
Algebraic Derivation of Until Rules and

Application to Timer Verification

Jessica Ertel1, Roland Glück2, and Bernhard Möller3

1 msg-life (ertel-jessica@hotmail.de)
2 German Aerospace Center (roland.glueck@dlr.de)
3 University of Augsburg (moeller@uni-augsburg.de)

Abstract. Using correspondences between linear temporal logic and
modal Kleene Algebra, we prove in an algebraic manner rules of lin-
ear temporal logic involving the until operator. These can be used to
verify programmable logic controllers; as a case study we use a part of
the control of pedestrian lights, verified with the interactive tool KIV.

1 Introduction

Overview Semirings, Kleene Algebra and their algebraic relatives have proved
to be a flexible tool for reasoning about a broad variety of topics such as graph
problems, algorithms and transformations [12,14,23,24,27,30], energy problems
[20], fuzzy logic and relations [31], software development and verification [38,41]
and database theory [36,40]. Here we use and apply an approach from [17,39]
which relates Modal Kleene Algebra (MKA) and Linear Temporal Logic (LTL).
It shows a.o. that sets of LTL traces form an MKA and that the standard LTL
operators can be represented as compositions of MKA operators. Along these
lines we first prove algebraically a few new properties of the LTL until operator
in MKA. Since we use the MKA formalization, we prove in fact much more
general theorems which hold in all MKAs, not just the LTL variant mentioned
above. But, of course, the results apply to LTL itself as well.

We apply these in the interactive verification of programmable logic con-
trollers (PLCs). Encouraged by the results in [21] on this, we tackle as a consid-
erably more difficult new task a substantial part of traffic light control systems
in PLC, including a formalization of timers. Besides this, the paper deals sub-
stantially with temporal phenomena, in which the until operator is a big struc-
turing help. These issues were not yet covered in [21]; the treatment is based
on [19]. As verification tool we choose KIV [3], a rather uncommon interactive
verifier, hosted at the university of Augsburg. Despite not being widely known,
it succeeded in some verification competitions [7,8]. Moreover, the present work
continues [21] which also used KIV.

Related Work Recent approaches to PLC verification are simulation based
[15], use data-flow analysis [28] or model checking [35,42]. Simulation based ap-
proaches and model checking (based on timed automata) in a näıve manner
suffer from the same problem: when confronted with a timer they have to ex-
ecute or check all timer values, see e.g. the handling of the variable timer in

2

the specification robot.smv from [4]. There all possible timer values between 0
and 400 are evaluated, whereas only some of them are important for the veri-
fication of the system under consideration (note that this is not a property of
the complexity of the system’s description and formalization but rather of the
employed verification mechanism). Verification of timed PLC programs is a very
sparse field; e.g., [35] deals only with Boolean values, whereas [42] explicitely ex-
cludes timers. An interactive approach to PLC timer verification using COQ [1]
is presented in [47]. This is closely related to our approach; however, it does not
reason about until-properties as we will do here.

Our Contribution The present paper introduces an interactive approach to
the verification of timed programs, in particular to timed PLC programs. Based
on an algebraic modeling and a timer formalization that takes only significant
values of the timer into account, we circumvent the problems sketched above.
This idea can be seen as a variant of the zone-graph technique (see [9,48]) which
divides the set of possible clock values into equivalence classes and achieves a
model considering only important clock values. Formalization in MKA and proofs
were conducted in KIV [3] due to the preliminary work [21] and our desire to
show the possibility of a purely algebraic approach. As a side effect, interactive
verification has the potential to guide humans to better bug-fixing than model
checking which only outputs faulty traces. Moreover, algebraic rules as derived
in Section 2.3 can be deployed in a large context not restricted to a single partic-
ular formalization. Finally, algebraic reasoning is much more compact and needs
much fewer steps than pointwise reasoning in the original formulation of LTL or
Dynamic Logic, even though the latter is directly supported by KIV.

Structure The paper is organized as follows: In Sections 2.1 and 2.2 we recall
the basics of MKA and the connection between MKA and LTL. Section 2.3
gives algebraic proofs of some important rules concerning the until operator.
Section 3 adapts and substantially extends the earlier results on PLC verification
from [21]. After a quick introduction to PLCs in Section 3.1 and their MKA
modeling in Section 3.2, we show in Section 3.3 how to formalize a PLC timer in
our framework. Section 3.4 ties all threads together in a case study verifying a
central part of the control of pedestrian lights. Conclusion and outlook are given
in Section 4.

2 Modal Kleene Algebra and Linear Temporal Logic

For this section we assume basic knowledge about lattice theory and semirings
(e.g. [13,22,29]), and about temporal logic (e.g. [11,34]). As usual, we often omit
the semiring multiplication sign for better readability. Furthermore, we use

∑

and
∏

for general finite sums and products in semirings.

2.1 Modal Kleene Algebra

As stated in Sect. 1, MKA is a by now well established subdiscipline of Algebraic
Logic with numerous applications. Its several axiomatic variants have different
advantages and disadvantages; hence we make precise which one we use.

3

First, a Kleene algebra [32] is a structure (M,+, ·, 0, 1, ∗) where (M,+, ·, 0, 1)
is an idempotent semiring with natural order x ≤ y ⇔ x + y = y, and the
Kleene star operator ∗ satisfies the following axioms for all x, y, z ∈M :

1 + xx∗ ≤ x∗ 1 + x∗x ≤ x∗ (right and left unfold)
y + zx ≤ z ⇒ yx∗ ≤ z y + xz ≤ z ⇒ x∗y ≤ z (right and left induction)

Star has many useful properties like reflexivity, multiplicative idempotence and
isotony, i.e., 1 ≤ x∗, x∗ · x∗ = x∗ and x ≤ y ⇒ x∗ ≤ y∗ for all x, y.

Assume now an idempotent semiring S = (M,+, ·, 0, 1) whose elements cor-
respond to sets of possible transitions (e.g., relations) between states of some
kind. In particular, 0 models the empty set of transitions. To get an algebraic
representation for sets of states one introduces the notion of tests [37,26,33]. An
element p ∈M is called a test if there exists an element ¬p (the complement of
p) such that p+ ¬p = 1 and p · ¬p = 0 = ¬p · p hold. Clearly, all tests p satisfy
p ≤ 1. In the case of relations, tests are subrelations of the identity relation and
hence can indeed be viewed as representations of sets of states. The set test(S) of
all tests of S forms a Boolean algebra with multiplication as infimum, addition
as supremum and ¬ as complement operator. Moreover, 0 and 1 are the least
and greatest tests, with 0 also representing the empty set of states. For that
reason, in view of the formal semantics of LTL to come, we call a test p valid ,
in signs |= p, if p = 1 (equivalently, if 1 ≤ p). Finally, it is useful to define test
implication by p → q =df ¬p + q. This satisfies the important shunting equiv-
alence p · q ≤ r ⇔ p ≤ q → r, with p · q ≤ r ⇔ p ≤ ¬q + r as a consequence.
Moreover, this implies |= p→ q ⇔ p ≤ q.

In an idempotent semiring S = (M,+, ·, 0, 1) one can axiomatize the (for-
ward) diamond operator | 〉 of type M × test(S) → test(S) by the equivalence
|x〉p ≤ q ⇔df ¬qxp ≤ 0 for all x ∈ M and p, q ∈ test(S). In the case of ex-
istence, the operator is unique. The test |x〉p represents the inverse image of p
under x, i.e., the states that are related by x to at least one p-state. A backward
diamond 〈 | representing the image operator can be defined symmetrically by
〈x|p ≤ q ⇔df px¬q ≤ 0 for all x ∈M and p, q ∈ test(S).

The diamonds distribute over + and hence are isotone in both arguments.
Moreover, the import/export law |px〉q = p(|x〉q) and its dual hold for all x and
tests p, q. Finally, the diamonds of tests are characterized by |p〉q = pq = 〈p|q
(and hence, in particular, |1〉q = q = 〈1|q) for all p, q,∈ test(S).

The structure (M,+, ·, 0, 1, | 〉, 〈 |) is called a modal semiring if additionally
the modality condition |xy〉p = |x〉|y〉p and its dual hold for all x, y and tests p.

As the De Morgan dual of the diamonds we introduce the boxes by the
equality |x]p =df ¬|x〉¬p and its dual. These operators are isotone in their
second but antitone in their first argument. Clearly, in a modal semiring we also
have |xy]p = |x]|y]p and its dual.

Finally, we call a structure (M,+, ·, 0, 1, ∗, | 〉, 〈 |) a Modal Kleene Algebra
(or briefly MKA) if (M,+, ·, 0, 1, ∗) is a Kleene Algebra and (M,+, ·, 0, 1, | 〉, 〈 |)
forms a modal semiring. Every MKA satisfies the important modal star unfold

4

and induction rules (and their right duals) for all x and tests p, q:

p+ |x〉|x∗〉p ≤ |x∗〉p , |x∗]p ≤ p · |x]|x∗]p ,
q ≤ p ∧ |x〉p ≤ p ⇒ |x∗〉q ≤ p , p ≤ q ∧ p ≤ |x]p ⇒ p ≤ |x∗]q .

(1)

MKAs are related to Dynamic Algebras (e.g. [43,25]); a decisive difference is
that, via tests, MKAs allow nested modalities such as |a · |b〉p]q which restricts
a to target states in an inverse image under a transition b. The relationship
between Dynamic Algebras, MKAs and Test Algebras has been worked out in
[18]. Variants of the modal operators are also present in [10] and the algebraic
counterpart [45], which is a special case of MKA. But no temporal operators are
treated there. Finally, we mention the framework in [46]; this is rather specialised,
whereas we are interested in re-using the more general framework of MKAs. The
details are not relevant to the present paper and hence omitted.

2.2 Modal Kleene Algebra and Linear Temporal Logic

The syntax of the language Ψ of LTL formulas over a set Φ of atomic propositions
is given by the context-free grammar

Ψ ::= ⊥ | Φ | ¬Ψ | Ψ → Ψ | Ψ ∧ Ψ | Ψ ∨ Ψ | ◦ Ψ | � Ψ | ✸ Ψ | Ψ U Ψ

where ⊥ denotes falsity, → is logical implication and ◦ and U are the next-time
and until operators. We are well aware of the redundancies in this definition;
they serve to make the presentation of the semantics smoother.

In [39] (refined in [16]) a correspondence between MKA and LTL was es-
tablished. It uses an MKA S = (M,+, ·, 0, 1, ∗, | 〉, 〈 |) and an element a ∈ M
that models a transition relation transforming a set of states into the set of
their successors. Then to every LTL formula ψ one assigns as semantics a test
[[ψ]] ∈ test(S) that represents the states in which ψ holds. Strictly speaking,
the semantic function should be parametrised with the transition element a in
the form [[ψ]]a; we omit this for better readability.4 Further explanations can be
found in [39,16]. Since the algebraic semantics only uses the forward diamond
and box, we omit the word “forward” in the sequel.

We assume that to every atomic proposition ϕ ∈ Φ a test [[ϕ]] ∈ test(S) has
been assigned as the semantics. Then the semantics of the remaining formulas
is inductively defined as follows.

[[⊥]] = 0 [[◦ψ]] = |a〉[[ψ]]
[[¬ψ]] = ¬[[ψ]] [[ψ1 Uψ2]] = |([[ψ1]] · a)

∗〉[[ψ2]]
[[ψ1 → ψ2]] = [[ψ1]] → [[ψ2]] [[✸ψ]] = |a∗〉[[ψ]]
[[ψ1 ∧ ψ2]] = [[ψ1]] · [[ψ2]] [[�ψ]] = |a∗][[ψ]]
[[ψ1 ∨ ψ2]] = [[ψ1]] + [[ψ2]]

The semantics of U can be understood as follows. The element [[ψ1]] · a models
the restriction of the transition relation a to those starting states that satisfy ψ1.

4 This abstracts from the classical LTL semantics in terms of sets of infinite traces of
program states. That concrete semantics is mirrored by a modal semiring in which
the elements are relations between sets of traces and tests are sets of traces; states
in the sense of the above wording are then single traces, not program states.

5

Thus, a transition along ([[ψ1]]·a)
∗ traverses only ψ1-states. Hence |([[ψ1]]·a)

∗〉[[ψ2]]
characterizes those states from which ψ2-states can be reached by traversing only
ψ1-states; this is a faithful representation of the informal U -semantics. Finally,
✸ψ and �ψ hold if ψ holds in some/all subsequent states.

Motivated by these definitions we introduce temporal operators on tests by

◦p =df |a〉p pU q =df |(p · a)∗〉q ✸ q =df |a∗〉q � q =df |a∗]q (2)

for transition element a and tests p, q. This allows LTL formulas for tests.
Formula ψ1 entails formula ψ2, in signs ψ1 |= ψ2, if [[ψ1]] ≤ [[ψ2]]. Formula

ψ is valid, in signs |= ψ, if ⊤ |= ψ, where ⊤ = ¬⊥ is the true formula with
[[⊤]] = 1. Since 1 is the greatest test, this is equivalent to [[ψ]] = 1. We provide a
frequently used rule concerning the validity of →-formulas: by the above remark,
the semantics of → and the shunting equivalence we obtain

|= ψ1→ψ2 ⇔ 1 ≤ [[ψ1→ψ2]] ⇔ 1 ≤ [[ψ1]]→ [[ψ2]] ⇔ [[ψ1]] ≤ [[ψ2]] ⇔ ψ1 |= ψ2 (3)

Given a transition system, the relation transforming a set of states into the
set of their successor states is a total function from sets to sets. In MKA, this
behavior of an abstract relation a can be enforced by the requirement |a〉p = |a]p
for all tests p [16,39]; we call an element with this property also a total function.

Using the above correspondences, we can prove rules from LTL in an algebraic
way, which avoids reasoning about traces and single states.

As an example, we show |= ψ → ✸ψ: by (3), the semantics of ✸ and isotony
of the diamond together with |1〉p = p, we obtain

|= ψ → ✸ψ ⇔ [[ψ]] ≤ [[✸ψ]] ⇔ [[ψ]] ≤ |a∗〉[[ψ]] ⇐ 1 ≤ a∗ ,

which holds by the definition of star.

2.3 Investigating the Until Operator

In this section we show some useful properties of the LTL until operator us-
ing the correspondences with MKA from the previous subsection. All proofs
were also done interactively with the KIV system (see [3]), based on the work
from [21]. The whole KIV treatment can be found online at [6]; however, we
include the proofs to give the reader an impression of the algebraic framework
and to demonstrate the power of reasoning in MKA. KIV has also the ability
to conduct automated reasoning using adjustable heuristics. Since formulating
these is not an easy task, we mostly forwent this feature; exploring its power in
our setting will be future work. However, our experience so far shows that the
right adjustment of heuristics can help a lot.

It turns out that many proofs about the transition element a only need the
weaker condition |a〉p ≤ |a]p for all tests p. Such an element is called modally
deterministic. We will show a number of properties of U over such elements.

First, assume that ϕ implies ✸ψ and that for every state satisfying ϕ the
(by determinacy unique) successor state satisfies ϕ∨ψ. We will prove that then
ϕ implies ϕUψ. In LTL notation, if |= ϕ → ◦(ϕ ∨ ψ) and |= (ϕ → ✸ψ) then
|= ϕ→ ϕUψ 5. To save notation, in the sequel we identify formulas with their

5 Note that this is not the same as ((ϕ → ◦(ϕ ∨ ψ)) ∧ (ϕ → ✸ψ)) |= ϕ → ϕUψ,
which does not hold.

6

semantic values. E.g., p, q will stand for the values [[ϕ]], [[ψ]] of formulas ϕ, ψ.
With this convention, a translation into MKA looks as follows (remember (2)
and the correspondence of ∧/∨ with ·/+):

Lemma 1. For a modally deterministic element a and tests p, q, if |= p→ ✸ q
and |= p→ ◦(p+ q) then |= p→ (pU q).

Proof. Plugging in the definitions and using (3) transform the claim into p ≤
|a〉(p+ q) ∧ p ≤ |a∗〉q ⇒ p ≤ |(p · a)∗〉q.
First, by idempotence of multiplication on tests and the second assumption
p ≤ |a∗〉q we obtain p = p · p ≤ p · |a∗〉q. So we are done if we can show
p · |a∗〉q ≤ |(p · a)∗〉q. By shunting and diamond star induction, introducing
r =df ¬p+ |(p · a)∗〉q, we obtain

p · |a∗〉q ≤ |(p · a)∗〉q ⇔ |a∗〉q ≤ ¬p+ |(p · a)∗〉q ⇐ q ≤ r ∧ |a〉r ≤ r

The first conjunct of the latter fomula holds by 1 ≤ (p · a)∗ and hence q ≤
|(p · a)∗〉q ≤ r. For the second one we continue as follows:

|a〉r ≤ r
⇔ p · |a〉r ≤ |(p · a)∗〉q {[definition of r and shunting back]}
⇔ p · |a〉¬p ≤ s ∧ p · |a〉s ≤ s {[setting s =df |(p · a)∗〉q, definition of r,

distributivity of |a〉 and · , lattice algebra]}

For the second conjunct we reason as follows:

p · |a〉s
= |p · a〉s {[import/export]}
= |p · a〉|(p · a)∗〉q {[definition of s]}
= |p · a · (p · a)∗〉q {[modality]}
≤ |(p · a)∗〉q {[xx∗ ≤ x∗ by right star unfold, isotony of

diamond]}
= s {[definition of s]}

The first conjunct is the place where the first assumption is used:

p ≤ |a〉(p+ q)
⇔ p ≤ |a〉p+ |a〉q {[distributivity]}
⇔ p · ¬|a〉p ≤ |a〉q {[shunting]}
⇔ p · |a]¬p ≤ |a〉q {[definition forward box,

Boolean algebra]}
⇒ p · |a〉¬p ≤ |a〉q {[modal determinacy of a]}
⇒ p · p · |a〉¬p ≤ p · |a〉q {[isotony]}
⇔ p · |a〉¬p ≤ |p · a〉q {[idempotence of test mul-

tiplication, import/export]}
⇒ p · |a〉¬p ≤ |(p · a)∗〉q {[star unfold and isotony]} ✷

Next we relate U with � .

Lemma 2. Assume an MKA, a modally deterministic element a and tests p, q.
Set u =df qU p and assume |= p→ ◦u.
i) |= p→ � u.

7

ii) If additionally |= p→ q then |= p→ � q.

Proof. i) The claim transforms into p ≤ |a∗]u. So we are done if we can show
p ≤ u and u ≤ |a∗]u. The first conjunct holds by diamond star unfold (1).
The second conjunct reduces by box star induction (1) to u ≤ u ∧ u ≤ |a]u,
of which the first part holds trivially. The second part is, by determinacy
of a, implied by u ≤ |a〉u. To show that we calculate, using the definition
of u with diamond star unfold, q ≤ 1 with isotony of diamond and the
assumption, u = p+ |q · a〉u ≤ p+ |a〉u = |a〉u.

ii) This follows from Part i) by isotony of box if we can show u ≤ q. To this
purpose, we reason as follows:

u ≤ q
⇔ |(q · a)∗〉p ≤ q {[definition of u]}
⇐ p ≤ q ∧ |q · a〉q ≤ q {[diamond star induction]}
⇔ TRUE ∧ q · |a〉q ≤ q {[assumption, import/export]}
⇔ TRUE {[|a〉q ≤ 1, isotony]} ✷

The next lemma shows that |= p ∧ ¬q → ◦p implies |= p ∧✸ q → pU q and
|= (r → ◦(p ∧✸ q)) ∧ (p ∧ ¬q → ◦p) implies |= r → ◦(pU q).

Lemma 3. In an MKA we have for all total functions a and tests p, q, r the
following properties:
i) p · ¬q ≤ |a〉p ⇒ p · |a∗〉q ≤ |(pa)∗〉q
ii) r ≤ |a〉(p|a∗〉q) ∧ p · ¬q ≤ |a〉p ⇒ r ≤ |a〉(|(pa)∗〉q)

Proof. i) We reason as follows:

p|a∗〉q ≤ |(pa)∗〉q
⇔ |a∗〉q ≤ ¬p+ |(pa)∗〉q {[shunting]}
⇐ q + |a〉(¬p + |(pa)∗〉q) ≤ ¬p+ |(pa)∗〉q {[diamond induction]}
⇔ q ≤ ¬p+ |(pa)∗〉q ∧

|a〉(¬p+ |(pa)∗〉q) ≤ ¬p+ |(pa)∗〉q
{[lattice algebra]}

The first conjunct is shown easily: q ≤ |(pa)∗〉q holds due to 1 ≤ (pa)∗ and
isotony of | 〉. Now adding ¬p cannot decrease the right hand side.
For the second conjunct we argue first as follows:

|a〉(¬p+ |(pa)∗〉q) ≤ ¬p+ |(pa)∗〉q
⇔ p · |a〉(¬p+ |(pa)∗〉q) ≤ |(pa)∗〉q {[shunting]}
⇔ p · |a〉¬p+ p · |a〉(|(pa)∗〉q) ≤ |(pa)∗〉q {[distributivity]}
⇔ p · |a〉¬p ≤ |(pa)∗〉q ∧

p · |a〉(|(pa)∗〉q) ≤ |(pa)∗〉q
{[sum properties]}

A shunted form of the second conjunct was already shown in the proof of
Lemma 1. The first one follows from the assumption p · ¬q ≤ |a〉p as follows:

p · ¬q ≤ |a〉p
⇔ p · ¬|a〉p ≤ q {[shunting, twice]}
⇒ p · ¬|a〉p ≤ |(pa)∗〉q {[1 ≤ x∗, diamond properties]}
⇔ p · |a〉¬p ≤ |(pa)∗〉q {[definition of box and a being

total and deterministic]}

8

ii) By Part i) the second conjunct of the premiss of Part ii) implies p · |a∗〉q ≤
|(pa)∗〉q by Part i). Isotony of | 〉 yields |a〉(p · |a∗〉q) ≤ |a〉(|(pa)∗〉q), and now
the assumption r ≤ |a〉(p|a∗〉q) and transitivity of ≤ show the claim. ⊓⊔

3 Verifying Programmable Logic Controllers

We now apply our semantic foundations to a concrete verification task.

3.1 Basics of Programmable Logic Controllers

Programmable logic controllers (PLCs) are widely used for the control of robots,
plants and mechanical devices. They work in a cyclic way: in each cycle they read
values from inputs (which stem from the environment and may be, e.g., switch
signals or sensor values) and internal variables (which serve for storing values
during the execution); from these they compute new values of the internal and
output variables (which are forwarded to the environment and may, e.g., start or
stop a machine or control the speed of a motor). By default, the names of input
and output variables start with IN and OUT, resp., whereas internal variables
have the form Mx or Mx.y; here the latter form is used to access single bits. It is
possible to use variable aliasing to improve readability. Standards for PLCs are
defined in [2]; we follow closely the syntax of Step7 (see [5]).

One of the most common notations for PLCs is provided by function block
diagrams (FBD) which use rectangles to represent predefined functions, such as
elementary Boolean gates. The inputs of such a rectangle or block are on its left
side, the outputs on its right. For instance, a block corresponding to conjunction
has an ampersand (&) at its top, whereas a disjunction is symbolized by >=1. The
negation of an input or output variable is denoted by a small circle. Normally,
no block can ever change the value of an input from the environment; but see
Section 3.2 for an exception.

(a)

IN4

IN3

>=1 M2.1

IN7
&

OUT2

(b)

S

R

IN3

IN8

M10.5

SR

OUT18
Q

Fig. 1. Boolean Functions (a) and an SR-Flip-flop (b) in FBD

More complex functions can be obtained by linking elementary rectangles,
where the evaluation order is from left to right and from top to bottom. So the
FBD in Figure 1(a) computes the Boolean function (IN4 ∨ ¬IN3) ∧ IN7 ∧ M2.1
and returns the result on output OUT2.

Blocks for logical connectives lack the possibility of dynamic behavior and
storing of values. A flip-flop is an elementary block with such abilities. Flip-flops
have two inputs: one set and one reset input, marked by S and R in their FBDs.

9

Moreover, they have an internal variable (called marker, in FBDs written above
the top line) and an output Q which always has the same value as the marker. If
the set input is TRUE and the reset input is FALSE then output and marker are
set to TRUE. A FALSE-signal on the set input and a TRUE-signal on the reset
input set FALSE output and marker to FALSE. If both the set and reset inputs
receive a FALSE-signal then the values of output and marker remain unchanged.
A set/reset conflict occurs if both the set and reset inputs are TRUE. There are
two types of flip-flops, namely set-dominant and reset-dominant or RS- and SR-
flip-flops, resp. Upon a set/reset conflict, an RS-flip-flop sets marker and output
to FALSE, while an SR-flip-flop sets both to TRUE. Figure 1(b) shows the FBD
of a reset-dominant flip-flop with IN3 on its set input, IN8 on its reset input, and
output and internal markers OUT18 and M10.5 (which by the above conventions
refers to bit 5 of variable M10), resp.

As the last elementary block we consider a simple assignment as shown in
Figure 2(a). It assigns the value of IN5 to the internal variable M20.3. Such blocks
can be used for every data type (of course, the variables involved have to be of
compatible types, as in other programming languages).

(a)

IN5
=

M20.3

(b)

PV

R

CU

CTU

CV

Q

(c)

IN1

IN2

CMP == I

Fig. 2. Assignment, Counter and Comparator in FBD

Although our formalization mostly works with Boolean values, we also need
some blocks working with non-Boolean values. For instance, an important further
concept is that of a counter, depicted in Figure 2(b). It has two Boolean inputs
CU and R, one integer input PV, one Boolean output Q and one integer output
CV. A TRUE-signal on R resets the counter to zero. The counter value of the
output CV is increased by one upon a positive edge (i.e., a change from FALSE

to TRUE) on the input CU. The input PV can be used for setting the counter to a
desired value (so one can also reset the counter by feeding zero into it). Finally,
the output Q returns the truth value of the comparison CV 6= 0.

Almost self-explanatory, the FBD of Figure 2(c) is a comparator which com-
pares the numerical values of its inputs IN1 and IN2.

In order to obtain timed signals most PLCs offer the possibility of configur-
ing the single bits of a specified internal byte as pulse generators with various
frequencies. Often one chooses the byte M100 and assigns to the single bits fre-
quencies as in Table 3. In the sequel, we will follow this convention.

The signal corresponding to one such bit is a wave of rectangular pulses
with the associated frequency. E.g., the signal corresponding to bit 100.5 is set
alternately half a second to TRUE and half a second to FALSE.

10

Bit M100.7 M100.6 M100.5 M100.4 M100.3 M100.2 M100.1 M100.0

Frequency 2 Hz 1.6 Hz 1 Hz 0.8 Hz 0.5 Hz 0.4 Hz 0.2 Hz 0.1 Hz

Fig. 3. Common Frequencies of Pulse Generators

3.2 Modeling Function Block Diagrams in Modal Kleene Algebra

As already shown in [21], FBD programs can be translated into MKA expressions
modeling their behavior. The representation uses a glassbox view of components,
i.e., all connections and their names are visible. In a relational model then a state
is a function from the set of all names to values, and a component (and hence
even the whole program) a relation between states. Since by the PLC conven-
tions evaluation follows the left-to-right top-to-bottom diagram order, one can
describe a composite component as a linear sequence of relational compositions
of elementary components. However, one can abstract from the relational view
by associating with each elementary block an MKA element and considering as
components only linear products of such elements.

Boolean connections and the values of the corresponding input, output and
internal variables can be modeled by tests. However, following PLC conventions,
each Boolean is represented by a pair of values with the coupling invariant that
they always carry complementary values. Hence an abstract variable v is rep-
resented by the pair (v0, v1) of tests, where always v0 = ¬v1. In fact, usually
v0 = 0 and v1 = 1, corresponding to the values FALSE and TRUE of v, resp.

We formally specify each simple Boolean gate by a set of inequations involving
the diamond operator. As an example, consider an OR-gate with inputs in1,
in2 and in3 and output out1. To model this gate as an MKA element or, we
characterize its behavior by the following inequations:

in11 + in21 + in31 ≤ |or〉out11 in10 · in20 · in30 ≤ |or〉out10

For simplicity, we do not treat negations as blocks but simply swap v0 and
v1 for a variable v. Every gate gat is deterministic and total; so we require
|gat〉p = |gat]p for every test p. Hence, a quick calculation using shunting shows

q ≤ |gat〉p ∧ ¬q ≤ |gat〉¬p ⇔ q = |gat〉p ⇔ ¬q = |gat〉¬p

This is precisely the shape of the axioms for the OR-gate above.
Moreover, we have to ensure that a block at most modifies its output and

internal variables. In the above example, we have to add the inequations v1 ≤
|or〉v1 and v0 ≤ |or〉v0 for all variables v except out1 as tracking conditions
for v. The only exception is with the last-evaluated block of an FBD. To allow
composition of an FBD with itself and hence also its star iteration, we have to
allow that the input channels in the next execution cycle receive new values;
so for the last block we drop the above condition for all input variables of the
overall FBD. The same holds for output variables which are computed from
scratch in every cycle. Note that internal variables have tracking conditions also
at the last-evaluated gate because their value is stored for the next cycle. In our
formalization, we even omitted the conditions for input variables that are not
used later on in the FBD in order to keep the formalization as small as possible.

11

An input variable that is used in a certain block B but does not appear as input
of any block following it (in evaluation order) does not have to be tracked across
the program after block B. Its new value will be determined by its input channel
in the following execution cycle. For example, in the FBD from the left part of
Figure 1, there are neither the inequation IN40 ≤ |or〉IN40 nor IN71 ≤ |and〉IN71.

As stated, the overall behavior of a single program cycle can then be de-
scribed by the product of all blocks in their evaluation order (which is basically
a topological sorting corresponding to western reading conventions; for details
see [2]). For example, if we consider the whole Figure 1 as a PLC program and
denote the blocks by or1, and1 and sr1, resp., it corresponds to the expression
or1 · and1 · sr1 (recall that negations are modeled by simply swapping v0 and
v1). If not indicated otherwise, this product describing (a single execution cycle
of) an FBD program is named cycle; it corresponds to the transition element
a from Section 2.2, and we use ◦, U , ✸ and � w.r.t. it. It is easy to see that
total functionality of the single blocks propagates to the whole program. Follow-
ing [21], one can give analogous formalizations for the other Boolean gates. In
the next section we will deal with the other blocks we introduced in Section 3.1.

3.3 Formalization of Timers

A common mechanism for generating timed signals is shown in Figure 4. There,
a TRUE-value on req activates the flip-flop (we will discuss its reset input soon)
whose output is conjoined with a timer signal of 1 Hz. As long as the output
of the flip-flop equals TRUE the counter value will be increased every second
by one and is stored in the internal variable M50. This behavior will persist as
long as res does not become TRUE (even if req changes its value to FALSE).
However, a TRUE-signal of res resets both the counter and the flip-flop (note
that the flip-flop is reset dominant and that res acts as a resetter for both the
flip-flop and the counter). The further behavior depends on the value of req.

S

R Q

SR

res

req
Mreq

PV

R

CU
CTU

CV

Q

&
M100.5

res

M50

IN1

IN2

CMP==I

M50

ti cti

Fig. 4. Generating Time Signals in FBD

For further processing, one often wants to trigger some action at a certain
time after starting the counter. In this case, the counter value is compared with

12

the desired time; the Boolean output is used as trigger signal. This is shown
exemplarily in the bottom part of Figure 4: cti becomes TRUE when the output
M50 of the counter equals the value of ti. Usually, for ti one uses a constant
value to start an action after a given time as we will do in the further course.

In general, one such counter can be associated with several comparators to
enable a timed sequence of activations. In this context, one regularly has also
a cut-off time tcu after which the timer should be reset to zero. This can be
achieved easily by feeding the output of a suitable comparator to the counter’s
and flip-flop’s reset inputs.

In the sequel, we will view the described timer component as a black box
with inputs req and res as start and reset signals, and the comparator results
as outputs. To formalize timers, we arrange the compared values (fed into the
IN1 lines of the comparators) in increasing order as a sequence t0, t1, . . . , tn,
such that the final value tn is used as reset input as described above, and denote
the (Boolean) outputs of the respective comparators by ct0, ct1, . . . , ctn. For
better readability, we use in the sequel the notation cti,1 instead of (cti)1 for
indicating a TRUE-value of cti and define cti,0 analogously. In particular, cti,1
corresponds to a state where the counter stands at ti. Then we require the
following properties:

• No simultaneity: If the output of one timer comparator is TRUE then the
others have to be FALSE. In MKA, this can be described by cti,1 ≤

∏
j 6=i

ctj,0.

• Order: The timer comparators output TRUE according to the above order-
ing. This means, we have cti,1 ≤ ✸ cti+1,1 for all 0 ≤ i < n.

• Resetting: A TRUE-value of ctn resets the counter in the following cycle.
Therefore, we have ctn,1 ≤ ◦ct0,1.

• Resting: We have to ensure that the counter does not start until it gets a
request. This means that if the counter stands at zero (modeled by ct0,1)
and there is no request then the counter stands at zero also in the subsequent
state. To this purpose, we add the requirement ct0,1 · req0 ≤ ◦ ct0,1.

• Starting: If a resting counter receives a start request it should eventually
output ct1,1. This is modeled by the formula ct0,1 · req1 ≤ ✸ ct1,1.

• Intermediate states: The preceding properties deal with situations in
which at least the counter comparator outputs TRUE. However, most of the
time all the outputs equal FALSE; so we have to deal also with this situation.

To ease reading and writing, we introduce the abbreviation nst =df

n∏
i=0

cti,0

(nst stands for ‘no significant time’). The mentioned situation occurs if the
value of M50 is between two consecutive values of the sequence ti; so we
require cti,1 ≤ nstU cti+1,1 for all 0 ≤ i < n (recall the modeling of the
until-operator in Section 3.2). Note also that, by the resetting rule, ctn,1 is
followed temporally immediately by ct0,1.

• No other states: The system is either in a situation where a counter com-
parator’s output is TRUE or it is awaiting another counter comparator’s

13

output to become TRUE. In our framework, this reads

|= ctn,1 ∨

n−1∨

i=0

(nstU cti,1) |= ctn,1 +

n−1∑

i=0

|(nst · cycle)∗〉cti,1 (4)

The counter comparator outputs cannot be altered by any block except the last
one in the evaluation ordering. This ensures that time does not change during
the execution of one cycle but also may progress between two consecutive cycles.
The modeling of this behavior is analogous to that given in Section 3.2.

3.4 A Case Study: Traffic Lights

As an example application we chose an FBD controlling the pedestrian lights of a
traffic control signal. With the conventions of Section 3.3 it looks as in Figure 5.
If the button is pressed, the pedestrian lights should eventually become green for
ten seconds. After a green phase of the pedestrian lights it should take at least
nine seconds before the pedestrian lights can become green again (to respect car
drivers). Also, there should be a time of three seconds for the car traffic lights
to become yellow after pushing the request button. So, if one starts with red
pedestrian lights and a timer at zero, a push should lead to green pedestrian
lights after three seconds. Then, the lights should stay green for ten seconds,
and a new such cycle can start only nine seconds later. Here, the variables have
the following definitions and meanings:
– push is a Boolean input from the request button of pedestrian lights.
– gr is an internal Boolean variable whose value indicates whether the pedes-
trian lights are green (this value can be forwarded to different output signals;
however, for our verification purposes it suffices to consider only gr itself).

– req and res are the start and reset inputs of a timer.
– c0, c3, c13 and c22 are the outputs of a timer, corresponding to values of
zero, three, thirteen and twenty-two seconds, resp., after starting the timer.

&

and1

push

gr

req

SRS

R Q
c13

sr1&

and2

req

c3

gr

SRS

R Q
c13

sr2

=c22

res

Fig. 5. Pedestrian Lights in Modified FBD

Let us take a short look at the functionality described in Figure 5. A push of
the request button has only an effect if the pedestrian lights are not yet green

14

(this is the purpose of and1). If such a push manages to pass and1 then it ac-
tivates the timer via the flip-flop sr1. The timer start is reset after thirteen
seconds (note that this does not stop or reset the timer) to prevent a new acti-
vation of the timer after finishing the current cycle. and2 and sr2 set the lights
to green after three seconds if req was set to TRUE by some preceding push
of the request button, and reset the lights to red (implicitly by setting gr to
FALSE) after thirteen seconds. Finally, the timer is reset after twenty-two sec-
onds by the assignment of c22 to the timer reset signal res. A sample from the
KIV formalization together with explanations can be found in the readme file
of [6].

The program should fulfill some temporal properties concerning the interplay
between the variable gr and the timer. We introduce three examples together
with proof sketches in order to give the reader an impression how the rules from
Section 2.3 can be used in our context.
– If the timer value is three and there is a request then the lights should be

green in the following cycle. The LTL specification of this reads

|= � (req1 ∧ c3,1 → ◦gr1) (5)

which can be rewritten in MKA as

|= |lig∗](req1 · c3,1 → |lig〉gr1) (6)

Here we used lig (short for lights) instead of cycle as in Section 3.2 for
the overall behavior of the system in one cycle. Concretely, we have lig =
and1· sr1· and2· sr2 using the namings from Figure 5 (the counter properties
are added as axioms to the the formalization, so the assignment of c22 to
res is covered by the associated Resetting rule). One may wonder why we
stipulate additionally a request in the precondition. The reason is that it
makes later reasoning a lot more convenient, and it is justified by the fact
that under reasonable assumptions about the start condition of the system
the timer can reach three only if there is an additional request (see also
Equations (9)/(10) below).

– Clearly, we are not satisfied with the lights just turning green after three
seconds, they should stay green for ten seconds. An LTL formula for this is

|= � (req1 ∧ c3,1 → ◦(gr1 U c13,1)) (7)

with an equivalent MKA characterization

|= |lig∗](req1 · c3,1 → |lig〉(|(gr1 · lig)
∗〉c13,1)) (8)

– These two properties do not require a certain initial state of the system (the
outermost operator is an always operator). However, a start in an inappro-
priate state can lead to undesired behavior. For example, one can show that
c0,1 · gr1 ≤ |lig∗]c0,1 · gr1 holds, which means that the lights stay green all
the time. This initial state contradicts the intention of the program, because
the lights should turn green only after the timer reaches the value three,
and they have to be set to red again before the timer is reset; so the state
c0,1 ·gr1 would represent an inconsistency. A reasonable choice for the initial
state is that the lights are red and the timer is zero. Starting in such a state
and pushing the button while the lights are red, we want that from the next
state we eventually reach a state with the following properties:

15

◦ the lights are green,
◦ the counter value is thirteen, and
◦ in the next state the lights are red until the counter reaches 22.

Note that this is essentially a statement only about the last cycle where the
timer value is thirteen. We chose this example because it is well suited as an
illustration of the application of our techniques. An LTL-formulation of this
property is

|= gr0 ∧ c0,1 → � (gr0 ∧ push1 → ◦(✸ gr1 ∧ c13,1 ∧ ◦(gr0 U c22,1))) (9)

and its translation into MKA reads

|= gr0 · c0,1 →
|lig∗](gr0 · push1 →

|lig〉(|lig∗〉gr1 · c13,1 · |lig〉|(gr0 · lig)
∗〉c22,1))

(10)

Property (6) is rather easy to prove: First, we note that by (3) it suffices to show
|= req1 ·c3,1 → |lig〉gr1 due to the property |x]1 = 1 in all MKAs. Equivalently,
we can show that req1 · c3,1 ≤ |lig〉gr1 holds. This is done easily by unfolding
the definition of lig and iterated application of modality and isotony of the
diamond with the aid of the characterization of the respective blocks.

Similarly, we can prove Property (8) by showing the inequation req1 ·c3,1 ≤
|lig〉|(gr1 ·lig)

∗〉c13,1 which is an example for the application of Lemma 3. This
means we have to show gr1 · ¬c13,1 ≤ |lig〉gr1 and req1 · c3,1 ≤ |lig〉(gr1 ·
|lig∗〉c13,1). The first inequation can be shown analogously to the proof sketch
of Equation (6). Due to total functionality, definition of the diamond and dis-
tributivity, the second one can be split up into req1 · c3,1 ≤ |lig〉gr1 and req1 ·
c3,1 ≤ |lig〉|lig∗〉c13,1. The first inequation is already known from the proof of
Equation (6). For the last one, we have the chain of inequalities req1 · c3,1 ≤
c3,1 ≤ |lig〉|(nst·lig)∗〉c13,1 ≤ |lig〉|lig∗〉c13,1 by isotony, timer properties and
isotony of multiplication and diamond.

For Property (10) we will resort only to rough explanations and refer the
reader for details to the full KIV project file [6]. As in the previous cases, we
transform the claim into the equivalent inequation

gr0 · c01 ≤ |lig∗](gr0 · push1 → (|lig∗〉gr1 · c13,1 · |lig〉|(gr0 · lig)
∗〉c22,1))

Here we can simplify the right side using the equality gr1 · c13,1 = gr1 · c13,1 ·
|lig〉|(gr0 · lig)

∗〉c22,1 (this follows from gr1 · c13,1 ≤ |lig〉|(gr0 · lig)∗〉c22,1
which in turn can be shown using timer properties and Lemma 3) and re-
duce our task — after exploiting isotony — to showing gr0 · c0,1 ≤ |lig∗](gr0 ·
push1 → (|lig∗〉gr1 · c13,1)). Introducing the abbreviations init =df gr0 · c0,1
and result =df |lig∗〉gr1 · c13,1 this goal reads init ≤ |lig∗](gr0 · push1 →
result). Now we use the timer’s no-other-state property (4) and replace the
above inequation by seven of the type init ≤ |lig∗](gr0 ·push1 ·itm → result)
where the intermediate value itm has the form itm = ci,1 for i = 0, 3, 13, 22 or
itm = |(nst · lig)∗〉cj,1 with j = 3, 13, 22. Some of these cases can be handled
by showing that the argument of the diamond evaluates to 1. For the remaining
properties, a crucial point is the application of Lemmata 1 and 2 together with
appropriate timer properties, isotony and MKA calculus.

16

Summing up our experiences, we can say that after some time of familiar-
ization, proving in KIV became routine work without greater difficulties. An
increasing amount of calculation rules and lemmata in MKA made it a pleasant
task.

4 Conclusion and Outlook

After proving some useful LTL rules concerning the until-operator in MKA we
applied them successfully to a considerable extension of the verification frame-
work developed in [21].

Now that the theoretical foundations are laid, notably concerning the treat-
ment of timing issues, the next step will be to tackle the verification of larger,
more lifelike systems. A great help for this goal will be be the by now substantial
body of reusable rules and lemmata we have accumulated. Other topics of future
work concern the automated construction of input files, comparison with model
checkers and extension of the approach to other PLC languages.

Another point is a formal proof of the properties from Section 3.3. In the
present paper, these rules were inserted as axioms without further verification.
A proof needs meta-knowledge about the natural numbers which has to be added
in some way. Moreover, one has to assume and to model the condition that the
execution time of one cycle of the PLC does not exceed the period of the used
frequency generator. Otherwise, effects similar to the Nyquist-Shannon sampling
theorem (see [44]) would destroy the functionality of Figure 4.

Acknowledgement We are grateful to the anonymous referees for their careful
scrutiny and helpful remarks.

References

1. Coq. https://coq.inria.fr/. [Online; accessed 7-July-2015].
2. IEC61131. http://webstore.iec.ch/webstore/webstore.nsf/artnum/048541!

opendocument. [Online; accessed 20-March-2018].
3. The KIV system. http://www.isse.uni-augsburg.de/en/software/kiv/. [On-

line; accessed 20-March-2018].
4. NuSMVExamples. http://nusmv.fbk.eu/examples/examples.html. [Online; ac-

cessed 7-August-2018].
5. Step7. http://w3.siemens.com/mcms/simatic-controller-software/en/

step7/Pages/Default.aspx. [Online; accessed 20-March-2018].
6. Verification of pedestrian lights in MKA. http://rolandglueck.de/Downloads/

Pedestrian_lights_verified.zip. [Online; accessed 20-March-2018].
7. VerifyThis 2015. http://verifythis2015.cost-ic0701.org/results. [Online;

accessed 8-August-2018].
8. VerifyThis 2017. http://www.pm.inf.ethz.ch/research/verifythis/Archive/

2017.html. [Online; accessed 8-August-2018].
9. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.
10. R.-J. Back and J. von Wright. Refinement Calculus - A Systematic Introduction.

Graduate Texts in Computer Science. Springer, 1998.

https://coq.inria.fr/
http://webstore.iec.ch/webstore/webstore.nsf/artnum/048541!opendocument
http://webstore.iec.ch/webstore/webstore.nsf/artnum/048541!opendocument
http://www.isse.uni-augsburg.de/en/software/kiv/
http://nusmv.fbk.eu/examples/examples.html
http://w3.siemens.com/mcms/simatic-controller-software/en/step7/Pages/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/en/step7/Pages/Default.aspx
http://rolandglueck.de/Downloads/Pedestrian_lights_verified.zip
http://rolandglueck.de/Downloads/Pedestrian_lights_verified.zip
http://verifythis2015.cost-ic0701.org/results
http://www.pm.inf.ethz.ch/research/verifythis/Archive/2017.html
http://www.pm.inf.ethz.ch/research/verifythis/Archive/2017.html

17

11. M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd. edition,
2012.

12. R. Berghammer, I. Stucke, and M. Winter. Using relation-algebraic means and
tool support for investigating and computing bipartitions. J. Log. Algebr. Meth.

Program., 90:102–124, 2017.
13. G. Birkhoff. Lattice Theory. Amer. Math. Soc., 3rd edition, 1967.
14. P. Brunet, D. Pous, and I. Stucke. Cardinalities of Finite Relations in Coq. In

J. C. Blanchette and S. Merz, editors, ITP 2016, Proceedings, volume 9807 of
LNCS, pages 466–474. Springer, 2016.

15. H. Carlsson, B. Svensson, F. Danielson, and B. Lennartson. Methods for Reliable
Simulation-Based PLC Code Verification. IEEE Trans. Industrial Informatics,
8(2):267–278, 2012.

16. J. Desharnais and B. Möller. Non-associative Kleene Algebra and Temporal Logics.
In P. Höfner, D. Pous, and G. Struth, editors, RAMiCS 2017, Proceedings, volume
10226 of LNCS, pages 93–108, 2017.

17. J. Desharnais, B. Möller, and G. Struth. Modal Kleene algebra and applications -
a survey. Journal on Relational Methods in Computer Science, 1:93–131, 2004.

18. T. Ehm, B. Möller, and G. Struth. Kleene modules. In R. Berghammer, B. Möller,
and G. Struth, editors, Relational and Kleene-Algebraic Methods in Computer Sci-

ence, volume 3051 of LNCS, pages 112–124. Springer, 2004.
19. J. Ertel. Verifikation von SPS-Programmen mit Kleene Algebra. Master’s thesis,

Institut of Informatics, University of Augsburg, 2017.
20. Z. Ésik, U. Fahrenberg, A. Legay, and K. Quaas. Kleene Algebras and Semimod-

ules for Energy Problems. In D. V. Hung and M. Ogawa, editors, ATVA 2013,

Proceedings, volume 8172 of LNCS, pages 102–117. Springer, 2013.
21. R. Glück and F. B. Krebs. Towards Interactive Verification of Programmable Logic

Controllers Using Modal Kleene Algebra and KIV. In W. Kahl, M. Winter, and
J. N. Oliveira, editors, RAMiCS 2015, Proceedings, volume 9348 of LNCS, pages
241–256. Springer, 2015.

22. M. Gondran and M. Minoux. Graphs, Dioids and Semirings. Springer, 2008.
23. W. Guttmann. Stone Relation Algebras. In P. Höfner, D. Pous, and G. Struth,

editors, RAMiCS 2017, Proceedings, volume 10226 of LNCS, pages 127–143, 2017.
24. P. Höfner and B. Möller. Dijkstra, Floyd and Warshall meet Kleene. Formal Asp.

Comput., 24(4-6):459–476, 2012.
25. M. Hollenberg. An equational axiomatization of dynamic negation and relational

composition. J. Logic, Language and Information, 6(4):381–401, 1997.
26. M. Hollenberg. Equational axioms of test algebra. In M. Nielsen and W. Thomas,

editors, Computer Science Logic, 11th International Workshop, CSL ’97, volume
1414 of LNCS, pages 295–310. Springer, 1997.

27. M. Jackson and R. McKenzie. Interpreting Graph Colorability in Finite Semi-
groups. IJAC, 16(1):119–140, 2006.

28. E. Jee, J. Yoo, S. D. Cha, and D.-H. Bae. A data flow-based structural testing
technique for FBD programs. Information & Software Technology, 51(7):1131–
1139, 2009.

29. P. Jipsen and H. Rose. Varieties of Lattices. Springer, 1st edition, 1992.
30. W. Kahl. Graph Transformation with Symbolic Attributes via Monadic Coalgebra

Homomorphisms. ECEASST, 71, 2014.
31. Y. Kawahara and H. Furusawa. An algebraic formalization of fuzzy relations. Fuzzy

Sets and Systems, 101(1):125–135, 1999.
32. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation, 110(2):366–390, 1994.

18

33. D. Kozen. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst.,
19(3):427–443, 1997.

34. F. Kröger and S. Merz. Temporal Logic and State Systems. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2008.

35. J. Li, A. Qeriqi, M. Steffen, and I. C. Yu. Automatic translation from FBD-PLC-
programs to NuSMV for model checking safety-critical control systems. In NIK

2016. Bibsys Open Journal Systems, Norway, 2016.
36. T. Litak, S. Mikulás, and J. Hidders. Relational Lattices. In P. Höfner, P. Jipsen,

W. Kahl, and M. E. Müller, editors, RAMiCS 2014, Proceedings, volume 8428 of
LNCS, pages 327–343. Springer, 2014.

37. E. Manes and D. Benson. The Inverse Semigroup of a Sum-ordered Semiring.
Semigroup Forum, 31:129–152, 1985.

38. G. Michels, S. J. C. Joosten, J. van der Woude, and S. Joosten. Ampersand -
Applying Relation Algebra in Practice. In H. C. M. de Swart, editor, RAMICS

2011, Proceedings, volume 6663 of LNCS, pages 280–293. Springer, 2011.
39. B. Möller, P. Höfner, and G. Struth. Quantales and Temporal Logics. In M. John-

son and V. Vene, editors, AMAST 2006, Proceedings, volume 4019 of LNCS, pages
263–277. Springer, 2006.

40. B. Möller and P. Roocks. An algebra of database preferences. J. Log. Algebr. Meth.

Program., 84(3):456–481, 2015.
41. J. N. Oliveira. A relation-algebraic approach to the “Hoare logic” of functional

dependencies. J. Log. Algebr. Meth. Program., 83(2):249–262, 2014.
42. O. Pavlovic and H.-D. Ehrich. Model Checking PLC Software Written in Function

Block Diagram. In ICST 2010, CEUR Workshop Proceedings. IEEE Computer
Society, 2010.

43. V. Pratt. Dynamic algebras: Examples, constructions, applications. Studia Logica,
50:571–605, 1991.

44. C. E. Shannon. Communication in the Presence of Noise. Proceedings of the IRE,
37(1):10 – 21, 1949.

45. K. Solin and J. von Wright. Enabledness and termination in refinement algebra.
Sci. Comput. Program., 74(8):654–668, 2009.

46. B. von Karger. Temporal algebra. Mathematical Structures in Computer Science,
8(3):277–320, 1998.

47. H. Wan, G. Chen, X. Song, and M. Gu. Formalization and verification of PLC
timers in Coq. In S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov, L. Liu, H. Ming,
and R. Subramanyan, editors, COMPSAC 2009, proceedings, pages 315–323. IEEE
Computer Society, 2009.

48. S. Wimmer and P. Lammich. Verified model checking of timed automata. In
D. Beyer and M. Huisman, editors, ETAPS 2018, Proceedings, Part I, volume
10805 of LNCS, pages 61–78. Springer, 2018.

	Algebraic Derivation of Until Rules and Application to Timer Verification-4mm

