
Interdependent Multi-version Scheduling in
Heterogeneous Energy-aware Embedded Systems

Julius Roeder
University of Amsterdam
Amsterdam, Netherlands
Email: j.roeder@uva.nl

Benjamin Rouxel
University of Amsterdam
Amsterdam, Netherlands

Email: benjamin.rouxel@uva.nl

Sebastian Altmeyer
University of Augsburg

Augsburg, Germany
Email: sebastian.altmeyer@
informatik.uni-augsburg.de

Clemens Grelck
University of Amsterdam
Amsterdam, Netherlands
Email: c.grelck@uva.nl

Abstract—High-performance heterogeneous multi-core embed-
ded systems are increasingly popular in various fields. Embedded
systems engineers need to reason about more than just functional
correctness of applications; they also need to reason about
energy, time and security (ETS). In this paper, we sketch our
coordination language and scheduling approach to enable ETS-
aware applications. We present an Integer Linear Programming
(ILP) based scheduler on a real life drone application, that
minimizes energy consumption, guarantees timing and offers
security.

Index Terms—energy-aware scheduling, heterogeneous multi-
core, real-time scheduling, coordination.

I. INTRODUCTION

Increasing demand for processor performance, low power
consumption and reducing heat dissipation, has lead to a
surge in demand for high-performance multi-core embedded
systems [1]–[4]. Powerful embedded systems, such as the
Odroid-XU4 [5] and Nvidia Jetson [6], are multi-/many-
core heterogeneous systems; however, with great performance
comes great energy consumption (at least relative to traditional
embedded systems). Furthermore, not only performance and
energy consumption are important, but also security as deci-
sions made by autonomous systems can save or cost lives.
Thus, an engineer needs to take all three, time, energy and
security (ETS), into account.

To tackle these challenges and enable end users to reason
about ETS-characteristics of applications, we borrow from and
combine two so far disjoint established research fields, namely
coordination and real-time scheduling [7], they have so far
addressed our targeted problem from very different angles and
with very different motivations and intentions.

An application organized according to the coordination
paradigm consists of a collection of interacting, indepen-
dent, identifiable black-box components, i.e. the coordination
language is used to describe the task graph of the given
application. Components, also known as actors or tasks1, i.e.
represent application features, sequential building blocks of
application, implemented in a general purpose programming
language. Each component has defined functional properties,
communication and interaction with other parts of the same
application. Hence, coordination describes the flow of data
through the different parts of an application [8]. Coordination
is a well established computing paradigm with a plethora of
languages, abstractions and approaches; for a survey see [9].

1Components and tasks will be used hereafter interchangeably.

An application described in a coordination language can
then be mapped and scheduled using techniques from the real-
time scheduling domain. The literature on real-time scheduling
algorithms for multi-core architectures is vast, with many
properties (e.g. type of scheduling algorithm, task model) and
are classified in three main categories: partitioned, global and
hybrid [1]. Similarly to [10], in this paper we propose an
Integer-Linear-Programming (ILP) based approach to produce
schedules. According to the taxonomy proposed by Davis and
Burns [1] our approach can be classified as static, partitioned,
time-triggered and non-preemptive.

Different approaches to minimizing energy consumption of
an application on heterogeneous multi-core hard-real time sys-
tems are surveyed in [11]. Our ILP based scheduler addresses
energy and security as equally important as time. The ILP
scheduler can be used to generate schedules for multi-version
concurrent applications, executing on heterogeneous platforms
(e.g. Odroid-XU4).

In Section II, we briefly describe the architecture model,
task model and coordination approach. In Section II-B, we
illustrate the coordination approach with a use-case from the
area of unmanned aerial vehicles. In Section III, we describe
our current ILP formulation and our approach towards deriving
static schedules. In Section III-B, we show the viability of our
ILP scheduler on the use-case, while targeting the Odroid-
XU4.

II. ARCHITECTURE MODEL, TASK MODEL AND
COORDINATION APPROACH

We consider a heterogeneous multi-core architecture
(Odroid-XU4 [5]) based on the ARM big-LITTLE architecture
[12]. This architecture consists of a heterogeneous CPU, with
four energy efficient cores (i.e. LITTLE cores) and four high
performance, deep pipeline cores (i.e. big cores). Additionally,
the architecture contains a Mali GPU [5]. In such a heteroge-
neous platform, multi-version components can be scheduled on
different computational units, e.g. a component implemented
with OpenCL [13] can be scheduled on the GPU or the CPU.

In this work, we consider Directed Acyclic task Graphs
(DAG). In a graph G = (V,E), the set of nodes/vertices V
represents the components and the set of edges E represents
data dependencies between components. An edge between two
components is present when they depend on each other, i.e.
the source component needs to be completed before the sink

1



can be executed. The task graph is expressed with the help of
a coordination language.

A. Coordination

A coordination language is independent from the actual
code, but it guides the scheduler on how this code should
be executed. An example is the coordination language S-Net
[8]. However, like other coordination approaches S-Net merely
addresses functional aspects of coordination programming and
does not include non-functional requirements, i.e. time and
security. Our coordination language [14], implemented as a
Domain Specific Language (DSL), allows to incorporate the
ETS-characteristics of the application.

Given the focus of the safety-critical embedded systems do-
main, we exclusively work with the system-level programming
language C. Hence, a component is technically a callable C
function with certain restrictions on its functional behaviour,
together with a set of non-functional properties, i.e. timing,
energy and security. Therefore, each component has specific
ETS-characteristics that are crucial to determine the best
mapping and schedule. Additionally, each component can have
multiple implementations with equivalent functional require-
ments, but different ETS-characteristics. Thus, a component
can have the previously mentioned multiple versions.

Our DSL coordination language allows users to spec-
ify component-specific and system-wide ETS-constraints, ex-
pressed as: 1) deadlines on the response-time of a component,
2) energy budgets of the entire system and 3) minimum
security levels of each component.

B. Coordination illustrated by drone use case

Figure 1 shows the graph representation of an application
that will be executed on a drone. Due to space limitation, we
will not present this use-case with our coordination language.
The application is currently under development at the Univer-
sity of Southern Denmark (SDU) and Sky-Watch, an industrial
partner [15]. The application records and analyses a video on
the fly and is executed on the aforementioned Odroid-XU4.

Image Capturing

Object Detector
Implementations:

Fast, less
accurate

Slow, very
accurate

GPU version

Video Encryption
Implementations:

Encryption 1

Encryption 2

Encryption 3

Ground Speed
State:

• Previous frame

Decision Send Message

Save Video

Legend

Source

Sink

Component

Implementation

Broadcast:

Synchronizer:

Fig. 1. Drone application coordination model

The application is organized as seen in Figure 1:
• Image Capturing: A frame is streamed to the computer.
• Broadcast: A frame is broadcasted to three components.
• Video Encryption: The scheduler selects the encryption

level based on the ETS-characteristics of each encryption
level.

• Video Encryption & Save Video: The frame is en-
crypted and saved to disk.

• Object Detection: The frame is analysed by the Darknet
Neural Network, Tiny Darknet Neural Network [16] or
OpenCV [17] , depending on the ETS-characteristics of
each.

• Ground Speed: Computes the ground speed of the drone.
• Synchronizer: The results of the previous components

(Object Detection & Group Speed) are synchronized and
sent to the final Decision component.

• Decision & Send Message: A decision is made and sent
to the ground station.

The two neural networks (Darknet and Tiny Darknet [16])
differ in their complexity. The Tiny Darknet neural network is
much smaller and therefore can run inference approximately
70 times faster on the Odroid-XU4, at the price of reduced
accuracy. Thus, scheduling one or the other version of the
Object Detection component can have a large impact on the
run time.

We aim at building a complete toolchain and workflow
to compile a coordinated application to a final executable as
presented by Figure 2.

Coordination file

Timing & energy
information file

Syntactic & 
semantic 
analyses

Scheduling 
policy generator

Code 
generator

Components
object files

Target 
compiler & linker

Binary file

Config file

Coordination Compiler

Fig. 2. Coordination workflow

A major part of our approach is to improve scheduling
policies, represented by the Scheduling policy generator in
Figure 2. Hence, in the following section we introduce our
first version of a multi-version ILP based scheduler. A more
thorough description of the rest of the toolchain and coordi-
nation language can be found in [14].

III. SCHEDULING

Once the different components are identified and defined via
the coordination technique, we need to schedule the different
components, i.e. assign components to different cores or co-
processors (spatial mapping) and in a given order (temporal
mapping). On top of different versions of the same compo-
nents, the ETS-characteristics also differ depending on the
exact execution unit (big core vs. LITTLE core vs. GPU) of
a heterogeneous system. This increases the state space of the
scheduling as we need to schedule the different components

2



TABLE I
ILP VARIABLES AND CONSTANTS

Function predecessors(p) retrieves all predecessors of p, where p ∈ τ

Sets

B Set of cores
τ Set of all components
vp All versions of component p, where p ∈ τ
O Set of sinks

Constants

DC Deadline of component set
DS Minimum security level
Cp,m Run time of component p on core m, where

p ∈ τ , m ∈ B
Ep,m Energy consumption of component p on

core m, where p ∈ τ , m ∈ B
Sp,m Security level of component p on core m,

where p ∈ τ , m ∈ B
Fp,i Run time of version i of component p,

where i ∈ vp, p ∈ τ
Gp,i Energy consumption of version i of com-

ponent p, where i ∈ vp, p ∈ τ
Hp,i Security of version i of component p,

where i ∈ vp, p ∈ τ
M Sum of run time of all components on all

cores
Integer
Variables

DE Energy constraint of component set
ρp Start time of component p, where p ∈ τ

Binary
Variables

wp,m component p mapped to core m, where p ∈
τ , m ∈ B

ap,i version i of components p is selected,
where i ∈ vp, p ∈ τ

samep,q components p and q are scheduled on the
same core, where p, q ∈ τ

orderp,q Same core variable order p to q, where
p, q ∈ τ

depending on the overall application ETS-constraints and the
ETS-characteristics of each implementation of each compo-
nent.

As a starting point for the space-time scheduling we used
Integer Linear Programming (ILP) to generate static schedules
for the aforementioned drone use-case. ILP refers to a class
of constrained optimization problems and is used to tackle
problems in scheduling. All variables in an ILP problem
are integers, constrained by linear inequalities. The objective
function is a linear function of the variables, that needs to be
either minimized or maximized.

A. ILP Formulation
The set of integer variables needed for the scheduler can be

found in Table I.
Objective function The goal is to minimize the energy

consumption DE over all components of the application
eq. (1):

minimize DE =
∑
p∈τ

∑
m∈B

(
Ep,m × wp,m

)
(1)

where, Ep,m is the energy consumption of component p on
core m and wp,m is a binary variable indicating if component
p is executed on core m.

Time and Security constraints Besides energy consump-
tion, we also need to constrain the time and security aspects
of the application. Thus, eq. (2) guarantees that the sinks
of the application are finalized before the deadline DC . The
finalization time of every sink o ∈ O is the sum of the start
time ρo and the worst-case execution time Co,m of sink o
executed on core m. Equation (3) ensures that every executed

component p has a security level Sp,m equal or above the
minimum security level DS .∑

m∈B

(
ρo + Co,m × wo,m

)
6 DC , ∀o ∈ O (2)∑

m∈B
Sp,m × wp,m > DS , ∀p ∈ τ (3)

Mapping one component to one core Equation (4) ensures
that component p is mapped on one and only one processor.∑

m∈B
wp,m = 1,∀p ∈ τ (4)

Single version constraint Equation (5) enforces that ex-
actly one and only one version of a component is selected,
represented by ap,i = 1.∑

i∈vp

ap,i = 1, ∀p ∈ τ (5)

Determining ETS-characteristics Equations (6) to (8) im-
pose that the energy, time and security of a component (Ep,m,
Cp,m, Sp,m) are equal to the respective ETS-characteristics
(Gp,i,Fp,i, Hp,i) of the version that is selected when ap,i = 1.

Ep,m =
∑
i∈vp

(ap,i ×Gp,i), ∀p ∈ τ,∀m ∈ B (6)

Cp,m =
∑
i∈vp

(ap,i × Fp,i), ∀p ∈ τ, ∀m ∈ B (7)

Sp,m =
∑
i∈vp

(ap,i ×Hp,i), ∀p ∈ τ, ∀m ∈ B (8)

Prevent overlapping on same core To prevent the overlap-
ping of components on the same core we introduce three addi-
tional constraints. Equation (9) calculates if two components
are assigned to the same core (samep,q). Instead of a logical
or, a summation over B is sufficient, due to the uniqueness
of wp,m. The logical and (∧) can be linearized, see [18] for
details. Equation (10) determines the order of tasks p, q, which
can be p then q (orderp,q) or q then p (orderq,p). Equation (11)
prevents two tasks running on the same core to execute at the
same time and enforces the correct task order. The start time
of p (ρp) has to be larger than the end time of q (ρq +Cq,m).

samep,q =
∑
m∈B

wp,m ∧ wq,m,∀(p, q) ∈ (τ × τ), p 6= q (9)

samep,q = orderp,q + orderq,p, ∀(p, q) ∈ (τ × τ), p 6= q (10)
ρp + (1− orderq,p)×M > ρq + (Cq,m × wq,m),

∀(p, q) ∈ (τ × τ)∀m ∈ B, p 6= q (11)

The constraint eq. (11) must only be activated when two
tasks are mapped on the same core (orderq,p = 1). Hence, a
nullification with a big-M notation is applied [19]. M , defined
in eq. (12), is the sum of the maximum run time of all
components p. Thus, due to the large value of M the left
hand side of eq. (11) is always larger than the right hand side,
if orderq,p = 0.

M =
∑
p∈τ

max(Cp,m) (12)

Data dependencies in task graph In order to comply with
the data dependencies in the task graph we introduce the

3



following constraint eq. (13). It ensures, that if one component
p depends on the data of another component q, the start time
of p (ρp) is larger than the end time of q (ρq + Cq,m).

ρp >ρq +
∑
m∈B

(Cq,m × wq,m),∀p ∈ τ,∀q ∈ predecessors(p)

(13)

B. Example Use Case
We demonstrate the generation of a static schedule of

the drone use case using the ILP formulation presented in
Section III-A. Not all component implementations of the
algorithm are fully functional at the current stage of the
project. We rely on values measured at development time, to
demonstrate the scheduling and coordination techniques. Once
full implementations and corresponding ETS properties will be
known, we will replace these hypothetical values with actual
ones. The described ETS-characteristics of a component differ
per computational unit, thus the heterogeneity of the Odroid-
XU4 can be taken into account.

Depending on parameters (i.e. energy budget, deadline,
minimum security level), the ILP identifies different schedules.
One schedule resulting from the ILP formulation is shown
in Figure 3. Components are executed in the right order,
according to dependencies, on different computational units
without overlap.

0 1 2 3 4 5 6 7

LITTLE 0

LITTLE 1

LITTLE 2

big 0

big 1

big 2

big 3 ImageCapture:0
VideoEncryption:0
ObjectDetection:0

GroundSpeed:0
Decision:0

SaveVideo:0
SendMessage:0

Time units

Fig. 3. Possible schedule for the drone use case showing which version of a
component is scheduled and mapped on which computational unit.

As opposed to Figure 3, we increased the general security
level to generate the second schedule presented in Figure 4.
A higher security level lead the scheduler to pick different
component versions, e.g. video encryption, and increased the
energy consumption by 2 units. Once again the schedule
respects component dependencies, while picking different ver-
sions and computational units due to requirement changes.

IV. CONCLUSION

In this paper, we briefly introduced the coordination
paradigm to describe an application. We also presented an ILP
formulation that allows us to generate different static schedules
depending on ETS-characteristics and constraints. We further
demonstrate its application on a realistic use case.

Furthermore, to enable the use of our coordination and
scheduling layer for larger problems we will explore schedul-
ing heuristics. Additionally, when all component implemen-
tations will be functional we will test the impact of our
scheduling policy on real hardware and measure the impact
on run time and energy consumption.

0 1 2 3 4 5 6 7

LITTLE 0

LITTLE 1

LITTLE 2

big 0

big 1

big 2

big 3 ImageCapture:0
VideoEncryption:2
ObjectDetection:0

GroundSpeed:0
Decision:0

SaveVideo:0
SendMessage:0

Time units

Fig. 4. Alternative schedule for the drone use case with higher security
requirements.

ACKNOWLEDGMENT

The project has received funding from the European Unions
Horizon2020 research and innovation programme under grant
agreement No 779882.

REFERENCES

[1] R. Davis and A. Burns, “A survey of hard real-time scheduling algo-
rithms for multiprocessor systems,” in ACM Computing Surveys, 2011.

[2] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in Real-Time Systems (ECRTS), 2016 28th Eu-
romicro Conference on, pp. 14–24, IEEE, 2016.

[3] H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer, “Response
time analysis of synchronous data flow programs on a many-core
processor,” in Proceedings of the 24th International Conference on Real-
Time Networks and Systems, pp. 67–76, ACM, 2016.

[4] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31th Euromicro Conference on Real-Time Systems (ECRTS19),
2019.

[5] “Odroid-xu4.” https://wiki.odroid.com/odroid-xu4/odroid-xu4. Ac-
cessed: 2019-09-06.

[6] “Nvidia jetson.” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/. Accessed: 2019-09-06.

[7] “Teamplay public deliverable 7.5: Achievements in the technical work
packages m9.” https://gitlab.inria.fr/TeamPlay Public/TeamPlay Public
Deliverables/blob/master/D7.5.pdf, 2018. Accessed: 2019-09-05.

[8] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Asynchronous stream
processing with s-net,” International Journal of Parallel Programming,
vol. 38, no. 1, pp. 38–67, 2010.

[9] G. Ciatto, S. Mariani, M. Louvel, A. Omicini, and F. Zambonelli,
“Twenty years of coordination technologies: State-of-the-art and per-
spectives,” in International Conference on Coordination Languages and
Models, pp. 51–80, Springer, 2018.

[10] B. Rouxel, S. Derrien, and I. Puaut, “Tightening Contention Delays
While Scheduling Parallel Applications on Multi-core Architectures,”
ACM Trans. Embed. Comput. Syst, vol. 16, no. 20, pp. 1–20, 2017.

[11] S. Z. Sheikh and M. A. Pasha, “Energy-efficient multicore scheduling
for hard real-time systems: A survey,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 17, no. 6, p. 94, 2018.

[12] ARM Ltd., “White Paper: big. LITTLE Technology : The Future of
Mobile,” p. 12, 2013.

[13] “Opencl.” https://www.khronos.org/opencl/. Accessed: 2019-09-09.
[14] J. Roeder, B. Rouxel, and C. Grelck, “Towards time-, energy- and

security-aware functional coordination,” in IFL 2019 - 31st Symposium
on Implementation and Application of Functional Languages, 2019.

[15] EU H2020, “TeamPlay Project,” 2018. https://teamplay-h2020.eu/.
[16] J. Redmon, “Darknet: Open source neural networks in c.” http://pjreddie.

com/darknet/, 2013–2016.
[17] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[18] G. G. Brown and R. F. Dell, “Formulating integer linear programs: A

rogues’ gallery,” INFORMS Transactions on Education, vol. 7, no. 2,
pp. 153–159, 2007.

[19] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization,
vol. 108. Siam, 2009.

4


