Precise and Efficient Parametric Path Analysis

Ernst Althaus

Johannes-Gutenberg-Universitit Mainz
ernst.althaus@uni-mainz.de

Abstract

Hard real-time systems require tasks to finish in time. To guaran-
tee the timeliness of such a system, static timing analyses derive
upper bounds on the worst-case execution time (WCET) of tasks.
There are two types of timing analyses: numeric and parametric. A
numeric analysis derives a numeric timing bound and, to this end,
assumes all information such as loop bounds to be given a priori. If
these bounds are unknown during analysis time, a parametric anal-
ysis can compute a timing formula parametric in these variables.
A performance bottleneck of timing analyses, numeric and espe-
cially parametric, is the so-called path analysis, which determines
the path in the analyzed task with the longest execution time bound.
In this paper, we present a new approach to path analysis. This ap-
proach exploits the often rather regular structure of software for
hard real-time and safety-critical systems. As we show in the eval-
uation of this paper, we strongly improve upon former techniques
in terms of precision and runtime in the parametric case. Even in
the numeric case, the approach competes with state-of-the-art tech-
niques and may be an alternative to commercial tools employed for
path analysis.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods

General Terms Performance, Verification

1.

Hard real-time systems require tasks to finish in time. To guarantee
the timeliness of such a system, static timing analyses derive upper
bounds on the worst-case execution time (WCET) of tasks. To be
useful in practice, timing analyses must be

Introduction

e sound, to ensure the reliability of the guarantees,

e precise, to increase the chance to prove the satisfaction of the
timing requirements, and

e efficient, to make them useful in industrial practice.

The high complexity of modern processors and modern embedded
software hampers analyses to achieve all three properties at once.
Exhaustive measurement, for instance, may be sound and precise
but is infeasible for realistically sized programs. Simple end-to-
end measurements are easy to derive, but are possibly unsound.
Static timing analyses may derive sound upper bounds on the exe-

Copyright © 2011 ACM. This is the author's version of the work. It is posted
here for your personal use. Not for redistribution. The definitive Version of
Record was published in LCTES’11, April 11-14, 2011, Chicago, Illinois, USA.

Sebastian Altmeyer

Universitét des Saarlandes
altmeyer@cs.uni-saarland.de

141

Rouven Naujoks

Max-Planck-Institut fiir Informatik
naujoks@mpi-inf.mpg.de

cution time by construction. In general, the analyzed programs are
represented as control-flow graphs (CFG) with basic code blocks
as nodes and edges representing the possible execution paths. A
set of static analyses compute—amongst other information—upper
bounds on the execution time of the basic blocks and upper bounds
on the number of loop iterations. The execution time bound of the
task is then given by a path P in the CFG for which the sum of
occurrences of basic blocks of P times their execution time bound
is maximal. The step of the timing analysis that computes this path
is usually referred to as path analysis.

Timing analysis handling only numeric values as bounds on the
maximal number of loop iterations are referred to as numeric tim-
ing analyses. The drawback of these analyses is that information
such as bounds on the maximal number of loop iterations must be
known statically, i.e. during design time. Some systems need guar-
antees for timely reactions which are not absolute, but dependent on
anumerical parameter. In such cases, numeric timing analyses offer
only two possibilities. Either one provides bounds for the unknown
variables or starts a new analysis each time the task is used with dif-
ferent values. The first option endangers precision, the second may
unacceptably increase the analysis time. Parametric timing analy-
ses circumvent this problem. Instead of computing numeric bounds
valid for specific variable assignments only, parametric analyses
derive symbolic formulas representing upper bounds on the task’s
execution times.

A performance bottleneck of the numeric and especially of the
parametric timing analysis, is the path analysis. In the parametric
case, also the precision of the execution time bound is limited
by this step, as we will explain later. State-of-the-art techniques
formulate the computation of the timing bound as a search for the
longest valid path in the control-flow graph. A path is considered
valid, if it respects bounds on the number of times a loop can be
traversed for each time, the loop is entered.

In this paper, we propose a new approach to path analysis, both
for numeric and parametric timing guarantees. Embedded software
often exhibits a very regular structure. Based on this observation,
the new algorithm exploits this regularity to improve on the perfor-
mance in both cases and on the precision in the parametric case.

The paper is structured as follows: We present a general timing
analysis framework and related work regarding path analysis in
Section 2. In Section 3 we explain our new method, provide a
correctness proof and argue about the performance. Evaluation of
the method then follows in Section 5. Section 6 concludes the

paper.

2. Timing Analysis & Related Work

In this section, we explain the different steps of the timing anal-
ysis focusing on the most eminent parts with respect to our new
approach. The related work, to which we compare our method, is
also given in this section.

2.1 Timing Analysis

Static timing analyses represent programs to be analyzed as control-
flow graphs (CFG) G = (V, E). A sequential list of instructions
with a unique entry and a unique exit point are so-called basic
blocks which constitute the nodes of the CFG. The edges of the
CFG represent the possible control flow between the basic blocks.
For the sake of simplicity, we can assume a single, unique entry
and even a single, unique exit node of the CFG.

The first step of the timing analysis, the CFG reconstruction
generates this CFG from the executable (see Figure 1 for the
toolchain). Note that timing analysis has to resort to the level of
the executable. Source code analysis can only deliver rough and
possibly unsound estimates.

Timing Analysis

CFG Reconstruction
Va]ue/Loolp Analysis
Architecturial Analysis
Path Alnalysis

WCET Bound

Figure 1. Timing Analysis Toolchain

To be able to derive an upper bound on the execution time of the
analyzed tasks, the timing analysis has to compute upper bounds
on the execution times (architectural analysis) for each basic block
and upper bounds on the number of iterations of each reachable
loop within the CFG (value/loop analysis). In case of a numeric
analysis, the loop bounds are given as numeric values (€ N),
in case of a parametric analysis, loop bounds are represented by
variables. Our new approach adapts the last step of a static timing
analysis, the path analysis. Input to this step is only the CFG, the
loop bounds, and the execution time bounds for each basic block,
which we assume to be given.

Further information about static timing analysis can be found
in [10].

2.2 Numeric Path Analysis

Path analysis combines the timing information for each basic block
and the loop bounds and searches for the longest path within the
executable. In this fashion, it computes an upper bound on a task’s
execution time. Searching the longest path is done using a tech-
nique called implicit path enumeration (IPET [11, 14]): the con-
trol flow graph and the loop bounds are transformed into flow con-
straints. The upper bounds for the execution times of the basic
blocks as computed in the cache and pipeline analysis are used
as weights. Figure 2 provides an example. The variables n;, also
called traversal counts, denote how often a specific edge is tra-
versed. The first and the last basic block are left, resp. entered, ex-
actly once (n1 = 1; and n3 + ne = 1;). For all other basic blocks,
the sum of the traversal counts entering equals the sum leaving. The
loop body (basic block 4, bounded by bio0p) is executed at most
bioop times as often as the loop is entered (n4 <= bioopne;). The
constant c¢; denotes the cost of the basic block j. The maximum
sum over the costs of a basic block times traversal counts entering
it determines the final WCET bound.

The resulting ILP can be solved by any solver. In practice,
CPLEX is often used as a commercial and lp_solve as a non-

142

n1

ny =1
ni = Nz + n3;
n2 + N5 = N4;
na = N5 + Ne;
ng <= bioopna;

nsz +ne = 1;

max : E E CiTy

i Vjinj enters B;

Figure 2. Control flow graph and the corresponding flow con-
straints

commercial solution. In general, solving ILPs takes exponential
time. In practice, however, ILP solver often exhibit a much better
performance. In the evaluation, we present runtime of lp_solve and
CPLEX and compare them to our new approach. The main focus
of this work, however is on the parametric path analysis.

An alternative to implicit path enumeration is the tree-based
approach by Puschner and Koza [13]. Formulas for specific control
constructs, such as if-then-else or for-loops, are used to derive a
timing formula for the complete syntax tree, which then delivers the
timing bound. So, in contrast to IPET and our new approach, tree-
based timing analyses resort to the source-code level and require
special treatment of each program construct.

2.3 Parametric Path Analysis

Parametric path analysis computes the WCET formula by symbol-
ically searching the longest execution path in the program. As in
numeric timing analysis, implicit path enumeration is used to gen-
erate flow constraints. These flow constraints, however, must be lin-
ear in order to be used in an ILP. The only difference with respect
to numeric analysis is the type of the loop bounds. Regarding the
example in Figure 2, numeric analysis considers b;,0p to be a nu-
meric value and thus, computes a numeric WCET. The parametric
analysis has to compute a WCET formula in the parameter bjoop.
Although this seems to be a rather small difference, it has severe
consequences. The expression

ng <= bloopn%

is a linear constraint, if bj00p 1S a numeric value. However, the
same constraint is non-linear in case of a parametric loop bound.
Such non-linear constraints are caused by relative loop-bounds. As
a solution, all relative loop bounds have to be converted to absolute
ones. In the example in Figure 2, the variable n2 is bounded by 1.
Thus, the relative loop bound can be replaced by

ng <=1 % bioop;

Such a replacement is possible in general. To replace loop bounds,
cach variable must be bounded. If we assume a variable to be
unbounded, the whole ILP would be unbounded, too. Note that
there are only non-negative execution time bounds for basic blocks.
Hence, we can disregard such cases and can assume each variable
to be bounded. In case of nested parametric loop bounds, however,
a variable may be bounded by another parametric loop bound

only. Assume n, <= b, to be the absolute loop bound of an
outer loop, and n; <= b;n, the relative of the inner loop. After
conversion, the absolute loop bound of the inner loop is n; <=
bibo, which contains a non-linear term. The solution to this problem
is to replace b;b, by a new symbolic loop b” and to use n; <= b’ as
the loop bound constraint for the inner loop. Note that this step
increases the number of parameters, and hence, the complexity
of the symbolic ILP. In addition, absolute loop bounds lead to a
lower precision than relative ones. Relative bounds still respect
the relation to the loop entry edges. In case a loop is not part of
the longest execution path through the CFG, a relative loop bound
will not increase the execution time bound. In contrast, absolute
loop bounds will contribute to the upper bound no matter if the
corresponding loop is part of the worst-case path or not (see 5 for
the details).

The constraint system after the conversion is completely linear
and thus forms a valid symbolic integer linear problem. This ILP is
then solved by a symbolic ILP-solver as proposed by Feautrier [8]
using symbolic versions of the simplex [7] and cutting plane algo-
rithm [9]. A free symbolic solver called PIP is also available. Note
that the precision of the parametric path analysis via PIP and espe-
cially the runtime is rather poor. As we show in the evaluation later
on, only small benchmarks can be solved using PIP.

2.4 Other approaches to Parametric Timing Analysis

Lisper proposed a parametric timing analysis [12] which has re-
cently been implemented and extended by Bygde [4]. In contrast to
our approach, they use a polyhedral abstract interpretation to com-
pute the loop bounds and to create an ILP for the path analysis at
once. Hence, the constraints used within their approach differ from
the standard IPET model. In addition, their analysis—or at least
the implementation of it—resorts to the level of the source code.
Thus, a direct comparison between both approaches is not possi-
ble. As also observed in [2], the parametric ILP was the bottleneck
and has been replaced by a method called minimum propagation
analysis [4] based on a tree-like representation of the parametric
formula. The better performance of the new approach comes at the
cost of a lower precision which is often less than one percent but
may reach up to 30% for some benchmarks. The paper of Bygde
et al. [4] provides detailed experimental results, but is missing a
theoretical performance analysis.

Other approaches to parametric timing analysis [3, 5, 6, 15] have
a completely different structure and resort to the source-code level.
Hence, the new path analysis technique, which we explain in the
next section, can not be applied to these approaches.

3. Longest Paths in Singleton-Loop-Graphs

Embedded software for safety-critical systems is written with ver-
ification in mind or is even automatically generated. In both cases,
program code often exhibits a very regular structure. As a conse-
quence, control-flow graphs of embedded tasks are often reducible
graphs that contain natural loops only. Or, at least, most loops in
embedded software are reducible. In our new method, we exploit
one special property of such natural loops, namely the fact that each
such loop has a unique entry node. To emphasize this property, we
refer to such loops as singleton loops and to graphs that contain
only singleton loops as singleton graphs.

Exploiting the special structure of singleton graphs, we will
show how to compute longest execution paths with high efficiency.
The proposed algorithm is able not only to cope with numeric loop
bounds (in polynomial time), but also to handle symbolic loop
bounds (in output-polynomial time).

The algorithm itself is only applicable to singleton graphs.
However, if non-singleton loops occur, we can still transform any
control-flow graph into a singleton graph.

143

In this section, we first provide basic definitions, followed by an
explanation of the algorithm. Then, we analyze its timing behav-
ior, give a correctness proof and show how to transform arbitrary
control-flow graphs into singleton graphs.

Note that this paper focuses on the practical aspects of the new
path analysis. Further theoretical results can be found in [1].

3.1 Preliminaries

Before we describe the algorithm, it is necessary to formally define
what we mean when talking about a loop in a control flow graph.

Definition 1 (loop). Given a directed graph G(V, E), we call a
strongly connected component S = (Vs, Es) in G with |Es| > 0,
a loop of G.

We denote by loops(G), the set of all loops of G. We demand
E's to be nonempty. Otherwise, each isolated node would also be
considered a loop.

Definition 2 (entry node). Given a directed graph G = (V, E) and
aloop L = (Vi,,EL) of G, we call & € Vi, such that there exists
an edge (u, &) in the cut-set

SGVAVL) ={(,v) € E|v € V\Vr,v eV}
an entry node of G.

Given the control-flow graph depicted in Figure 2, nodes vs and vy
constitute one loop. The entry node of this loop is node vs.

Our algorithm relies on a special property of well-structured
loops. Hence, we only consider loops exhibiting this property,
which we define as follows:

Definition 3 (singleton loop). A loop L in a graph G is called a
singleton loop if L has exactly one entry node e.

For the unique entry node of a singleton loop L, we write &(L).
Note that we show in Section 3.6 how to handle loops of arbitrary
structure.

The next two definitions lift the single-entry property from
loops to graphs.

Definition 4 (sub-loops). Given a loop L = (V,, E1), we define
v is entry node of Vi,
where G, is the subgraph induced by V' \ {v}.

Definition 5 (induced sub-loops). Given a loop L = (V, E), we
call the recursively defined set

sloops(L) := loops(Goy)

iloops(L) := {L} U iloops(Ls)

U

Lsesloops(L)
the set of induced sub-loops of L.
For a graph G, we extend the definition of iloops to graphs:

iloops(G) := U

Ls€eloops(G)

iloops(Ls)

We call a graph G a singleton-loop graph if each induced sub-loop
of G is a singleton loop. For such a graph, we write §(G) =
{&(L) | L € iloops(G)} to denote the set of entry nodes of all
induced sub-loops in G.

This far, we only argued about entry nodes of loops. Now, we
formally define nodes and edges leaving a loop.

Definition 6 (portal nodes, transit edges). Given a directed graph
G = (V,E)andaloop L = (V,, Er,) in G, we call

T(L) = 65(Vz)

the set of transit edges of L, i.e. the edges leaving the loop L, and
P(L)={pe VL |3 (pv) e T(L)}

the set of portal nodes of L, i.e. the last nodes over which a path
can leave the loop L.

In the control-flow graph depicted in Figure 2, node v4 is a portal
node and edge (v4, vs) a transit edge. Note that there is a one-to-
one correspondence between singleton loops and their entry nodes,
which justifies the following definition.

Definition 7 (loop-bound function). Given a singleton-loop graph
G = (V, E), we call a function

b: £(G) —» NU {+oc}
a loop-bound function for G.

The loop-bound function is provided by the value/loop analysis,
which is part of the timing analysis framework (see Section 2.1).
We assume that all loops are bounded. If there is at least one un-
bounded loop, the worst-case execution time can not be computed.
In parametric timing analyses, loops may be bounded by param-
eters, too. In such a case, the final timing bound is parametric in
these parameters.

Now, we have to classify the valid paths, i.e. the paths that
respect the loop bound conditions. If for a loop L, a loop bound
of b(&(L)) is given, we mean that an execution path is not allowed
to enter L and iterate on L more than b(&'(L)) times, before the
path leaves L again.

Definition 8 (valid path). Given a singleton-loop graph G
(V, E), two nodes s,t € V and a loop-bound function b for G,
we call a path P := s ~ t a valid path if for all L :== (Vi,, E1) €
iloops(G) and for all sub-paths (& (L), vo,v1, ..., vk) of P with
vy € Vi, the sub-path (& (L),vo,v1,...,Vk—1) contains at most
b(& (L)) times the node & (L).

The problem that we consider in the following is to determine
the longest valid paths from a single source node s to all other nodes
in G with respect to a given edge weight function. At first glance,
this might seem more complicated than finding only the longest
path from a single source node to a single destination node, but as
in the computation of shortest paths in graphs, these problems are
equally hard.

In the following, we will write Ips(G, s, t) for a longest valid
path from a node s to a node ¢ and Ips(G, s, t) to denote the longest
valid path from s to ¢ that contains ¢ exactly once. Most of the
times, we will limit the discussion to the task of computing just
the path weights for sake of simplicity. Note that this is not a real
limitation, since the algorithm can easily be extended to also cope
with the problem of reporting the paths as well.

In the following, we will assume that for each v € V' there is a
path from s to ¢ containing v. All other nodes can be removed by
a preprocessing in time O(|V'| + |E|). The resulting graph has at
least 7' — 1 edges.

3.2 The Algorithm

Let us recall that a problem instance is given by a singleton-loop
graph G = (V, E), a source node s € V, an edge weight function
w: E +— N and a loop-bound function b: &(G) — N U {+oc0}.
Since from now on, we will only talk about singleton-loop graphs,
we will only write loops instead of singleton loops.

The basic idea of the algorithm is transform the CFG into an
directed acyclic graph, for which we can easily compute the longest
path. To this end, we need to identify the innermost loop, compute
the longest path within this loop, replace it by an artificial node and

144

adapt the edge weights (to account for the runtime within the loop).
See Figure 3 and Figure 4 for an example.

LPS(G,s) :=

,,,,,

1. identify the loops (L) e 1
connected components.
2. foreach L = (Vr;, Er;):

(a) modify L; by replacing &(L) by two nodes &,y and
&in and by replacing all incoming edges (v, & (L)) by
edges (v, &) and all outgoing edges (&(L), v) by edges
(goutzv)

(b) call LPS(Lj, out)

(c) now we know the Ips(L;, &out,v) forall v € Vi, and thus
we set

13 of G by computing the strongly

Ips(G, &(Ly),v) :=

(b(éa(L])) - 1)) lpS(Lj, Sout, éaln)

+ lpS(L17 éz)Ciu':y ’U),
that is the longest path weight from &(L;) to v is to the loop
b(&(L;)) — 1 times through L and then to the head for v.

(d) replace L; in G by a single node r; and add an edge (1, x)
for each (p, z) € 7 (L;) with appropriate weights, namely:
w(rja fL’) = lpS(Gz (?(Lj),p) + ’LU(p, 1’))

Add an edge (v,r;) for each (v,&(L;)) € E and set
w(”? T']) = w(v, é’(L7))

3. the altered graph is a DAG, thus we can easily determine the
longest paths.

4. compute the longest path weights to nodes within the loops:
Replace the nodes r; again by the corresponding loops and set
foreach L; = (VL] , EV]) and forallv € V, :

lpS(G, S, U) = lp_S(G7 S, g(LJ)) + lpS(LJ7 é’(L7)7 ’U)

So far, we have not yet discussed, how Ips(G, s, &(L;)) in step
4 is computed. Note that the entry node &(L;) corresponds to a
contraction node ¢ in the condensed graph G’. When we com-
pute the longest path weight from s to ¢, we set Ips(G’, s,¢) =
Mmaxyeine(e) IPS(G’, s,v) +w(v, ¢). An example on how the algo-
rithm works is given in Figure 3 and Figure 4.

3.3 Running Time - Numeric Bounds

Let us first analyze the algorithm’s running time 7'(|V], |E|) for
the case in which all loop-bounds are numeric values. In step 1),
the strongly connected components of G' are computed, which
can be done in O(|V| + |E|) time by depth-first search. Step
2a) can be computed in O(deg(&(L;))) time. In step 2b), the
algorithm is called recursively which takes T'(|Vz,| + 1,|EL,|)
time. The weight updates in 2c¢) can be performed in O(|VL,|)
and the updates in 2d) in O(|7 (L;)|) time. It is folklore that the
computation of longest path weights in a DAG, as done in step
3), takes no more than O(|V| + |E|) time. Finally, step 4 can be
done in O(|V]). Hence, without the recursive calls, we have a linear
running time O(|V| + | E|).

Note that the recursion depth of our algorithm is bounded by
|V|, as a node is split at most once. Furthermore the edge set of the
sub-loops are disjoint. Although nodes are split, we can argue that
the total number of nodes in a certain recursion depth is bounded

Figure 3. We assume the loop bound b(vsz) at entry node vz to
be 3 and that v is the source node s. The algorithm proceeds as
follows: (a) the strongly connected component L, is identified (b)
the longest path weight of 7 from vz to v4 with respect to b is
computed recursively (c) L1 is replaced by 71 (d) the longest path
weights are computed in the resulting DAG.

: () (=)
& ~ &

Figure 4. Entry node v of the strongly connected component L
is split into v™ and v3"*. The longest path weight from v$** and

v4™ is 3. With loop bound b(vs) = 3, this path is taken 2.

by 2|V | as follows: Let

Vo = {v € V | v has at least 1 outgoing edge}
and

V' = {v € V | vhas at least 1 incoming edge }

ut out .
Then 3, catoops(ay V"1 < IV and 24 ooopsicn V2] <

|V, where V7 is the set of nodes of L after splitting the entry
node. Hence the running time is bounded by

O(VI(IV" | + V™| + | E])) = O(IV||El)
3.4 Running Time - Symbolic Bounds

In the presence of symbolic loop-bounds we have to change our al-
gorithm slightly. Instead of a unique longest path we now have to
consider for each target node a set of longest paths to that node (see
Figure 5 for an example). When concatenating two paths we now
have to concatenate all pairs of paths. Since the operations on the
path weights include multiplications and additions, they can be rep-
resented as polynomials over the symbolic loop-bounds. Clearly,
we aim at getting all possible path weights that are maximal for at
least one choice for the symbolic loop-bound parameters. On the
down side, testing whether a path weight is maximum for some
choice (or instantiation) of the parameters seems to be non trivial.
A compromise is to keep all paths with weights that are not dom-
inated by another weight (i.e. all coefficients in the weight poly-
nomial are at least as big as the coefficients in the other weight
polynomial) to keep the solution set sparse in practice, which can
be implemented very efficiently. Furthermore, as we will see later,
for a some certain class of CFGs this step is necessary and suf-
ficient to compute a minimal number of paths. For a problem in-
stance I = (G, s, t), consisting of a graph, a source node s and a
destination node ¢, we denote by D(I) (or short D(s, t), if G can

145

be deduced from the context) the set of longest path weights from
s to t computed by our algorithm. The property of D(I), that its
elements are pairwise non-dominating can be achieved by elimi-
nating dominated elements after the execution of step 2c. We write
slbs(I) for the number of symbolic loop-bounds of a problem in-
stance I = (G, s,t) and 1bs(I) := lbs(G) := |iloops(G)]| for the
number of induced loops of G.

Theorem 1. The algorithm’s running time is polynomial in the
input size and in the size of the output.

Proof. First note that the running time only changes for the parts of
the algorithm in which calculations on path weights are performed,
namely the parts 2c), 2d) and 4). We will restrict this proof to the
operations involved in step 2c), since the number of operations
involved in 2c) is certainly not smaller than the ones in 2d) and
4).

Let us first count the number of operations on weight polyno-
mials. Consider a longest path P from the source node s to the
destination node ¢. Let lIps(u, v) denote the longest path weights,
computed by the algorithm for the longest paths from node u to
node v, then for each loop L = (Vi,Er) € loops(G) that
is traversed by P, we have |lps(&'(L),pr)| < |lps(s,pr)| for
pr € P(L) over which P leaves L again. Furthermore, for each
pr € portals(L) wehave O([lps(&'(L), &(L))|-|lps(&'(L), pr)|)
operations, since the addition involves the addition of all pairs
of weights in lps(&'(L), &(L)) and in 1ps(&(L),pr). Since L is
strongly connected, |lps(&(L), &(L))| < |lps(&(L),pr)|. Thus
the number of operations is bounded by [lps(&(L),pr)[> <
[Ips(s, pr)|?. Since each node in V7, can be a portal node of
L, the total number of operations on polynomials occurring on
the first recursion level is bounded by >, lps(s,v)]> <
(X pev llps(s, v)|)2. But, since Y, v, |Ips(s,v)] is just the num-
ber of path weights, reported by the algorithm, the number of oper-
ations on polynomials is polynomial in the number of reported path
weights. Note that each weight has a unique representation and that
all operations on the weight polynomials can be carried out in time
polynomial in the size of these polynomials.

What is left to show is, that the weight polynomials computed
for the nodes in the input graph have a size polynomially bounded
by the size of the weight polynomials that are reported by our
algorithm, that is the weight polynomials of the longest paths from
the source node s to the sink node ¢. We will use a structural
induction over the input graph G to prove so. If G contains no
loops, the claim is true since G must be a DAG and therefore, all
computed longest path weights are just constants. So, let us assume
that GG contains loops. By induction hypothesis, the claim holds
now for each problem instance (L, &ous, p) where L is a loop of
G, where the entry node of L is split into the nodes &,ut and &in
and where p is an arbitrary portal node of L. But then the claim is
also true for (L, & (L), p) what can be seen as follows: Recall that
a longest path weight from & (L) to p is given by the equation

Ips(G, &(L),p) = (b(&(L)) — 1) -
lpS(L, gauta gm) + 1pS(L, 5’011:,]9)

for some path weights 1ps(L, Sout, &in) and Ips(L, Soui, p). But
then, 1ps(G, &(L), p) is as least as large as the maximum of the
sizes of 1ps(L, Sout, &in) and of 1ps(L, &out, p) as each term in
Ips(L, &out, &in) appears with a multiple of b(&' (L)), Ips(L, &ous, p)
does not contain b(&'(L)) and each term in lps(L, &out, p) can
eliminate only terms that are not multiplied with b(&'(L)). The last
thing we have to show now is, that the claim holds for (G, s, t),
where again G’ denotes the condensed graph. We compute the
longest path weights in the directed acyclic graph G’ by the re-
currence lps(G,s,u) = maxycinc(u) (IPs(G, s,v) +w(v,u))

SRR,
S0 m S1

@OUO : OUO@

2 2

Figure 5. The different weights for the longest paths from vg to v
are 4,2 + b(s0), 2 + b(s1) and b(so) + b(s1)

starting with u t. Consider now a weight polynomial P =
Ips(G, s,v) +w(v, u). Since we consider the condensed graph G,
w(v,u) is a polynomial containing only variables associated with
the loop that in turn is associated with the node v (in the case that
v is not a condensed node, w(v, u) is just a constant). Thus, except
for the constant terms, P contains at least as many terms as there
are in lIps(G, s, v) or in w(v, u), which completes the proof. [

Theorem 1 states that the runtime of our parametric path anal-
ysis is polynomial in the input and output size. Hence, the number
of reported paths influences the actual runtime. Unfortunately, there
are examples such that the number of distinct formulas is exponen-
tial in the number of loop bounds (see [1] for further details). For
each of these paths, there is an parameter instantiation such that this
path leads to the worst-case execution time bound. Note that each
approach to parametric path analysis must report this many path. In
practice, however, both the number of parametric loop bound and
the number of distinct reported path is quite limited as we will see
in Section 5.

3.5 Correctness

Now, we will show that our algorithm indeed computes the weight
of a longest valid path lps(G, s,t) from a source vertex s to a
destination vertex ¢. In the following, when talking about paths
we always mean valid paths. Again we will assume that G is a
singleton-loop graph with weight function w: £ — N and that
we are given a loop-bound function b: &(G) — N U {+o00}. We
will show the claim by induction over the recursion-level of the
algorithm. If we assume that G' contains no loops, G must be a
directed acyclic graph and thus, our algorithm is correct. So, now
assume that G contains loops. The induction hypothesis tells us
now that for all recursive calls of our algorithm, we obtain correct
results. Let p := s ~» t be a longest path in G. Let us assume
w.l.o.g. that p shares at least one node with a sub-loop of G, i.e.
for some L := (Vp,EL) € sloops(G): &(L) € Vi. Thus p
can be written as p = s ~ p’ ~ twithp’ = (&(L) =:
Vo, V1, ..., V) such that v; € Vi and k is maximal. Since any
sub-path of a longest path must be again a longest path between its
starting- and end-node (with respect to the validity), we have that
w(p’) = lps(G,&(L),vx). Consider now the condensed graph
G obtained by replacing loop L by a node r as described in the
algorithm. Then the path s ~ r — vj, ~> t is valid and has weight
w(p). Therefore, w(lps(G, s,t)) < w(lps(G, s,t)). On the other
hand, w(lps(G, s,t)) cannot be strictly less than w(lps(G, s, t)),
because otherwise there would be a path in G with weight strictly
greater than a longest path in G, which also would not traverse L,
since the weights of these paths are unequal. But this would mean
that there is also a path in G—just bypassing L—with the weight
w(lps(G, s, t)), which leads to a contradiction.

What is left to show is that our algorithm computes correct
values for 1ps(G, &(L),vi). Let p = (&(L) =: vo,v1,...,vk)
with v; € Vi be a longest path. We can assume that p contains
exactly b(& (L)) (respectively b(&(L)) + 1 if v, = &(L)) times

146

the node & (L), otherwise we could extend the path by the path
v~ & (L) ~ vy, without violating validity.

Now each sub-path p’ of p withp’ = &(L) ~» & (L) must have
the same weight, since otherwise, by replacing the lower weight
sub-path by the corresponding higher weight sub-path, we could
obtain a path with higher weights. Thus, we can assume that there

exists a longest path (L) ¥ &(L) & .. % &(L) % vy with
weight (b(&(L)) — 1) - w(p’) + w(p”). Since p’ and p”" must be
longest paths, we are left to show that our algorithm computes the
weights 1ps(G, (L), (L)) and lps(G, &(L), vk) correctly. But
this follows directly by the way we alter the loop L, i.e. by splitting
the entry node of L into the two nodes &,y and &}y,. Since L was
a loop, every node in L is reachable from &5y¢. By induction hy-
pothesis the algorithm now computes recursively the right values,
where obviously w(1ps(L, &out, &in)) = w(lps(G, e, €)). Which
finishes this proof.

3.6 Transformation of non Singleton-Graphs

This far, our new approach is applicable to singleton graphs only.
We assume that each loop has a unique entry node. To analyze
non-singleton graphs, we must obtain this property. To this end,
we duplicate the loop-body and redirect loop entry edges, such
that each loop body has a unique entry node; see Figure 6 for an
example.

This transformation comes at the cost of an increased run-
time: Although the complexity of the algorithm itself remains un-
changed, the input-size increases. In how far this influences the ac-
tual performance of the algorithm strongly depends on the analyzed
control-flow graph. We will discuss this point in the Section 5.

@Q@ | @ﬁ‘
Figure 6. Transformation of non-singleton loops into singleton
loops.

4. Handling Control Flow Constrains

An advantage of the implicit path enumeration technique is given
by the possibility to define further constraints on the control flow.
A typical example is the exclusion of infeasible path; different
conditions of the program to be analyzed might depend on each
other, such that certain control flow paths can be excluded. These
cases can be coded using control flow constraints

One way to handle such constraints in our approach is to as-
sign boolean literals to the edges of the control-flow graph that

indicate whether an edge is part of the graph or not. The goal is
now to determine a longest path over all possible truth assignments
of the boolean variables occurring in the deadpath constraints. A
naive way of doing so, would be to solve the problem from scratch
for each possible assignment and to compare in retrospect the ob-
tained longest paths. The obvious drawback of this approach is that
in any case an exponential number of problems have to solved.
One possible improvement rests upon the observation that in dif-
ferent calls of our algorithm, the computation of longest subpaths
are potentially repeated —independent of the given truth assign-
ment. Thus, instead of computing the longest paths for each truth
assignment, we just perform a single call in which we bookkeep
for each computed subpath the literals that occurred on that path.
At the point in our algorithm, when two paths are concatenated, we
first check, whether the literals occurring in both paths are compat-
ible, i.e. whether there can be a truth assignment that allows a path
to consist of these two subpaths, which is clearly not the case if in
the first subpath there is an edge with a variable that occurs in its
negation in the second subpath. Once our algorithm has finished,
we are left with a set of longest paths together with a set of boolean
literals. In the final step, we examine these paths for all possible
truth assignments. Since this set should be significantly smaller in
practice than the union of all sets computed in the naive way, this
should lead to significant speed up.

Note that this extension is not yet implemented but planned as
future work.

5. Evaluation

In this section, we evaluate the improvement of our new approach
in terms of runtime and precision. In the following, we refer to our
new method as the Silent (SIngle-Loop ENTry) method.

The main motivation of this work is parametric path analysis.
Prior parametric approaches suffer from poor runtime and precision
and hence, strongly limit the applicability of the parametric timing
analysis. Nevertheless, we also evaluate the performance in case of
numeric path analysis to see how it compares to the state-of-the-art
path analysis IPET (both, based on a commercial and a free ILP-
Solver).

The Silent method exploits the often rather regular structure
of software for safety-critical embedded systems. Hence, we first
determine how many of our test-cases exhibit only singleton loops,
i.e. fit our model. We then distinguish between the performance for
singleton graphs and non-singleton graphs

Regarding the precision, the new method does not suffer from
any inherent overapproximation and thus, computes exact results
even in the parametric case. The loop-bound conversion from rela-
tive to absolute loop-bounds as in [2] is not needed. Regarding the
precision, we compare Silent to implicit path enumeration using
PIP [8].

5.1 Test Setting

All programs have been compiled via gcc to the ARM7' target
architecture, one of the most eminent processors for embedded
systems. The binary-files determine control-flow graphs, which are
the input to both, Silent and IPET. Note that timing analysis has to
resort to the binary level. Compiler transformation may influence
the control flow extracted from high-level source files. All tests
have been performed on an Intel Core2Duo, 2GHz, 2 GB Ram with
Ubuntu 9.10 operating system. The execution times were measured
using the unix-command time and thus, include in all cases time for
the algorithm and all input/output operations. Since most execution

'http://www.arm.com/products/CPUs/families/ARM7Family.
html

147

times are small (time < 5 seconds), we repeated the tests 10 times
and present the average.

5.2 Structure of the Benchmarks

The most eminent benchmark suite in the area of timing analysis for
hard real-time systems is the Miilardalen WCET benchmark suite?.

Analyzing executables instead of source-code files has several
consequences. Calls to external library functions may be implicit
in the source-code, but contribute to the complexity of the ex-
ecutable’s control-flow graph. Hence, the analyzed control-flow
graph and control-flow of the source-code may differ. Even if the
source code contains only singleton loops, the corresponding ex-
ecutable may exhibit non-singleton loops. In addition, complex
compiler optimizations—although not common for safety-critical
systems—transform the control-flow graph.

An overview of the actual structure of the benchmarks is given
in Table 1. Beneath the sizes of the source-code and of the exe-
cutable of the benchmarks, it shows which benchmark fits into the
singleton graph model and, if not, how often loops need to be du-
plicated. Note that this number does not refer to the number of non-
singleton loops, but to the number of duplicated loops in the trans-
formed control-flow graph. If a loop has n loop entries, it needs to
be duplicated n-times. As Table 1 shows, only 8 of 33 test-cases

Name Size (in Byte) Singleton | # duplicated
C-File | Exec Graph loops

adpcm 26582 156759 no 5
bs 4248 144447 yes -
bs100 2779 144629 yes -
cnt 2880 149801 yes -
compress 13411 149804 no 65
cover 5026 148301 yes -
cre 5168 145615 yes -
duff 2374 144739 no 6
edn 10563 150682 yes

expint 4288 145867 yes -
fac 426 144148 yes -
fdct 8863 147128 yes -
fftl 6244 153303 yes -
fibcall 3499 144152 yes -
fir 11965 151589 yes -
insertsort 3892 144305 yes -
jannecomplex || 1564 144242 yes -
jfdctint 16028 146858 yes -
lcdnum 1678 144509 yes -
Ims 7720 157868 yes -
ludpcm 5160 151848 yes -
matmult 3737 145083 no 4
minver 5805 152845 yes -
ndes 7345 148689 no 2
ns 10436 149567 no 7
nsichneu 118351 | 176240 yes -
prime 904 144538 yes -
gsort-exam 4535 146468 no

qurt 4898 151214 yes

recursion 620 144341 yes -
select 4494 146283 yes -
sqrt 3567 154282 yes -
statemate 52618 162879 no 7

Table 1. Benchmarks; Sizes (of source code and of executables)
and structure.

2http://www.nrtc.mdh.se/projects/wcet/benchmarks.html

exhibit non-singleton loops, only in one case (compress) a higher
number of loop-duplications is needed. Deeply nested loops, un-
structured code segments as well as calls to external library func-
tions are the reasons for non-singleton loops. The benchmark com-
press with 65 duplicated loops exhibits goto-statements and nested
loops, ns and statemate contain nested loops.

Name Size (in Byte) Singleton | # duplicated
C-File | Exec Graph loops

s-graph-1 208273 | 235222 yes -
s-graph-2 468944 | 292305 yes -
s-graph-3 702670 | 386961 yes -
s-graph-4 936396 | 481609 yes -
s-graph-5 670452 | 284593 yes -
ns-graph-1 || 90274 215433 no 71
ns-graph-2 || 315562 | 247443 no 71
ns-graph-3 || 766144 | 426427 no 77
ns-graph-4 || 990502 | 520579 no 5
ns-graph-5 || 979908 | 518338 no 9
ns-graph-6 || 942084 | 502580 no 74

Table 2. Artificial Benchmarks; Sizes (of source code and of exe-
cutables) and structure

Although Milardalen Benchmark Suite is most common suite
for timing analyses, the test-cases are rather small. In fact, all
benchmarks are solved in less than one second by IPET and Silent.
Unfortunately, other free benchmarks suites (Mibench, Papabench)
for real-time systems contain academic examples of limited size,
too.

Especially for the numeric performance evaluation, larger ex-
amples are needed. To this end, we created new benchmarks by
combining and duplicating original test-cases from the benchmark
suite. We also want to classify the new artificial benchmarks de-
pending on whether or not they exhibit non-singleton loops. So,
we only combined test-cases from the same group. Benchmarks s-
graph-x are combinations of singleton graph examples, ns-graph-x
of non-singleton graph examples. Table 2 presents the increased
benchmarks.

Note that code duplication and combination of different files to
increase the benchmarks does not necessarily increase the number
of duplicated non-singleton loops in the graph. If, for instance, a
library routine exhibits such a loop, code duplication just leads to
more call sites, but not to more such loops. Although we applied
this very simple approach to create larger test-cases, Table 3 later
on shows that it suffices to lead to strong variation in the execution
time.

5.3 Numeric Path Analysis

In the performance evaluation, we distinguish between singleton
and non-singleton graphs.

Runtime (s)

Name Silent | Ip_solve | CPLEX
nsichneu 0.02 0.86 0.05
s-graph-1 || 0.03 3.46 0.08
s-graph-2 || 0.05 13.69 0.08
s-graph-3 || 0.08 30.85 0.11
s-graph-4 || 0.11 57.31 0.18
s-graph-5 || 0.11 108.8 0.13

Table 3. Performance evaluation, Numeric Analysis, Singleton
Graphs

In case of singleton-loop graphs, Silent method strongly out-
performs the prior path analysis technique using Ip_solve and even

148

competes with CPLEX. While 1p_solve needs up to over 100 sec-
onds for the larger benchmarks, Silent and CPLEX solve each test-
case in about one second or less. The worst-case runtime of Silent
is polynomial, runtime of CPLEX and lp_solve is exponential.
CPLEX, however, implements a large variety of heuristics which
enables a much better performance in practice.

Runtime (s)

Name Silent | Ip_solve | CPLEX
adpcm 0.04 0.07 0.02
compress 0.3 0.03 0.03
statemate 0.05 0.3 0.04
ns-graph-1 || 0.97 4.5 0.04
ns-graph-2 || 0.95 14.58 0.05
ns-graph-3 || 1.01 48.13 0.12
ns-graph-4 || 0.14 92.1 0.11
ns-graph-5 || 0.16 1133 0.12
ns-graph-6 || 0.64 65.9 0.17

Table 4. Performance evaluation, Numeric Analysis, Non-
Singleton Loop Graphs

In case of non-singleton loop graphs, loop duplication strongly
degrades the performance of Silent. The more loops need to be du-
plicated, the worse the performance of the analysis becomes. Here,
the analysis of compress with 65 loop duplications, for instance,
takes much longer than the analysis of other benchmarks of com-
parable size. Although, CPLEX outperforms Silent, it can still com-
pete with Ip_solve.

The evaluation shows that the Silent method is an alternative
to Ip_solve, both for singleton graphs and non-singleton graphs.
Especially for larger test-cases the difference is immense and Silent
can save up to 99% runtime compared to the free ILP solver.
Only for smaller test cases, the difference between both methods is
less dramatic, but still very obvious. Silent can even compete with
CPLEX for singleton graphs, which are, as Table 1 shows, more
common. However, for non-singleton graphs, CPLEX is the best
alternative.

5.4 Parametric Path Analysis

As discussed in Section 5, there are only a few other approaches to
parametric timing analysis in general, and thus, also to parametric
path analysis.

A direct comparison to these approaches is not possible. Our
parametric timing analysis resorts to the binary level and thus, takes
precise cache and pipeline effects into account. To the best of our
knowledge, other parametric approaches [3—6, 15] analyze source-
code only and assume a simplified hardware model. The difference
in the hardware model leads to completely different precision and
different input-files such that also the performance is incomparable.

In addition, only Bygde et al. [4] presented a complete, imple-
mented toolchain and a sophisticated evaluation. But again, it is
based on the source-code level, such that only an indirect compari-
son is possible.

In the following, we will thus compare Silent to the numeric
analysis and to the results obtained by parametric implicit path
enumeration technique via PIP (which has been formerly used).

5.4.1 Parametric Path Analysis — Performance

In the parametric case, precision and runtime are of interest. The
Silent method can only be compared against PIP directly. PIP,
however, exhibits an extremely poor performance. None of the
5 largest benchmarks from Milardalen benchmark suite can be
solved via PIP; out-of-memory errors are reported. These instances
are still trivial for our new approach. Therefore, we compare the

runtime of the parametric path analysis to the numeric one. So,
we can observe how the number of parameters and the number of
reported formulas influence the runtime. Note that the number of
parameters is usually quite limited in practice. Other approaches
usually assume a limited number of parameters, too. Bygde et
al. [4], for instance, considers cases with at most two parameters.

Runtime # of parameters

Name 0o |1 |2 |3 |4 |6 |8

s-graph-1 0.03 || 0.03 | 0.03 | 0.03 | 0.03 | - -
s-graph-2 || 0.05 || 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06
s-graph-3 || 0.08 || 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.11
s-graph-4 0.11 || 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12
s-graph-5 || 0.11 || 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13
ns-graph-1 || 0.97 || 1 1.73 | 1.9 2.02 | 2.11 | 2.11
ns-graph-2 || 0.95 || 2.03 | 2.03 | 2.04 | 2.36 | 2.35 | 2.38
ns-graph-3 || 1.01 || 1.01 | 1.01 | 1.01 | 1.24 | 342 | 3.44
ns-graph-4 || 0.14 || 0.22 | 0.28 | 0.3 033 | 045 | 045
ns-graph-5 || 0.16 || 0.28 | 0.33 | 0.62 | 0.67 | 1.11 | L.11
ns-graph-6 || 0.64 || 0.64 | 0.64 | 0.66 | 0.71 | 1.19 | 1.19

Table 5. Performance evaluation: Silent method, parametric test
cases.

Table 5 shows that the parametric case exhibits an increased
runtime compared to the numeric case. This increase ranges from
a factor of ~ 1 (singleton-graphs) to a factor of ~ 5 (non-
singleton graphs). Considering the small execution times of the
Silent method, even such an increase is acceptable. Note that Bygde
et al. also fail to compute parametric formulas in case of larger ex-
amples. Benchmark nsichneu, for instance, can not be solved using
the minimum propagation analysis as presented in [4] due to the
high complexity of their method.

of parametric formulas

Name 1y 2 73 6 |8
s-graph-1 2 2 2 4 - -
s-graph-2 || 2 | 4 8 16 | 16 | 16
s-graph-3 2 |4 8 16 | 16 | 32
s-graph-4 2 4 8 16 | 32 | 64
s-graph-5 2 4 8 16 | 32 | 64
ns-graph-1 || 1 23 | 33 | 33 | 33 | 33
ns-graph-2 || 13 | 13 | 13 | 17 | 17 | 17
ns-graph-3 || 1 1 1 4 15 | 15
ns-graph-4 || 12 | 21 | 21 | 21 | 25 | 25
ns-graph-5 || 12 | 12 | 33 | 33 | 56 | 56
ns-graph-6 || 1 1 1 2 8 8

Table 6. Performance evaluation: Silent method, number of para-
metric formulas

The runtime in the parametric case is output-polynomial. Ta-
ble 6 shows the number of parametric formulas reported by the
Silent method. Although we can see that the output-size influences
the performance, the number of duplicated loops still has a stronger
impact in practice. The maximal number of reported formulas is
64 (s-graph-4 and s-graph-5, 8 parameters, 0 duplicated loops)—
runtime of the analysis in both cases, however is only about 10%
of the runtime of ns-graph-6, with 8 parametric formulas, but 74
duplicated loops. Note that our algorithm does not perform any fur-
ther simplifications on the reported formulas. Hence, some formu-
las may be dominated by others and can be neglected.

5.4.2 Parametric Path Analysis — Precision

The parametric bounds computed by Silent method are precise, i.c.,
instantiating the formula delivers the same results as the numeric

149

analysis with annotated loop bounds. There is no overapproxima-
tion within Silent—in contrast to former methods.

Already rather simple control-flow structures cause the impreci-
sion of the path analysis via PIP. Figure 7 shows two parallel loops.
If we assume for instance that L1 has a parametric loop bound,
the worst-case path as derived by PIP will always contain loop L1.
Loop nesting leads in the same manner to an overapproximation.

Figure 7. Parallel Loops

In the following, we present two simple benchmarks form
Milardalen benchmark suite, for which PIP was able to derive a
parametric timing formula: insertion-sort and matrix-multiplication.

Insertion Sort

This benchmarks implements insertion sort. It contains one loop to
initialize an array of size n and then sorts this array using a nested
loop of depth 2.

300000
250000 |
- 200000 |
3
@ 150000 |
(=]
£
E 100000 |
50000 |
0 L s ' ' s J
0 10 20 30 40 50 60
Pip(x) Silent(x) ——
Figure 8. PIP vs. Silent—Insertionsort
Timepp(n) = 156n° + 674n + 1186
Timesien(n) = 131> + T1n + 1185
Matrix Multiplication

This benchmark first initializes two n X n matrices and then multi-
plies them in O(n?®) using nested parametric loops of depth 3.

386n° + 782n2

+790n 4+ 643 ifn > 1

Timep,p(n) =
2992 ifn <1

Timesiem(n) = 111n° 4 164n” + 845n + 793

In both benchmarks, the coefficients in Timep;p are higher than
in Timesiin:, Such that the overapproximation grows as the parame-
ters increase. The overapproximation of the PIP method is caused

800000
700000
£00000
500000
400000
300000
200000
100000

0

Timing Bound

10 15 20

Fip(<) Silent(x) ——

Figure 9. PIP vs. Silent—Matrix Multiplication

by loop nesting causes and the missing relation between execu-
tion counts of inner and outer loops. Note that since the parametric
bounds computed by Silent method are precise, the shown differ-
ence in precision shows the imprecision of the path analysis via
PIP.

6. Conclusions

We have developed a new path analysis able to derive numeric tim-
ing bounds as well as parametric timing formulas. Our new ap-
proach requires a special property of the programs to be analyzed:
all loops in the control-flow graph have a unique entry node. We
call such loops singleton loops. For all programs that contain only
singleton loops, we can compute the worst-case path in polynomial
time (in case of numeric loop bounds), resp., output-polynomial
time (in case of parametric loop bounds) — in contrast to the ex-
ponential runtime of the former IPET approaches. Most test-cases
from the Milardalen Benchmark suite fit our model and even if
non-singleton loops occur, we can still transform any control-flow
graph such that the singleton loop property holds. As we have
shown in the evaluation, such transformations may only increase
the runtime slightly: Our new approach improves in practice upon
prior parametric path analysis techniques in terms of precision and
runtime. Also in the numeric case, we strongly outperform path
analysis using implicit path-enumeration technique via Ip_solve
and can even compete with CPLEX. In the future, we plan to ex-
tend our method to parametric control flow constraints, to enable
parametric deadpath-analysis as well as to allow arbitrary user an-
notations.

150

References

[1] E. Althaus, S. Altmeyer, and R. Naujoks. A new combinatorial ap-
proach to parametric path analysis. Reports of SFB/TR 14 AVACS 58,
SFB/TR 14 AVACS, to appear.

S. Altmeyer, C. Hiimbert, B. Lisper, and R. Wilhelm. Parametric tim-
ing analyis for complex architectures. In Proceedings of the 14th
IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’08), pages 367-376. IEEE
Computer Society, August 2008.

[2

—_

3

—

G. Bernat and A. Burns. An approach to symbolic worst-case execu-
tion time analysis. In 25th IFAC Workshop on Real-Time Program-
ming. Palma (Spain)., May 2000.

S. Bygde, A. Ermedahl, and B. Lisper. An efficient algorithm for para-
metric weet calculation. In Proceedings of the 15th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA’09), pages 13-21. IEEE Computer Society, August
2009.

R. Chapman, A. Burns, and A. Wellings. Combining static worst-case
timing analysis and program proof. Real-Time Syst., 11(2):145-171,
1996.

J. Coffman, C. A. Healy, F. Mueller, and D. B. Whalley. Generalizing
parametric timing analysis. In Proceedings of the 7th ACM SIGPLAN
workshop on Languages, compilers and tools for embedded systems
(LCTES °07), pages 152-154, 2007.

[7]1 G. B. Dantzig. Linear Programming and Extensions.
University Press, Princeton, NJ, 1963.

[8] P. Feautrier. The parametric integer programming’s home http:
\www.piplib.org.

[4

fina}

(3]

[6

—_

Princeton

[9]1 R. E. Gomory. An algorithm for integer solutions to linear program-
ming. InR. L. Graves and P. Wolfe, editors, Recent Advances in Math-
ematical Programming, pages 269-302, New York, 1969. McGraw-
Hill.

R. Heckmann and C. Ferdinand. Worst-case execution time prediction
by static program analysis. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS’04), pages
26-30. IEEE Computer Society, 2004.

Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32nd annual
ACM/IEEE Design Automation Conference (DAC ’95), pages 456—
461. ACM, 1995.

B. Lisper. Fully automatic, parametric worst-case execution time
analysis. In Proceedings of the Third Internation Workshop on Worst-
Case Execution Time Analysis (WCET ()3), pages 77-80, July 2003.

[13] P. Puschner and C. Koza. Calculating the maximum, execution time
of real-time programs. Real-Time Syst., 1(2):159-176, 1989.

[14] H. Theiling. ILP-based Interprocedural Path Analysis. In Proceedings
of the Workshop on Embedded Software, Grenoble, France, October
2002.

[15] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric tim-
ing analysis. In Proceedings of the ACM SIGPLAN workshop on Lan-

guages, compilers and tools for embedded systems (LCTES ’01), pages
88-93. ACM Press, 2001.

[10]

[11]

[12]

