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Abstract

Due to the high anisotropy of the dc conductivity (σ‖/σ⊥ ≈ 104) the organic
conductor (fluoranthene)2X can be regarded as a model system for studying the
Peierls instability in quasi-one-dimensional systems. The temperature dependence
of the dc conductivity σ‖(T ) along the highly conducting crystal axis exhibits the
typical behaviour of a quasi-one-dimensional metal with a Peierls transition at
about 180 K to a charge density wave (CDW) ground state. As expected for a
highly one-dimensional conductor the exact transition temperature depends on
three-dimensional coupling effects and therefore on the size of the counterion
X− = PF−

6 , AsF
−
6 , SbF

−
6 . Above the Peierls transition σ‖(T ) can be described

quantitatively within a model of CDW fluctuations leading to a pseudo gap in
the electronic density of states. Below, the existence of a real energy gap at the
Fermi level with a BCS-like temperature dependence determines the charge trans-
port over more than eight orders of magnitude in the electrical resistance. For the
intrinsic energy gaps 2∆(0), which characterize the ground state of the Peierls
semiconductor, values of 120 – 180 meV have been found for different crystals.

Keywords: Low-dimensional systems; Peierls instability; Charge Density Waves

1 Introduction

Theoretical investigations of one-dimensional conductors — started well before quasi-
one-dimensional crystals were prepared experimentally — have demonstrated that their
electronic properties differ considerably from those materials, in which two- or three-
dimensional motion of electrons is possible.

Already in the year 1955 Peierls theoretically proposed a metal-insulator transition
for a coupled one-dimensional electron-phonon system [1]. When the temperature is
lowered a lattice distortion with a wave number equal to twice the Fermi momentum
kF of the electronic system splits the partially filled conduction band into completely
filled and empty subbands separated by an energy gap 2∆, thus turning the electronic
properties of the crystal from metallic to insulating. This periodic distortion of the
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lattice is accompanied by a modulation of the electronic charge density, a so-called
charge density wave (CDW).

These ideas resurfaced when the first materials with highly anisotropic crystal and
electronic structures became available in the early 1970s. Meanwhile several inorganic
and organic compounds have been found exhibiting electrical properties characteristic
of one dimension [2]. Besides CDWs other collective phenomena like superconductivity
and spin density waves (SDW) have been observed in these new substances [3].

The fluoranthene radical cation salts belong to the class of one-dimensional conduc-
tors with a Peierls transition to a CDW ground state. Originally the observation of this
collective transport phenomenon was limited to inorganic systems such as the transition
metal compounds NbSe3, TaS3, (TaSe4)2I and (NbSe4)3.33I and the blue molybdenum
bronzes like K0.30MoO3, but meanwhile it has been found in materials such as TTF-
TCNQ, where the charge transport is determined by organic molecules, too [4].

In this paper we present an in depth analysis of the Peierls instability in the quasi-
one-dimensional organic CDW conductor (fluoranthene)2X (X− = PF−

6 ,AsF
−
6 , SbF

−
6 ).

For this purpose we have investigated the dc conductivity of the system and compared
our data with the predictions of theoretical models developed for one-dimensional con-
ductors undergoing a Peierls transition [5].

The existence of a CDW ground state in (fluoranthene)2X below the Peierls transi-
tion was confirmed by the observation of nonlinear and frequency dependent conductiv-
ity, conductivity noise and metastability phenomena [6]. Thus the fluoranthene radical
cation salts seem to be an exception of the general feature, that systems with dimer-
ized donor or acceptor stacks such as the salts of the (TMTSF)2X-family exhibit a spin
density wave instability at low temperatures [3].

2 Crystal structure

Single crystals of (fluoranthene)2X were obtained by anodic oxidation of the aromatic
hydrocarbon fluoranthene (C16H10) — abbreviated in the following as FA — in the
presence of suitable anions (X− = PF−

6 ,AsF
−
6 , SbF

−
6 ) as described elsewhere [7].

Figure 1 shows the crystal structure of (FA)2X at room temperature for the coun-
terion X− = PF−

6 . Typical of the system is the linear arrangement of FA-molecules
in stacks of dimer radical cations (FA)⊙+

2 along the crystallographic a-axis segregated
by counterions X−. Responsible for the electronic and magnetic properties are these
FA-dimers, which carry one elementary electric charge and spin 1

2
due to the unpaired

electron, whereas the centrosymmetric anions X− have closed electron shells and there-
fore spin 0.

The mean intermolecular distance of the FA-molecules along the crystallographic
a-axis (a = 3.3 Å), which is less than twice the Van der Waals radius of the molecule,
ensures a strong overlap of the electronic π-orbitals of neighbouring molecules within the
FA-stack. Due to the considerably larger lattice constants b = 12.57 Å and c = 14.77 Å,
as well as the spatial direction of the π-orbitals parallel to the a-axis, the electronic
overlap perpendicular to the FA-stack is far less, thus giving rise to a high anisotropy
of the material.

Together with the charge transfer of one electron per FA-dimer these overlapping
electron wave functions lead to the formation of a half-filled one-dimensional conduction
band, which can be well described within a tight-binding model [8]. In this model the
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energy dispersion relation is given by:

Ek = −2t‖ cos(ka) (1)

with a longitudinal bandwidth w‖ = 4t‖ = 1.5 eV derived from polarized reflectance
spectra [9].

The transversal bandwidth w⊥ can be estimated from the ratio of the conductivities
parallel and perpendicular to the highly conducting a-axis by means of:

w⊥ = w‖

(

a‖
a⊥

)

(

σ⊥

σ‖

)1/2

(2)

For (FA)2PF6 we have found σ‖/σ⊥ ≈ 104 leading to w⊥ ≈ 10 meV. Therefore the
system is characterized by highly anisotropic crystal and electronic structures, which
lead to the observed anisotropy of electrical transport properties.

3 Experimental

The dc conductivity σ‖(T ) of freshly grown (FA)2X single crystals parallel to the highly
conducting a-axis was investigated from room temperature down to 4 K using two
different experimental methods. From 300 K to about 30 K the electrical resistance was
measured by a four probe technique with a current source (Keithley Model 220) and
a nanovoltmeter (Keithley Model 181) or an electrometer (Keithley Model 617), which
allow the measurement of resistances from 10−6−1010 Ω. At temperatures below, where
the sample resistance exceeded 1010 Ω, a two point configuration with the electrometer
as source and sense device was used, making measurements of resistances up to 1016 Ω
possible. With this technique we have ensured that contact resistances were negligible as
compared to the sample resistance, which is in general true for (FA)2X at temperatures
below 50 K.

The measurements were performed on single crystals of (FA)2X from different batches
with typical dimensions of 3× 0.1× 0.1 mm3. Electrical contacts were made by mechan-
ically clamping fine wires to gold pads evaporated on the crystal [10]. Homogeneous
current injection, which is absolutely necessary due to the high anisotropy of the sys-
tem, was achieved by covering the crystal ends also with gold. With this mounting
technique we did not find any sudden jumps in the resistance upon cooling down the
sample.

In former investigations, where we used a different mounting technique fixing fine
wires to the crystal with conducting paste (gold or graphite paint), we always registered
nonreproducible resistance jumps when cooling the crystal. Similar observations were
made on other organic conductors, too [10, 11]. There the sudden resistance jumps were
ascribed to microcracks in the crystal, produced by mechanical strains originating from
contacts with conducting paste.

The jumps observed on (FA)2X crystals, however, were accompanied by a consider-
able decrease in the optical reflectivity, indicating that mechanical strains can lead to
a microscopic change of the electronic orbital overlap, which causes a reduction of the
macroscopic conductivity.
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4 Results and discussion

In the following the temperature dependence of the dc conductivity σ‖(T ) along the
crystallographic a-axis will be presented for (FA)2PF6, where we have achieved the
highest crystal quality. Thereafter we will describe the observed dependency within
theoretical models and finally discuss the influence of different counterions on the phase
transition.

4.1 DC conductivity of (FA)2PF6: survey

Between room temperature and 4 K the dc conductivity of (FA)2PF6 varies over more
than 16 orders of magnitude with maximum values of 102 − 103 (Ωcm)−1 — depending
on the crystal — at room temperature. At temperatures above 300 K, a slow aging
process is observed due to a chemical decomposition of the substance.

Figure 2 shows an Arrhenius plot of σ‖(T ) between 300 and 20 K. This plot can be
clearly divided into four separate temperature regions:

• A. High temperature range (300 – 182 K):
Due to the relatively high conductivities one also speaks of the ”metallic range”,
though, however, no real metallic temperature dependence of the conductivity
is observed (this would mean: dσ‖/dT < 0). In this range the system can be
characterized as a quasi-one-dimensional metal, in which fluctuations lead to a
pseudo gap in the electronic density of states.

• Peierls transition (TP = 182 K):
At 182 K we observe a phase transition of second order, which is also seen in DSC
(differential scanning calorimetry) [12] and static magnetic susceptibility measure-
ments [13]. This is the Peierls transition leading to the CDW ground state of the
system. The transition temperature can be precisely determined from the loga-
rithmic derivative d(log σ‖)/d(1/T ) in figure 3, which shows a discontinuity at the
Peierls transition caused by an abrupt change of the curvature of σ‖(T ).

• B. Intermediate range (182 – 120 K):
Below the Peierls transition a strong decrease of conductivity is observed due to the
gradual opening of a real energy gap at the Fermi level with a modified BCS-like
temperature dependence.

• C. Semiconducting range (120 – 50 K):
Here the energy gap is almost completely open and one therefore measures ther-
mally activated conductivity with activation energies ∆(0) = 60 − 90 meV for
crystals from different batches.

• D. Low temperature range (T < 50 K):
Below approximately 50 K deviations from the thermally activated behaviour in-
dicate that impurity levels within the gap contribute to the conductivity.

In the following we will analyze the observed temperature dependence of the dc
conductivity in the ranges A, B and C (300 – 50 K), where the influence of defects is not
dominant, with theoretical models developed for quasi-one-dimensional systems with a
Peierls transition. The CDW ground state in the intermediate and semiconducting range
can thereby be treated as a unity.
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4.2 Metallic range of (FA)2PF6

Already from earlier experiments there has been strong evidence for a metallic character
of (FA)2PF6 in the high temperature range. In polarized optical reflectance spectra a
reflectivity of almost 100% for light polarized parallel to the FA stacking axis together
with a pronounced plasma edge at h̄ωpl ≈ 1.5 eV has been found [9]. Furthermore
magnetic resonance experiments revealed a Korringa law for the longitudinal nuclear
spin relaxation time T1 in the temperature range above the Peierls transition [14]:

1

T1

∝ T (3)

In contrast to these results, which are typical for metals, is the observed non-metallic
temperature dependence of the dc conductivity, which, however, can be explained as a
consequence of the high one-dimensionality of the system.

Theoretical calculations of Lee, Rice and Anderson [15] have shown that in a one-
dimensional electron-phonon system thermal fluctuations lead to a pseudo energy gap
in the electronic density of states at the Fermi level. This means that with decreasing
temperature a dip in the electronic density of states is observed in the vicinity of the
Fermi energy (|E−EF | < ∆(0)). Although D(E, T ) remains finite for T > 0, the signif-
icant reduction below the high temperature metallic density of states has an influence
on macroscopic transport properties.

Recently Johnston et al. [16] were able to show that for a calculation of macroscopic
transport properties the pseudo gap in the electronic density of states D(E, T ) can
be replaced by an effective uniform, but temperature dependent energy gap 2∆eff (T ),
which is displayed in figure 4. They introduced a model to describe the temperature
dependence of the electrical resistance of the quasi-one-dimensional CDW conductor
(TaSe4)2I above the Peierls transition by the following equation:

R(T ) = R0 + A · TB · [exp{∆eff (T )/kBT}+ 1] (4)

This equation can be derived from the Boltzmann equation for the electrical conductivity
of a one-dimensional semiconductor with a band gap 2∆:

σ(T ) =
4e2nc

πh̄

∞
∫

∆

τ(ǫ)v(ǫ)

(

−
∂fFD

∂ǫ

)

dǫ , (5)

where τ and v denote the scattering time and drift velocity of the charge carriers and
fFD(ǫ) = [exp(ǫ/kBT ) + 1]−1 is the Fermi-Dirac distribution for a Fermi energy fixed
at E = 0. nc represents the number of conducting chains per unit area. By taking an
energy independent mean free path of electrons l = τv and replacing 2∆ by the effective
uniform gap 2∆eff (T ) one yields:

σ(T ) =
4e2ncl

πh̄
[exp{∆eff (T )/kBT}+ 1]−1 (6)

Equation (4) follows, when a power law for l(T ) ∝ T−B is assumed. R0 merely represents
a phenomenological offset, which has been introduced by Johnston to account for the
sample geometry.
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In figure 5 the Johnston equation (4) was fitted to the high temperature R(T ) data
from 182 to 290 K. Thereby we have achieved good agreement between theory and
experiment for T > 200 K.

Of physical importance is the mobility exponent B, for which fits for different crystals
have yielded values from 0.8 – 1.1, being typical for metals at high temperatures. This
indicates that (FA)2PF6 in its high temperature phase possesses metallic character. A
metal-like temperature dependence of the dc conductivity, however, is suppressed by
fluctuations.

With the knowledge of the effective uniform gap 2∆eff (T ) we can estimate the mean
free path of electrons at T = 290 K from equation (6) with σ‖(290 K) = 1000 (Ωcm)−1

and nc =
2

bc
= 1.1×1014 cm−2 yielding l = 12.3 Å, which is in good agreement with values

calculated from optical reflectance spectra [9] and magnetic resonance experiments [17].
For the deviations below T = 200 K two facts may be responsible. Just like in

other CDW conductors it is likely that in the vicinity of the phase transition two- or
three-dimensional coupling effects of neighbouring chains become important, leading to
deviations from the above equation. Besides, in the special case of (FA)2PF6 a structural
phase transition from space group A2/m to P21/c at 206 K detected by DSC [12] and x-
ray analysis [7] contributes an additional scattering mechanism of charge carriers below
this temperature.

4.3 Ground state of (FA)2PF6

According to the early theory of Peierls the ground state of a one-dimensional metal is
an insulating (respectively semiconducting) one, due to the existence of an energy gap
at the Fermi level.

Rice and Strssler [18] have treated the Peierls transition in a strictly one-dimensional
electron-phonon system within the mean-field theory. They have shown that the temper-
ature dependence of the energy gap 2∆(T ) can be derived from the following expression:

1

λ
=

EF
∫

0

tanh





√

ǫ2 +∆2(T )

2kBT





dǫ
√

ǫ2 +∆2(T )
(7)

In this equation λ denotes the so-called dimensionless electron-phonon coupling con-
stant, given by:

λ =
|g(k = kF , q = 2kF )|

2D(EF )

h̄ω2kF

, (8)

where g is the matrix element for the scattering process of electrons with wave number
k = kF and phonons of q = 2kF , ω2kF the unperturbed phonon frequency of the metallic
range for phonons with q = 2kF and D(EF ) the density of states at the Fermi level.

The formal structure of equation (7) is identical to the one for the energy gap of a
superconductor in the BCS-theory of superconductivity, if λ is replaced by U · D(EF ),
where U represents the effective electron-electron interaction potential of a supercon-
ductor, and the upper integration limit by the Debye energy h̄ωD. While the ground
state of a superconductor is characterized by the existence of electron-electron pairs
(Cooper pairs) with momentum k = 0, the ground state of the Peierls semiconductor
can be regarded as a condensate of electron-hole pairs with k = 2kF .
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The mean-field theory for a half-filled tight-binding band furthermore yields expres-
sions for the Peierls transition temperature TMF

P [18]:

kBT
MF
P = 2.26 EF exp(−1/λ) (9)

and the zero temperature energy gap 2∆(0):

2∆(0) = 8 EF exp(−1/λ) (10)

From these equations follows the fundamental BCS relation between the energy gap
2∆(0) and the transition temperature TMF

P :

2∆(0) = 3.52 kBT
MF
P (11)

In the mean-field theory, however, one neglects the effects of thermodynamic fluc-
tuations, which for a strictly one-dimensional system would preclude the occurrence of
a phase transition at finite temperature. In real quasi-one-dimensional systems a non-
vanishing three-dimensional coupling of conducting chains partially suppresses the effect
of such fluctuations, so that a Peierls transition can take place at a finite temperature
TP with:

0 < TP < TMF
P (12)

Although a theoretical treatment of the Peierls transition, taking into account both
fluctuations and three-dimensional coupling effects, requires rather sophisticated meth-
ods [19], the mean-field results can give at least qualitative insight into the ground state
of a quasi-one-dimensional conductor.

At low temperatures thermal fluctuations disappear, and quantum effects are neg-
ligible due to the large effective mass M∗ of the CDW condensate, which is of the
order of 103 · m∗ (m∗ ≈ me is the effective band mass of the conduction electrons)
[20]. Consequently, the low temperature properties of the system are well described by
the mean-field results. In particular one expects the real Peierls gap at T = 0 to be
approximately the same as the mean-field gap:

∆(0) ≈ ∆MF (0) (13)

At higher temperatures, especially in the vicinity of TMF
P , fluctuations are not negligible

and the real Peierls transition occurs at a significantly lower temperature TP , as shown
in figure 6.

Therefore the energy gap 2∆(0) at T = 0 and the Peierls transition temperature
TP do not satisfy the fundamental BCS relation (equation (11)). Instead of the pro-
portionality constant 3.52 we find for (FA)2PF6 from the measured activation energies
∆(0) = 60−90 meV (yielding mean-field transition temperatures of TMF

P = 400−600 K)
and the observed Peierls transition at TP = 182 K:

2∆(0) = (7.7− 11.5) kBTP (14)

For the dimensionless electron-phonon coupling constant we have calculated from equa-
tion (10) with a Fermi energy given by the tight-binding model as EF = t‖ = 0.37 eV:

λ = 0.31− 0.36 , (15)
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which are typical values for CDW conductors [21, 22].
By postulating that the temperature dependence of the energy gap 2∆(T ) in

(FA)2PF6 below 182 K is of the modified BCS-type (as displayed in figure 6) we were
able to describe the observed R(T ) dependency quantitatively with the analogon of
equation (4), in which the offset R0 has been neglected and the Fermi-Dirac distribution
replaced by Maxwell-Boltzmann statistics:

R(T ) = A · TB · exp{∆(T )/kBT} (16)

For a calculation of ∆(T ) we have taken for ∆(0) the experimentally obtained values
in the semiconducting range and scaled down the original BCS-gap to a smaller critical
temperature T ∗

P , for which the energy gap vanishes (confer figure 6). As we shall see later,
this temperature T ∗

P and the observed transition temperature TP are not completely
identical, but differ by about 8 K.

Figure 7 shows the excellent fit of equation (16) to the R(T ) data below the Peierls
transition over more than eight orders of magnitude in the electrical resistance. Remark-
able thereby is the good agreement of the exponent B = 0.7− 1.0 for different crystals
with the values obtained for the high temperature range.

4.4 Energy gap in (FA)2PF6

We have shown in the last two paragraphs that the dc conductivity of (FA)2PF6 can be
described quantitatively in a wide temperature range from room temperature down to
50 K, if one knows the functional form of only two physical quantities. These are the
effective uniform gap for the metallic range (caused by fluctuations) and the real energy
gap in the ground state, which is the order parameter of the Peierls transition. The
temperature dependence of ∆eff (T ) and ∆(T ) is determined by the activation energy
∆(0) and the phase transition temperature TP , which can both be easily measured. These
two energy gaps, which have already been used for the fits from above, are displayed in
figure 8.

According to this figure the observed Peierls transition takes place at a temperature
TP = 182 K, where the effective gap with only a weak temperature dependence passes
into the strongly temperature dependent Peierls gap, which vanishes at a slightly higher
temperature T ∗

P = 190 K. This figure also explains the observed singularity in the
derivative of σ‖(T ) at TP (confer figure 3) as a consequence of the different curvatures of
∆eff (T ) and ∆(T ). Our results on the energy gap confirm calculations for the effective
gap in the metallic range from static magnetic susceptibility data [13]. Moreover, dc
conductivity measurements yield precise information below the phase transition, where
susceptibility data soon become rather inaccurate.

4.5 Peierls transition in (FA)2X

As already mentioned, a Peierls transition at a finite temperature TP > 0 can only
occur in the presence of a non-vanishing interaction between the conducting chains of a
quasi-one-dimensional conductor. Consequently the exact phase transition temperature
depends on the magnitude of these three-dimensional coupling effects.

In order to investigate this influence in our system (FA)2X we have measured the dc
conductivity of crystals with the anions X− = PF−

6 ,AsF
−
6 , SbF

−
6 . For counterions other

8

Annalen der Physik 504, 409-422 (1992)



than PF−
6 we observe a similar behaviour of σ‖(T ), however, as expected for a highly one-

dimensional conductor the Peierls transition temperature depends on three-dimensional
coupling effects through the size of the counterion. With increasing size of the counte-
rion we observe a shift of the phase transition towards lower temperatures indicating a
weaker three-dimensional coupling. The respective lattice parameters together with the
measured phase transition temperatures are listed in table 1.

In theoretical treatments of the Peierls transition in quasi-one-dimensional conduc-
tors three principal mechanisms of interchain coupling are discussed [19, 21]. First the
Coulomb interaction between CDWs on neighbouring chains, second tunneling of elec-
trons between adjacent chains, described by a finite transfer integral t⊥, and finally the
dependence of the phonon frequencies on the transversal components of the wave vector,
originating from interactions between ions on adjacent chains.

These theories show that the real Peierls transition temperature TP is a monotonously
increasing function of the interchain coupling. Furthermore, even in highly one-
dimensional systems like (FA)2X a small interchain coupling is sufficient for a Peierls
transition at relatively high temperatures of the order of TP ≈ (0.3− 0.5) TMF

P .
Estimates of the coupling constants indicate that three-dimensional coupling in

(FA)2X is weak in accordance with the observed high one-dimensionality of the system.
Further investigations with different experimental methods are necessary, in order to
identify the dominant coupling mechanism and to answer the question, why the Peierls
transition in (FA)2X crystals with the same counterion X− but different energy gaps
2∆(0) always occurs at a fixed temperature TP (depending on the counterion) and does
not scale with the mean-field transition temperature TMF

P (given by ∆(0)).

5 Conclusion

Due to the crystal structure and the spatially directed electronic π-orbitals of the organic
molecule fluoranthene we observe highly anisotropic electrical transport properties. The
measured anisotropy of the dc conductivity of σ‖/σ⊥ ≈ 104 represents a relatively high
value as compared to the other CDW conductors mentioned in the introduction, where
ratios of σ‖/σ⊥ ≈ 10 − 100 are reported [20]. Therefore (FA)2X can be regarded as a
model system for studying the Peierls instability in quasi-one-dimensional conductors.

Our investigations have shown that the temperature dependence of the dc conduc-
tivity in the quasi-one-dimensional organic CDW conductor (FA)2X (X− = PF−

6 , AsF
−
6 ,

SbF−
6 ) can be described quantitatively over a wide temperature range from 300 to about

50 K, in which the electrical resistance varies over more than 8 orders of magnitude,
within theoretical models developed for quasi-one-dimensional systems.

In the metallic range above the Peierls transition the conductivity can be described
quantitatively by CDW fluctuations leading to a pseudo gap in the electronic density
of states at the Fermi level. Our analysis of the conductivity based on this model has
revealed a mean free path of electrons l(T ) ∝ T−B (B = 0.8− 1.1), which indicates that
in a microscopic picture (FA)2X actually has metallic properties in its high temperature
phase. Thus the observed non-metallic behaviour of the macroscopic conductivity σ‖(T )
(dσ‖(T )/dT > 0) clearly shows the strong impact of one-dimensional fluctuations in this
temperature range.

Below the Peierls transition, in the CDW ground state the existence of an energy gap
2∆(T ) in the single particle excitation spectrum with a modified BCS-type temperature
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dependence determines the charge transport. We have found that for temperatures down
to about 50 K the basic results of mean-field theory — originally developed for a strictly
one-dimensional system without fluctuations — remain valid even for a real quasi-one-
dimensional conductor like (FA)2X. The observed transition temperature TP = 182 K,
however, is significantly suppressed by fluctuations below the mean-field value TMF

P =
400− 600 K.

As expected for a highly one-dimensional conductor the transition temperature de-
pends on three-dimensional coupling effects and therefore on the size of the counterion
X−. In spite of the high one-dimensionality of (FA)2X, the observed Peierls transition
occurs at a considerable fraction of the mean-field temperature TMF

P , which is of the
order of TP ≈ (0.3− 0.5) TMF

P .
As already mentioned we have found clear evidence for the existence of a CDW

ground state in (FA)2X below the Peierls transition. This broken symmetry ground
state is characterized by the existence of collective transport phenomena unknown from
usual metals or semiconductors. Among them are field and frequency dependent conduc-
tivity, conductivity noise and metastability phenomena. It is to expect that a coherent
response of the CDW condensate in (FA)2X crystals will be prevented by the high one-
dimensionality of this system. These results, however, will be presented in companion
paper [23].
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X− PF−
6 AsF−

6 SbF−
6

a/Å 6.61± 0.02 6.58± 0.02 6.62± 0.02

b/Å 12.57± 0.01 12.63± 0.01 12.73± 0.01

c/Å 14.77± 0.01 14.89± 0.01 15.09± 0.01

TP/K 182± 1 181± 1 175± 1

Table 1: Lattice constants of (FA)2X for the counterions X− = PF−
6 ,AsF

−
6 , SbF

−
6 at room

temperature [7] and the measured phase transition temperatures; a significant shift of
the phase transition is observed only with the counterion X− = SbF−

6
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Figure 1: Crystal structure of (FA)2PF6 at room temperature; top: the aromatic hy-
drocarbon fluoranthene C16H10 (H-atoms are omitted); below: projection of the crystal
structure on the a-c- and b-c∗-plane [7]

Figure 2: Temperature dependence of the dc conductivity σ‖(T ) of a (FA)2PF6 single
crystal along the crystallographic a-axis; the dashed line represents thermally activated
conductivity with an activation energy ∆(0) = 81 meV

Figure 3: Temperature dependence of the dc conductivity σ‖(T ) together with the loga-
rithmic derivative d(log σ‖)/d(1/T ); the Peierls transition at TP = 182 K can be clearly
identified from the singularity in the derivative

Figure 4: Temperature dependence of the effective fluctuation induced gap 2∆eff (T )
for a one-dimensional conductor [16]; the effective gap for (FA)2PF6 can be calculated
numerically from the measured ∆(0) values; TMF

P is given by: 2∆(0) = 3.52 kBT
MF
P

Figure 5: Fit of the Johnston model to the experimental data in the high temperature
range of (FA)2PF6; R0 = −0.5 Ω, A = 3.0× 10−3 ΩK−B , B = 0.8

Figure 6: Temperature dependence of the mean-field (BCS) energy gap and the real
Peierls gap in the ground state of a quasi-one-dimensional conductor [19]

Figure 7: Fit of equation (15) to the experimental data for (FA)2PF6 below the Peierls
transition; A = 9.3× 10−3 ΩK−B , B = 0.7

Figure 8: Temperature dependence of the effective and Peierls gap for (FA)2PF6; the
Peierls gap vanishes at a temperature T ∗

P = 190 K, which is slightly higher than the
observed phase transition temperature TP = 182 K
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