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Abstract. Hard real-time systems require tasks to finish in time. To
guarantee the timeliness of such a system, static timing analyses de-
rive upper bounds on the worst-case execution time of tasks. There are
two types of timing analyses: numeric and parametric ones. A numeric
analysis derives a numeric timing bound and, to this end, assumes all
information such as loop bounds to be given a priori. If these bounds
are unknown during analysis time, a parametric analysis can compute
a timing formula parametric in these variables. A performance bottle-
neck of timing analyses, numeric and especially parametric, can be the
so-called path analysis, which determines the path in the analyzed task
with the longest execution time bound. In this paper, we present a new
approach to the path analysis. This approach exploits the rather regular
structure of software for hard real-time and safety-critical systems. As
we show in the evaluation of this paper, we strongly improve upon for-
mer techniques in terms of precision and runtime in the parametric case.
Even in the numeric case, our approach matches up to state-of-the-art
techniques and may be an alternative to commercial tools employed for
path analysis.

1 Introduction

Hard real-time systems require tasks to finish in time. To guarantee the timeli-
ness of such a system, static timing analyses derive upper bounds on the worst-
case execution time (WCET) of a task. To be useful in practice, timing analyses
must be

– sound, to ensure the reliability of the guarantees,
– precise, to increase the chance to prove the satisfiability of the timing re-

quirements, and
– efficient, to make them useful in industrial practice.

The high complexity of modern processors and modern embedded software ham-
pers analyses to achieve all three properties at once. Exhaustive measurement,
for instance, may be sound and precise but is infeasible for realistically sized
programs. Simple end-to-end measurements are easy to derive, but are possibly
unsound. Static timing analyses derive sound upper bounds on the execution



time by construction. In general, the analyzed programs are represented as con-
trol flow graphs (CFGs) with basic code blocks as nodes and edges representing
the possible execution paths. A set of static analyses compute—amongst other
information—upper bounds on the execution time of the basic blocks and upper
bounds on the number of loop iterations. The execution time bound of the task
is then given by a path P in the CFG for which the sum of occurrences of basic
blocks of P times their execution time bound is maximal. The step of the timing
analysis that computes this path is usually referred to as path analysis. The task
of determining P is usually referred to as path analysis.

Timing analysis handling only numeric values as bounds on the maximal
number of loop iterations are referred to as numeric or traditional analyses. The
drawback of these analyses is that information such as bounds on the maximal
number of loop iterations must be known statically, i.e. during design time. Some
systems need guarantees for timely reactions which are not absolute, but depen-
dent on a numerical parameter. In such cases, traditional timing analyses offer
only two possibilities. Either one provides bounds for the unknown variables
or one starts a new analysis each time the task is used with different values.
The first option endangers precision, the second may unacceptably increase the
analysis time. Parametric timing analyses circumvents this problem. Instead of
computing numeric bounds valid for specific variable assignments only, paramet-
ric analyses derive symbolic formulas representing upper bounds on the task’s
execution times.

The path analysis can become the bottleneck in the timing analysis. In the
case of parametric timing analysis this is true for both the running time and for
the precision of the computed execution time bound, as we will explain later.
In the numeric timing analysis, the path analysis can be the bottleneck of the
running time, depending on the ILP-solver (see Section 4) that is internally used
and on the target architecture, which determines the complexity of prior steps
of the timing analysis. State-of-the-art techniques formulate the problem as the
search for a longest path in the control flow graph that respects bounds on the
number of times a loop can be traversed for each time, the loop is entered.

1.1 Timing Analysis

Static timing analyses represent programs to be analyzed as control-flow graphs
G = (V,E). A sequential list of instructions with a unique entry and a unique
exit point are so-called basic blocks which constitute the nodes of the CFG. The
edges of the CFG resemble the possible control flow between the basic blocks.
For the sake of simplicity, we can assume a single, unique entry and even a
single, unique exit node of the CFG. The first step of the timing analysis, the
CFG reconstruction generates the CFG from the executable (see Figure 1 for the
toolchain). Note that timing analysis has to resort to the level of the executable.
Source code analysis can only deliver rough and possibly unsound estimates.

To be able to derive an upper bound on the execution time of the analyzed
tasks, the timing analysis has to compute upper bounds on the execution times
for each basic block and upper bounds on the number of iterations of each
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Fig. 1. Timing Analysis Toolchain

reachable loop within the CFG. The corresponding steps are the value and loop-
bound analysis and the architectural analysis. In case of a numeric analysis, the
loop-bounds are given as numeric values (in N); in case of a parametric analysis,
loop-bounds are represented by variables. Our new approach adapts the last step
of a static timing analysis, the path analysis. Input to this step is only the CFG,
the loop-bounds, and the execution time bounds for each basic block, which we
assume to be given.

1.2 Numeric Path Analysis

Path analysis combines the timing information for each basic block and the
loop-bounds and searches for the longest path within the executable’s CFG. In
this fashion, it computes an upper bound on a task’s execution time. Searching
the longest path is done using a technique called implicit path enumeration
(IPET [1,2]): the control flow graph and the loop-bounds are transformed into
flow constraints. The upper bounds for the execution times of the basic blocks
as computed in the cache and pipeline analysis are used as weights. Figure 2
provides an example. The variables ni, also called traversal counts, denote how
often a specific edge is traversed. The first and the last basic block are left, resp.
entered, exactly once (n1 = 1; and n3 + n6 = 1;). For all other basic blocks, the
sum of the traversal counts entering is equal to the sum of the leaving ones. The
loop body (basic block 4, bounded by bloop) is executed at most bloop times as
often as the loop is entered (n4 ≤ bloopn2;). The constant cj denotes the cost
of the basic block j. The maximum sum over the costs of a basic block times
traversal counts entering it determines the final WCET bound.

The resulting ILP can be solved by any solver. In practice, CPLEX is often
used as a commercial and lp solve as a non-commercial solver.
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Fig. 2. Control flow graph and the corresponding flow constraints

1.3 Parametric Path Analysis

Parametric path analysis computes the WCET formula by symbolically search-
ing the longest execution path in the program. As in numeric timing analysis,
implicit path enumeration is used to generate flow constraints. These flow con-
straints, however, must be linear in order to be used in an ILP. The only differ-
ence with respect to numeric analysis is the type of the loop-bounds. Regarding
the example in Figure 2, numeric analysis considers bloop to be a numeric value
and thus, computes a numeric WCET. The parametric analysis has to compute
a WCET formula in the parameter bloop. Although this seems to be a rather
small difference, it has severe consequences. The expression

n4 ≤ bloopn2;

is a linear constraint, if bloop is a numeric value. However, the same constraint is
non-linear in case of a parametric loop-bound. Such non-linear constraints are
caused by relative loop-bounds. As a solution, all relative loop-bounds have to
be converted to absolute ones. In the example in Figure 2, the variable n2 is
bounded by 1. Thus, the relative loop-bound can be replaced by

n4 ≤ 1 ∗ bloop;

Such a replacement is possible in general. To replace loop-bounds, each variable
must be bounded. If we assume a variable to be unbounded, the whole ILP would
be unbounded too. Note that there are only non-negative execution time bounds
for basic blocks. Hence, we can disregard such cases and can assume each variable
to be bounded. In case of nested parametric loop-bounds, however, a variable



may be bounded by another parametric loop-bound only. Assume no ≤ bo to be
the absolute loop-bound of an outer loop, and ni ≤ bino the relative of the inner
loop. After conversion, the absolute loop-bound of the inner loop is ni ≤ bibo,
which contains a non-linear term. The solution to this problem is to replace bibo
by a new symbolic loop b′ and to use ni ≤ b′ as the loop-bound constraint for the
inner loop. Note that this step increases the number of parameters, and hence,
the complexity of the symbolic ILP. Note that absolute loop-bounds lead to a
lower precision than relative ones. Relative bounds still respect the relation to
the loop entry edges. In case a loop is not part of the longest execution path
through the CFG, a relative loop-bound will not increase the execution time
bound. In contrast, absolute loop-bounds will contribute to the upper bound no
matter if the corresponding loop is part of the worst-case path or not.

The constraint system after the conversion is linear and thus forms a valid
symbolic integer linear problem. This ILP is then solved by a symbolic ILP-solver
as proposed by Feautrier [3] using symbolic versions of the simplex [4] and cutting
plane algorithm [5]. A free symbolic solver called PIP is also available.

1.4 Other approaches to Parametric Timing Analysis

Lisper proposed a parametric timing analysis [6] which has recently been im-
plemented and extended by Bygde [7]. In contrast to our approach, they use a
polyhedral abstract interpretation to compute the loop-bounds and to create an
ILP for the path analysis in one step. Hence, the constraints used within their
approach differ from the standard IPET model. In addition, their analysis—or
at least the implementation of it—resorts to the level of the source code. Thus,
a direct comparison between both approaches is not possible. As in [8], the
parametric ILP was the bottleneck and has been replaced by a method called
minimum propagation analysis [7] based on a tree-like representation of the para-
metric formula. The better performance of the new approach comes at the cost
of a lower precision which is often less than one percent but may reach up to
30% in some benchmarks.

Other approaches to parametric timing analysis [9,10,11,12] have a com-
pletely different structure and resort completely to the source-code level. Hence,
the new path analysis technique, which we explain in the next section, can not
be applied to these approaches.

2 Longest Paths in Singleton-Loop-Graphs

In this section we will introduce a class of graphs, so-called singleton-loop graphs,
to model CFGs of computer programs. Informally, a singleton-loop graph is a
graph where every strongly connected component has a unique node with an
incoming edge from outside the component, called the entry node, and where
this property holds recursively within the component when the entry node is
deleted. Exploiting the special structure of such graphs, we will show, how to
compute longest execution paths with high efficiency. The proposed algorithm



will be able, not only to cope with numeric loop-bounds, but also to handle
symbolic loop-bounds exactly. We will show, that our method can solve the
problem in time polynomial in the input size and in the size of the output. After
justifying the restriction to singleton-loop graphs, we formally define them. Then
we will give an algorithm for solving the longest path problem in these graphs
for which we will subsequently analyze its running time behavior – first in the
numeric and then in the symbolic case – and show its correctness. Then we
will show several properties of the produced output. Finally, we will show for a
certain subclass of singleton-loop graphs, that our algorithm produces a solution
set of minimal size in case of symbolic loop bounds.

2.1 Structure of a Control Flow Graph

Recall that we are interested in computing upper bounds on the WCETs of
programs developed for embedded systems. These programs typically have a
simple structure. Here we discuss the following constructs which can cause splits
in the control flow graphs: for, repeat–until, and while–do loops, if–then–else
constructs, function–calls and goto directives.

While for, repeat–until, while–do, if–then–else and similar constructs will be
captured well by our approach as the resulting graphs will be singleton-loop
graph as defined below, Function–calls can cause the following difficulty. If the
program jumps from different points in the program to a function, you have to
recall where you have jumped from in order to proceed to the correct position.
There are two ways to tackle the problem in our approach. Either we analyze the
running time of each function (in an inverted topological order) and replace the
function call with the single edge weighted with the (parameterized) worst-case
running time of that function (which will make the analysis less tight, as the
context of the procedure call is unknown) or we assume that all procedures are
inlined (which will make the CFG larger). The second way typically yields no
problems, as, despite the increase of the CFG, we can solve the corresponding
longest path problem very efficiently for programs of the size usually found in
embedded systems. For both solutions we need that the call graph is acyclic.

For cyclic call graphs, our approach is not applicable. The same holds when
goto’s are used. Notice that it is not even clear what a loop is in these cases.
One possibility to define the corresponding longest path problem (the one that
is used up to now) is to use the ILP-formulation as the definition of a valid
solution. Note that for general graphs, solving the ILP is NP-hard as setting a
loop-bound of one for each node leads to the longest simple path problem in
general graphs.

2.2 Preliminaries

First, we will define, what kind of structure in the CFG is induced by a program
loop.

Definition 1 (loop). Given a directed graph G = (V,E), we call a strongly
connected component S = (VS , ES) in G with |ES | > 0, a loop of G.



We denote by loops(G), the set of all loops of G. Note that we don’t want to
call an isolated node a loop, thus, we demand ES to be nonempty.

Definition 2 (entry node). Given a directed graph G = (V,E) and a loop
L = (VL, EL) of G, we call E ∈ VL such that there exists an edge (u, e) in the
cut-set

δ+
G(V \ VL) := {(v′, v) ∈ E | v′ ∈ V \ VL, v ∈ VL}

an entry node of G.

Definition 3 (singleton-loop). A loop L in a graph G is called a singleton-
loop if L has exactly one entry node e.

For the unique entry node of a singleton loop L, we write E (L).

Definition 4 (sub-loops). Given a loop L = (VL, EL), we define

sloops(L) :=
⋃

v is entry node of VL

loops(Gv)

where Gv is the subgraph induced by V \ {v}.

Definition 5 (induced sub-loops). Given a loop L = (V,E), we call the
recursively defined set

iloops(L) := {L} ∪

 ⋃
Ls∈sloops(L)

iloops(Ls)


the set of induced sub-loops of L.

For a graph G, we extend the definition of iloops to graphs:

iloops(G) :=
⋃

Ls∈loops(G)

iloops(Ls)

We call a graph G a singleton-loop graph if each induced sub-loop of G is a
singleton-loop. For such a graph, we write E (G) := {E (L) | L ∈ iloops(G)} to
denote the set of entry nodes of all induced sub-loops in G.

Definition 6 (portal nodes, transit edges). Given a directed graph G =
(V,E) and a loop L = (VL, EL) in G, we call

T (L) := δ+
G(VL)

the set of transit edges of L, i.e. the edges, leaving the loop L, and

P(L) := {p ∈ VL | ∃ (p, v) ∈ T (L)}

the set of portal nodes of L, i.e. the last nodes over which a path can leave the
loop L.



Note that there is a one-to-one correspondence between singleton-loops and their
entry nodes, which justifies the following definition.

Definition 7 (loop-bound function). Given a singleton-loop graph G = (V,E),
we call a function

b: E (G)→ N ∪ {+∞}

a loop-bound function for G.

Now we have to classify the valid paths, i.e. the paths that respect the loop-
bound conditions. If for a loop L, a loop-bound of b(E (L)) is given, we mean
that an execution path is not allowed to enter L and iterate on L more than
b(E (L)) times, before the path leaves L again, or more formally:

Definition 8 (valid path). Given a singleton-loop graph G = (V,E), two
nodes s, t ∈ V and a loop-bound function b for G, we call a path P := s  t a
valid path if for all L := (VL, EL) ∈ iloops(G) and for all sub-paths (E (L), v0, v1,
. . . , vk) of P with vi ∈ VL, the sub-path (E (L), v0, v1, . . . , vk−1) contains at most
b(E (L)) times the node E (L).

The problem that we consider in the following, is to determine the longest
valid paths from a single source node s to all other nodes in G with respect to
a given edge weight function. At first glance, this might seem more complicated
than finding only the longest path from a single source node to a single destina-
tion node, but as in the computation of shortest paths in graphs, these problems
are most likely equally hard.

In the following, we will write lps(G, s, t) for a longest valid path from a node
s to a node t and lps(G, s, t) to denote the longest valid path from s to t, that
contains t exactly once. Most of the times, we will limit the discussion to the
task of computing just the path weights for sake of simplicity. Note, that this is
not a real limitation, as the algorithm can easily be extended to also cope with
the problem of reporting the paths as well.

In the following we will assume that for each v ∈ V there is a path from s to
t containing v. All other nodes can be removed by a preprocessing step in time
O(|V |+ |E|). Note that the resulting graph has at least |V | − 1 edges.

2.3 The Algorithm

Let us recall that a problem instance is given by a a singleton-loop graph
G = (V,E), a source node s ∈ V , an edge weight function w : E 7→ N and a
loop-bound function b: E (G) → N ∪ {+∞}. Since from now on, we will only
talk about singleton-loop graphs, we will only write loops instead of singleton-
loops.

LPS(G, s) :=

1. identify the loops (Lj)j∈{1,...,l} of G by computing the strongly connected
components.



2. for each Lj = (VLj
, EVj

):
(a) modify Lj by replacing E (L) by two nodes Eout and Ein and by replacing

all incoming edges (v,E (L)) by edges (v,Ein) and all outgoing edges
(E (L), v) by edges (Eout, v)

(b) call LPS(Lj ,Eout)
(c) now we know the lps(Lj ,Eout, v) for all v ∈ VLj

, and thus we set

lps(G,E (Lj), v) :=

(b(E (Lj))− 1) · lps(Lj ,Eout,Ein) + lps(Lj ,Eout, v),

that is the longest path weight from E (Lj) to v is to loop b(E (Lj))− 1
times through L and then to head for v.

(d) replace Lj in G by a single node rj and add an edge (rj , x) for each
(p, x) ∈ T (Lj) with appropriate weights, namely:

w(rj , x) := lps(G,E (Lj), p) + w(p, x))

Add an edge (v, rj) for each (v,E (Lj)) ∈ E and set w(v, rj) := w(v,E (Lj)).
3. the altered graph is a DAG, thus we can easily determine the longest paths.
4. compute the longest path weights to nodes within the loops: Replace the

nodes rj again by the corresponding loops and set for each Lj = (VLj
, EVj

)
and for all v ∈ VLj

:

lps(G, s, v) := lps(G, s,E (Lj)) + lps(Lj ,E (Lj), v)

So far, we haven’t discussed, how the lps(G, s,E (Lj)) in step 4 are computed.
Note, that the entry node E (Lj) corresponds to a contraction node c in the
condensed graph G′. When we compute the longest path weight from s to c, we
set

lps(G′, s, c) := max
v∈inc(c)

lps(G′, s, v) + w(v, c)

Running Time - Numeric Bounds Let us first analyze the algorithm’s run-
ning time T (|V |, |E|) for the case in which all loop-bounds are numeric values.
In step 1), the strongly connected components of G are computed, which can
be done in O(|V | + |E|) time by depth-first search. Step 2a) can be computed
in O(deg(E (Lj))) time. In step 2b), the algorithm is called recursively which
takes T (|VLj | + 1, |ELj |) time. The weight updates in 2c) can be performed in
O(|VLj |) and the updates in 2d) in O(|T (Lj)|) time. It is folklore, that the com-
putation of longest path weights in a DAG, as done in step 3), takes no more
than O(|V | + |E|) time. Finally, step 4 can be done in O(|V |). Hence without
the recursive calls, we have a linear running time O(|V |+ |E|).

Note that the recursion depth of our algorithm is bounded by |V |, as a node
is split at most once. Furthermore the edge set of the sub-loops are disjoint.
Although nodes are split, we can argue that the total number of nodes in a
certain recursion depth is bounded by 2|V | as follows: Let V out = {v ∈ V |
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v has at least 1 outgoing edge} and V in = {v ∈ V | v has at least 1 incoming
edge}. Then

∑
L∈sloops(G) |V out

L̄
| ≤ |V out| and

∑
L∈sloops(G) |V in

L̄
| ≤ |V in|, where

VL̄ is the set of nodes of L after splitting the entry node. Thus, in total we have

T (|V |, |E|) =
∑

L:=(VL,EL)∈sloops(G)

[
(2)

T (|VL|+ 1, |EL|)+ (2b)
O(deg(E (L)))+ (2a)
O(|VL|)+ (2c)
O(|T (L)|)

]
+ (2d)

O(|V |+ |E|)+ (1),(3)
O(|V |) (4)

= O(|V | · (|V out|+ |V in|+ |E|))
= O(|V | · |E|)

Running Time - Symbolic Bounds So far, we have treated loop-bounds as
numeric values. In the presence of symbolic loop-bounds we have to change our
algorithm slightly. Instead of a unique longest path we now have to consider for
each target node a set of longest paths to that node (see Figure 4 for an example).
When concatenating two paths we now have to concatenate all pairs of paths.
Since the operations on the path weights include multiplications and additions,
they can be represented as polynomials over the symbolic loop-bounds. Clearly,
we would aim at getting all possible path weights that are maximal for at least
one choice of the symbolic loop-bound parameters. On the down side, testing
whether a path weight is maximum for some choice (or instantiation) of the
parameters seems to be non trivial. In our experiments it has turned out, that
keeping all paths with weights that are not dominated by another weight (i.e.,
all coefficients in the weight polynomial are at least as big as the coefficient in
the other weight polynomial) keeps the solution set sparse in practice and can be



implemented very efficiently. For a problem instance I = (G, s, t), consisting of
a graph, a source node s and a destination node t, we denote by D(I) (or short
D(s, t), if G can be deduced from the context) the set of longest path weights
from s to t computed by our algorithm. The property of D(I), that its elements
are pairwise non-dominating can be achieved by eliminating dominated elements
after the execution of step 2c. We write slbs(I) for the number of symbolic loop-
bounds of a problem instance I = (G, s, t) and we write lbs(I) := lbs(G) :=
|iloops(G)| for the number of induced loops of G.

Let us analyze the running time of the algorithm in presence of symbolic
loop-bounds.

Theorem 1. The algorithm’s running time is polynomial in the input size and
in the size of the output.

Proof. First, note that the running time only changes for the parts of the al-
gorithm in which calculations on path weights are performed, namely the parts
2c), 2d) and 4). We will restrict this proof to the operations involved in step 2c),
since the number of operations involved in 2c) is certainly not smaller than the
ones in 2d) and 4).

Let us first count the number of operations on weight polynomials. Consider
a longest path P from the source node s to the destination node t. Let lps(u, v)
denote the longest path weights, computed by the algorithm for the longest
paths from node u to node v, then for each loop L = (VL, EL) ∈ loops(G)
that is traversed by P , we have |lps(E (L), pL)| ≤ |lps(s, pL)| for pL ∈ P(L)
over which P leaves L again. Furthermore, for each pL ∈ portals(L) we have
O(|lps(E (L),E (L))| · |lps(E (L), pL)|) operations, since the addition involves the
addition of all pairs of weights in lps(E (L),E (L)) and in lps(E (L), pL). Since L is
strongly connected, |lps(E (L),E (L))| ≤ |lps(E (L), pL)|. Thus the number of op-
erations is bounded by |lps(E (L), pL)|2 ≤ |lps(s, pL)|2. Since each node in VL can
be a portal node of L, the total number of operations on polynomials occurring

on the first recursion level is bounded by
∑

v∈V |lps(s, v)|2 ≤
(∑

v∈V |lps(s, v)|
)2

.
But, since

∑
v∈V |lps(s, v)| is just the number of path weights, reported by the

algorithm, the number of operations on polynomials is polynomial in the num-
ber of reported path weights. Note that each weight has a unique representation
and that all operations on the weight polynomials can be carried out in time
polynomial in the size of these polynomials.

What is left to show is, that the weight polynomials computed for the nodes
in the input graph have a size polynomially bounded by the size of the weight
polynomials that are reported by our algoithm, that is the weight polynomials
of the longest paths from the source node s to the sink node t. We will use a
structural induction over the input graph G to prove so. If G contains no loops,
the claim is true since G must be a DAG and therefore, all computed longest
path weights are just constants. So, let us assume that G contains loops. By
induction hypothesis, the claim holds now for each problem instance (L,Eout, p)
where L is a loop of G, where the entry node of L is split into the nodes Eout and
Ein and where p is an arbitrary portal node of L. But then the claim is also true



for (L,E (L), p) what can be seen as follows: Recall that a longest path weight
from E (L) to p is given by the equation

lpw(G,E (L), p) = (b(E (L))− 1) · lpw(L,Eout,Ein) + lpw(L,Eout, p)

for some path weights lpw(L,Eout,Ein) and lpw(L,Eout, p). But then, lpw(G,E (L), p)
is as least as large as the maximum of the sizes of lpw(L,Eout,Ein) and of
lpw(L,Eout, p) as each term in lpw(L,Eout,Ein) appears with a multiple of b(E (L)),
lpw(L,Eout, p) does not contain b(E (L)) and each term in lpw(L,Eout, p) can
eliminate only terms that are not multiplied with b(E (L)). The last thing we
have to show now is, that the claim holds for (G′, s, t), where again G′ denotes the
condensed graph. We compute the longest path weights in the directed acyclic
graph G′ by the recurrence

lps(G, s, u) = max
v∈inc(u)

(lps(G, s, v) + w(v, u))

starting with u := t. Consider now a weight polynomial P = lpw(G, s, v) +
w(v, u). Since we consider the condensed graph G′, w(v, u) is a polynomial con-
taining only variables associated with the loop that in turn is associated with the
node v (in the case that v is not a condensed node, w(v, u) is just a constant).
Thus, except for the constant terms, P contains at least as many terms as there
are in lps(G, s, v) or in w(v, u), which completes the proof. ut
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Fig. 4. The different weights for the longest paths from v0 to v2 are 4, 2 + b(s0),
2 + b(s1) and b(s0) + b(s1)

Correctness Now, we will show, that our algorithm indeed computes the weight
of a longest valid path lps(G, s, t) from a source vertex s to a destination vertex t.
In the following, when talking about paths we always mean valid paths. Again we
will assume that G is a singleton-loop graph with weight function w : E 7→ N and
that we are given a loop-bound function b: E (G)→ N∪{+∞}. We will show the
claim by induction over the recursion-level of the algorithm. If we assume that
G contains no loops, G must be a directed acyclic graph and thus, our algorithm
is correct. So, now assume that G contains loops. The induction hypothesis tells
us now that for all recursive calls of our algorithm, we obtain correct results. Let



p := s t be a longest path inG. Let us assume w.l.o.g. that p shares at least one
node with a sub-loop of G, i.e. for some L := (VL, EL) ∈ sloops(G) : E (L) ∈ VL.
Thus p can be written as p = s  p′  t with p′ = (E (L) =: v0, v1, . . . , vk)
such that vi ∈ VL and k is maximal. Since any sub-path of a longest path must
be again a longest path between its starting- and end-node (with respect to the
validity), we have that w(p′) = lps(G,E (L), vk). Consider now the condensed
graph G obtained by replacing loop L by a node r as described in the algorithm.
Then the path s  r → vk  t is valid and has weight w(p). Therefore,
w(lps(G, s, t)) ≤ w(lps(G, s, t)). On the other hand, w(lps(G, s, t)) cannot be
strictly less than w(lps(G, s, t)), because otherwise there would be a path in
G with weight strictly greater than a longest path in G, which also would not
traverse L, since the weights of these paths are unequal. But this would mean,
that there is also a path in G – just bypassing L – with the weight w(lps(G, s, t)),
which leads to a contradiction.

What is left to show is, that our algorithm computes correct values for
lps(G,E (L), vk). Let p = (E (L) =: v0, v1, . . . , vk) with vi ∈ VL be a longest
path. We can assume that p contains exactly b(E (L)) (respectively b(E (L)) + 1
if vk = E (L)) times the node E (L), otherwise we could extend the path by the
path vk  E (L) vk without violating validity. Now each sub-path p′ of p with
p′ = E (L) E (L) must have the same weight, since otherwise, by replacing the
lower weight sub-path by the corresponding higher weight sub-path, we could ob-
tain a path with higher weights. Thus, we can assume that there exists a longest

path E (L)
p′

 E (L)
p′

 · · · p′

 E (L)
p′′

 vk with weight (b(E (L))−1)·w(p′)+w(p′′).
Since p′ and p′′ must be longest paths, we are left to show that our algorithm
computes the weights lps(G,E (L),E (L)) and lps(G,E (L), vk) correctly. But this
follows directly by the way we alter the loop L, i.e. by splitting the entry node
of L into the two nodes Eout and Ein. Since L was a loop, every node in L is
reachable from Eout. by induction hypothesis the algorithm now computes re-
cursively the right values, where obviously w(lps(L,Eout,Ein)) = w(lps(G, e, e)).
Which finishes this proof.

The Output Size In the previous section, we have shown, that in the presence
of symbolic loop-bounds, the running time of our algorithm is polynomial in
the input size and in the size of the output. In this section, we will give some
insights about how big the output can actually get. In the following lemma, we
will derive an upper bound on the output size D(I).

Lemma 1. For any problem instance I = (G, s, t) |D(I)| ≤ 22lbs(G)

.

Proof. Let P be a path reported by our algorithm. We recursively define the
loop-pattern L(P,G) of a path P in G as follows. If G is a DAG, the loop-
pattern of any path is empty. To define a loop-pattern in the general case, we
shortly recall some facts of the algorithm. We compute P as a longest path in
the condensed graph (for which we have contracted each loop of G into a single
node), which is known to be an acyclic graph, since the loops are the strongly



connected components of G. Let L1, . . . , Lk be the subloops of G that are entered
by P . Each loop Li is entered exactly once (as the condensed graph is a DAG).
Within the loop, P traverses a unique subpath P ′i for bLi

− 1 times and then a
path P ′′i to a portal node. The loop pattern of P is then defined as the sequence

L(P ) := (L1(L(P ′1, L
′
1),L(P ′′1 , L

′
1)), L2(L(P ′2, L

′
2),L(P ′′2 , L

′
2)), . . . ,

Lk(L(P ′k, L
′
k),L(P ′′k , L

′
K))),

where L′i is the graph obtained by splitting E (Li).
We proof the following claims:

1. Any two paths with the same loop-pattern (not necessarily with same source
and target node) computed by the algorithm have the same cost up to a
constant term.

2. Any two s− t-paths reported by the algorithm have different loop-patterns.
3. Let T (lbs(G)) be the maximum possible number of loop patterns of a graph
G, then T can be bounded by the recurrence T (0) = 1, T (lbs(G)) ≤ T (lbs(G)−
1)2 + 1.

We will prove the points in turn. We proof the first point by structural
induction over G. If G is a DAG, all path weights are constants (as there are
no symbolic loop-bounds). Hence, there is nothing to show. Now consider two
paths P and Q in a graph G constructed by our algorithm with L(P,G) =
L(Q,G). Let L1, . . . , Lk be the subloops of G contained in L(P,G). Decompose
P into (P̄0, (P

′
1)bL1

−1, P ′′1 , P̄1, . . . , (P
′
k)bLk

−1, P ′′k , P̄k), where P̄i is the path from
the portal of Li used by P (respectively from the source of P if i = 0) to E (Li+1)
(respectively to the target of P for i = k), P ′i is the path used for cycling within
Li and P ′′i if the path from the entering node of Li to the portal-node used by
P . Analogously decompose Q. The cost of P can then be written as

w(P̄0) +

k∑
i=1

[(bL − 1)w(P ′i ) + w(P ′′i ) + w(P̄i)],

the cost of Q as

w(Q̄0) +

k∑
i=1

[(bL − 1)w(Q′i) + w(Q′′i ) + w(Q̄i)].

The costs of P̄i and Q̄i are some constants. By induction hypothesis, the costs of
P ′i and Q′i only differ by a constant. The same holds for the cost of P ′′i and Q′′i .
Hence the difference of w(P ) and w(Q) is a sum of constants and thus constant.

The second point immediately follows from the first, as our algorithm won’t
report two paths whose weights only differ in a constant.

For the third point, we argue as follows: Let L1, . . . , Lk be the subloops of G
given in topologial order. Each loop pattern can be constructed by chosing for
each subloop Li either that it is not entered, or we use some loop pattern of Li for



the cycling path and one loop pattern for the path to the portal. Hence, we get
T (lbs(G)) ≤

∏
i T (lbs(L′i))

2 + 1. Notice that
∑

i lbs(Li) = lbs(G) and lbs(L′i) =
lbs(Li)− 1 and hence

∑
i lbs(L′i) = lbs(G)− k. A simple calculation shows that

T (lbs(G)) is maximized, if each induced subloop of G containts exactly one
subloop. Hence we get T (lbs(G)) ≤ T (lbs(G)− 1)2 + 1.

Note that if Li as a numeric loop-bound, the length of a path that does not
enter Li and the length of a path that enteres Li but no subloop of Li differ
only in a constant. Hence, in this case we can drop the addition of one in the
recursive formula. Finally for T (lbs(G)) = T (lbs(G) − 1)2 + 1, T (0) = 1 holds

T (lbs(G)) ≤ 22lbs(G)

and for T ′(lbs(G)) = T ′(lbs(G) − 1)2, T ′(1) = 2 holds

T ′(lbs(G)) ≥ 22lbs(G)−1

. ut

The next lemma shows, that the analysis of Lemma 1 is almost tight.

Lemma 2. There exists a problem instance I = (G, s, t), such that |D(I)| =

22lbs(G)−1

and slbs(G) = 1.

Proof. We will first prove a slightly different claim, namely we proof the bound
using symbolic loop-bounds for all loops. More precisely, we show that there
exists a problem instance I such that

– a) D(I) = 22slbs(G)−1

– b) there is an element in D(I) containing a positive constant
– c) there is an element in D(I) containing the constant 0

where x is the number of symbolic loop-bounds.
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Fig. 5. Suppose the edge weights are 0 if not stated otherwise, then the longest path
weights from v0 to v2 constructed by our algorithm for the left graph are b(v0),
b(v0)b(v1), −1 + b(v0) + b(v1) and 1 − b(v1) + b(v0)b(v1). The right graph was con-
structed from the left one by replacing the selfloop {v1} by the loop {v0, v1, v2}. For
the right graph, the algorithm computes 16 non-dominant longest path weights. In
general, graphs obtained by repeatedly replacing the selfloop by the loop of the left

graph, yield 22slbs(G)−1

non-dominant longest path weights and furthermore, one can
show that there is a longest path weight that consists of 2slbs(G)−1 terms where slbs(G)
is the number of symbolic loop-bounds.



We construct a graph G in the following way: we start with the left graph
Gl in Figure 5 and repeatedly replace the selfloop of G by the loop of Gl. Note,
that after k iterations, the resulting graph consists of k + 2 induced subloops.
We will show the claim by induction over the recursive structure of G, i.e. over
the number slbs(G) of induced subloops of G.

For the base case (slbs(G) = 2), in which G corresponds to the graph Gl, it
is easy to verify that

D(v0, v2) = {b(v0), b(v0)b(v1),−1 + b(v0) + b(v1), 1− b(v1) + b(v0)b(v1)}

and that one of these weight polynomials contains a positive constant.
Now let us consider the induction step. Recall that we want to compute

D(v0, v2). In the first step of our algorithm, the node v0 is split into two nodes
vin and vout and recursively the sets D(v1, v1), D(vout, vin) and D(vout, v2) are
computed. Then, the set lpw(v0, v2) is computed as the set of polynomials given
by (b(v0)− 1) · lee + lep for all lee ∈ D(vout, vin) and for all lep ∈ D(vout, v2).

By the way, we have chosen the edge weights, we have that D(vout, vin) =
D(vout, v2) = D(G, v1, v1). In particular, note that the constant polynomial 1 is
not in contained in D(vout, vin), since by induction hypothesis, D(v1, v1) contains
a polynomial with a positive constant (which must be greater or equal to 1),
dominating 1.

This in turn, means that |lpw(v0, v2)| = |D(v1, v1)|2. We now have to show,
that the elements in lpw(v0, v2) are pairwise non-dominating. Let l1, l2 ∈ lpw(v0, v2),
given as l1 = (b(v0) − 1) · lee + lep and l2 = (b(v0) − 1) · l′ee + l′ep for weights
lee, l

′
ee ∈ D(vout, vin) and lep, l

′
ep ∈ D(vout, vin), l1. We distinguish two cases. In

the first one, we assume that lee 6= l′ee. Since by induction hypothesis, lee and
l′ee are pairwise non-dominant, the terms in l1 and l2 containing variable b(v0),
namely b(v0) · lee and b(v0) · l′ee - and thus also l1 and l2 - must be pairwise non-
dominant. Now we assume that lee = l′ee. In this case, the terms, not containing
the variable b(v0), are lep−lee and l′ep−lee. Since by induction hypothesis lee and
l′ee are pairwise non-dominant, l1 and l2 must also be pairwise non-dominant.

Thus, |D(v0, v2)| = |D(v1, v1)|2. Since by induction hypothesis |D(v1, v1)| =
22x−2

, |D(v0, v2)| = 22x−1

, which establishes the first part of the claim. For the
second part, note that by induction hypothesis, there is a weight in l1 ∈ D(v1, v1)
with a positive constant and there is a weight in l2 ∈ D(v1, v1) with zero constant.
Thus the weight l ∈ D(v0, v2) with l = (b(v0)−1) · l2 + l1 = b(v0) · l2 + l1− l2 has
again a postive constant as a term. On the other hand, the weight l ∈ D(v0, v2)
with l = (b(v0)− 1) · l2 + l2 = b(v0)− 1) · l2 has a zero as constant term.

So far, we have assumed that all loop-bounds are symbolic. Now we will
examine an instance in which all but one loop-bounds are numeric. For this,
we use the same graph G as constructed above, but we assume that only the
bound for the selfloop is symbolic. Then we can show by the very same induc-
tion as above, that by choosing the right numeric values for the loop-bounds,

|D(v0, v2)| = 22iloops(G)−1

. For the base case, we choose b(v0) := 3 and obtain
D(v0, v2) = {3, 2 + b(v1), 1 + 2b(v1), 3b(v1)} which clearly satisfies the induction
properties.



The only difference occurs now in the induction step, when arguing, that no
two path weights l1, l2 exist, such that the first one dominates the other. Since
there is just one symbolic loop-bound, all path weight polynomials consist of only
two terms, i.e. D(v1, v1) consists of polynomials ci +c′i ·a where a is the symbolic
loop-bound in G. It is easy to see that these polynomials are non-dominated if
and only if they can be ordered in such a way, that the constants ci are appear
in increasing order while the c′i appear in decreasing order.

The idea of proof is now to show, that the numeric bound b(v0) can recur-
sively be chosen in such a way, that the constructed weights in D(v0, v2) can
be ordered in the same way. To see this, suppose we are given two weights in
D(v0, v2), namely p1 := (b(v0) − 1) · d1 + d′1 and p2 := (b(v0) − 1) · d2 + d′2 for
d1, d2, d

′
1, d
′
2 ∈ D(v0, v2). Clearly by choosing b(v0) big enough, it is possible to

put p1 and p2 into the same relative order as d1 and d2. We will now show, that
there is such a value for b(v0) for all pairs of weights in D(v0, v2) that is not too
big.

Consider again the pair p1, p2. Let us denote by c(p) the constant term of
such a weight p and by v(p) the coefficient of the variable term. Without loss of
generality, let us restrict our discussion to the case c(d1) ≥ c(d2). It is easy to
verify that for

b(v0) :=

⌈
max

{
c(d′2)− c(d′1)

c(d1)− c(d2)
,
v(d′1)− v(d′2)

v(d2)− v(d1)

}⌉
+ 1

we have c(p1) ≥ c(p2) and v(p1) ≤ v(p2).
Choosing b(v0) as the maximum of all possible choices of p1,p2 ∈ D(v0, v2)

we can establish the same relative order as for the di, completing the proof. ut

So far, we have discussed, how many path weights are reported by our algorithm.
Now, we will show, that there exist instances, for which at least exponential many
path weights have to be reported from any correct algorithm.

Lemma 3. There exists a problem instance I, such that any correct algorithm
must report 2slbs(G) longest paths.

Proof. Consider the graph Gf in Figure 4. By repeated concatenation of the
subgraph of Gf induced by the nodes {v0, s1, v1}, we obtain a weighted graph
G = (V,E,w) that consists of nodes V = {v0, . . . , vslbs(G), s0, . . . sslbs(G)−1},
edges

E = {(vi, si), (si, vi), (si, si), (vi, vi+1) |
i ∈ {0, . . . , slbs(G)− 1} ∪ {(sslbs(G)−1, vslbs(G))}}

and of edge weights as given in the graph Gf .
Then there are exactly 2slbs(G) different paths from v0 to vslbs(G), namely one

for each choice of bypassing a selfloop {si} via the edge (vi, vi+1) or not. For
these paths we have the set of corresponding weights{∑

pi∈p
pi · b(si) + 2 ·

∑
pi∈p

(1− pi) | p ∈ {0, 1}slbs(G)
}



The claim now is, that for each weight in this set, there is an instantiation I
of its symbolic loop-bounds, such that this weight dominates all other weights.
To see this, consider a weight w. For each loop-bound variable si contained in
w, set I(b(si)) := 2slbs(G) + 1 and for all other bounds to 0. Now consider any
other weight w′ and let n (n′) be the number of variables in w (in w′) and k be
the number of variables that w and w′ share. Then w[I] = n(2slbs(G) + 1) +
2(slbs(G) − n) and w′[I] = k(2slbs(G) + 1) + 2(slbs(G) − n′). If now k = n,
then there must be a variable in w′ which is not in w, since w 6= w′. Thus,
n′ > n and therefore w[I] = n(2slbs(G) + 1) + 2(slbs(G) − n) > n(2slbs(G) +
1) + 2(slbs(G) − n′) = w′[I]. Since k ≤ n, let us now assume that k < n.
Then w[I] − w′[I] = (n − k)(2slbs(G) + 1) + 2(n′ − n) can only be negative if
n′ < n, but on the other hand n′−n ≥ −slbs(G), which implies that in this case
w[I]−w′[I] ≥ (n−k)(2slbs(G)+1)−2slbs(G) = 2slbs(G)(n−k−1)+n−k > 0.
Hence any algorithm has to report w.

Thus any correct algorithm must report all the 2slbs(G) paths. ut

But not only the number of indistinguishable longest path weights is exponential
in the worst case, even the weight polynomes can become large as we will show
in the following lemma.

Lemma 4. There exists a problem instance I, such that D(I) contains a weight
with 2slbs(G) − 1 terms with non-zero coefficients.

Proof. Consider the same graph construction as in Lemma 2. We again prove a
slightly stricter claim, namely that there is

– a weight polynomial in D(G, v0, v2) such that all terms have non-zero coef-
ficients except the term consisting of all loop-bound variables

– a weight polynomial in D(G, v0, v2) such that all terms have zero coefficients
except the term consisting of all loop-bound variables

We again proof the claim by induction. As stated in the proof of this lemma,
in the base case (slbs(G) = 2), the set of computed path weights is D(v0, v2) =
{b(v0), b(v0)b(v1), −1 + b(v0) + b(v1), 1− b(v1) + b(v0)b(v1)}. Clearly the claim
holds in this case. For the induction step, consider the weights l, l′ ∈ D(v1, v1)
such that l corresponds to the weight in the first part of the claim and l′ corre-
sponds to the weight in the second part of the claim. Recall from the discussion
in the proof of Lemma 2, that D(v0, v2) consists of weights build by evaluat-
ing the expression (b(v0) − 1) · l1 + l2 for l1,l2 ∈ D(v1, v1). Since l ∈ D(v1, v1),
(b(v0) − 1) · l + l = b(v0) · l is in D(v0, v2) and thus the first part of the claim
also holds for G. But also the weight (b(v0) − 1) · l + l′ = b(v0) · l + (l′ − l)
is in D(v0, v2). Since l and l′ have distinct terms with non-zero coefficients and
by induction hypothesis, l has 2slbs(G)−1 − 1 terms with non-zero coefficients,
the number of terms in (b(v0) − 1) · l + l′ with non-zero coefficients must be
2(2slbs(G)−1 − 1) + 1 = 2slbs(G) − 1, which finishes the proof. ut

In the next lemma, we will show that there can be a huge discrepancy between
the output size and the size of paths, that have to be reported from any correct
algorithm.



Lemma 5. There is a problem instance I = (G, s, t), such that the minimal

output size is 2 but |D(I)| = 22lbs(G)−1

.

Proof. Reconsider again the example given in Figure 5 and the graph G as
constructed in the proof of Lemma 2. We have argued in this proof, that the
set lpw(v0, v2) of path weights consists of all weights (b(v0) − 1) · lee + lep for
lee, lep ∈ D(v1, v1), since D(vout, vin) = D(vout, v2) = D(G, v1, v1). But one could
do better, since it can be assumed wlog. that a longest path from v0 to v2 just
corresponds to b(v0) times a path in D(v1, v1). Thus, instead creating a set
lpw(v0, v2) of cardinality |D(v1, v1)|2, we create one of cardinality |D(v1, v1)|.
But this leads by an inductive argument to a set of weights of the base case,
namely 4 path weights. You could also apply this idea to the base case and get
just the two path weights b(v0) and b(v0)b(v1), but then the induction step in
the proof of Lemma 2 would not work out in the same way, as there would be
no path weight in D(v1, v1) with a positive constant (even though, it is possible
to modify G slightly to make it work). So, we end up with four (respectivally

2) longest path weights which still is in stark contrast to the set of 22lbs(G)−1

weights, constructed by our algorithm. ut

Lemma 5 states, that – at least in theory – our algorithm can produce outputs
that are unnecessarily large. In general, one could try to eliminate all path
weights that are convex combinations of other weights, which could be done
in polynomial time by solving linear programs. Unfortunately solving LPs is
too slow in practice for our purposes and furthermore, there are examples, in
which even eliminating convex combinations does not reduce the output size
significantly. Thus, we will discuss in the next section, a certain subclass of
graphs, for which we are able to give an algorithm, that produces an output of
minimal size.

2.4 While-Programs

The subclass of graphs that we consider in this section, are singleton-loop graphs
with the additional property that each induced sub-loop has exactly one por-
tal which coincides with the entry node of the loop. Note, that each computer
program can be transformed into an equivalent program which loops are only
while–loops. Since a while–loop has exactly one entry node and one portal node
which coincides with the entry node, we can assume wlog. that our input graph
exhibits this special property. The reason why we haven’t considered this case
before is of practical nature. Converting a program into a while–program changes
its running time behavior. On the other hand, most of the CFGs that we have
considered in our experiments, consisted mostly of such loops. Thus, the ideas
presented in this section, can lead to a significant reduction in the output size
in practice.

In this section, the input graph G, has always the additional property that
∀L ∈ iloops(G) : P(L) = {E (L)}. In this setting, we can modify our algorithm
as follows. Since the entry node of a loop always coincides with its only portal



node, we have in step 2c): lps(G,E (Lj),E (Lj)) = b(E (Lj)) · lps(Lj ,Eout,Ein)
and can thus avoid the addition operation. Furthermore, we eliminate after each
update step, dominated polynomials.

First, we will show, that for this class of graphs, the reported path weight
polynomials are small and second, that also the number of reported path weights
is exponentially smaller in the worst case. Finally, we show that the modified
algorithms reports the minimal number of path weigths in case of symbolic loop
bounds.

Lemma 6. For all problem instances I, D(I) contains only weights with at most
slbs(G) + 1 terms with non-zero coefficients.

Proof. First observe that by the construction of our algorithm, all weights are
indeed polynomials over the symbolic loop-bounds. We will now show, that any
such polynomial consists of at most slbs+1 terms, by first proving several claims
about the possible structure of such terms and by concluding from that, that
there cannot be more than slbs + 1 such terms in the polynomial. The claims to
show are:

1. Any path in G enters the loops of G in a unique order, i.e. there don’t exist
two paths P1, P2 in G, such that there exist loops L1, L2 of G such that
the paths P1 and P2 can be written as P1 = (. . . ,E (L1), . . . ,E (L2), . . . ) and
P2 = (. . . ,E (L2), . . . ,E (L1), . . . ).

2. Any term in the weight polynomial contains only variables associated with
induced subloops contained in iloops(L) for some L ∈ loops(G).

3. Let L ∈ loops(G) and L′ ∈ iloops(L). Furthermore, let (Li)i=1...k be the
sequence of induced subloops of L such that L = L1, L′ = Lk and such that
Li+1 is a subloop of Li for all i ∈ {1, . . . , k − 1}. If a term T in the weight
polynomial contains the variable associated with L′, then T also contains all
variables associated with the loops Li.

We now prove the first claim, by assuming that such two paths P1 and P2 exist.
This implies that there are two paths (subpaths of P1 and P2) from E (L1) to
E (L2) and vice versa. Since L1 and L2 are loops of G, L1 and L2 are strongly
connected. But we have just seen that the two nodes E (L1), E (L2) are also
connected, which directly implies that L1 and L2 can’t be strongly connected
components of G, which leads to a contradiction.

For the second claim, suppose there exists a term, containing variables as-
sociated with induced subloops of two different loops L1 and L2 of G. By con-
struction of our algorithm, multiplication (and thus, addition of a variable to a
term) only occurs, if L1 ∈ iloops(L2) or if L2 ∈ iloops(L1). Thus, L1 must be a
subgraph of L2 or vice versa and hence, L1 and L2 can only be both loops of G,
if L1 = L2.

For the last claim, let us assume otherwise, and let there be a j ∈ {1, . . . , k−1}
such that the associated variable of Lj is not contained in T but also such
that Lj+1 contributes its variable to T . By the construction of our algorithm,
the variable associated with Lj+1 was added to T , after splitting E (Lj) and



identifying Lj+1 as a strongly connected component of this altered graph. But
splitting the node E (Lj) also involves the multiplication of the weight polynomial
with the variable associated with Lj , which contradicts the fact, that this variable
is not contained in T .

Now let us count the number of possible terms in a longest path weight, that
contain at least one loop-bound variable. For each loop L of G we have a possible
set of terms. For each term in such a set, we know that only variables associated
with induced subloops of the corresponding loop of G are contained in it. Since a
variable must be contained in such a term whenever the variable of a subloop is
contained in the term, there are exactly slbs(L) possible terms per set. Thus in
total, the number of possible terms, that contain at least one variable is bounded
by
∑

L∈loops(G) slbs(L) = slbs(G). Together with the fact, that there is only one
term, containing no variables, this completes the proof. ut

Lemma 7. For our modified algorithm any problem instance I has D(I) ≤ 2slbs.

Proof. The claim follows from the proof of Lemma 1: In this case, the longest
paths within the loop and to the portal node use the same loop pattern and
we only have to combine paths using the same loop pattern. Hence the recur-
sion for the number of longest path weights can be expressed as T (lbs(G)) ≤∏

i(T (lbs(L′i)) + 1). Notice that the plus one disappears if the loop-bound of
L′ is numeric, as we know that one of the path weights of Li is numeric and
hence can be compared to the case where the subloop is not entered. Hence, we
can express it purely in the number of symbolic loop-bounds slbs(G) and get
T (slbs(G)) ≤

∏
i T (slbs(L′i)) + 1. This recursion is maximized if G has slbs(G)

subloops with one symbolic loop-bound, where we get T (slbs(G)) = 2slbs(G). ut

The next theorem states the main result of this section. Not only, that in the
worst case, the output size is much smaller than in the general case of singleton–
loop graphs, but also we are able to modify our algorithm, such that it computes
an output of minimal size. in case of symbolic loop bounds

Theorem 2. The modified algorithm reports a minimal number of longest paths
in case of symbolic loop bounds.

Proof. Let us assume without loss of generality, that G contains only induced
sub-loops L such that the longest path weights from E (L) back to E (L) are un-
equal to 0. Now consider the set D(G, s, t) of path weights computed by our al-
gorithm and let P be a path with weight wP ∈ D(G, s, t). We want to show, that
for wP , there exists an instantiation I such that under I, all weights not equal
to wP in D(G, s, t) are smaller than wP under I (written: wP [I]). We will prove
the claim by structural induction over G. If G contains no loops, G is a DAG
and thus, D(G, s, t) just consists of a single constant, which establishes the base
case. For the induction step let us assume otherwise, namely that loops(G) 6= ∅.
We consider the condensed graph G′ by replacing in G all loops (Li)1≤i≤|loops(G)|
by nodes (ci)1≤i≤|loops(G)| and we denote by C := {ci | 1 ≤ i ≤ |loops(G)|} the
set of all contraction nodes. We will now show that we can construct an instan-
tiation I under which wP [I] > w′P [I] for any other longest path with weight



w′P ∈ D(G, s, t). For a path P ′, we define CP ′ := {ci ∈ C | P ′ traverses Li}. We
define now I such that

– ∀ ci ∈ C \ CP : ∀ L ∈ iloops(Li) : I(b(L)) = 0
– For ci ∈ CP , let Ii be a maximizing instantiations, as given by the induction

hypothesis, then ∀ ci ∈ CP : ∀ L ∈ iloops(Li) s.t. L 6= Li : I(b(L)) = Ii(L).
– Chose the b(Li) large enough such that for all paths P ′ 6= P∑

ci∈CP \CP ′

b(Li)wci [Ii] +
∑

ci∈CP∩CP ′

b(Li)(wci − w′ci)[Ii] > cP ′ − cP ,

where wci (and w′ci) are the weight polynomials corresponding to the loop
Li for the paths P (and P ′) and where cP (and c′P ) are the constants in the
weights wP (and w′P ).

At this point, it is important to note, that it is always possible to choose loop-
bounds, such that the last inequality can be established. This can be seen as
follows: if wci = w′ci for all ci ∈ CP ∩ C ′P and CP \ C ′P = ∅, then each non
constant term in wp also exists in w′P . But since both weights are reported by
the algorithm, in particular w′P does not dominate wP , which implies that cP
must be larger than c′P . Thus, setting all loop-bounds to zero, establishes the
inequality. Now assume otherwise. In the case that CP \CP ′ 6= ∅ we can set for one
ci ∈ CP \CP ′ : b(Li) := c′P − cP + 1 to establish the inequality, since wci [Ii] ≥ 1.
Otherwise there must be an ci ∈ CP ∩ CP ′ such that (wci − w′ci)[Ii] > 0, which
also means that (wci −w′ci)[Ii] ≥ 1, since the weights are integral. Thus, setting
b(Li) := c′P − cP + 1 establishes again the last inequality, which yields:

wP [I] = cP +
∑

ci∈CP

b(Li)wci [I]

> c′P +
∑

ci∈CP

b(Li)wci [I]−
∑

ci∈CP \C′P

b(Li)wci [I]−

∑
ci∈CP∩C′P

b(Li)(wci − w′ci)[Ii]

> c′P +
∑

ci∈C′P

b(Li)w
′
ci [I]−

∑
ci∈C′P \CP

b(Li)w
′
ci [I]

= c′P +
∑

ci∈C′P

b(Li)w
′
ci [I] = w′p[I]

which finishes the proof. ut

2.5 The Implementation

The algorithm as described above, suffers from a high constant factor cost due
to the following points, for which we will show in this section, how they can be
avoided.



– After calling the algorithm on the loops of G, the graph G is altered by
removing all vertices and edges, associated with it’s loops. Even worse this
modification has to be undone to determine the longest paths to the nodes
within the loops.

– Calling the algorithm recursively on it’s altered loops involves copying parts
of the graph structure.

– As discussed above, in the presence of symbolic loop-bounds, a longest path
is not necessarily unique anymore, which involves maintaining sets of polyno-
mials over path weights for each node. This significantly increases the work
that has to be done in each computation that involves path weights.

The graph operations can involve a high number of memory allocations which
typically leads to an avoidable worsening of the running time. While the second
point can be addressed by using a subgraph filter and by bookkeeping and un-
doing the changes needed for the recursion steps on the loops, the first point has
to be addressed in a more complicated way, by changing the algorithm slightly:
Instead of altering parts of the graph, we store the longest path weights that
have been computed recursively on the loops of the graph in a hash table. In-
stead of deleting the loops, we bypass them in the following way: Whenever we
encounter a node in the computation of the longest paths which is a portal node
of a loop L, we jump directly to the corresponding entry node E (L) of L and
use the path informations stored in this table. Since a hash table access can be
done in constant time, the modifications of the underlying graph can be avoided
at very low costs.

The last point can be addressed in the following way: as mentioned above,
the symbolic weights can be represented as polynomials over the symbolic loop-
bounds. The first observation that we can make is that we expect only a small
number of coefficients to be non-zero. So instead of storing all possible terms,
we only store the ones with such coefficients.

The terms in turn are stored as bit-vectors, such that each bit indicates
whether a variable is present in the term or not. This enables us, to store the
terms (along with their coefficients) in an ordered way, by simply interpreting
these bit-vectors as numbers. Addition can then simply be done in linear time.
But one question remains, namely how a variable that occurs with a power
greater than one can be represented by such a bit-vector. The answer is, that
this never occurs. To see that, note that the multiplication of two symbolic
weights only occurs in the context of loops, when combining paths from s to
some entry node and paths from this entry node to some other node in its
loop. But then, the corresponding weights do not share any symbolic weight by
definition of a loop. This allows to implement a multiplication as a simple and
fast bitwise-and-operation on the bit-vectors of the terms.

2.6 Transformation of non Singleton-Graphs

This far, our new approach is applicable to singleton graphs only. We assume
that each loop has a unique entry node. To analyze non-singleton graphs, we



must obtain this property. To this end, we duplicate the loop-body and redirect
loop entry edges, such that each loop body has a unique entry node; see Figure 6
for an example.

This transformation comes at the cost of an increased runtime: Although the
complexity of the algorithm itself remains unchanged, the input-size increases. In
how far this influences the actual performance of the algorithm strongly depends
on the analyzed control-flow graph. We will discuss this point in the Section 4.

v1

v2v3

v4

v1

v2v3

v4

v2 v3

v4

Fig. 6. Transformation of non-singleton loops into singleton loops.

3 Handling Control Flow Constrains

An advantage of the implicit path enumeration technique is given by the pos-
sibility to define further constraints on the control flow. A typical example is
the exclusion of infeasible path; different conditions of the program to be ana-
lyzed might depend on each other, such that certain control flow paths can be
excluded. These cases can be coded using control flow constraints

One way to handle such constraints in our approach is to assign boolean
literals to the edges of the control-flow graph that indicate whether an edge is
part of the graph or not. The goal is now to determine a longest path over all
possible truth assignments of the boolean variables occurring in the deadpath
constraints. A naive way of doing so, would be to solve the problem from scratch
for each possible assignment and to compare in retrospect the obtained longest
paths. The obvious drawback of this approach is that in any case an exponential
number of problems have to solved. One possible improvement rests upon the
observation that in different calls of our algorithm, the computation of longest
subpaths are potentially repeated —independent of the given truth assignment.
Thus, instead of computing the longest paths for each truth assignment, we
just perform a single call in which we bookkeep for each computed subpath the
literals that occurred on that path. At the point in our algorithm, when two
paths are concatenated, we first check, whether the literals occurring in both
paths are compatible, i.e. whether there can be a truth assignment that allows a
path to consist of these two subpaths, which is clearly not the case if in the first
subpath there is an edge with a variable that occurs in its negation in the second
subpath. Once our algorithm has finished, we are left with a set of longest paths



together with a set of boolean literals. In the final step, we examine these paths
for all possible truth assignments. Since this set should be significantly smaller
in practice than the union of all sets computed in the naive way, this should lead
to significant speed up.

4 Evaluation

Regarding the precision, the new method does not contain any inherent over-
approximation and thus, computes exact results even in the parametric case.
The loop-bound conversion from relative to absolute loop-bounds as in [8] is not
needed.

In this section, we evaluate the runtime improvement on several benchmark
suites for real-time applications. The most eminent benchmark suite in the area
of timing analysis for hard real-time systems is the Mälardalen WCET bench-
mark suite4.In the following, we refer to our new method as the Silent (SIngle-
Loop ENTry) method.

All programs have been compiled via gcc to the ARM7 5 target architecture,
one of the most eminent processors for embedded systems. The binary-files then
defined the control-flow graph which is the input to both, our new method and
implicit path enumeration (IPET). Note that timing analysis has to resort to the
binary level. Compiler transformation may influence the control flow extracted
from high-level source files. All tests have been performed on an Intel Core2Duo,
2GHz with 2 GB Ram under Ubuntu operating system. The execution times were
measured using the unix-command time and thus, include in all cases the time
for the algorithm and all input/output operations. For the small execution time
(time < 5 seconds), we repeated the tests 10 times and derived the average
runtime.

The testcases within Mälardalen Benchmark Suite are rather small. In fact,
30 of the 33 benchmarks are solved in less than one second by IPET and Silent.
Unfortunately, other free benchmarks suites (Mibench, Papabench) for real-time
systems contain academic examples of limited size, too. To create realistically
sized examples, we artificially increased the size of the five largest benchmarks
by code duplication and different combination of the different files. Benchmarks
nsichneu-X are created by duplicating the largest benchmark file nsichneu x
times. The other files (all5-X ) are different combination of all five benchmarks.

Analyzing executables instead of source-code files has several consequences.
Calls to external library functions may be implicit in the source-code, but con-
tribute to the complexity of the executable’s control-flow graph. Hence, the an-
alyzed control-flow graph and control-flow of the source-code may differ. Even if
source code contains only singleton loops, the corresponding executable may ex-
hibit non-singleton loops. In addition, complex compiler optimizations—although
not common for safety-critical systems—transform the control-flow graph. An
overview of the actual structure of the benchmarks is given in Table 1. Beneath

4 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
5 http://www.arm.com/products/CPUs/families/ARM7Family.html



Name
Size (in Byte) Singleton # duplicated
C-File Exec Graph loops

adpcm 26582 156759 no 5
compress 13411 149804 no 65
jfdctint 16028 146858 yes -
nsichneu 118351 176240 yes -
statemate 52618 162879 no 7

nsichneu-2 208273 235222 yes -
nsichneu-4 468944 292305 yes -
nsichneu-6 702670 386961 yes -
nsichneu-8 936396 481609 yes -
nsichneu-10 670452 284593 yes -
all5-a 90274 215433 no 77
all5-b 315562 247443 no 77
all5-c 766144 426427 no 77
all5-d 990502 520579 no 5
all5-e 979908 518338 no 9
all5-f 942084 502580 no 74

Table 1. Benchmarks; Sizes (of source code and of executables ) and structure

the sizes of the source-code and of the executable of the benchmarks, it shows
which benchmark fits into the singleton-graph model and, if not, how often loops
need to be duplicated. Note that this number does not refer to the number of
non-singleton loops, but to the number of duplicated loops in the transformed
control-flow graph. If a loop has n loop entries, it needs to be duplicated n-times.

Note in addition that code duplication to increase the benchmarks does not
necessarily increase the number of non-singleton loops in the graph. If, for in-
stance, a library routines exhibits such a loop, code duplication just leads to
more call sites, but not to more such loops.

The evaluation shows that the Silent method strongly outperforms the prior
path analysis technique using lp solve and can even compete with CPLEX. While
lp solve needs up to over 100 seconds for the larger benchmarks, Silent and
CPLEX solve each test-case in about one second or less. Hence, the new method
may save up to 99% of the runtime compared to the free ILP solver. Only for
smaller test cases, the difference between both method is still very obvious but
less dramatic. The evaluation also shows a dependency between non-singleton
loops and performance. The more loops need to be duplicated, the worse is
the performance of the analysis. Here, the analysis of compress with 65 loop
duplications, for instance, takes longer than the analysis of other benchmarks of
comparable size. However, if this number is low, as for instance for statemate or
adpcm, the performance is only slightly degraded.

4.1 Parametric Path Analysis – Performance

In the parametric case, precision and runtime are of interest. The Silent method
can only be compared against PIP directly. PIP, however, exhibits an extremely
poor performance. None of the 5 largest benchmarks from Mälardalen bench-



Name
Size (in Byte) Runtime (s)
C-File Exec Silent lp solve CPLEX

adpcm 26582 156759 0.04 0.07 0.02
compress 13411 149804 0.3 0.03 0.03
jfdctint 16028 146858 0.01 0.1 0.02
nsichneu 118351 176240 0.02 0.86 0.05
statemate 52618 162879 0.05 0.3 0.04

nsichneu-2 208273 235222 0.03 3.46 0.08
nsichneu-4 468944 292305 0.05 13.69 0.08
nsichneu-6 702670 386961 0.08 30.85 0.11
nsichneu-8 936396 481609 0.11 57.31 0.18
nsichneu-10 670452 284593 0.11 108.8 0.13
all5-a 90274 215433 0.97 4.5 0.04
all5-b 315562 247443 0.95 14.58 0.05
all5-c 766144 426427 1.01 48.13 0.12
all5-d 990502 520579 0.14 92.1 0.11
all5-e 979908 518338 0.16 113.3 0.12
all5-f 942084 502580 0.64 65.9 0.17

Table 2. Performance evaluation: Silent / lp solve / CPLEX

mark suite can be solved via PIP, since out-of-memory errors are reported. These
instances are still trivial for our new approach. Therefore, we compare the run-
time of the parametric path analysis with the numeric one. Note that the number
of parameters is usually quite limited in practice. Bygde et al. considers cases
with at most 2 parameters. Table 3 shows that the parametric case exhibits an

Name
Runtime Runtime # of parameters # of parametric formulas
Numeric 1 2 3 4 6 8 1 2 3 4 6 8

nsichneu-2 0.03 0.03 0.03 0.03 0.03 - - 2 2 2 4 - -
nsichneu-4 0.05 0.05 0.05 0.05 0.05 0.05 0.06 2 4 8 16 16 16
nsichneu-6 0.08 0.08 0.08 0.08 0.08 0.08 0.11 2 4 8 16 16 32
nsichneu-8 0.11 0.11 0.11 0.11 0.12 0.12 0.12 2 4 8 16 32 64
nsichneu-10 0.11 0.12 0.12 0.12 0.12 0.12 0.13 2 4 8 16 32 64

all5-a 0.97 1 1.73 1.9 2.02 2.11 2.11 1 23 33 33 33 33
all5-b 0.95 2.03 2.03 2.04 2.36 2.35 2.38 13 13 13 17 17 17
all5-c 1.01 1.01 1.01 1.01 1.24 3.42 3.44 1 1 1 4 15 15
all5-d 0.14 0.22 0.28 0.3 0.33 0.45 0.45 12 21 21 21 25 25
all5-e 0.16 0.28 0.33 0.62 0.67 1.11 1.11 12 12 33 33 56 56
all5-f 0.64 0.64 0.64 0.66 0.71 1.19 1.19 1 1 1 2 8 8
Table 3. Performance evaluation: Silent method, parametric test cases.

increased runtime compared to the numeric case. This increase ranges from a
factor of ≈ 1 (nsichneu) to a factor of < 4 (all5-5 ). Considering the small execu-
tion times of the Silent method, even such an increase is acceptable. Note that
Bygde et al. also fail to compute parametric formulas in case of larger examples.
Benchmark nsichneu, for instance, can not be solved using the method presented
in [7] due to the high complexity of their method. The runtime in the paramet-



ric case is output-polynomial. The right part of Table 3 shows the number of
parametric formulas reported by the Silent method. Although we can see that
the output-size influences the performance, the number of duplicated loops still
has a stronger impact in practice. The maximal number of reported formulas is
64 (nsichneu-8 and nsichneu-10, 8 parameters, 0 duplicated loops)—runtime of
the analysis in both cases, however is only about 10% of the runtime of all5-f,
with 8 parametric formulas, but 74 duplicated loops. Note that our algorithm
does not perform any further simplifications on the reported formulas. Hence,
some formulas may be dominated by others and can be neglected.

4.2 Parametric Path Analysis – Precision

Rather simple control-flow structures cause the imprecision of the path analysis
via PIP. Figure 7 shows two parallel loops. If we assume for instance that L1
has a parametric loop-bound, the worst-case path as derived by PIP will always
contain loop L1. Loop nesting leads in the same manner to an overapproximation.

v1
L1

v2

v3

L2

v2

v3

v5

Fig. 7. Parallel Loops

In the following, we present two simple benchmarks form Mälardalen bench-
mark suite, for which PIP was able to derive a parametric timing formula:
insertion-sort and matrix-multiplication.

Insertion Sort This benchmarks implements insertion sort. It contains one
loop to initialize an array of size n and then sorts this array using a nested loop
of depth 2.

TimePIP(n) = 156n2 + 674n+ 1186

TimeSimple(n) = 131n2 + 71n+ 1185

Matrix Multiplication This benchmark first initializes two n × n matrices
and then multiplies them in O(n3) using nested parametric loops of depth 3.



Fig. 8. PIP vs. Silent—Insertionsort

TimePIP(n) =


386n3 + 782n2

+790n+ 643 if n > 1

2992 if n ≤ 1

TimeSimple(n) = 111n3 + 164n2 + 845n+ 793

In both benchmarks, the coefficients in TimePIP are higher than in TimeSimple,
such that the overapproximation grows as the parameters increase. The overap-
proximation of the PIP method is caused by loop nesting causes and the missing
relation between execution counts of inner and outer loops. Note that the para-
metric bounds computed by Silent method are precise, i.e., instantiating the
formula delivers the same results as the numeric analysis with annotated loop-
bounds.

5 Conclusions

We have given a new algorithm to compute the path analysis in the state-of-the-
art method for computing worst-case execution times of programs. Our algorithm
outperforms the existing methods in the case of a parametric timing analysis
and is competitive with current methods based on commercial integer linear
programming solvers for the special case of non-parametric loop-bounds. For
the first time, it is now possible to use parametric timing analysis for whole
programs.

In the special case of while-programs with symbolic loop bounds, our algo-
rithm reports the minimal possible number of distinct paths. We want to inves-
tigate on algorithms that achieve this also in the general case of singleton-loop
graphs.



Fig. 9. PIP vs. Silent—Matrix Multiplication

Given the efficiency of the integer linear programming solvers in the previous
approach to the path analysis, we want to investigate whether the integer linear
programming formulation is integral is the case of singleton-loop graphs.
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