
WCET ANALYSIS FOR PREEMPTIVE
SCHEDULING1

Sebastian Altmeyer2, Gernot Gebhard3

Abstract
Hard real-time systems induce strict constraints on the timing of the task set. Validation of these timing
constraints is thus a major challenge during the design of such a system. Whereas the derivation of
timing guarantees must already be considered complex if tasks are running to completion, it gets even
more complex if tasks are scheduled preemptively – especially due to caches, deployed to improve the
average performance. In this paper we propose a new method to compute valid upper bounds on a
task’s worst case execution time (WCET). Our method approximates an optimal memory layout such
that the set of possibly evicted cache-entries during preemption is minimized. This set then delivers
information to bound the execution time of tasks under preemption in an adopted WCET analysis.

1. Introduction

Validation of hard real-time systems strongly relies on safe estimations of upper bounds on a task’s
worst case execution time (WCET). Computing such a WCET bound is already a complex problem
for non-preemptively scheduled tasks. It becomes even more problematic in a preemptive environ-
ment. This means that the flexibility of a preemptive schedule comes at the cost of complex interaction
between the tasks, such as preempting tasks evicting used data of preempted tasks out of the proces-
sor’s cache. Nevertheless, some task-sets are only schedulable preemptively and, in addition to that,
a non-preemptive schedule often exhibits a worse processor utilization. Thus, being able to compute
both safe and precise WCET bounds for preemptive task-sets is essential.

For modern hardware architectures, however, Liu and Layland’s assumption of negligible context
switch costs [5] no longer holds. Instead, these costs often contribute substantially to the overall
execution time, as Li et al. recently published in [4].

In this paper, we propose a new method which on the one hand decreases the context switch costs and
on the other enables a precise and safe WCET analysis for preemptively scheduled tasks. Our method
is an extension of the task mapping approach described in [1] which aims to increase the overall
performance of a preemptive system. In our approach, we compute an arrangement of the tasks and
its data in the memory such that the number of evicted cache entries of a task is minimized during
preemption. The memory layout also induces a classification of the cache-entries which is then used
to safely approximate WCETs under preemption. A major advantage of this approach is that both
code and data remain unmodified, only the position in memory and thus in cache is changed.

The paper is structured as follows. In Section 2, we give a short intuition of our approach and the role

1This work was supported by the European Community’s Sixth Framework Programme as part of ARTIST2 Network of
Excellence and by the Seventh Framework Programme as part of PREDATOR.

2Universität des Saarlandes, Im Stadtwald 15, 66041 Saarbrücken, Germany
3AbsInt Angewandte Informatik GmbH, Science Park 1, 66123 Saarbrücken, Germany

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2008/1664

1



of different memory layouts. The optimization and analysis is described in Section 3, and compared
to the related work in Section 4. Finally, Section 5 concludes this paper.

2. Memory Layout

The memory layout, i.e. the arrangement of data and instructions in the memory, determines the
cache-sets to which data and instructions are mapped. Therefore, it strongly influences the cache
interference and thus the context switch costs of preemptively scheduled periodic tasks.

Figure 1 depicts the correlation between the memory layout and the occupied cache-sets. A task-set
with three tasks of size n/2 is scheduled such that only task 1 can preempt the other two. The system
uses a direct mapped instruction cache of size n. In the first memory layout, if task 1 preempts task
3, the task might evict cache-entries of task 3 and thus induce context switch costs. In the second
memory layout, no matter which task is preempted by task 1, no cache conflicts occur. A cache-set is
called endangered, if it might be evicted during preemption and persistent otherwise. This notation,
however, only relates to persistence during a single instance of a task, not to different instances of
it. Hereby, tasks are seen as procedures periodically invoked by the scheduler. Note that finding a
memory layout such that all cache-sets are persistent during preemption is impossible in general.

Memory

Task 1

Task 2

Task 3

0

n/2− 1

n− 1

Cache

Task 1
Task 2

Task 3
0 n/2− 1 n− 1

Layout 1

Memory

Task 2

Task 1

Task 3

0

n/2− 1

n− 1

Cache

Task 2
Task 1

Task 3
0 n/2− 1 n− 1

Layout 2

Figure 1. Two different memory layouts with different performance

3. Optimization and Analysis

In the following, we propose a combination of optimization and analysis of a memory layout in order
to compute safe WCET bounds for preemptively scheduled tasks. First, we analyze the tasks to derive
a metric to compare different memory layouts. We then approximate an optimal layout with respect
to this metric and classify cache-entries as persistent or endangered. This classification is then used
to compute safe WCET bounds for all tasks. The structure of the approach is shown in Figure 2.

In the remainder of this paper, we will use the following notation:

A cache is determined by the number of cache-sets m and the minimal life span k. The set of all
cache-sets is denoted by S. The minimal life span determines the minimum number of (read or write)
accesses to a specific cache-set until the data of the first access may be evicted. This means that one
can guarantee that after k different accesses, data of the first one is still cached, but after k + 1, one
can not. A direct mapped cache has k = 1 since the second access (to the same set with different
data) removes the data of the first. A 4-way LRU cache has k = 4 since a cache-set can hold data

2



Tasks

Schedule

Structural Analysis

Optimization

WCET Analysis

Memory Layout

WCETpreempt

cost function

classification

Figure 2. Overall structure of the approach

of 4 different accesses, but one further access will lead to eviction of data of the first one [7]. The
analyzed hardware architecture may comprise either disjoint or unified instruction and/or data caches.
Our approach is able to cope with both.

A task-set with n tasks is denoted with T = {τ1, . . . , τn}. The symbol τi denotes the task itself as well
as the instructions of task τi. Each task has code size csi given in the number of cache-sets the code
occupies2. In addition to the codesize, each task τi refers to a set of data fragmentDi = {di,1, . . . , di,l}
where each such fragment has a size denoted with dsi,j . The set of all data fragment of all tasks is
denoted with D =

⋃
iDi. Data fragments refer to contiguous data blocks, arrays for instance, used

by the tasks. The placement of these data blocks can be modified such that only the cache behavior
(but not the semantics of program) is changed.

A task dependency relation ` ⊆ T × T determines the possible preemptions of the tasks. If τi ` τj
holds, task τi can preempt τj . Usually, the specification of communication channels or the assignment
of static priorities implies such a dependency relation. For instance, with static priorities Pr : T → N
the relation is defined as: ∀τi, τj, P r(τi) ≤ Pr(τj) : τi ` τj . The relation ` is reflexive to handle the
fact that data may be evicted by other data of the same task.

A memory layout L maps code and data to start addresses in the memory. It is formally defined as

L : T ∪D → S

The start addresses are also given in the unit of cache-sets, i.e. modulo line-size. Although the
function L allows empty fragments within the memory, i.e. parts which are not occupied by data or
instructions, we only consider contiguous memory layouts.

The function
occ : (T ∪D)× S→ N

determines how often a cache-set is occupied by a task or data fragment. For instance, if the cache has
128 sets and a task’s code with size 129 starts at the first set, the first set is occupied twice (assuming
usual modulo cache-mapping) and the others once. This function depends on a specific memory
layout L, which we omit for the sake of simplicity of the notation.

The cost of a memory layout is determined by the possibly evicted cache-entry of all tasks. A cache-
entry of a task τi may be evicted during preemption, if the same cache-set is occupied at least k + 1

2Note that we always refer to size as the size in number of cache-sets, i.e. dsize in bytes / size of a cache-linee.

3



times by data of conflicting tasks (τj ` τi). Remember the definition of k. The cache can store data
of k different accesses, one more access will lead to eviction.

The function conf : (T ∪D)× S 7→ N defined as

conf(di,j, s) =

{ ∑
τl`τi

occ(τl, s) +
∑

τl`τ,d∈Dl

occ(d, s) if occ(di,j, s) > 0

0 otherwise

and

conf(τi, s) =

{ ∑
τl`τi

occ(τl, s) +
∑

τl`τ,d∈Dl

occ(d, s) if occ(τi, s) > 0

0 otherwise

returns the number of possible conflicts of task τi or data fragment di,j in cache-set s.

The costs of a memory layout are thus computed by the sum over all tasks and all data fragments
over all sets, where the number of conflicts exceeds k (which simply implies that these tasks or data
fragments are considered endangered):

C =
∑

x∈T∪D

W (x)

(
m∑
s=1

conf ′(x, s)

)

with

conf ′(x, s) =

{
1 if conf(x, s) > k
0 otherwise

and a weighting function W which reflects a certain metric (as described in the following section).

3.1. Structural Analysis and Metric

The context switch costs are determined by the number of cache-sets which are 1) evicted during
preemption and 2) reused by the preempted task. The memory layout shows only possibly evicted
cache-sets. Which cache-set will be reused, and thus reloaded after preemption, depends on the
structure of the task. If, for instance, each instruction of a task is executed at most once (during a
single instance of that task), the context switch costs due to the instruction cache will be minimal.
In contrast, loop structures may contribute significantly to the costs. Therefore, the pure number of
evictions is not an appropriate metric to decide on an optimal memory layout. A simple metric that
respects the task structure is to weight data depending on their maximal execution count.

Therefore, the structural analysis derives the following information needed for the cost function:

• size of tasks csi

• data fragments di,j and size of data fragments dsi,j

• weights

The size csi of a task τi can be read off the tasks directly. We employ a static analysis to derive the
size of the accessed data, as follows: for a single access, the size is given as the width of the access;

4



for adjacent data, the accesses are combined to larger data fragments. Hereby, we assume that the
targets of the memory accesses can be precisely computed (or at least overapproximated) statically.

The metric used to rate memory layouts is strongly determined by the weight function W , which is
defined as follows:

W : T ∪D → N

The weight function has to be chosen such that the eviction of data with low weight has minor impact
to the context switch costs than the eviction of data with high weight.

To accomplish this, we weight each data fragments in the following way:

W (di,j) =

{
2n if di,j is accessed in a loop
1 otherwise

W (τi) = n

Depending on the program structure, i.e. if a data fragment is accessed in a loop or not, the weights
are assigned to the data fragments. The weight function assigns the value n to all instructions of all
tasks. The number 2n for the data fragments is chosen to ensure that the eviction of a loop fragment
weighs more than the eviction of non-recurring code or memory accesses and thus becomes much
more unlikely (as previously defined, n is number of tasks). Note that the current weight function is
only preliminary and still has to be evaluated. Further analyses of the structure of the tasks can be
used to increase the accuracy of the metric.

3.2. Optimization

The next step is to find an optimal memory layout, or, at least, a near-optimal layout. Remember that
we restrict the method to contiguous memory layouts, i.e. memory layouts without empty spaces.
This means that such a memory layout is described by a sequence of tasks and data fragments: element
xi starts at the end of the preceding element xi−1, i.e.

∀x ∈ (T ∪D) : L(xi) = L(xi−1) +

{
csi−1, if xi−1 ∈ T
dsi−1, if xi−1 ∈ D

Due to this restriction, all memory layouts are permutations of an initial layout. Such a permutation
is denoted with the symbol σ and Cσ denotes the costs of the memory layout described by the permu-
tation σ. A permutation σ′ is a neighbor of permutation σ, iff σ′ can be reached from σ by swapping
the position of two elements within σ. The set of all neighbors of permutation σ is denoted by Ne(σ).

To approximate an optimal memory layout we are using hill-climbing as shown in Figure 3: the
algorithm starts with a random permutation σstart. It then selects the neighbor of σstart with the
lowest costs and continues searching an optimal layout from this element on. In case no further
improvement is possible, the algorithm may select the second best result to explore a larger portion
of the state space. A predefined parameter p restricts the number of times the algorithm selects a
second best permutation. By this, the parameter P can be adjusted to treat precision against running
time of the algorithm. The set visited keeps track of all already seen permutations to ensure that each
element is visited at most once.

5



hill climbing (permutation σstart, unsigned int p)
{
σcur = σstart
σbest = σstart
visited = {σstart}
while (p > 0) {
/∗ select next candidate ∗/
let σ′ ∈ Ne(σcur)
with Cσ′ = min({Cσ|σ ∈ Ne(σcur) \ visited})
visited = visited ∪ {σ′}
/∗ is it better than the current? ∗/
if (Cσcur > Cσ′) {
/∗ is it best permutation seen so far? ∗/
σcur = σ′

if (Cσbest
> Cσ′) { σbest = σ′ }

}
/∗ if not, continue with a worse result ∗/
else {
p = p− 1
σcur = σ′

}
} }

Figure 3. Hill climbing to compute an optimal memory layout

3.3. WCET Analysis using Cache Classification

The memory layout induces a classification on all memory accesses of all tasks: a cache-entry of a
task τi is either persistent (in case the number of conflicts is less than or equal to k) or it is endangered.

classify(x, s) =

{
endangered if conf(x, s) > k
persistent otherwise

This classification can be easily used to compute a safe WCET bound under preemption. If a low-level
analysis detects an access to an endangered cache-set, the analysis has to handle both cases: cache-
miss and cache-hit. In case of an access to a persistent cache-entry, the analysis behaves as usual. The
computed WCET bound is valid, even if the task is preempted; only the endangered cache-sets might
be invalidated. Cache-related timing anomalies are also treated correctly: the analysis assumes both
cases and thus computes a valid WCET bound even if a cache-hit might result in a higher execution
time than a cache-miss.

4. Related Work

Cache partitioning to prevent task interference during preemption has been proposed by Mueller [6]
and Wolfe [14]. The cache is divided into uniform segments such that each task operates on it own.
Hereby, tasks can not interfere on the cache and thus, the WCET analysis for non-preemptive systems
can be used. In contrast to our method, not only the memory layout and thus the memory-to-cache
mapping is adapted, but also the code itself underlies major modifications; in order to adapt to code

6



and data to fit into its cache segment, new branches and computation for data accesses have to be
introduced. This, in addition to the highly decreased cache-size for each task, impairs the performance
of the system even more.

A WCET analysis for preemptive system has been proposed by Schneider [9]. In his approach, a pre-
emption is possible and thus assumed at every program point of the analyzed task. Thus, the analysis
considers each cache access to be unknown. Obviously, the analysis computes safe approximations
of the WCETs of preemptively scheduled tasks. The precision of the approach, however, suffers
from this highly pessimistic assumption. Compared to our approach, we can classify cache-sets as
persistent and can thus reduce this overapproximation.

The most eminent approach to timing analysis for preemptive systems computes the context switch
costs separately from the WCET bound of a task. Hereby, the notion of useful cache blocks (UCBs)
introduced by Lee et al. [3] plays a major role. A cache block is useful at a certain program point, if
it may be accessed again after this point. Thus, if the cache block is evicted during preemption, the
program may need to reload it and the time for this contributes to the context switch costs. Staschulat
et al. [11] and Tan et al. [13] extended this approach to increase the precision (mainly by computing
the set of possibly evicted cache-set in addition to the UCBs). Adapted schedulability analyses that
incorporate context switch costs have been proposed in [12] for static priorities and in [2] for dynamic
priorities. The main difference to our approach is on the one hand the optimization of the memory
layout – which also could reduce the number of useful cache blocks – and on the other hand the
handling of cache-related timing anomalies [8]. Only counting the time needed to reload cache-sets
does not obey the fact that a cache-hit may lead to a higher execution time than a cache-miss. In our
approach, the WCET analysis directly incorporates the cache-set classification and thus derives safe
upper bound (also in the presence of timing anomalies). In addition, the usual schedulability analyses
can be applied.

Other approaches, by Sebek [10] for instance, rely on measurement. However, even for a single
task, full coverage is hardly achievable. Preemptive scheduling introduces an even higher level of
complexity, rendering measurement-based approaches nearly infeasible – at least, no guarantee that
the measured execution times deliver safe upper bounds can be given.

5. Conclusion and Future Work

In this paper, we propose a new approach to optimize and analyze the WCET of preemptively sched-
uled tasks. Our approach uses the fact that different memory layouts can lead to vastly different con-
text switch costs. We first derive a metric to rate memory layouts and then approximate an optimal
one. Such a memory layout induces a classification of the cache-entries into endangered or persistent.
This information is then incorporated in a traditional WCET analysis allowing the analysis to derive
both safe and precise worst case execution time bounds of preemptively scheduled tasks.

In the future, we plan to implement the whole toolchain and to provide an evaluation of the presented
approach. To further improve the precision of the approach, a more fine-grained metric could provide
more accurate cache-entry classification, e.g., by taking a maximal execution count of instructions
into account. The current approach only copes with preemption occurring at arbitrary program points.
Thus, an analysis of the whole schedule could provide more details about the task-set (preemption
points), allowing our approach to compute a tighter set of endangered cache-entries.

7



References

[1] Gernot Gebhard and Sebastian Altmeyer. Optimal Task Placement to Improve Cache Per-
formance. In Proceedings of the 7th ACM Conference on Embedded Systems Software (EM-
SOFT’07), pages 259–268, October 2007.

[2] Lei Ju, Samarjit Chakraborty, and Abhik Roychoudhury. Accounting for cache-related pre-
emption delay in dynamic priority schedulability analysis. In DATE ’07: Proceedings of the
conference on Design, automation and test in Europe, pages 1623–1628, San Jose, USA, 2007.

[3] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyne Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong San Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Transactions on Computers, 47(6):700–
713, 1998.

[4] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In ExpCS
’07: Proceedings of the 2007 workshop on Experimental computer science, page 2, New York,
NY, USA, 2007. ACM.

[5] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, 1973.

[6] Frank Mueller. Compiler support for software-based cache partitioning. In Workshop on Lan-
guages, Compilers, & Tools for Real-Time Systems, pages 125–133, 1995.

[7] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Predictability of Cache
Replacement Policies. Reports of SFB/TR 14 AVACS 9, SFB/TR 14 AVACS, September 2006.

[8] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A Definition and Classification of Timing Anomalies. In Proceedings of 6th
International Workshop on Worst-Case Execution Time (WCET) Analysis, July 2006.

[9] Jörn Schneider. Cache and Pipeline Sensitive Fixed Priority Scheduling for Preemptive Real-
Time Systems. In Proceedings of the 21st IEEE Real-Time Systems Symposium 2000, pages
195–204, November 2000.

[10] Filip Sebek. Measuring cache related pre-emption delay on a multiprocessor real-time system.
In Proceedings of IEEE Workshop on Real-Time Embedded Systems (RTES’01), London, 2001.

[11] Jan Staschulat and Rolf Ernst. Scalable precision cache analysis for preemptive scheduling.
In LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, pages 157–165, New York, NY, USA, 2005. ACM.

[12] Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. In ECRTS ’05: Proceedings of the 17th
Euromicro Conference on Real-Time Systems, pages 41–48, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitasking real-time sys-
tems with caches. Trans. on Embedded Computing Sys., 6(1):7, 2007.

[14] Andrew Wolfe. Software-based cache partitioning for real-time applications. Journal of Com-
puting and Software Engineering, 2(3):315–327, 1994.

8




