic user behavior is far from being
realistic, noise simulates random changes in user engagement
as well as deviations of the sensed from the real F; value
in each learning step. For AE; = 0, the robot gets a small
reward +0.5 for preventing a decrease of engagement.

Figure [2] plots the averaged reward for every simulation
step over 30 trials. Each trial corresponds to one unique
user interacting with the robot over 30 time steps. In each
trial, the robot presents 30 descriptions (30 learning steps)
to a simulated user. At the beginning of each trial, the robot
starts with neutral extraversion (X = 0) and an empty Q-
Learning table (non-episodic learning task). The simulated
user’s personality preferences are initialzed randomly for
each trial. To evaluate how much time is needed to adapt to
preference changes algorithmically, user preferences always
change at time step 15 and 26 during the experiments to a
random value. This represents a worst case scenario as we
expect preference changes to occur gradually over time in
real experiments. However, it shows the agent’s ability to
adapt to the new preferences after a temporary performance
loss. The initial random seed is the same for each noise
probability experiment (the black line only averages over the
30 trials with no noise at all, the blue one over those with
10 percent probability, etc.).

Kinect sensor

Speech recognition
(character selection)

Reeti robot

Fig. 3: Prototype scenario.

Without noise, learning is obviously quite robust. The
average reward approaches 0.5: when the robot’s extraversion
level X equals to the user’s preference, it learns not to
change X anymore. Negative rewards can be attributed
to exploration. Increasing noise leads to negative rewards
occuring more frequently. Even if the graph looks noisy at
first glance, it is important to notice that the averaged reward
rarely falls below zero and is positive nearly all the time as
long as there is not too much noise.

IV. PROTOTYPE

We built a live interaction prototype for the storytelling
application to test the learning approach with real users. Both
human user and robot sit opposite to each other (see figure[3).
In the beginning, when the user greets the robot, it presents
itself and suggests different characters to talk about. The user
accepts or declines the character by speech commands and
listens to the presented descriptions (see section [V-C). As
soon as there is no new information left about a character,
the robot suggests another character to continue.

During interaction, the user is captured with a Microsoft
Kinect 2 sensor to process the user’s social signals with the
SSI framework (see section [V-B). RL is identical to the
simulation with one exception: reward is calculated based on
the non-discretized floating point difference AF;, resulting
in a more precise reward based on real social signals.

A. Dialog Scenario

Figure [] illustrates the interaction between human user
and robot. Reeti suggests a character (e.g. “Shall I tell you
something about the white rabbit?”’) and waits for a response.
This process is repeated until the user accepts a character.
Then, from the perspective of the adaptation process, a
new time step ¢ begins. User engagement E;_; at the time
just before talking about the character is stored and the
extraversion X is set by the RL process (X = 0 for ¢ = 0).
As soon as the NLG module is finished with generating a
description according to X, the robot becomes active and
presents the description. In the meantime, social signals are
continuously interpreted to estimate user engagement. When
the robot stops speaking, new user engagement F; is used to
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Fig. 5: Simplified Bayesian Network for user engagement.

calculate the reward AE; = E; — E;_1. Afterwards, the next
time step ¢+ 1 begins. Descriptions for the selected character
are generated as long as there is new information about it.
Otherwise, the robot asks again in which of the remaining
characters the user is interested.

In the context of RL, one time step corresponds to the
presentation of one description, which takes several seconds
depending on the utterance length. Therefore, the learning
problem had to be formulated in such a way that it is possible
to learn quickly and with limited experience to guarantee an
acceptable user experience. Moreover, the robot’s personality
cannot deviate too much from the one in the last time
step as extraversion can increase or decrease only by one.
A change from maximum introvert to maximum extravert
would require at least four time steps.

B. Estimating user engagement

For HRI, social signals play a key role. Sensing and
processing the user’s social cues is an essential part of the
presented adaptation process and prototype. A Microsoft Ki-
nect 2 sensor is used to capture the human user’s movements
in combination with the SSI framework [30] which processes
and interprets the data in real-time. To calculate AFE, as
reward signal for RL, we interpret the user’s behaviors and
derive the current engagement value F;.

As suggested in [4] user’s engagement E; is estimated
based on a Dynamic Bayesian Network (BN), a directed,
acyclic graph with nodes representing variables and edges
describing conditional probabilities [24]]. Moreover, in Dyn-
amic BNs temporal dependencies between the current state
of variables and their earlier states can be modelled. Figure ]
shows an abstraction of a simplified BN for Engagement.

Each of the observed nodes contains two discrete states,
Present and Absent. Based on the oberservations in these
nodes, the probability of the values Present and Absent for
the final node Engagement can be inferred. The network
further contains “hidden” values that may not be directly

Fig. 6: An engaged and disengaged user interacting with the
Reeti robot.

observed, but have to be inferred from observable variables.
As an example, the likelihood that the variable Interested
Headpose has the value Present is high if the value for
the variable Head Tilt tends towards Present and the value
for the variable Look Away would be close to Absent. The
evidences for these values are constantly updated in real-
time. For example, the probability that the variable Arms
Crossed has the value Present is high if the corresponding
social cue has been recognized with high confidence.

Cues that are considered relevant in our scenario are for
example head tilt and orientation, which indicate whether the
user is interested in the current interaction. The openness
of the body is determined by the arm posture (opened or
closed/crossed). [E; increases or decreases depending on
gesture and posture. Figure [6] shows a user applying engaged
and disengaged nonverbal behavior towards the robot. A user
who leans himself forward is interpreted as more engaged
as when he or she is leaned back. Further the amount of
conversational regulators [8]], such as back-channels indicate
a high amount of engagement.

The BNs used in our system have been modeled with
GeNIeEl The probablities of the variables in the network
were learned based on the NOXﬂ corpus, which includes
interactions of experts and novices about a certain topic,
including Audio, Video and Kinect 2 depth streams.

Based on the value calculated by the BN, which is sent
every 200 ms from SSI to the RL component, we further
use a moving average with a five seconds window to smooth
the estimated value. This allows us to calculate the user’s
engagement F; in real time for each point in time .

C. Generating descriptions

The NLG module is responsible for producing natural
utterances for the robot that reflect a particular linguistic
style in order to maximize user engagement. Previous studies
have shown that user engagement is strongly influenced by
an agent’s personality. In addition, studies by Woods et
al. [32] revealed that the extraversion personality trait plays
an important role when users evaluate a robot’s personality
and assess to what extent it matches their own personality.

Zhttp://genie.sis.pitt.edu/
3http://noxi.aria-agent.eu
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Al-Al-Alice is, like, somewhat imaginative. introvert

Alice is trustful. While Alice is lacking sensitivity, she is

courteous to all. neutral

Did you say Alice Liddell2 | see, Alice just is damn loving
@Q and she is darn affectionate, isn't she? Alice is imaginative,
i buddy. | think that Alice is lacking sensitivity, but she is

courteous to all though. Alice is imaginative. extravert

Fig. 7: Examples of generated descriptions.

Motivated by these studies, we decided to focus on extra-
version as a personality trait and to adapt linguistic style
to the amount of extraversion X, which is set by the RL
module in each learning step. Information about the main
characters is stored as facts and transformed into utterances
in real-time. After presenting the generated description via
the robot’s Text-To-Speech (TTS) system, the RL approach
manipulates X again and a new description is generated.

We use an approach inspired by PERSONAGE [19], a
pipelined NLG system which realizes linguistic variation by
applying different parameters in different stages of genera-
tion. Before generating a description, we set these parameters
depending on X in order to generate utterances with a
varying degree of extraversion (see below).

Figure [/| shows sample descriptions for maximum in-
trovert, neutral and maximum extravert personality. One
obvious difference between them is utterance length. This
is mainly due to the content plan, which represents the
basic structure of information. High extraversion implies
high verbosity: a larger number of propositions (i.e. facts
to present about the character) within one utterance is pre-
sented. Moreover, an introvert robot tends to use few positive
emotion words and weakens positive content (“somewhat
imaginative”), while an extravert robot employs many po-
sitive emotion words (“loving”, “affectionate”) and repeats
itself (“imaginative”). Another characteristic of extraversion
is the use of acknowledgments (“I see”), tag questions (“isn’t
she?”) in-group markers (“buddy”) and expletives (“damn”).
Stuttering (“Al-Al-Alice”) and using softener hedges (“so-
mewhat”) is typical for introvert utterances.

These are only a few personality-specific linguistic style
features out of those we implemented. We refer to [19] for
a complete set of parameters and details on how they map
to extraversion or introversion. Finally, we use SimpleNL(ﬂ
as surface realizer to convert the syntactical structure into a
natural language utterance.

Parameters are set with some variation: the robot’s extra-
version X does not set or activate parameters directly, but
increases or decreases their probability. Thus, we prevent the
NLG module from using the same parameters for each des-
cription given a certain X, which would cause utterances to
be stylistically too similar as long as the robot’s personality
does not change.

4https://github.com/simplenlg/simplenlyg

V. DISCUSSION

First experiments with the prototype enabled us to explore
the time required for adaptation. The current knowledge base
allows for an interaction time of roughly three minutes for
describing Alice, the White Rabbit and the Queen of Hearts.
During this time, the amount of learning steps depends on
the robot’s extraversion (an extravert robot presents more
facts within one generated utterance). Thus, an introvert
robot can learn quicker than an extravert because it will
receive more rewards in the same time. When generating
introvert (extravert) descriptions, roughly 30 (10) utterances
are generated.

During this time, the robot learns very quickly because
pronouncing the generated utterances only takes seconds.
Whether three minutes are sufficient to explore the whole
state space depends on the user and its expressivity in terms
of showing and changing engagement. Since the learning
algorithm only explores in 20 percent of its interactions and
user engagement does not change extremely fast within this
amount of time, we expect that more content is needed in real
experiments to explore the complete state space. Moreover,
the best point in time when to measure user engagement has
to be investigated as changes may not occur immediately
after the robot adjusts its amount of extraversion.

For our RL approach, we do not expect to converge to
an optimal policy for every user. Several constellations are
imaginable where convergence cannot happen. First of all,
the human’s actual preferences may change over time and
with it the optimal policy, too. But especially the fact that
RL is able to observe and react to these changes in its
environment via exploration is essential for adaptation and
explicitly desired. Moreover, depending on the application
scenario, it may be counterproductive to excessively employ
the same kind of linguistic style features since this could
annoy the user, too. For example, an extravert robot using
expletives could re-establish user engagement, but when
using them too frequently, it may cause the opposite effect.

In scenarios with measurable information, a combination
of both task-related and social feedback will probably be the
most efficient and robust option of tuning a robot’s behavior.
However, there are robots that mainly serve to engage people
in social interactions without pursuing a particular task-
oriented goal, such as getting the user follow an advise.
Furthermore, in some cases, it might take too long to wait
until some achievements, such as progress in learning or
rehabilitation, can be measured. That is the robot has to
adapt its behavior dynamically while communicating with
the user taking continuously provided user feedback into
account. Finally, users might not be willing to take the effort
to provide the robot permanently with explicit feedback. As
Amershi et al. [2] pointed out users are not willing to “serve
as an oracle” in order to teach the robot how to perform
specific tasks. When engaging in a social dialog with a
robot, providing oracle-like feedback to the robot might feel
in particular unnatural. In such cases, falling back to social
signal data seems to be a serious opportunity.
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VI. CONCLUSION

In this paper, we proposed an approach based on RL and
social signals for adapting the personality of a social robot
to the preferences of the human user. While the robot acts
as story teller talking about characters in the novel “Alice
in Wonderland”, its personality is manipulated in terms of
extraversion expressed via NLG. The online learning process
optimizes the robot’s personality to keep the user engaged
in the interaction. User engagement estimated based on
multimodal social signal data serves as reward, which allows
to use the approach in scenarios without measurable task-
related information. Both simulation results and interactive
prototype allow to explore the adaptation process.

In future work, we will investigate how to take advantage
of implicitly and explicitly provided feedback in order to
overcome the noise of continuously provided social signals
and the sparsity of occasionally provided verbal feedback to
the robot. By taking into account the user’s social cues as
a reward signal, the robot is able to adapt its behavior to
maximize user engagement in a rather short time. However,
as Knox and Stone [[14] point out for task-based agents there
is the danger of so-called “myoptic agents” that are not able
to value human reward in the long run. To investigate this
phenomenon for non-task-based dialog, we will move from
single conversational episodes with the robot to multiple
conversational episodes covering a longer period of time.
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