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Abstract 

Dissipative losses of metals are unrecoverable material flows representing the real consumption of 

metals. They occur during any process in the global metal cycle from primary production to waste 

management and have different receiving mediums. Avoiding dissipative losses can reduce both 

primary material requirements and potential negative environmental impacts of metals. However, 

there are currently no quantitative indicators available for the assessment of global dissipative losses 

of metals covering all processes before and after the use-phase. Here we present three indicators, 

the Dissipation-to-Extraction Ratio, the Dissipation-to-Final-Production Ratio, and the Expected 

Lifetime in the Anthroposphere. These indicators are further applied to 18 metals. The results show 

that the severity of dissipative losses throughout the periodic table differs a lot. Dissipation ratios are 

lowest for mass metals like iron, aluminum, and nickel, and highest for technology metals like 

gallium, germanium, and tellurium. Expected lifetimes vary between just months for metals with high 

dissipation ratios and up to a century for aluminum and iron. The assessment shows that there are 

important measures in material efficiency and recycling efforts to be taken to decrease dissipative 

losses for a wide range of metals. For each metal, the most effective options for action can be 

identified based on our results. 
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1 Introduction 

Metals are destroyed neither through extraction nor through utilization, because no matter what 

chemical compound they form, the atom persists. Therefore, dissipative losses should be considered 

the real consumption of metals. According to the definition of Zimmermann and Gößling-Reisemann, 

dissipative losses are material flows into a receiving medium that “result in concentrations […] such 

that a recovery of these materials is technically or economically unfeasible” (Zimmermann & Gößling-

Reisemann, 2013). 

Dissipative losses of metals have so far been studied with different perspectives. Lifset and 

colleagues (Lifset, Eckelman, Harper, Hausfather, & Urbina, 2012) primarily differentiate between 

intended and unintended use and release of copper. In their article about critical metals, 

Zimmermann and Gößling-Reisemann (Zimmermann & Gößling-Reisemann, 2013) focus on the 

receiving mediums of dissipative losses: landfills, other material flows and the environment. Ciacci 

and colleagues (Ciacci, Reck, Nassar, & Graedel, 2015) highlight different levels of recyclability of 

metals depending on their application and later on quantify the energy requirements as well as 

greenhouse gas emissions associated with dissipative losses (Ciacci, Harper, Nassar, Reck, & Graedel, 

2016). Rechberger and Graedel (Rechberger & Graedel, 2002) quantify the distribution patterns of 

copper throughout life cycle stages by applying their statistical entropy method. Finally, Nakamura 

and colleagues (Nakamura et al., 2014) use the MaTrace model to quantify which processes in the 

steel cycle cause dissipative losses at which time. Overall, quantifying dissipative losses globally is a 

difficult task, because we can only indirectly quantify what has been dispersed by looking at mass 

balances or by scaling up local measurements. 

Both the share of individual metals in the lithosphere as well as applications of metals in the 

anthroposphere vary a lot (Thomas E. Graedel, Harper, Nassar, & Reck, 2015; Rudnick & Gao, 2003). 

Hence, it can be assumed that the range of observed dissipation rates is quite high. However, both 

the data and suitable indicators for a quantitative assessment of dissipative losses of a large variety 

of metals are so far missing. Problems linked with dissipation of metals also include effects like 

bioactivity, photo activity or water-solubility (Reller, 2016).  

Figure 1 shows the conceptual model for global anthropogenic material flows of metals (Chen & 

Graedel, 2012). Metals are typically extracted from the lithosphere by mining or quarrying, either 

directly as host metals or indirectly as by-products and then separated later on in the smelting or 

refining stage (Nedal T. Nassar, Graedel, & Harper, 2015). Extracted materials are processed further 

in the fabrication and manufacturing stage before entering the use-phase through metal-containing 

products. The entrance into the use-phase will be called final production. Most metal products stay 

in the use-phase for multiple years and their purpose is predominantly fulfilled by in-use stocks like 

buildings, infrastructure, cars, or machinery. Rarely is the purpose the final production itself, and if 

that is the case, it’s a dissipative use such as copper for pesticides (Lifset et al., 2012). The use-phase 

is followed by a waste management stage. Old scraps and new scraps are either directly modeled as 

reverse material flows or re-distributed within a scrap market process. Dissipative losses can occur at 

any stage from mining to waste management and may include material flows into tailings & slags 

close to mining activities, direct emissions into the environment, losses to other materials (i.e. as 

contaminants in other metal cycles) and landfills or similar permanent waste disposals. 
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Figure 1: Conceptual model for material flows, stocks and processes in a global mass balance model. 

In this article, we identify quantitative indicators for dissipative losses of metals on a global scale 

including all life cycle stages. The proposed indicators are calculated for a set of 18 metals and 

metalloids, from now on called metals for simplicity reasons: aluminum, chromium, iron, cobalt, 

nickel, copper, zinc, gallium, germanium, selenium, silver, indium, tin, tellurium, tantalum, tungsten, 

rhenium and lead. 

In the method section, three indicators for dissipative losses of metals are developed: the two ratios 

Dissipation-to-Extraction Ratio (DER) and Dissipation-to-Final-Production Ratio (DFR) and additionally 

the average lifetime of a metal in the anthroposphere (𝜏𝐴). The calculation section describes the data 

requirements and modelling assumptions. In the results section, the quantified indicators for all 18 

metals are presented and compared. The article is finished with a discussion of the results and a 

conclusion. 

2 Method 

There are two basic approaches for quantifying indicators for dissipative losses on a global scale: 

either an analysis of mass balances of processes within a specific timeframe or an identification of 

the fate of a specific material cohort throughout time. Both perspectives utilize the concept of 

Material Flow Analyses (MFA), either as static mass balance models or as dynamic stock and flow 

models (Brunner & Rechberger, 2004). 

Global mass balance models, also called static MFAs, can be used to quantify the flows from 

lithosphere to anthroposphere, called extraction, the flows from fabrication and manufacturing to 

the use-phase, called final production, and all dissipative losses from all processes (production, 

fabrication and manufacturing, use-phase, waste management and scrap market). 

The first calculated indicator, the Dissipation-to-Extraction Ratio (DER), is the ratio between total 

dissipative losses and total extracted material within the same timeframe. This timeframe is usually 

one year. Dissipative losses are more problematic the higher the ratio between dissipation and 

extraction is. In the end, of course, this ratio cannot be bigger than 100% except for short-term 

effects. The main reason why this ratio can be much lower than 100% is a rapid increase of in-use 

stocks. Notably, the DER will be close to 100% for a well-established steady-state circular economy 

with high recycling rates and low accumulation ratios. 

https://www.sciencedirect.com/science/journal/09213449
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DER =
Dissipation

Extraction
(1) 

The second indicator, the Dissipation-to-Final-Production Ratio (DFR), is the ratio between total 

dissipative losses and total material flows entering the use-phase within the same timeframe. As for 

the DER, this timeframe is usually one year. The material flows entering the use-phase are mainly the 

final production of metal-containing products as well as material flows included in re-used product. 

Dissipative losses are more problematic the higher the ratio between dissipation and final production 

is. This ratio can be bigger than 100% if there are many dissipative losses from the production or the 

fabrication & manufacturing stage. 

DFR =
Dissipation

Final Production + Re-Use
(2) 

DER and DCR can be quantified for any metal if there is a global mass balance model available that 

covers all processes from extraction to waste management that makes quantitative statements 

about dissipative losses. 

In contrast to these mass balance models, stock and flow models, also called dynamic MFAs (Müller, 

Hilty, Widmer, Schluep, & Faulstich, 2014), show the development of stocks within processes, most 

importantly the use-phase, and consider lifetime distributions in addition to transfer coefficients. 

Nakamura and colleagues (Nakamura et al., 2014) developed a dynamic stock model called MaTrace 

for tracing the fate of materials starting with product use. Their stock modelling needs to be 

extended with the inclusion of the primary production process to allow a quantification of global 

dissipative losses over all possible processes. The stocks and flows considered in this model are 

shown in Figure 2. In particular, the production of end-use products (𝑥), the generation of end-of-life 

wastes (𝑧), and the in-use stock (𝑆) need to be calculated. It is therefore necessary to estimate the 

product lifetime distribution (𝜙), which is dependent on the product lifetime (𝜏) and its standard 

deviation (𝜎). A higher production yield (𝛿) decreases the losses of the production process (ℓ5). A 

higher fabrication yield (𝜆) and a higher new scrap recovery rate (𝜉) both decrease the losses of the 

manufacturing & fabrication process (ℓ4). A higher share of dissipative uses (𝜔) increases the 

dissipative losses of the use-phase (ℓ1). A higher collection rate (𝛾) decreases the losses of the waste 

management process (ℓ2). A higher remelting yield (𝜃) decreases the losses in the recycling process 

(ℓ3). New scrap occurring in the fabrication & manufacturing process can be collected and remelted 

without considering product lifetimes, effectively increasing the total available material for 

fabrication, mathematically covered by a new-scrap recycling loop factor (𝜋) (Nakamura et al., 2014). 

The important measure considered in the third indicator, the Expected Lifetime in the 

Anthroposphere (𝜏𝐴), is the timing of dissipative losses. Therefore, all dissipative losses at any stage 

need to be quantified with their specific time delay after extraction. Dissipative losses at the five 

main processes production, fabrication & manufacturing, use-phase, waste management and 

recycling will be considered equally and total dissipative losses (ℓ) are the sum of all five process-

specific dissipative losses. 

ℓ(𝑡) =∑ℓ𝑖(𝑡)

5

𝑖=1

(3) 

At some point in the future, any utilized material will be dissipated. However, dissipative losses are 

more problematic for metals with a short expected lifetime in the anthroposphere. The expected 

lifetime (𝜏𝐴) is calculated as the expected value of the time difference between extraction and 

dissipation for an average metal cohort. The indicator is similar to the calculation of circularity index 

by Pauliuk and colleagues (Pauliuk, Kondo, Nakamura, & Nakajima, 2017) and average lifetime by 

https://www.sciencedirect.com/science/journal/09213449
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Pauliuk (Pauliuk, 2018), but it includes the losses of primary production before the first use-phase. 

For that special case, a lifetime of 0 years will be assumed. 

𝜏𝐴 = lim
𝑇→∞

1

𝑇
∑𝑡

ℓ(𝑡)

𝑆(0) + ℓ(0)

𝑇

𝑡=0

(4) 

The three indicators DER, DCR and 𝜏𝐴 allow an analysis of dissipative losses for any metal. High values 

of DER and DCR are critical (i.e. problematic) and they indicate how the dissipative material flows are 

related to intended material flows extraction and utilization. Low values for the expected lifetime are 

also critical, because they indicate that extracted material is already lost after a short period. 

 

 

Figure 2: Conceptual model for the transfer coefficients of the dynamic material flow model. 𝑥: End-use 
production. 𝑧: End-of-life waste. 𝜙: Product lifetime distribution. 𝜏: Average product lifetime. 𝜎: Product 

lifetime deviation. 𝛿: Production yield. 𝜆: Fabrication yield. 𝜉: New scrap recovery rate. 𝜔: In-use dissipation 
rate. 𝛾: Collection rate. 𝜃: Recycling yield. 

3 Calculation 

The basis of the calculation of the three indicators is a detailed analysis of available data for global 

metal cycles, including all processes from extraction to waste management and including 

quantitative statements about dissipative losses. The reviews from Chen and Graedel (Chen & 

Graedel, 2012) as well as Müller and colleagues (Müller et al., 2014) provide a basis for available 

MFAs, and are updated with more recently published models. At least one suitable global cycle is 

available for aluminum (Bertram et al., 2017), chromium (Johnson, Schewel, & Graedel, 2006), iron 

(Wang, Müller, & Graedel, 2007), cobalt (Harper, Kavlak, & Graedel, 2012), nickel (Reck & Rotter, 

2012), copper (Glöser-Chahoud, 2017), zinc (Meylan & Reck, 2017), gallium (Licht, Peiró, & Villalba, 

2015), germanium (Licht et al., 2015), selenium (Kavlak & Graedel, 2013a), silver (Johnson et al., 

2005), indium (Licht et al., 2015), tin (Izard & Müller, 2010), tellurium (Kavlak & Graedel, 2013b), 

tantalum (Nedal T. Nassar, 2017), tungsten (Meylan, Reck, & Graedel, 2015), rhenium (Meylan et al., 

2015), and lead (Mao, Dong, & Graedel, 2008). Despite having a possible data source, the group of 

rare earth elements is excluded, because the quantitative results from Du and Graedel (Du & 

https://www.sciencedirect.com/science/journal/09213449
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Graedel, 2011) are very similar for different rare earth elements and there is too much uncertainty 

for these data.  

Some authors quantify global cycles for different years to show long-term changes in the past (Kavlak 

& Graedel, 2013b, 2013a; Nedal T. Nassar, 2017; Reck & Rotter, 2012). The global tin cycle is based 

on the period 1927 to 2005 (Izard & Müller, 2010). The earliest single reference year used in our 

calculations is 1997 for silver (Johnson et al., 2005), the latest 2015 for tantalum (Nedal T. Nassar, 

2017). 

The global cycles are analyzed to calculate the indicators DER and DCR for each corresponding 

reference year. Therefore, the total extracted material, the total final production and the total 

dissipated material is identified in each corresponding mass balance model. Terminology of 

processes differ throughout the publications. In order to harmonize terminology, all processes of the 

evaluated global metal cycles are named and coded closely following the unified materials 

information system (UMIS) (Myers, Fishman, Reck, & Graedel, 2019). A list of the used process codes 

can be found in Table S1 in the Supplementary Material. Extraction is considered any material flow 

from the lithosphere to the anthroposphere. Final production is any material flow from the 

fabrication & manufacturing stage to the use-phase as well as re-use material flows. Dissipation is 

any material flow into one of the four receiving mediums tailings & slags, environment, other 

material flows, and landfills. 

The global cycles of metals are additionally analyzed to calculate an estimation for average efficiency 

parameters: production yield (𝛿), fabrication yield (𝜆), new scrap collection rate (𝜉), in-use 

dissipation rate (𝜔), old scrap collection rate (𝛾), and remelting yield (𝜃). The terminology is 

consistent with one used by Nakamura and colleagues (Nakamura et al., 2014), except for the 

addition of the primary production efficiency and the simplification from matrices to scalar values. 

Table S3 in the Supplementary Material shows the parameters identified from the mass balance 

models and used for the calculation of each dynamic MFA. Notably, these are average values, and no 

differences between applications, sectors or production routes are assumed. Secondary and primary 

material production is assumed to have the same application share. In addition, there are no 

efficiency increases considered over time, leaving the expected lifetime in the anthroposphere (𝜏𝐴) 

as a projected value for current efficiencies, not a prognosis. 

Every calculation of the expected lifetime starts with 100 units of material entering the use-phase, 

defined as 𝑥(0). In-use dissipation (ℓ1) is allocated to the time of utilization.  

ℓ1(𝑡) = 𝜔𝑥(𝑡) (5) 

End-of-life waste (𝑧) is defined by previous uses, the in-use dissipation rate and lifetime distribution 

(𝜙). 

𝑧(𝑡) = ∑ 𝜙(𝑡 − 𝑡′)(1 − 𝜔)𝑥(𝑡′)

𝑡

𝑡′=0

(6) 

In this model, lifetime distributions are estimated as normal distributions in each of the 29 sectors.  

The sector list can be found in Table S2 in the Supplementary Material. Product lifetimes and 

standard deviations are listed in Table S4 in the Supplementary Material. Collection losses (ℓ2) are 

determined by not properly collected end-of-life wastes. 

ℓ2(𝑡) = (1 − 𝛾)𝑧(𝑡) (7) 

As fabrication losses are partially collected and remelted, the loop of materials between the 

fabrication and recycling process needs to be considered. Here, the material available for remelting, 

and fabrication respectively, is determined by a geometric series of materials entering the recycling 
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stage and collected as well as remelted fabrication losses. The limit of this geometric series will be 

called new-scrap recycling loop factor 𝜋. 

1 + 𝜃𝜉(1 − 𝜆) +⋯+ (𝜃𝜉(1 − 𝜆))
𝑛 𝑛→∞
→   (1 − 𝜃𝜉(1 − 𝜆))

−1
=:𝜋 (8) 

The input into the fabrication stage required to produce 𝑥(0) is 𝑋54(0) = 𝜋
−1𝜆−1𝑥(0). Primary 

production in this model is only necessary in the initial period. Afterwards, no primary production is 

considered anymore and consequently no additional production losses occur anymore: ℓ5(𝑡 > 0) =

0. Losses from primary production therefore also only occur in the first calculated period. 

ℓ5(0) = (1 − 𝛿)𝛿
−1𝜋−1𝜆−1𝑥(0) (9) 

Remelting losses are losses in the recycling process, applied to collected new and old scrap material 

flows. Collected old scrap flows (𝑋23) are calculated as 𝑋23(𝑡) = 𝛾𝑧(𝑡). Collected new scrap material 

flows are calculated for the initial period as 𝑋43(0) = 𝜉(1 − 𝜆)𝜋𝑋54(0) and afterwards as 

𝑋43(𝑡 > 0) = 𝜉(1 − 𝜆)𝜃𝜋𝑋23(𝑡 > 0). 

ℓ3(𝑡) = (1 − 𝜃)(𝑋23(𝑡) + 𝑋43(𝑡)) (10) 

Fabrication losses are losses in the fabrication process, for which again primary production is 

considered in the initial phase only and remelted new scrap material flows are calculated for the 

initial period as 𝑋34(0) = 𝜃𝜉(1 − 𝜆)𝜋𝑋54(0) and afterwards as 𝑋34(𝑡 > 0) = 𝜃𝜋𝑋23(𝑡 > 0). 

ℓ4(𝑡) = (1 − 𝜉)(1 − 𝜆)(𝑋54(𝑡) + 𝑋34(𝑡)) (11) 

The calculations for the stock and flow model are run with a value of 𝑇 = 1000, meaning that a 

thousand discrete years are calculated. 

4 Results 

The analysis of global cycles and harmonized yield parameters for each of the metals gives 

quantitative results for the three indicators DER, DCR, and 𝜏𝐴. Additionally, a harmonized mass 

balance diagram as well as the development of modeled in-use stocks and dissipative losses can be 

displayed. These are in total 36 figures for 18 metals. Therefore, here only the results for aluminum 

and indium are shown and discussed. Additional information to the underlying mass balance models 

and all graphs are shown in Figures S1 to S36 in the Supplementary Material. Numerical results for 

1000 years for all metals are also available in Table S5 in the Supplementary Material. Mass balance 

diagrams are created with the STAN software (version 2.6.801) (Cencic & Rechberger, 2008). Stock 

development graphs are created with a Python (version 3.7) algorithm, partially based on the 

MaTrace-global model (Pauliuk et al., 2017). 

Figure 3a displays the global mass flows for aluminum in the year 2014, according to the model from 

Bertram and colleagues (Bertram et al., 2017). Substantial insights gained from this display are the 

rapid increase of in-use stocks (+46 Mt or 46 Tg in 2014), the high share of new scraps among all 

recycled materials and the fact that final production material flows (65 Mt) are already bigger than 

extraction (63 Mt). Aluminum is mostly used in the form of various wrought and cast alloys. It is 

known that wrought aluminum often gets recycled as cast aluminum, with inherently different 

properties and applications (Cullen & Allwood, 2013). The main applications for aluminum are the 

transport sector, construction, packaging material and infrastructure. Packaging materials have a 

very short lifetime, modeled here with just 1 year, whereas construction materials are considered to 

have a product lifetime of 50 years. Since only applications as reducing agents are considered as 

unrecyclable and since the yields throughout the aluminum cycle are comparatively high (see Table 

S2 in the Supplementary Material), the expected lifetime of aluminum of 98 years is the second 

highest among the 18 selected metals. Figure 4a displays the development of in-use stocks and 

cumulative dissipative losses over two centuries. In-use dissipation can be neglected for the case of 

https://www.sciencedirect.com/science/journal/09213449
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aluminum. After 200 years, the most important dissipative loss for the aluminum cohort comes from 

collection losses. Production, fabrication and remelting losses contribute equally to the remaining 

dissipation. 

 

 

Figure 3: Global mass flows for aluminum (Figure 3a) in year 2014 in Mt (1 megaton = 109 kg) and indium 
(Figure 3b) in year 2011 in t (1 metric ton = 103 kg). Data from Betram et al. (Bertram et al., 2017) and Licht et 
al. (Licht et al., 2015). PEM: Production of extraction materials. F&M: Fabrication & manufacturing. USE: Use-
phase. WMR: Waste management & recycling. ENV: Environment. Abbreviations for individual processes are 

listed in Table S1 in the Supplementary Material. 

Figure 3b displays the global mass flows for indium in the year 2011, according to the model from 

Licht and colleagues (Licht et al., 2015). Here, the biggest material flows are interestingly new scrap 

material flows (1,264 t), predominantly from indium-tin-oxide fabrication processes. Indium is also a 

by-product of zinc mining, resulting in relatively high losses from the primary production stage. 

Despite high remelting rates of collected new scraps, the fabrication losses are the second most 

important source of dissipative losses for indium. Only 247 t of indium are included in new end-use 

products. End-of-life wastes are so far not important; end-of-life recycling is consequentially not 

contributing to secondary production. Indium is mostly used in electronic products and some alloys. 

Because of the large amount of losses occurring during the production and fabrication stage as well 

as the modeled lifetime of 13.4 years for electronics, indium is on spectrum of short-lived metals in 

the anthroposphere. Figure 4b shows the development of in-use stocks and dissipative losses of an 

indium cohort over 200 years. After this period, production losses and fabrication losses are still the 

most important source of dissipative losses for one used indium cohort, followed by collection losses 

and in-use dissipation. The expected lifetime in the anthroposphere is only about 3 years. 
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Figure 4: Aluminum (a) and indium (b) in in-use stocks and development of cumulative dissipative losses, 
projected for 200 years based on current global process yields. Vertical dashed-dotted line indicates the 

expected lifetime of aluminum and indium in the anthroposphere. 

Both aluminum and indium are metals with rapid growth in global use and both have established 

recycling systems, in particular for new scraps. Nevertheless, the two metals have contrasting 

patterns when it comes to the analysis of dissipative losses. Aluminum has many different 

applications, while indium in-use stocks are mostly in the electronics sector. Aluminum dissipative 

losses can best be reduced by higher collection yields; indium needs better by-product separation 

and lower fabrication losses. Aluminum stays in the anthroposphere after extraction for almost a 

century, whereas indium on average is already lost already after a few years. 
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Table 1: Key values of global cycles of 18 metals according to their mass balance models and the stock and flow 
model for the expected lifetime. Mass units given in metric tons (1 t= 103 kg) 

Element Extraction Final Production Dissipation ΔStock DER DCR 𝝉𝑨 Ref. year 

Al 63.0 Mt 66.5 Mt 21.4 Mt 43.5 Mt 34% 32% 98 a 2014 

Cr 5.14 Mt 3.32 Mt 2.63 Mt 2.51 Mt 51% 79% 32 a 2000 

Fe 694 Mt 746 Mt 212 Mt 482 Mt 31% 28% 110 a 2000 

Co 127 kt 53.2 kt 114 kt 12.4 kt 90% 214% 3 a 2005 

Ni 1.58 Mt 1.57 Mt 559 kt 920 kt 35% 36% 58 a 2005 

Cu 19.8 Mt 20.9 Mt 10.6 Mt 9.20 Mt 54% 51% 45 a 2011 

Zn 14.0 Mt 13.0 Mt 9.38 Mt 4.50 Mt 67% 72% 16 a 2010 

Ga 21.0 kt 178 t 20.9 kt 91.2 t 100% 11747% 1 month 2011 

Ge 12.6 kt 49 t 12.5 kt 23.5 t 100% 25581% 1 month 2011 

Se 53.8 kt 2.25 kt 53.8 kt 20.0 t 100% 2390% 6 months 2020 

Ag 20.2 kt 26.8 kt 11.5 kt 8.70 kt 57% 43% 40 a 1997 

In 1.22 kt 247 t 1.35 kt -128 t 111% 546% 3 a 2011 

Sn 17.0 Mt 18.6 Mt 15.9 Mt 1.55 Mt 94% 86% 11 a 1927-2005 

Te 11.1 kt 390 t 10.9 kt 250 t 98% 2785% 9 months 2010 

Ta 2.42 kt 1.47 kt 2.17 kt 140 t 90% 148% 8 a 2015 

W 51.0 kt 56.0 kt 47.0 kt 5.00 kt 92% 84% 5 a 2008 

Re 120 t 70 t 78 t 42 t 65% 111% 13 a 2008 

Pb 3.50 Mt 5.93 Mt 2.84 Mt 6.63 Mt 81% 48% 14 a 2000 

 

Table 1 shows the key values and results of all 18 metal cycles and the reference year of each 

quantitatively evaluated metal cycle. The material flows of the 18 metals differ in six orders of 

magnitude. While 694 Mt (=109 kg) of iron are extracted and 746 Mt of iron are utilized according to 

Wang and colleagues every year (Wang et al., 2007), the respective values for rhenium are only 120 t 

of extraction and 70 t of utilization (Meylan et al., 2015). Total dissipative losses therefore differ 

between 212 Mt for iron and 78 t for rhenium. Stock change are smallest for rhenium with 42 t and 

biggest for iron with 482 Mt. Indium stock change was estimated to be negative for year 2011 

because of an increased processing of previously stockpiled zinc residues (Licht et al., 2015). This 

negative stock change is also the reason for the DER above 100% of indium. The Dissipation-to-

Extraction Ratio (DER) is the highest for Ga, Ge, Se, and In, with basically the same dissipative losses 

as extracted material. The lowest values for DER are observed for Al, Fe, and Ni. For these metals, 

extraction material flows are about three times as big as dissipative losses. The Dissipation-to-Final-

Production Ratio (DFR) is the highest for Ga, Ge, Se, and Te, for each of which 24 to 256 times as 

many dissipative losses occur than there are material inputs to the use-phase. The lowest values for 

DCR are again observed for Al, Fe, and Ni, for which they are very close to the calculated DER. The 

expected lifetime is below one year for the metals Ga, Ge, Se, and Te. The longest lifetimes have, 

once again, Al, Fe, and Ni. Figure 5 shows the results for the three indicators DER, DCR and 𝜏𝐴 for all 

18 metals in a scatter plot. Metals are most critical if they are in the top left corner of the graph and 

least critical if they appear in the bottom right corner of the graph. 
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Figure 5: Dissipation-to-Extraction Ratio (DER), Dissipation-to-Final-Production Ratio (DCR), and expected 
lifetime in the anthroposphere (𝜏𝐴) as a scatter plot. Ordinate is broken at a value of 3. 

5 Discussion 

It is important to note that the total dissipative losses calculated for all three indicators do not 

differentiate between receiving mediums. All receiving mediums are considered equally important, 

because recovery is impossible for all of them given current technological and economic conditions. 

It can be argued that dissipation to the environment is worst because material is mobilized and has 

potential for environmental damage (Zimmermann & Gößling-Reisemann, 2013). However, even 

global mass balance studies making quantitative statements about dissipative losses are 

predominantly vague about the receiving mediums. For example, Licht and colleagues (Licht et al., 

2015) consider all dissipative losses as losses to the environment, which differs from most other 

models and is therefore questionable. On the contrary, as an example, Nakamura and colleagues 

(Nakamura, Kondo, Nakajima, Ohno, & Pauliuk, 2017) describe that chromium during steel recycling 

may become a dissipative loss to the slag whereas nickel in the same process is lost as dissipation 

into carbon steels without functional advantages. For the potentially hazardous lead, Mao and 

colleagues (Mao, Cao, & Graedel, 2009) even quantify dissipative losses into different compartments 

of the environment, making this another good example for explicit consideration of receiving 

mediums. 

The inclusion of technical and economic criteria into the definition of the term dissipative losses by 

Zimmermann and Gößling-Reisemann (Zimmermann & Gößling-Reisemann, 2013) means that this 

definition is per se time-dependent. It is debatable whether tailings and slags or landfills should be 

considered final deposits for dissipated materials. Ongoing research examines the potential of 

tailings, e.g. for the recovery of indium (Werner, Ciacci, Mudd, Reck, & Northey, 2018), and landfills 

as future resources (Winterstetter, Laner, Rechberger, & Fellner, 2015). However, currently in the 

vast majority of these cases, these stocks are considered technically and economically unrecoverable 

and therefore material flows into these receiving mediums are considered dissipative losses. 
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The dynamic stock model does not differentiate between different applications of one metal, scrap 

types or production routes (including primary and secondary production). This rather strong 

assumption is particularly important for aluminum and steel markets. Steel markets can be 

differentiated along the two production routes of blast oxygen furnace and electric arc furnace. Steel 

is usually recycled in the electric production route. The implications of different recycling routes and 

production allocation on dynamic stock models at the example of steel is shown by Pauliuk and 

colleagues (Pauliuk et al., 2017). It is also easier to recycle aluminum alloys into cast alloys, because 

of generally higher share of alloying elements in cast aluminum. A possible extension of the expected 

lifetime model could include the measurement of maintained quality of a material throughout its life 

cycle. The term quality however always needs an application context and is difficult to define 

generally. Therefore, thermodynamic properties, functionality of the material and commodity prices 

can be used for quality estimation. However, because many of the underlying global cycles do not 

allow the identification of product- or technology-specific parametrization, the same yet high level of 

aggregation is chosen of the dynamic stock model. 

Measures to reduce the amount of dissipative losses across all metals encompass goals for waste 

collection and recycling, material efficiency, waste storing, eco-design, more efficient recycling 

technologies, by-product separation, markets for recycled materials and recycling incentives for the 

industry (Ayres & Peiró, 2013; Ciacci et al., 2015; Kral, Kellner, & Brunner, 2013; Leal-Ayala, Allwood, 

Petavratzi, Brown, & Gunn, 2015; Nakamura et al., 2017; Zimmermann, 2015, 2017). Overall, eight 

goals for avoiding dissipative losses can be named, distributed among the five modeled processes. 

For production, higher yields and better by-product separation are desirable. Higher fabrication 

yields and remelting yields will have rebound effects on the primary production requirements. Waste 

collection needs to be increased for both old and new scrap, with old scrap having the additional 

challenge of achieving higher sorting rates. Technological options for improving sorting and remelting 

at the example of aluminum are described by Gaustad and colleagues (Gaustad, Olivetti, & Kirchain, 

2012). For the case of WEEE, de Meester and colleagues identify changes to consumer behavior and 

better separation technologies as the main factors on environmental impact (De Meester, 

Nachtergaele, Debaveye, Vos, & Dewulf, 2019). Dissipative uses should be avoided whenever 

possible and substitution with less critical and less dissipative materials should be considered (Helbig, 

2019). 

Dissipative losses are also growing in interest for the scientific community of Life Cycle Impact 

Assessment (LCIA) (Zampori & Sala, 2017). The presented indicators are not yet fully applicable as 

impact factors in the LCA framework. However, the dynamic MFAs used for the calculation of the 

expected lifetime in the anthroposphere can be adapted to calculate such impact factors. 

Indicators for dissipative losses may also be applied in criticality assessments in a dissipation 

dimension in addition to the supply risk dimension. If dissipative losses and supply risks of metals are 

high, the material is critical both at the beginning and at the end of its life cycle. The comparison of 

dissipation indicators with the Augsburg method of supply risks assessments (Kolotzek, Helbig, 

Thorenz, Reller, & Tuma, 2018) showed that cobalt, selenium and indium have both high supply risks 

and dissipative losses (Helbig, 2019). Aluminum, iron and copper, on the contrary, show relatively 

low supply risks as well as dissipative losses. 

6 Conclusions 

The phenomenon of dissipative losses of metals shows different patterns throughout the periodic 

table. Dissipative losses are unrecoverable material flows into receiving mediums like tailings & slags, 
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environment, landfills, or other material flows. They are more important for quantifying material 

consumption of metals than extraction. Three indicators can be used to analyze dissipative losses of 

metals quantitatively: the Dissipation-to-Extraction Ratio (DER), the Dissipation-to-Final-Production 

Ratio (DFR), and the expected lifetime in the anthroposphere (𝜏𝐴). 

Despite all recycling efforts, even for mass metals like aluminum and iron, about a third of the 

extracted and used materials is lost every year as dissipation. For technology metals like gallium and 

germanium, the dissipative losses can be a many times higher than the material utilization in end-use 

products. The expected lifetime of metals in the anthroposphere, starting with extraction, can be 

only a few months for some technology metals. For aluminum and iron, this lifetime is about a 

century, and therefore much less critical. 

Dissipative losses can be reduced through higher production, fabrication, collection and remelting 

yields, but also through avoiding dissipative uses of metals. Avoiding dissipative losses decreases the 

need for mining, resulting in reduced supply risks and reduced environmental impact from primary 

production. 

The three indicators can be calculated given there are sufficient data about global metal cycles from 

mining to landfilling including information about dissipative losses in each of the processes. These 

data are currently available for the analyzed 18 metals in this article. In addition to expanding the 

understanding of global metal cycles of other metals, future research may focus on increasing the 

resolution of underlying material flow models with regional and sector specific parameters. 
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1. Notation of processes in global metal cycles 
Table S1: Transformation processes of the analyzed metal cycles for a consistent material flow notation. 

Abbreviation Process name Al Cr Fe Co Ni Cu Zn Ga Ge Se Ag In Sn Te Ta W Re Pb 

PEM.0 Production ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

PEM.1 Mining X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ ✓ X 

PEM.2 Smelting ✓a X X X ✓ ✓ X X X ✓ X X X ✓ X X X X 

PEM.3 Refining X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ X X X X 

PEM.13 Mining & Refining ✓a X X X X X X X X X X X X X X X X X 

PEM.23 Smelting & Refining X X X X X X X X X X X X ✓ X X X ✓ X 

PEM.4 Chemical treatment X X X X X X X X X X X X X X X ✓ X X 

PEM.5 Beneficiation X X X X X X X ✓ ✓ X X ✓ X X X X X X 

F&M.0 Fabrication & 

Manufacturing 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ 

F&M.1 Fabrication ✓ X X X ✓ ✓ ✓ X X X X X X X X ✓ ✓ X 

F&M.2 Manufacturing ✓ X X X ✓ ✓ ✓ X X X X X X X X ✓ ✓ X 

USE.0 Use phase ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

WMR.0 Waste management ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

WMR.1 Scrap market X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ X ✓ ✓ X 

WMR.2 Other materials ✓ ✓ X ✓ ✓ ✓ ✓ X X X X X ✓ X ✓ X X X 

ENV.0 Environment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ ✓ ✓ ✓ 

ENV.1 Tailings & Slags ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ 

ENV.2 Landfills ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ 

ENV.3 Lithosphere ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

✓ = Process used in this model, X = Process not used in this model 
a For aluminum, the Smelting process comes after the process Mining & Refining 
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2. Results of the global metal cycles 
2.1 Aluminum 

Aluminum material flows displayed in Figure S1 are identical to the mean of the “2014 global 

aluminum cycle with uncertainty calculation” from Bertram and colleagues (Bertram et al. 2017, fig. 

2b). 

 

 

Figure S1: Global metal cycle for aluminum for the year 2014 in megatons (1 Mt = 1 Tg) (Bertram et al. 2017, 
fig. 2b). 

 

 

Figure S2: Metal stocks of a primary production cohort of aluminum in the anthroposphere by demand sectors 
and dissipative losses. In-use dissipation is negligibly small.  
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2.2 Chromium 

Chromium material flows displayed in Figure S3 are identical to the “global-level best-estimate 

chromium cycle, ca. 2000” by Johnson and colleagues (Johnson et al. 2006, fig. 3). 

 

 

Figure S3: Global metal cycle for chromium around the year 2000 in kilotons (1 kt = 1 Gg) (Johnson et al. 2006, 
fig. 3). 

 

 

Figure S4: Metal stocks of a primary production cohort of chromium in the anthroposphere by demand sectors 
and dissipative losses. In-use dissipation and Collection losses are negligibly small.  
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2.3 Iron 

Iron material flows displayed in Figure S5 are identical to the “global-level iron cycle, best estimate 

for ca. 2000” by Wang and colleagues (Wang et al. 2007, fig. 7). 

 

 

Figure S5: Global metal cycle for iron around the year 2000 in Megatons (1 Mt = 1 Tg) (Wang et al. 2007, fig. 7). 

 

 

Figure S6: Metal stocks of a primary production cohort of iron in the anthroposphere by demand sectors and 
dissipative losses. Fabrication losses and In-use dissipation are negligibly small.  
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2.4 Cobalt 

Cobalt material flows displayed in Figure S6 are identical to the “2005 best estimate for the planet” 

by Harper and colleagues (Harper et al. 2012, fig. 6). 

 

 

Figure S7: Global metal cycle for cobalt for the year 2005 in metric tons (1 t = 1 Mg) (Harper et al. 2012, fig. 6). 

 

 

Figure S8: Metal stocks of a primary production cohort of cobalt in the anthroposphere by demand sectors and 
dissipative losses. In-use dissipation is negligibly small.  
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2.5 Nickel 

Nickel material flows displayed in Figure S9 are calculated from the “world nickel cycle […] in 2005” 

of Reck and Rotter (Reck and Rotter 2012, fig. S2b). In the case of imbalances between inflow-

assessed and outflow-assessed material flows, here only the mean of outflowing and inflowing 

material flows is displayed. 

 

 

Figure S9: Global metal cycle for nickel around the year 2005 in kilotons (1 kt = 1 Gg) (Reck and Rotter 2012, fig. 
S2b). 

 

 

Figure S10: Metal stocks of a primary production cohort of nickel in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses and In-use dissipation are negligibly small.  
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2.6 Copper 

Copper material flows displayed in Figure S11 are calculated from the Sankey diagram display of 

global copper flows in 2011 of Glöser-Chahoud (Glöser-Chahoud 2017, fig. 5.8). Material flows are 

identical to the original figure except for the additional consideration of copper losses during mining 

to tailings which are quantified to be “18% of the copper content in the exploited ore” by (Glöser et 

al. 2013). 

 

 

Figure S11: Global metal cycle for copper for the year 2011 in kilotons (1 kt = 1 Gg) (Glöser-Chahoud 2017, fig. 
5.8). 

 

 

Figure S12: Metal stocks of a primary production cohort of copper in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses are negligibly small.  
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2.7 Zinc 

Zinc material flows displayed in Figure S13 are calculated from the “base case 2010 global 

anthropogenic cycle of zinc” of Meylan and Reck (Meylan and Reck 2017, fig. 5a). In the case of 

imbalances between inflow-assessed and outflow-assessed material flows, here only the mean of 

outflowing and inflowing material flows is displayed. 

 

 

Figure S13: Global metal cycle for zinc for the year 2010 in kilotons (1 kt = 1 Gg) (Meylan and Reck 2017, fig. 
5a). 

 

 

Figure S14: Metal stocks of a primary production cohort of zinc in the anthroposphere by demand sectors and 
dissipative losses.  
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2.8 Gallium 

Gallium material flows displayed in Figure S15 are identical to the “global substance flow analysis of 

gallium in 2011” by Licht and colleagues (Licht et al. 2015, fig. 2). Parallel processes in production, 

manufacturing and the use phase are jointly displayed. 

 

 

Figure S15: Global metal cycle for gallium for the year 2011 in metric tons (1 t = 1 Mg) (Licht et al. 2015, fig. 2). 

 

 

Figure S16: Metal stocks of a primary production cohort of gallium in the anthroposphere by demand sectors 
and dissipative losses. In-use dissipation is negligibly small. Ordinate is broken in the area of Production losses.  
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2.9 Germanium 

Germanium material flows displayed in Figure S17 are identical to the “global substance flow analysis 

of germanium in 2011” by Licht and colleagues (Licht et al. 2015, fig. 3). Parallel processes in 

production, manufacturing and the use phase are jointly displayed. 

 

 

Figure S17: Global metal cycle for Germanium for the year 2011 in metric tons (1 t = 1 Mg) (Licht et al. 2015, fig. 
3). 

 

 

Figure S18: Metal stocks of a primary production cohort of germanium in the anthroposphere by demand 
sectors and dissipative losses. Fabrication losses are negligibly small. Ordinate is broken in the area of 

Production losses.  
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2.10 Selenium 

Selenium material flows displayed in Figure S19 are identical to the “global selenium [cycle] for the 

[year] […] 2010” by Kavlak and Graedel (Kavlak and Graedel 2013a, fig. 3d). 

 

 

Figure S19: Global metal cycle for selenium for the year 2010 in kilotons (1 kt = 1 Gg) (Kavlak and Graedel 
2013a, fig. 3d). 

 

 

Figure S20: Metal stocks of a primary production cohort of selenium in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses are negligibly small. Ordinate is broken in the area of Production losses.  
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2.11 Silver 

Silver material flows displayed in Figure S21 are identical to the “global-level best-estimate silver 

cycle, ca. 1997” by Johnson and colleagues (Johnson et al. 2005, fig. 4). 

 

 

Figure S21: Global metal cycle for silver for the year 1997 in metric tons (1 t = 1 Mg) (Johnson et al. 2005, fig. 4). 

 

 

Figure S22: Metal stocks of a primary production cohort of silver in the anthroposphere by demand sectors and 
dissipative losses. Fabrication losses, Remelting losses and In-use dissipation are negligibly small.  
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2.12 Indium 

Indium material flows displayed in Figure S23 are identical to the “global substance flow analysis of 

indium in 2011” by Licht and colleagues (Licht et al. 2015, fig. 4). Parallel processes in production, 

manufacturing and the use phase are jointly displayed. 

 

 

Figure S23: Global metal cycle for indium for the year 2011 in metric tons (1 t = 1 Mg) (Licht et al. 2015, fig. 4). 

 

 

Figure S24: Metal stocks of a primary production cohort of indium in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses are negligibly small.  
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2.13 Tin 

Tin material flows displayed in Figure S25 are identical to the “global tin cycle, 1927-2005” by (Izard 

and Müller 2010, fig. 1). Note that these are cumulative flows over the whole period, not a single 

year. Parallel processes in production, manufacturing and the use phase are jointly displayed. 

 

 

Figure S25: Global metal cycle for tin for the years 1927 until 2005 in kilotons (1 kt = 1 Gg) (Izard and Müller 
2010, fig. 1). 

 

 

Figure S26: Metal stocks of a primary production cohort of tin in the anthroposphere by demand sectors and 
dissipative losses. Remelting losses are negligibly small.  
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2.14 Tellurium 

Tellurium material flows displayed in Figure S27 are identical to the “global tellurium [cycle] for the 

[year] […] 2010” by (Kavlak and Graedel 2013b, fig. 3d). 

 

 

Figure S27: Global metal cycle for tellurium for the year 2010 in metric tons (1 t = 1 Mg) (Kavlak and Graedel 
2013b, fig. 3d). 

 

 

Figure S28: Metal stocks of a primary production cohort of tellurium in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses are negligibly small. Ordinate is broken in the area of Production losses.  
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2.15 Tantalum 

Tantalum material flows displayed in Figure S29 are recalculated from the Sankey diagram without 

numerical values on the “global anthropogenic tantalum cycle for [year] […] 2015” of (Nassar 2017, 

fig. 2). 

 

 

Figure S29: Global metal cycle for tantalum for the year 2015 in metric tons (1 t = 1 Mg) (Nassar 2017, fig. 2). 

 

 

Figure S30: Metal stocks of a primary production cohort of tantalum in the anthroposphere by demand sectors 
and dissipative losses. Remelting losses and In-use dissipation are negligibly small.  
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2.16 Tungsten 

Tungsten material flows displayed in Figure S31 are identical to the “global [cycle] of […] tungsten in 

2008” by (Meylan et al. 2015, fig. 3) 

 

 

Figure S31: Global metal cycle for tungsten for the year 2008 in kilotons (1 kt = 1 Gg) (Meylan et al. 2015, fig. 3). 

 

 

Figure S32: Metal stocks of a primary production cohort of tungsten in the anthroposphere by demand sectors 
and dissipative losses. Fabrication losses and Remelting losses are negligibly small.  
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2.17 Rhenium 

Rhenium material flows displayed in Figure S33 are identical to the “global [cycle] of […] rhenium […] 

in 2018” by (Meylan et al. 2015, fig. 3). 

 

 

Figure S33: Global metal cycle for rhenium for the year 2008 in metric tons (1 t = 1 Mg) (Meylan et al. 2015, fig. 
3). 

 

 

Figure S34: Metal stocks of a primary production cohort of rhenium in the anthroposphere by demand sectors 
and dissipative losses. Fabrication losses, Remelting losses and In-use dissipation are negligibly small.  
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2.18 Lead 

Lead material flows displayed in Figure S35 are identical to the “global best estimate anthropogenic 

lead cycle for 2000” by (Mao et al. 2008, fig. 4b). 

 

 

Figure S35: Global metal cycle for lead for the year 2000 in kilotons (1 kt = 1 Gg) (Mao et al. 2008, fig. 4b). 

 

 

Figure S36: Metal stocks of a primary production cohort of lead in the anthroposphere by demand sectors and 
dissipative losses. Remelting losses are negligibly small.  
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