Stack memory requirements of
AUTOSAR/OSEK-compliant scheduling policies

Reinder J. Bril!, Sebastian Altmeyer2 and Paolo Gai’®
ITechnische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands
2University of Amsterdam (UvA), Amsterdam, The Netherlands
3Evidence Srl, Pisa, Italy

Abstract—Stack sharing between tasks may significantly re-
duce the amount of memory required in resource-constrained
real-time embedded systems. Existing work on stack sharing
mainly focused on stack sharing between tasks that neither leave
any data on the stack from one instance to another nor suspend
themselves, i.e. tasks with a so-called single-shot execution.

In this paper, we consider stack memory requirements of
AUTOSAR/OSEK-compliant scheduling policies for a mixed task
set, consisting of so-called basic and extended tasks. Unlike
basic tasks, that have a single-shot execution, extended tasks
are allowed to leave data on the stack from one instance to
another and to suspend themselves. We prove that minimizing
the shared stack requirement for such a mixed task set is an
NP-hard problem. We subsequently provide an heuristic-based
algorithm to minimize stack usage of a mixed task set, and
evaluate the algorithm through a case study of an implementation
of an unmanned aerial vehicle.

An extended version of the paper is available as technical
report [5].

I. INTRODUCTION

Real-time embedded systems are typically resource con-
strained. To reduce the amount of memory (RAM) for such
systems, many real-time operating systems (RTOSs) provide
means for stack sharing between tasks with a single-shot
execution, such as Erika Enterprise [11] and Rubus [22].
The theoretical foundation for stack sharing between such
tasks in systems with priority-based scheduling has been laid
in [3, 8, 21, 4], amongst others. Stack sharing may give rise to
a variation within the address space of tasks, however, which
may prohibit the use of static timing verification and/or reduce
the precision of execution bounds [24]. In [2], an efficient and
effective method for predictable stack sharing (EMPRESS) was
therefore presented, where the stack of a task is always located
in the very same memory area. As described in [2], the results
of EMPRESS can be realized within the Erika Enterprise RTOS
without additional overheads.

These existing approaches for stack sharing exclusively
considered tasks with a single-shot execution. Operating system
standards, such as OSEK/VDX [20] and AUTOSAR-OS [1],
support tasks with a single-shot execution, termed basic tasks,
as well as tasks that may leave data on the stack from one
instance to another or may suspend themselves, termed extended
tasks, however. We are aware of only a single, patented
approach that supports stack sharing of a mixed set of basic
and extended tasks. That approach has been implemented in the
RTA-OSEK RTOS from ETAS [9]. Although the tasks execute

on a single shared stack, additional memory buffers are used to
temporarily store data of extended tasks upon suspension and
completion of instances. In this paper, we aim at minimizing
the stack memory requirements of a mixed set of basic and
extended tasks without the need for additional buffers and for
copying data back and forth between buffers and the stack,
whilst providing predictability of stack sharing, as provided
by EMPRESS. We focus on AUTOSAR/OSEK-compliant
scheduling policies in general, and fixed-priority scheduling
with preemption thresholds (FPTS) [23] in particular.

This paper presents four major contributions. Firstly, existing
work on stack sharing of basics tasks is revisited and several
novel insights are presented. As examples, it is shown that (7) an
optimal set of non-preemptive groups [12] does not necessarily
yield the minimal stack requirement and (ii) reducing stack
requirements through possible preemption paths [4] is at the
cost of a loss of predictability of a system. Secondly, a proof
is presented that minimizing the shared stack requirement
of a mixed task set is an NP-hard problem. Thirdly, an
heuristic-based algorithm is presented, termed EMPRESSEX,
aiming at a minimal stack requirement for a mixed task
set with predictable stack sharing. Finally, an evaluation of
EMPRESS™! is presented using a case study.

The paper is structured as follows. In Section II, we introduce
our system model and the required technical background. Sec-
tion III revisits the related work on stack sharing of basic tasks.
Section IV subsequently introduces the implications of having
extended tasks next to basic tasks on stack sharing. In Section V,
we prove that minimizing the stack requirements of a set of
basic and extended tasks is an NP-hard problem. Section VI
presents EMPRESS®*. The evaluation of EMPRESS™* is
the topic of Section VII. A brief comparison between the
patented approach of ETAS and EMPRESSF* is presented in
Section VIII. The paper is concluded in Section IX.

II. BACKGROUND

In this section, we introduce our system model and the
required technical background.

a) Scheduling Model: We assume a single-processor
system, a set 7 of n tasks 7y, 72, ... 7, and fixed-priority
scheduling with preeption thresholds (FPTS). Every task 7; has
a priority mr; and a preemption threshold 6;, where higher values
for priorities represent higher priorities and 6; > n;. Under
FPTS, a task 7; is only allowed to preempt a task 7; when

7; > 6. Tasks with the same priority are executed in first-in-
first-out (FIFO) order, and when they arrive simultancously they
are executed based on their index, lowest index first. We use
I1(7") and O(7) to denote the set of priorities and preemption
thresholds associated with the tasks in 7, respectively, i.e.

T = in| 377771' =},
OF) = {6] 3 6,=06}.
T,€T

Tasks may share mutually exclusive resources using an early
blocking resource access protocol, such as the stack resource
policy (SRP) [3]. The set of tasks 7 is partitioned in two sets,
a set 7B of basic tasks and a set 7F of extended tasks. Basic
tasks are not allowed to either suspend themselves or leave
any data on the stack from one instance of the task to the next,
whereas extended tasks are allowed to do both. Each task is
characterized by a worst-case execution demand C, a period
(or minimal inter-arrival time) T and a relative deadline D.

b) System Model: The system does not support memory
address translation (as common within memory-management
units or virtual memory) and facilitates a direct address-
mapping from cache to main memory. Such a mapping is
common amongst many embedded architectures and embedded
operating systems [17] and often preferable over virtual
memory for performance reasons.

We assume that the stacks of all tasks are mapped to the
same memory space, starting at a system-wide static stack
pointer. Without loss of generality, we set the memory address
of this system-wide static stack pointer to 0, and only provide
stack addresses relative to this static stack pointer.

¢) Maximal Stack Usage: As stack overflows are a
common source of system failures, techniques exist to upper-
bound the stack-usage [7, 16] and hence to prevent stack
overflows. These techniques are in particular important for
hard real-time systems, where correctness is a primary concern
and has to be validated statically [18].

Using these techniques, we can derive for each task 7; its
maximum stack usage SU; € N°. For the sake of simplicity,
we assume that SU; provides the maximum stack usage of task
7; including the size of the stack frame. The stack memory
needed by any two pre-empting tasks 7; and 7; is therefore
bounded by SU; + SU ;.

For an extended task TI.E, part of its stack is potentially shared
and thus called shared stack. The part of the stack which is
not shared, but remains on the stack in between jobs and upon
suspension, is called dedicated stack. We assume the worst-
case size of the dedicated stack SUP can be determined, or
at least safely bounded. The size of the shared stack SUiS can
subsequently be derived using SUI.S =8U,; - SUP.

d) Pre-emption Relation and Pre-emption Graph: We as-
sume a binary pre-emption relation <? of allowed preemptions
on tasks [4], which is derived from the priority levels and/or
pre-emption levels of the tasks. In particular, we ignore the
fact that extended tasks may suspend themselves. The relation
7; <* 7; holds if and only if task 7; can be pre-empted by
task 7;. For common real-time scheduling policies, such as
fixed-priority pre-emptive scheduling (FPPS), fixed-priority
non-pre-emptive scheduling (FPNS), fixed-priority threshold

scheduling (FPTS), and earliest deadline first (EDF), such a
relation is a strict partial order (SPO), i.c. both irreflexive
(=7 <* 1) and transitive (1 <* T; AT; <* 1; = 11 <* 13). Given
<?, we can derive a directed acyclic graph (DAG) of allowed
preemptions on tasks, where the nodes represent the tasks and
an edge from a task 7; to 7; represents that 7; <* 7; holds.

Without loss of generality, we assume 7; <* 7; = j > i, i.e.
when task 7; can be pre-empted by task 7;, 7; has a higher
index than 7;.

e) Bounding a task’s shared, dedicated and total stack
usage: In this paper, we assume that we are provided with
bounds on the stack usage of each task. We even consider the
question on the derivation of stack bounds as out-of-scope of
the paper and as largely solved. Abslnt, for instance, provides
a static stack analyzer [14] able to derive safe bounds on a
task’s stack usage. Concerning the separation of dedicated and
shared stack requirements, however, the static stack analyzer
provides, to the best of our knowledge, no built-in feature. It
simply computes a stack bound starting {rom a user-defined
program point, typically the main-function of the task. To
derive bounds on the shared and/or dedicated stack usage of
a task, manual annotations are needed to correctly configure
the analysis. This includes, amongst others, the appropriate
selection of starting points or the classification of function
calls to either contribute only to the shared or to the dedicated
stack usage. A measurement-based stack analysis represents
of course an alternative solution. The task is simply executed
with varying inputs and the maximum dedicated and shared
stacks needs are recorded. A safety margin is often added
to the stack bound to increase the reliability. In both cases,
there is no fundamental problem in deriving the dedicated
and shared stack usage. Nevertheless, it is important to err on
the safe side. In this setting, it means that we should rather
over-approximate the portion of the task’s total stack which we
consider dedicated, and under-approximate the portion which
can potentially be shared with other tasks — of course under
the assumption that the total stack need is a safe upper bound.

III. RELATED WORK ON BASIC TASK SETS REVISITED

In this section, we briefly summarize (i) work on predictable
stack sharing and (ii) our findings regarding existing approaches
to determine the maximum stack usage SU(7) of a set of basic
tasks 7. We consider approaches based on partitioning [3, 8,
21, 12] and on possible preemption chains [4].

A. Predictable stack sharing [2]

In [2], an Efficient and effective Method for Predictable Stack
Sharing (EMPRESS) is presented, i.e. the stack of every task
is always located in the very same memory location, even for
tasks sharing a stack. The method combines the predictability
of dedicated stack spaces with the reduced memory needs of
a shared stack. Algorithm 1, to determine the stack address
of a task, is based on the same principle as an algorithm to
determine the maximum stack usage of a set of tasks [6, 15].
We will refer to Algorithm 1 as EMPRESS. The algorithm
starts with the task with the highest index, i.e. a task that
can be pre-cmpted by other tasks but cannot pre-empt any

Algorithm 1: TaskStackAddress(7-, <, SU)
Input: A set of tasks 7, a pre-emption relation < (SPO),
and for each task 7; € 7 the max. stack usage SU,.
Output: The static stack address SA; € N for cach task ;.
1: for each 7; (from highest to lowest index i) do
2 SA; « O;
3. for each 7; with j > i do
4 if Tj<7T; then
5: SA; — max(SA;,SA; + SU);
6
7
8

end if
end for
. end for

task. The maximum stack address of task 7; is given by the
maximum sum of the stack address SA; and the stack usage
SU ;, where 7; is potentially pre-empted by task 7,. The derived
stack address of each task is relative to the system-wide static
stack pointer, which is set to memory address 0. SA; therefore
does not provide an absolute address.

Based on the stack addresses SA; for each task 7; € 7
determined by EMPRESS, the stack usage SUSMPRESS(77) of
7 can be derived by

SUEMPRESS(T) — ma{])_((SA; + SU)). (D)
i€

B. Our findings on determining the maximum stack usage

Below, we summarize our findings regarding existing ap-
proaches to determine the maximum stack usage. Further
explanations and justifications of our findings can be found in
the technical report [5].

1) The non-preemption groups in [8] are a special case of

partitioning in non-preemptive groups in [21].

2) As mentioned in [12], the stack usage of a partitioning in
non-preemptive groups is not necessarily minimized for
a minimal number of non-preemptive groups, refuting a
claim in [21].

3) An optimal set of non-preemptive groups [12] need not
yield the minimal stack usage.

4) EMPRESS will equally well work when the preemption
relation < is not transitive.

5) Although the approach of possible preemption chains [4]
may reduce the stack usage, that reduction is at the cost
of a loss of predictability of a system.

To the best of our knowledge, only finding 2) was explicitly
reported upon in the literature before.

IV. A MIXED SET OF BASIC AND EXTENDED TASKS

In this section, we explore the consequences of a mixed task
set for stack sharing. We start by considering the consequence
for the binary relation < in Subsection IV-A and subsequently
present observations on stack sharing and bounds on stack
usage in Subsection IV-B.

A. Binary relation < revisited

In Section II, we assumed a binary relation <* on tasks,
which is derived from the priority levels and/or pre-emption

levels of the tasks. As shown in [4], the DAG of allowed
preemptions can be pruned to a DAG of possible preemptions
for a set of basic tasks with offsets and precedences. Viewed as
a set of pairs, the set of possible preemptions <P is therefore
a subset of <?, i.e. <PC<?.

We now consider the influence of a mixed task set on stack
sharing in general and how to reflect that influence on <.
Consider a set 71 of two independent tasks, a basic task 7B
and an extended task 7, with characteristics as given in table I,
which are scheduled using FPTS.

TABLE 1
CHARACTERISTICS OF A BASIC TASK TB AND AN EXTENDED TASK TE.
task 7 6 C T=D SUS SUP
M 2 2 1 5 3 0
1 2 2 7 1 1

Based on their priorities and preemption thresholds, tasks 7?
and 7% are mutually non-preemptive, i.e. ~% <® TEA-7E <2 7B,
As illustrated in Figure 1(a), however, 78 may execute when a
job of 78 suspends itself, which looks similar to a preemption
of 7€ by 7B. Because 7F and 7P are mutually non-preemptive
based on priorities and preemption thresholds, task 7% may still
share its shared stack area with 72, as illustrated in Figure 1(b).

B f:m 4----
T
E 1= — | 2
N m_% 1 =
JFY FETTY FETTY FYYTY FYTTY RYIV1 FYOT1 FYOVI PYOTI 1Oy -
0o 1 2 3 g4 tme 0

(a) A timeline for and 1. (b) A stack layout for and 1.

Fig. I. Despite the fact that the basic task 7% may execute while the extended
task 7" is suspended (a), 7 can share its shared stack area with T (b). The
box with the dashed border in (a) denotes the self-suspension of v and the
dotted box in (b) denotes the dedicated stack area of 7.

As a result, we ignore the type of tasks when determining
the preemption relation < between tasks for stack sharing and
therefore have to revert to another, complementary approach
to address stack sharing between basic and extended tasks.

B. Observations on stack sharing for a mixed task set

Regarding stack sharing of a mixed task sct, we make four
observations. We start with an observation for basic tasks [3,
8, 21, 4]; see also Section III.

Observation 1. Basic tasks that are mutually non-preemptive
can share a stack.

Next we summarize the consequence of a dedicated stack area
for an extended task:

Observation 2. The dedicated stack of an extended task cannot
be shared with any other task, i.e. neither with another extended
task nor with a basic task.

As a result, an extended task cannot share a stack with another
extended task, i.e.

Observation 3. An extended task cannot share a stack with
another extended task, irrespective whether or not they are
mutually non-preemptive.

As illustrated in the previous subsection, the shared stack area
of an extended stack can be shared with a basic task, as long
as the tasks are mutually non-preemptive:

Observation 4. Whenever an extended task and a basic task
are mutually non-preemptive, the shared stack area of the
extended task can be shared with the stack of the basic task.

Based on these observations, we can derive both lower and
upper bounds on the stack usage of a mixed task set 7.

A first lower bound SU™"(77) can be found through a simple
summation of the stack usage of extended tasks by assuming
that all basic tasks can share their stack with the shared stacks
of the extended tasks such that no additional stack space is
required, i.e.

SU™NT) = Z SU;.

TI'ETE

2

Another lower bound SU™P(7") is found by ignoring the
restrictions imposed on stack sharing by the extended tasks of
7, applying EMPRESS (Algorithm 1), and using Equation (1),
ie.

SUle((]-) — SUEMPRESS((]—)' (3)

We observe that SU™"(77) and SU™"(7") are incomparable.

We can find an upper bound SU“*(7") by assuming that
none of the basic tasks can share their stack with extended
tasks, i.e. by combining Equations (2) and (1):

SUupb (7—) — SUmin (.7') + SUEMPRESS (TB) . (4)

Finally another upper bound SU™(7") can be found through a
simple summation of the stack usage of all tasks by assuming
no sharing of stacks, i.e.

SU™N(T) =) SU;.
T.€T
We observe that SU(7") < SU™(T").
From these four bounds, SU™Y(77) and SU™(7") are
independent of the number of extended tasks in 7 and the
partitioning of their stacks in a shared and dedicated stack.

(&)

V. COoMPLEXITY ANALYSIS

Theorem 1. The minimization problem P of finding a minimum
stack layout for a mixed set T of basic and extended tasks
scheduled by FPTS is NP-hard.

We provide an NP-completeness proof by restriction [13]
for our problem # by showing that contains a known NP-
complete problem #’ as a special case. In our case, the known
NP-complete problem %’ is the bin-packing decision problem.
The heart of our proof is in the additional restrictions to be
placed on the instances of # so that the resulting restricted
problem will be identical to the bin-packing decision problem,
i.e. that there exists an “obvious” one-to-one correspondence
between their instances that preserves “yes” and “no” answers.

The proof of Theorem 1 has the following structure. We
restrict our original minimization problem % to a decision
problem. Next, we show that there exists a one-to-one corre-
spondence between the instances of the bin-packing decision
problem and the restriction of the minimization problem #

to a decision problem that preserves “yes” and “no” answers,

proving that the latter is an NP-complete problem. We then

conclude that the original minimization problem % is NP-hard.
The proof of Theorem 1 is in the technical report [5].

VI. MINIMIZING THE STACK USAGE OF A MIXED TASK SET

From Section V, we know that unless P = NP, no
polynomial-time algorithm can exist to compute a stack layout
with minimal stack usage. We therefore resort to an heuristic,
in which we aim to maximize the overlap between the shared
stacks of extended tasks with stacks of basic tasks. The rationale
behind this heuristic is as follows: dedicated stacks of extended
tasks can never be shared with any other task; see Observation 2.
We thus have a lower bound of the minimal stack usage given
by the sum of the stack usages of the extended tasks; see
Equation (2). If we can map the stacks of all basic tasks onto
the shared stacks of extended tasks, then we have achieved the
minimal stack usage of the task set. If such a mapping of the
stacks is not fully possible, then we at least try to maximize
the overlap, which in turn reduces the total stack requirement.

Algorithm 2: TaskStackAddress-Ext(7", <, SU)
Input: A sct of tasks 77, a pre-emption relation <,
and for each task 7; € 7 the max. stack usage SU,.
Output: The static stack address SA; € N for each task 7;.
10 T« T\ {r}lr} € T is an extended task};
2: SA% « 0
3: for each T]E (from highest to lowest index /) do

4 T Tl € T AT LT AT £ 11

5. SA; = SAS

6: SAf =SA;+ SU,;

7. for each 7; € 7¢ (from highest to lowest index i) do
8: SA; « SA; + SUP;

9: for each 7, € 7 with j>iAT; ¢ 7" do
10: if 7; < 7; then

11: SA; « max(SA;, SA] + SUj)',

12: end if

13: end for

14: if SA; < SA; + SU, then

15 T e T ()

16: SA8 «— max(SA; + SU;, SAS)

17: end if

18: end for

19: end for

20: for each 7; € 7" (from highest to lowest index i) do
21: SA; « SAS;

22: for each 7; €7 with j>iA j¢ 7" do

23: SA; <« max(SA;, SA; + SU]].));

24: if 7; <7; then

25: SA; « max(SA;,SA; + SU));

26: end if

27. end for

28: end for

Algorithm 2 uses two global variables, a global stack address
SA# which is initialized with 0, and a working-set 7"* of tasks,
initially containing all basic tasks.

The first outer loop (line 3 to 19) iterates over all extended
tasks. For each extended task TF, we set the stack address of
T]E to the global stack address SAS. Next, we construct a set
7°¢ by selecting all basic tasks from the working-set 7" that
are mutually non-preemptive with T}": and hence can share the
stack with the shared stack SU,S of TF; see Observation 4. For
each such mutually non-preemptive basic task 7;, we initially
set the stack address to the stack address of TF incremented by
the dedicated stack size SU}) of T]E. The inner-most loop (line
9 to 13) iterates over all tasks in 7¢ that may be preempted
by 7; and updates the stack address SA; to avoid illegal stack
sharing with a potentially preempted task. The if-statement in
line 14 now checks if the basic task 7; shares parts of its stack
with the extended task TF. If so, then the basic task is removed
from 77 and the global stack address SA® is updated.

Finally, the second outer loop (line 20 to 28) selects the
stack addresses of all remaining basic tasks that have not yet
been assigned a stack address. Line 23 prevents any overlap
between the stack of tasks with run-to-completion semantics
and the basic stack of tasks without. We note that this loop
and the first inner loop (line 7 to 18) both perform the stack
address computation from EMPRESS [2], just for different task
sets. We will therefor refer to Algorithm 2 as EMPRESSEX,

We merely observe that EMPRESSE® is a “first-fit”-like
algorithm, where a basic task shares (parts of) its stack with
an extended task with the highest index that still has parts
of its shared stack to share and with which it is mutually
non-preemptive.

The stack usage using EMPRESSE* is given by

SUEMPRESSE’“ T) = 13137)5 (SA; + SU;)). (6)

VII. EVALUATION

In this section, we exemplify and evaluate EMPRESSEX
using the case study from [2]. The case study is based on
PapaBench [19] a free real-time benchmark implementing the
control software of an unmanned aerial vehicle (UAV). It
contains two disjoint task sets, Fly-by-wire and Autopilot. The
pre-emption graphs for both task sets are shown in Figure 2.

Fly-By-Wire

Autopilot

Fig. 2. Pre-emption constraints for PapaBench based on the precedence
constraints, task frequencies and task priorities.

We have analyzed stack usages of PapaBench with Absint’s
static stack analyzer [14], which is used in industry to detect

and prevent stack overflows. Table II provides the stack usages.

TABLE 11
MAXIMAL STACK USAGE AND STACK ADDRESS (PREDICTABLE STACK SHARING) FOR ALL
13 PapaBENCH BENCHMARKS FOR THE ARMV7. THE PROVIDED STACK ADDRESSES ARE
RELATIVE TO A SYSTEM-WIDE STACK POINTER AND BASED oN EMPRESSEXT,

Task Stack Usage (Byte) Stack
Total | Shared | Dedicated | address
SU) | (SUS) (SUP) (SA)

Tl 48 24 24 48
T2 24 24 0 72
T3 48 36 12 0
T4 16 16 0 12
T5 48 48 0 96
T6 120 100 20 280
T7 72 72 0 444
T3 0 0 0 444
T9 128 128 0 92
T10 188 188 0 92
Tl11 56 36 20 72
T12 72 36 36 0
T13 44 44 0 400

The PapaBench [19] benchmarks are originally all sched-
uled as basic tasks. To demonstrate the difference between
EMPRESS [2] and EMPRESSE*, we have randomly assumed
that tasks T1, T3, T6, T11, and T12 are extended tasks. The
results are shown in Figure 3 for Fly-by-wire, and Figure 4
for Autopilot. Despite the dedicated stack areas of task Tl

Fly-By-Wire
(4 e = i e i 52 i -
P T - R 5|
T3 T 12
4 -—0 - N ------
o -1 P L - -

(a) without extended tasks (b) with extended tasks

Fig. 3. Stack layout and relative stack addresses for Predictable Stack Sharing:
Fly-By-Wire Case Study.

and T3, EMPRESSE* is able to achieve the same, minimal
stack usage of EMPRESS for Fly-by-wire, which is optimal.
Of course, a different selection of the extended tasks could
have resulted in a different mapping. For the second case study,
Autopilot, however, EMPRESSE* is not able to achieve the
stack usage of EMPRESS, but instead requires an additional
92 Byte (21%).

516 mmmmmmmmmmmmmmmem oo
T7
424 ------ i i =i PR3 [imis =mimimin
Autopilot
T6
T6
Kl s e e e
T7
2y I e R e
TI13
188 -~ —— == e =Y i =
T9
T10 Tl
T9 S
TI11 | T12 R
S I N . Rl R N

(a) without extended tasks (b) with extended tasks

Fig. 4. Stack layout and relative stack addresses for Predictable Stack Sharing:
Autopilot Case Study.

Further evaluation of EMPRESSEX! for various combinations
of the number of extended tasks and the percentage of shared
stack per extended task can be found in the technical report [5].

VIII. DiscussioN

As mentioned in the introduction, stack sharing between
basic tasks and extended tasks is also facilitated by the RTA-
OSEK RTOS from ETAS [9]. For the approach of ETAS,
additional buffer space is reserved for the dedicated stack
area of each extended task. The dedicated stack area of an
extended task is copied from the stack to its buffer upon
self-suspension of an instance of the task as well as upon
completion of an instance. Similarly, the dedicated stack is
copied from the buffer to the shared stack upon resumption of
an instance as well as upon the start of an instance. The amount
of memory required is therefore equal to the stack memory
requirement when EMPRESS is applied, see Equation (1), plus
the sum of the dedicated stack usage of the extended tasks, i.e.
SUETAS(T) — SUEMPRESS(T) + ZT,‘ETE SUP

This may result in significant memory savings compared to
an approach where none of the basic tasks is allowed to share
their stack with an extended task; see Equation (4). However,
these memory savings come at the cost of additional overhead
for copying the dedicated stacks of the extended tasks between
the shared stack area and the buffers, and therefore at the cost
of reduced schedulability. Hence, the approach in [9] effectively
trades memory space for schedulability.

We now illustrate through the specific configuration of
the case study presented in Section VII that the patented
approach of ETAS and EMPRESS®* are incomparable from
a stack memory requirements perspective; see also Table III.
Whereas the approach of ETAS needs less memory space than
EMPRESSE for Autopilot, EMPRESSEX needs less memory
space than ETAS for Fly-by-wire. For systems with very

TABLE IIT
STACK MEMORY REQUIREMENTS OF Fly-by-wire AND Autopilot BASED ON THE
CONFIGURATION DESCRIBED IN TABLE I1.

SU Fly-by-wire Autopilot
SUFTAS 144 + 36 = 180 424 + 76 = 500
SUFMPRESS™ 144 516

demanding memory requirements and sufficient computational
power, a hybrid approach combining the approach of ETAS with
our novel approach denoted by EMPRESS™ may therefore
be desirable. Further investigation, however, is future work.

IX. CoNCLUSION

In this paper, we considered stack memory requirements of
AUTOSAR/OSEK-compliant scheduling policies for a mixed
set of basic tasks, i.e. tasks with a single-shot execution, and
extended tasks, i.c. tasks that may leave data on the stack
between instances and may suspend themselves.

We started by revisiting the literature on stack sharing
between basic tasks, and presented several novel insights. We
subsequently proved that the problem of finding a stack layout
with a minimal stack requirement for a mixed set of basic
and extended tasks is NP-hard. We therefore presented an
heuristic-based algorithm, termed EMPRESSE* that aims at
maximizing the overlap of basic tasks and extended tasks.
Similar to EMPRESS [2], the resulting stack layout provides
predictable stack sharing. We evaluated EMPRESSE* using a

case study of an unmanned aerial vehicle, PapaBench. Finally,
we briefly compared EMPRESSP* with the patented approach
from ETAS, and found that both approaches are incomparable.

REFERENCES

[1] AUTOSAR - Specification of Operating System, Release 4.4.0. Technical
report, 2019. [Online], Available: https://www.autosar.org/fileadmin/
Releases_ TEMP/Classic_ Platform_4.4.0/SystemServices.zip.

[2] S. Altmeyer, R.J. Bril, and P. Gai. EMPRESS: an Efficient and effective
Method for PREdictable Stack Sharing. In Proc. IEEE 24™ International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Aug. 2018.

[3] T.P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67-99, March 1991.

[4] M. Bohlin, K. Hénninen, J. Méki-Turja, J. Carlson, and M. Nolin.

Bounded shared-stack usage in systems with offsets and precedences. In

Proc. 20" Euromicro Conference on Real-Time Systems (ECRTS), pages

276-285, July 2008.

RJ. Bril, S. Altmeyer, and P. Gai. Stack memory requirements of

autosar/osek-compliant scheduling policies. Technical report, June 2019.

See: https://pure.uva.nl/ws/files/36529791/main.pdf.

[6] Thomas W. Carley. Private communication, June 2003.

[7]1 K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and
J. Palsberg. Stack size analysis for interrupt-driven programs. In Proc.
10™ International Symposium on Static Analysis (SAS), pages 109-126,
June 2003.

[8] R.I. Davis, N. Merriam, and N. Tracey. How embedded applications
using an RTOS can stay within on-chip memory limits. Proc. WiP and
Industrial Fxperience Sessions, 12" Euromicro Conference on Real-Time
Systems (ECRTS), pages 71-77, 2000.

[91 ETAS-RTA-OSEK. RTA-OSEK User Guide. RTA-OSEK v5.0.2.

[10] P. Gai. Real Time Operating System design [or Multiprocessor system-

on-a-chip. PhD thesis, Scuola Superiore S. Anna, Italy, 2004.

P. Gai, E. Bini, G. Lipari, M. Di Natale, and L. Abeni. Architecture

for a portable open source real time kernel environment. In Proc. 2

Real-Time Linux Workshop and Hand’s on Real-Time Linux Tutorial,

Nov. 2000.

P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilizations of

real-time task sets in single and multi-processor systems-on-a-chip. In

Proc. 22" IEEE Real-Time Systems Symposium (RTSS), pages 73-83,

Dec. 2001.

M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

AbsInt Angewandte Informatik GmbH. Static Stack Analyzer. https:

//www.absint.com/stackanalyzer/index.htm, 2018. [Online; accessed 22-

February-2018].

K. Hénninen, J. Méki-Turja, M. Bohlin, J. Carlson, and M. Nolin.

Determining maximum stack usage in preemptive shared stack systems.

In Proc. 27" IEEE International Real-Time Systems Symposium (RTSS),

pages 445-453, Dec. 2006.

D. Kistner and C. Ferdinand. Proving the absence of stack overflows.

In Proc. 33" International Conference on Computer Safety, Reliability,

and Security (SAFECOMP), pages 202-213, Sep. 2014.

D. Kleidermacher and M. Griglock. Safety-critical operating sys-

tems. http://www.embedded.com/design/prototyping-and-development/

4023830/Safety-Critical-Operating-Systems. Accessed: 2017-01-10.

P. Koopman. A case study of Toyota unintended acceleration and software

safety, Nov. 2014.

F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De Michiel.

PapaBench: a Free Real-Time Benchmark. Tn Proc. 6 International

Workshop on Worst-Case Execution Time Analysis (WCET), July 2006.

OSEK group. OSEK/VDX operating system. Technical report, Feb. 2005.

[Online], Available: http://portal.osek-vdx.org/files/pdf/specs/0s223.pdf.

M. Saksena and Y. Wang. Scalable real-time system design using

preemption thresholds. In Proc. 21% IEEE Real-Time Systems Symposium

(RTSS), pages 25-34, Dec. 2000.

Arcticus Systems. http://www.arcticus-systems.com.

Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption

threshold. In Proc. IEEE 6™ International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), pages

328-335, Dec. 1999.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, 1. Puaut,

P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case execution-

time problem — Overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems (TECS), 7(3), April 2009.

[5

[k}

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

