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Abstract. The complexity in automotive systems engineering is increas-
ing over the last decade. Autonomous driving and new comfort functions
are some reasons for this growing complexity. With the introduction of
multi-core processors in automotive system architectures, the shift from
sequential to parallel thinking is more and more important in the dif-
ferent development phases. Based on the EAST-ADL, we present an
approach to support the design process for distributed systems by using
partitioning as an additional viewpoint on the architecture level. There-
fore, we developed an extension to the EAST-ADL for partitioning and
show automatic partitioning analysis on different architecture abstrac-
tions. These derived partitions can support system designers during the
design process of functional architectures, by having a first insight how
independent the functional components are structured from a data de-
pendency viewpoint. This gives hints for the allocation of functions to
hardware in later stages of the development process.

Keywords: System Architecture · Model-driven Systems Engineering ·
Automotive Systems Engineering.

1 Introduction

The trend of model-driven development to manage complexity during system
development is still ongoing. Automotive systems are containing more and more
hard- and software parts and forming huge distributed systems. In 2007 a BMW
7 contained 67 embedded devices providing 270 functions interacting with the
user [19] and this further increased to 100 Electronic Control Units (ECUs)
in premium vehicles around 2013 [14]. With the development of autonomous
vehicles and its increased demand for additional sensors and data, the required
computing power and the system complexity will further rise to assure a safe and
comfort driving experience. Replacing single-core ECUs with multi-core systems
is a possible way to lower the system complexity in vehicles [1]. This is an
intensive discussed topic and first vehicles using multi-core architectures are on
the road [15]. To utilize these newly created systems including the embedded
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multi-core technique, a “parallel thinking” is required already from the start of
the system development. Having a well-designed abstract system model during
early design steps, helps deriving it further down towards the concrete system.
Starting the design process at the system level includes many different models
and stakeholders and there exists no golden standard of methods and frameworks
[7]. In the automotive domain many projects use a bottom-up approach [15]. Such
an approach has the high probability to not fully understand the big picture
of the system and therefore detailed analysis of the whole system are hard to
achieve.

Model-based approaches can provide customized views for the current devel-
opment situation to the stakeholders. This supports achieving their engineering
and optimization tasks, by focusing on the level of intention. Different abstrac-
tion levels, starting with a high level view in the early stage to a more detailed
technical view in a later stage, is a common way to manage development com-
plexity. The architecture description language EAST-ADL supports such an ap-
proach by providing on the one side a step-wise refinement and on the other
side dealing with cross-cutting issues. Allover, EAST-ADL allows modelling of
requirements, features, functional components, timing constraints, safety con-
straints and other engineering related information.

The focus of our work is to support system designers during their architec-
tural design decisions. We support the propagated “parallel thinking” through
analyzing and parallelization of the logical and component-based architectures
to achieve partitions, based on data dependencies. The partitioning shall give
the system designer a starting point how and how well parts of the architecture
can be distributed, e.g., without stressing the bus system (communication over-
head). Sets of components in a partition may be executed independently from
components in other partitions. To get a better understanding of the partitions,
key figures for partitions are calculated. The partitioning analysis support the
system designer to choose a suitable hardware architecture for system functions.
The current version of EAST-ADL supports functional composition modeling,
but has no modeling notations to express partitions. We introduce an extension
of the EAST-ADL to store information about partitions and present partitioning
algorithms to compute such partitions from an architectural model.

This paper is an extended version of our previous published work at MOD-
ELSWARD 2019 [6]. In this version, we added an additional partitioning algo-
rithm (KaFFPa) and used it to evaluate the Single Entry Region (SER) analysis.
First, introduce EAST-ADL and the used partitioning algorithms to perform our
analysis. In Section 3 we present our approach and tooling. This is followed (Sec-
tion 4) by the extension of the EAST-ADL meta-model with elements to handle
partitioning information on in the model. Section 5 shows how the algorithms
are applied to different target abstraction levels to find partitions and which
key figures can be calculated to get a better understanding of a partition. The
approach is evaluated in a case study showing a brake-by-wire system example
(Section 6). The paper completes with the conclusion and giving an outlook for
further research.
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2 Preliminaries

This chapter introduces existing languages, methods and algorithms used in this
paper.

2.1 EAST-ADL

EAST-ADL stands for ‘Electronics Architecture and Software Technology - Ar-
chitecture Description Language’ and is maintained by the EAST-ADL Associ-
ation [5]. Its focus is on capturing engineering information for automotive elec-
tronic system development. It offers elements to capture requirements, features,
functions, software & hardware components and communication in a standard-
ized form. The system’s implementation is not part of the EAST-ADL, but the
established AUTomotive Open System ARchitecture (AUTOSAR) standard [2]
is used. While AUTOSAR’s most abstract concept is the software architecture,
the EAST-ADL provides means to model the system architecture and capture
essential engineering information on this stage. [3]
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Fig. 1. EAST-ADL abstraction levels with the containing models and cross cutting
extensions. On the right hand side the partitioning extension and methods provided in
this research. [6]

The current release of the EAST-ADL2 [4] describes four abstraction levels
to model the vehicle in different levels of detail (see left hand side of Figure 1).
The Vehicle Level includes a Technical Feature Model of the electric and elec-
tronic system. It can be used as a software product line by using decomposition
and variability to allow different feature configurations. The Analysis Level
includes the Functional Analysis Architecture (FAA). On this level, the features
of the Vehicle Level are realized by abstract functions. These functions are con-
nected through devices (e.g., sensors or actuators) to the vehicle environment,
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defining the systems boundary. The Design Level includes the Functional De-
sign Architecture (FDA) and the Hardware Design Architecture (HDA). The
FDA realizes the abstract function of the FAA with an implementation-oriented
aspect. This includes software, middleware and hardware abstraction. The HDA
captures physical resources and their connections and is used to allocate func-
tions from the FDA to hardware entities. The Implementation Level is the
connection to the AUTOSAR system model. The EAST-ADL is aligned with
AUTOSAR and elements of the Design Level can be mapped to AUTOSAR en-
tities [20]. These alignment and mapping capabilities enable traceability through
the models during the whole development process.

Beside these abstraction levels, EAST-ADL is extended by several cross-
cutting concern extensions, spanning over the layers of abstraction. Figure 1
shows the abstraction levels with their models horizontal and the extensions
(cross-cutting concerns) are vertically aligned over all levels. Examples for these
extensions in are Environment, Requirements, Variability and Timing. In this
paper, we present an additional extension called Partitioning and methods ap-
plicable using this extension. Our contributions are marked with a red circle in
Figure 1. Since the focus of our research is on the Functional Analysis Architec-
ture (FAA) and the Functional Design Architecture (FDA) we provide a more
detailed description of these two abstraction levels. Both architectures contain
a component-based architecture model to capture the system information. The
elements of the architectures are build up using a type/prototype concept similar
to AUTOSAR. The basic elements are FunctionTypes and FunctionPrototype.
A FunctionType is an abstract function component description and gets instan-
tiated by one or more FunctionPrototypes. A FunctionType contains Function-
Ports, which can be connected together using FunctionConnectors. Hierarchical
architectures are realized by the specializations of FunctionType on the Analysis
and Design Level (FunctionAnalysisType and FunctionDesignType), which can
own parts in form of FunctionAnalysisPrototypes respectively FunctionDesign-
Prototypes. FunctionConnectors linking owned prototypes are called assembly
connection, while a connection between a port of the type itself and a prototype
is called delegation connection.

Besides the FDA, the Design Level includes the Hardware Design Architec-
ture (HDA) to model the hardware system. The HDA defines the connectivity,
capabilities and basic safety characteristics of technical architectures, e.g., the
execution units (ECUs) including their cores and the communication paths. This
information can be expressed using the following elements from the EAST-ADL
modeling language (again using type/prototype concept): HardwareComponent-
Type is the basic element for the specializations Node, Sensor, Actuator and
ElectricalCompmonent. It defines HardwarePorts and HardwarePins of the com-
ponent and the embedded connections. An ECU is a Node element and its cores
are contained HardwareComponentPrototypes of type Node. HardwarePortCon-
nectors forming the bus system by connection ports and are capable to store
information about the bus type and speed. HardwarePorts containing Hard-
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warePins and these pins are connected using HardwareConnectors, forming the
bus system.

Since every abstraction level defined by the EAST-ADL includes a complete
model of the whole system, a full tracebility between the levels can be realized.
This is supported by linking elements of different abstraction levels together
using the Realization relationship. E.g., a function on the FAA is realized by a
group of functions on the FDA. Using realization links, this can be documented
for later development stages or analyzes.

The EAST-ADL abstraction levels can be seen as equivalents to the phases
of a system developing life cycle. For example, the abstraction levels can be
used/mapped to phases of the V-Modell XT [30] as follows: the Vehicle Level,
including its feature models, is part of the systems requirements analysis; the
Analysis and Design Level are used in the system analysis, system architecture
and system design phase; the Implementation Level belongs to the software
architecture phase. Another example is the ATESST2 project, which released a
methodology guideline for the development with EAST-ADL2 [27]. It defines a
top-down development process and we embed our partitioning analysis into it,
by making suggestions at which point of the process the partitioning step should
be performed.

2.2 Partitioning Algorithms

In this section, partitioning algorithms used in this paper are explained. The
strongly connected components algorithm is a classical algorithm from graph
theory, while the extended single entry region algorithm is a more recent publi-
cation dedicated to AUTOSAR systems. Karlsruhe Fast Flow Partitioner (KaF-
PPa) algorithm is a state of the art multilevel graph partitioning algorithm.

Strongly Connected Components Strongly connected components (SCCs)
are highly interconnected nodes in a directed graph. Tarjan [26] presents def-
initions for strong connectivity in graphs and an algorithm for computing the
strongly connected components. A (sub-)graph is called strongly connected if
there exists a path between each pair of nodes. A partition is formed by the set
of strongly connected components.

Feedback loops, which are a very common pattern in automotive control
systems, would form such a strongly connected component. Therefore, we see
potential in applying the SCC on EAST-ADL architectures of the Analysis and
Design Level.

Potts et al. [18] applied the SCC algorithm on system of systems (SoS) to
support architectural decision making.

Single Entry Region The Single Entry Region (SER) analysis is a data de-
pendency graph analysis for AUTOSAR system description models introduced
by Kienberger et al. in [12] and further refined in [13], [11]. It is based on work
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of [17], [9], [28] and [8]. The analysis tries to identify regions having a loose cou-
pling to other parts of the system and therefore be somewhat isolated. A SER
is described by the following three properties:

– The number of nodes is greater or equal to two.
– All input dependencies from nodes outside the SER are routed over a single

“entry node”.
– There is a path from the “entry node” to any other node inside the SER.

The SER analysis is performed on an AUTOSAR system description model,
namely on the component-based architecture formed by Runnable Entities (AU-
TOSAR’s atomic executable and schedulable units) and their data dependencies.
From our point of view, the analysis can be used for every appropriate type of
dependency in a graph. Since the components of an AUTOSAR system descrip-
tion model are derived from the FDA on EAST-ADL’s Design Level and the
FDA and FAA are component-based architectures with data dependencies, we
adopt the SER analysis to EAST-ADL.

KaFFPa KaFFPa (Karlsruhe Fast Flow Partitioner) is a multilevel graph par-
titioning approach [22]. In a first step, it contracts the initial graph to create
smaller graphs and does a first partitioning of this contracted graph. Then the
contraction is reverted at each level and a local improvement is done to opti-
mize the partitions on the coarser levels. The algorithm partitions the graph
into a predetermined number of partitions, often denoted as k. The graph may
contain weighted nodes and/or edges to describe the workload of a node or the
communication of an edge, for example.

The KaFFPa algorithm is embedded in the KaHIP (Karlsruhe High Quality
Partitioning) framework, which is public available [24]. Since the algorithm is
reported to have very promising results in partitioning [21] and is easy available
by using the public framework, we chose it for our approach.

3 Our Approach

Our approach has the goal to support the system designer during his architec-
tural design decisions in order to have an architectural model that is well suited
for further fine-grained development. Partitioning, in our context, is the process
of grouping the system under development (SUD) into different parts without
changing its functional component-based architecture. It is not intended to pro-
vide concrete mappings of functional components to hardware elements. The
approach provides additional views on the SUD, depending on which criteria
the partitioning is performed. We identified the FAA on the Analysis Level and
the FDA on the Design Level as targets for our partitioning.

By using the extension mechanism of the EAST-ADL, the EAST-ADL sys-
tem model remains unchanged and is only extended with new elements. The
new extension makes use of already available EAST-ADL modeling concepts to
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These classes are from 
the EAST-ADL meta-model. TimingConstraint

EstimatedExecutionTime

element : FunctionPrototype [1]
average : TimingExpression [1]
bestCase : TimingExpression [0..1]
worstCase : TimingExpression [0..1]

EstimatedMemorySize

element : FunctionPrototype [1]
average : EANumericalValue [1]
upperBound : EANumericalValue [0..1]
lowerBound : EANumericalValue [0..1]

EAElement

name : String

PartitionPackage

elements : EAPackageableElement [0..*]

PartitionModel

targetLevel : SystemModel [1]

subPackages
0..*

1
 partitionArchitecture

Fig. 2. The “Partitioning” meta-model extension. [6]

define its elements and use them for structuring system model elements. Figure 2
shows the extension called “Partitioning” and its meta-model elements to ex-
press partitions. Also elements to store additional information not yet available
in the EAST-ADL meta model, but helpful for analyzing a SUD, are specified.
Since there are only references to elements in the system model, the FAA on the
Analysis Level or the FDA on the Design Level remain unchanged.

A short example shows how this works: For example, on the Analysis Level,
the SUD is described by the FAA using functional devices and analysis functions.
The functional devices are the connection to the environment; using sensors to
get data from the environment and actuators to interact with it. Typically, chains
of AnalysisFunctions link sensors to actuators, by performing calculations on the
sensors data and react accordingly through the actuators. The connections be-
tween the devices and functions are modeled by ports to provide and receive
data, which are linked together with function connectors. This component based
description of the architecture together with additional data defined in the exten-
sions is used to determine partitions, which can be persisted with the proposed
Partitioning extension.

Tooling

AutoAnalyze The extension of EAST-ADL and the analyses are implemented
in our tool AutoAnalyze. It is based on the Eclipse Modeling Framework1, the
Model Analysis Framework2, EATOP3 and Artop4. This allows us to load, edit

1 Eclipse Modeling Framework (EMF) https://www.eclipse.org/modeling/emf/
2 Model Analysis Framework - Data-flow based model analysis (MAF) https://www.

informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/
3 Eclipse EATOP Project https://www.eclipse.org/eatop/
4 AUTOSAR Tool Platform (Artop) https://www.artop.org/



8 C. Etzel and B. Bauer

and save models defined with the EAST-ADL meta-model by using the EAXML
format.

KaHIP KaHIP (Karlsruhe High Quality Partitioning) is a framework for doing
graph partitioning with different algorithms [24]. It includes KaFFPa (Karlsruhe
Fast Flow Partitioner), the multilevel graph partitioning algorithm we use in
this paper and several other algorithms. KaHIP uses the Metis file format as
explained in the Metis 4.0 user guide [23] [10]. AutoAnalyze is extended to
export a graph in the Metis format, which then can be loaded into the KaHIP
framework.

4 EAST-ADL Partitioning Extension

The focus of our approach is not limited to partition architectures on the differ-
ent abstraction levels provided by EAST-ADL, but also to have a standardized
way to retain and exchange the partition information. EAST-ADL structures
the system model into different abstraction levels and it shall be possible to
have multiple partition models per abstraction level. This is motivated by the
idea that partitioning can be done with different goals to achieve different views
on the model. These goals influence the selection and weight of properties going
into the calculation, resulting in many possible partition views on the system.
While the content of the architectures is diverse for every abstraction level, the
meta-model elements shall be shared to support a common handling of partition-
ing in every use case. The newly introduced elements are derived from already
specified elements in the EAST-ADL to be compatible with it. In the following
definitions, most elements from the EAST-ADL meta-model can be identified
by the prefix “EA”, for example, EAElement and EANumericalValue are both
from the EAST-ADL infrastructure package. The EAST-ADL meta-model con-
tains some none prefixed elements, we will indicate if such an element is used.
Besides having a good compatibility and extensibility using basic elements of the
EAST-ADL, the partitioning extension fully benefits of already available con-
cepts, e.g., connecting elements using EAST-ADL realization links to achieve a
full traceability over the model.

The complete “Partitioning Extension” can be seen in Figure 2. On the left
hand side are the meta-model elements to capture partitions and on the right
hand side are elements to support the analysis of partitions. The root of the
new partitioning elements is PartitionModel, pointing to the architectural model
which is partitioned. It is derived from EAElement, an abstract metaclass of
the EAST-ADL meta-model, defining an identifiable and named element. The
EAElement has some attributes omitted in the figure, for example, the UUID
attribute, as a global unique identifier, an expressive name and a comment at-
tribute for additional descriptions. The partition model contains two associations
the targetLevel and partitionArchitecture. The targetLevel is used to link the par-
tition model to the level it partitions the architecture; i.e., the AnalysisLevel or
DesignLevel object which are of the EAST-ADL meta-model super type Sys-
temModel. The association partitionArchitecture points to the root package of
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the partition architecture. Since the partitioning is done independently on every
abstraction level, only elements that are part of the target level are allowed to
be linked in the partition architecture and its nested packages.

Name PartitionModel
Description The PartitionModel is used to organize the partition architecture

of an abstraction level.
Generalizations EAElement
Attributes No additional attributes.
Associations

targetLevel : SystemModel [1]
partitionArchitecture : PartitionPackage [1]

Constraints All (nested) referenced elements in the partitionArchitecture shall
be part of the referenced targetLevel.

Semantics PartitionModel is the representation of a nested set of partitions for
a specific system abstraction level.

PartitionPackages are used to collect elements belonging to a partition, by using
the elements association. The reason to define a new class PartitionPackage in-
stead of using the already existing EAST-ADL meta-model element EAPackage
is that an EAPackage uses a composition to aggregate the containing elements,
while a PartitionPackage shall only provide an association to the elements in
the architecture. Using the association a duplication of elements is avoided and
changes to properties of elements in the architecture have not to be mirrored to
the partition model. The subPackages association contains sub partitions and is
realized using a composition. A PartitionPackage can contain multiple elements
and packages to enable hierarchical partition architectures. To achieve a sound
hierarchy, the association to elements in the target architecture shall be only
once and as deep as possible in the subPackages structure.

Name PartitionPackage
Description The PartitionPackage is used to form partitions of elements.
Generalizations EAElement
Attributes No additional attributes.
Associations

elements : EAPackageableElement [0..*]
subPackages : PartitionPackage [0..*] {comp.}

Constraints No additional constraints
Semantics PartitionPackages can be used to organize EAPackageableElements

that form a partition. The packages can be structured hierarchically, where
each level may contain variable number of EAPackageableElements and sub
packages forming sub partitions.

The two elements PartitionModel and PartitionPackage enable a structural de-
scription of partitions. They link to elements in the architecture using asso-
ciations and by this mechanism, no change of the architectures themselves is
necessary.
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The EAST-ADL includes already multiple extensions for different purposes.
The timing extension, for example, defines modeling elements to specify tim-
ing constraints and other timing related information to enable timing analysis.
Despite the existing extensions, there are still some elements missing from our
point of view that would be helpful for analyzing partitions. To allow a more
accurate partitioning of an architecture, two additional elements are defined, to
store estimated values of memory footprints and execution time.

The element EstimatedMemorySize is used to capture the estimated mem-
ory footprint of a component. For example, this element can be used to balance
partitions based on the memory size or to get an idea of the memory require-
ments of a partition. It has an association to an element in the system model
and three values describing its estimated average memory size in bytes and op-
tional upper/lower bound values to define a spectrum the memory size varies.
The element and average associations are mandatory, otherwise no meaningful
statement could be made.

Name EstimatedMemorySize
Description The estimated size of memory used by the function in bytes.
Generalizations EAElement
Attributes No additional attributes.
Associations

element : FunctionPrototype [1]
average : EANumericalValue [1]
upperBound : EANumericalValue [0..1]
lowerBound : EANumericalValue [0..1]

Constraints If set, the values shall comply to lowerBound ≤ average ≤
upperBound.

Semantics The EstimatedMemorySize stores the estimated or measured aver-
age memory size in bytes and optional an upper/lower bound.

The EAST-ADL timing extension describes an execution time constraint spec-
ifying the upper and lower bound run-time of an event. We introduce an Esti-
matedExecutionTime element, storing estimated or measured average execution
time of a function and optionally a best and worst case value. It makes use
of the already defined elements TimingConstraint and TimingExpression in the
EAST-ADL timing package. TimingExpression allows the specification of a time
including a unit and a time base. The EstimatedExecutionTime element is de-
rived from the element TimingConstraint. The average, best and worst case
elements are derived from TimingExpression. The element and average asso-
ciations are mandatory, otherwise no meaningful statement could be made. In
a SUD all defined values have be in line with already defined execution time
constraints.

Name EstimatedExecutionTime
Description The estimated execution time of the function.
Generalizations TimingConstraint
Attributes No additional attributes.
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Associations
element : FunctionPrototype [1]
average : TimingExpression [1]
bestCase : TimingExpression [0..1]
worstCase : TimingExpression [0..1]

Constraints If set, the values shall comply to
bestCase ≤ average ≤ worstCase.

Semantics The EstimatedExecutionTime stores the estimated or measured val-
ues of the average execution time and optional a best/worst case value.

5 Partitioning Analysis

In this section, we describe how the SCC, SER and KaFFPa algorithms are
used to automatic search for partitions on the architectures of the Analysis
and Design Level. Partitions are formed by sets of functional components and
analysis is done independently on the Analysis and Design Level. Besides using
an algorithm to compute sets of partitions, an engineer can manually model
partitions or modify the generated partitions afterwards.

5.1 Parameters for the Analysis

The main focus on our analysis are on supporting the engineer in understand-
ing the architecture from the data dependency viewpoint. In our use cases we
identified additional kinds of relevant clustering parameters: communication be-
tween functions and resource usage of functions. The communication is closely
related to the data dependencies, since the data has to be transferred between
the functions. Therefore, the amount of data exchanged between functions and
the coupling of those can be taken into account. On the resource side execution
time, execution frequency and memory consumption are values of interest. Using
the newly introduced meta-model elements and already available elements in the
EAST-ADL three parameter to consider these viewpoints: Data Flow Weight,
Function Computational Time Weight and Function Memory Weight.

Data Flow Weight For the communication perspective we introduce a param-
eter to describe a weight for the data exchanged on a connection between
two functions. The size of the transferred data can be calculated using the
EADatatype specified for the connection and the repetition of the transfer,
which can be derived of the function triggering (FunctionTrigger).

Function Computational Time Weight This parameter combines our in-
troduced EstimatedExecutionTime element to estimate the computing time
in conjunction with function triggering to get an idea how a processor is
utilized by a function.

Function Memory Weight Using the newly specified EstimatedMemorySize,
the memory footprint either of the binary or the resource usage during run-
time including temporary memory can be calculated.
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These parameters can either be used in partition search algorithms or to cal-
culate key figures of a partition. E.g., partitions can be rated by their memory
footprint summing up the Function Memory Weight of every component, or by
their Function Computational Time Weight, if it is assumed that the set of func-
tions in one partition is executed sequentially. These key figures are indicators
for the system designer to judge about the architecture and possibly perform a
refactoring.

5.2 EAST-ADL Analysis Level

The Analysis Level includes an abstract functional representation of the archi-
tecture captured in the FAA. This architecture is designed very early in the
development process during the system analysis phase [27]. From a methodol-
ogy point of view, the partitioning shall be placed in the development process
after the task to specify the analysis function details. The result of partitioning
analysis can then be used to further refine the architecture in an iterative way.

Before starting the analysis on the FAA, we have implemented multiple model
pre-checks in our tool, such as if all directions of the ports and the binding
to the function connectors are reasonable. For example, if two functions are
connected via “IN” ports a warning is raised. The same applies to “OUT” ports.
Additionally, it should be noted that a client-server connection in the model is
interpreted as a bi-directional connection between the components.

SCC Analysis The first analysis implements the strongly connected compo-
nent search. The directed graph consists of the analysis function prototypes as
the vertices and the function connectors as the directed edges between the ver-
tices. Since the SCC algorithm analyzes paths between the vertices, only the
communication between the functions is taken into account to form partitions.

The results of the strongly connected component search is transferred into a
partitioning model, where a set of strongly connected functions forms a partition.
For every detected set with more than one component a PartitionPackage is
created referring to the containing functions. An example with three graphs can
be seen in Figure 3. The sets of strongly connected components enclosing more
than one element are visualized with the same color. In the graph on the bottom
of the figure is a single element “Prototype3” not colored (white background),
since it forms a strongly connected set containing only itself and sets with just
one element do not need a distinct color.

SER Analysis Another implemented algorithm is the Single Entry Region
(SER) analysis, which was developed for AUTOSAR system description mod-
els [13]. A brief general description can be found in Section 2.2. We adapted
the algorithm to fit to the EAST-ADL Analysis Level. For this purpose, every
AnalysisFunctionPrototype contained in the FAA represents a node. The depen-
dencies between the nodes are formed by the function connectors between the
prototypes. The dependency weights are calculated by using the introduced Data
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Fig. 3. Three examples of graphs with strongly connected components. [6]

Flow Weight parameter and summing it up for every connection between a pair
of nodes. The output of the algorithm are regions containing sets of Analysis-
FunctionPrototypes. This gets transferred into the partitioning model such that
every calculated region forms one partition.

KaFFPa The KaHIP framework offers graph partitions algorithms with vari-
able strategies. For our problem domain, we choose the KaFFPa algorithm and
transfer the architectures to the METIS format, which serves as the input for-
mat. The AnalysisFunctionPrototypes of the FAA form the nodes of the graph.
Optionally, the nodes can be weighted using the introduced parameters Function
Computational Time Weight and Function Memory Weight introduced in Sec-
tion 5.1. In contrast to the SCC and SER analyses, which use directed graphs,
KaFFPa expects undirected graphs with only one edge between a pair of nodes.
As a result, the direction information of the function connectors is ignored and
every set of connections between two components becomes an edge. The weight
of the edge is calculated by summing up the weights of all connections in this
set. The weight itself is defined by the introduced Data Flow Weight (see Sec-
tion 5.1), and therefore depends on the exchanged data type (to calculate the
size of the data) and how often it is exchanged.

These information form a graph, which is complete to be partitioned using
KaFFPa. To run KaFFPa, it needs a parameter k, defining the number of par-
titions the graph should be divided into. At present, this has to be provided by
the engineer conducting the analysis.

The output of KaFFPa is a text file containing as many lines as nodes in the
graph. Each of these lines represents a node and the value in the line represents
the partition block ID. With the information how input graph was generated
(knowing which AnalysisFunctionPrototype is which node), the output file is



14 C. Etzel and B. Bauer

transferred into the partitioning model such that all nodes with the same block
ID form one partition.

5.3 EAST-ADL Design Level

The Design Level includes an implementation-oriented functional model of the
architecture captured in the FDA. Looking into the design process, the FDA
is specified during the design phase in parallel with the HDA [27]. This newly
introduced partitioning step shall be placed in the development process after the
task to specify the design details, but before the allocation the functions to the
HDA. The result of partitioning analysis can then be used to further refine the
architecture in an iterative way and as an input artifact to the HDA allocation
task.

Since the elements of the FDA are very similar to the ones used for the
analysis of the FAA on the Analysis Level, the SCC, SER and KaFFPa analysis
are analogous to the analyses explained into detail in Section 5.2. The graphs
are formed by function prototypes and function connectors. Even the pre-checks
and the handling of client-server connections are identical.

By using a partition model of our analysis an engineer can allocate func-
tions to elements of the HDA. Elements grouped into one partition by these two
algorithms are candidates to be allocated on one node, because they commu-
nicate with each other. Placing them on one node or closely connected nodes
can reduce the communication overhead. The HDA can also serve as a starting
point to determine the parameter k for KaFFPa. k should be at least as high as
the number of cores which are available to run components of the architecture
on. KaFFPa includes an option to use a mapping algorithm, which performing
a mapping which is communication and topology aware [25]. In Section 7 we
discuss shortly, why this is not reasonably applicable for our approach in the
automotive domain.

6 Case Study - Brake-by-Wire System Example

To evaluate the proposed approach a case study on an example architecture
is carried out, showing the results of the SER and KaFFPa in detail. Since our
approach tries to help an engineer understanding his/her model, we compare the
different partitioning results between algorithms not by minimum cut values or
other parameters, for example, but doing an expert review. It should be noted,
that the SCC analysis would not find partitions with more than one component
in this particular example and is therefore not discussed further. Nevertheless,
we picked this model, because it illustrates the SER analysis, the differences
to KaFFPa and the partition transition during the development process very
clearly.

The “Brake-by-Wire for four-wheel vehicles” model is originally from the
EAST-ADL Association and published on their website5.

5 Brake-by-Wire System II (http://www.east-adl.info/Resources.html) (accessed
July 12, 2019)
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Fig. 4. Functional Analysis Architecture (FAA) of Brake-by-Wire Example. The col-
ored elements are SER partitions. [6]

Fig. 5. Functional Design Architecture (FDA) of Brake-by-Wire Example. The colored
elements are SER partitions. [6]

The FAA on the Analysis Level consists of 16 components and 26 connec-
tions between these (see Figure 4). The main function is a pGlobalBrakeCon-
troller, which gets data from four wheel speed sensors, the vehicle speed and the
requested brake force. The vehicle speed is calculated by the pVehSpeedEstima-
tor getting data from the wheel speed sensors. The vehicle speed is provided
to the pGlobalBrakeController and the four ABS controllers. The brake force
is calculated by the pBrakeTorqueMap with data from the pBrakePedalSensor.
The four ABS controllers are sending data to each brake actuator. The colored
components in Figure 4 are partitions computed by the SER analysis. The up-
per green colored partition consists of two components (pBrakePedalSensor and
pBrakeTorqueMap), the lower four partitions are each formed by the ABS and
the brake actuator of one wheel. All three properties that a partition created by
SER analysis must fulfill are very well recognizable. The partitions have more
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than one element, all dependencies from outside into the partition pass through
an entrance node and there is a path between every pair of nodes.

The SER analysis found five partitions and six single elements, so we set
k = 11 for KaFFPa, since the six single elements are partitions of size = 1.
Using this setting, we can compare the results of both algorithms. To under-
stand the output of the analysis with KaFFPa, we give the numbering of the
components as generated for the input graph: 1: pBrakePedalSensor, 2: pBrake-
TorqueMap, 3: pWheelSpeedSensor FL, 4: pWheelSpeedSensor FR, 5: pWheel-
SpeedSensor RR, 6: pWheelSpeedSensor RL, 7: pGlobalBrakeController, 8: pVeh-
SpeedEstimator, 9: pABS FL, 10: pBrakeActuator FL, 11: pABS FR, 12: pBrake-
Actuator FR, 13: pABS RR, 14: pBrakeActuator RR, 15: pABS RL, 16: pBrake-
Actuator RL. In Listing 1.1 the output of KaFFPa for the FAA can be seen. Each
line represents a node from the input graph and contains the block ID of the
node. Line 1 is the first node pBrakePedalSensor, associated with block/partition
number 2. Line 2 pBrakeTorqueMap, block/partition number 3. ... It can be seen
that the partitions on the bottom of Figure 4, the components 9-16, are identi-
cal generated by KaFFPa. A difference comes up for pWheelSpeedSensor RL and
pVehSpeedEstimator (lines 6 and 8), which are packed together in one partitions
(block ID 7). The SER analysis puts pBrakePedalSensor and pBrakeTorqueMap
(lines 1 and 2) together, which is from viewpoint of an expert review the more
natural choice. Other values for k did not lead to a better evaluation result in
the expert review. In our evaluation the best results to help the engineer to get
a better understanding of the FAA is the SER analysis.

The design architecture (see Figure 5) is derived from the FAA. It contains
28 components and 27 connections (some components are for diagnoses, their
connections to components outside the scope of this braking example have been
omitted). For example, a wheel speed sensor from the functional analysis archi-
tecture is now more detailed by using two components. One is a hardware encoder
providing the digital hardware signal and the other is a local device manager
(LDM) encapsulating the hardware device specific parts. On the actuator side, a
similar detailing is performed by using a LDM and a hardware function compo-
nent for the realization. Two components for diagnose tasks are also embedded
in the example. One is a diagnose component in the pBrakePedalLDM and the
other one in the pGlobalBrakeController.

The partitions found using the SER algorithm are very similar to the ones on
the analysis architecture. On the bottom, every ABS component together with a
LDM and the actuator form a partition. Four new partitions are originated from
the decomposition of the wheel speed sensors into hardware encoders and LDMs.
A difference can be seen looking at the former partition of the pBrakePedalSensor
and pBrakeTorqueMap, which is for a better recognition marked with a square
of orange dots in both figures. Because a diagnose component (Diag Pt), which
provides data to other components not visible in this figure, is embedded in the
pBrakePedalLDM, it is not marked as a potential partition on this level. An
option to in- or excluding diagnose components in the analysis is part of our
framework. Turning it off, the components pBrakePedalSensor, pBrakePedal-
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Listing 1.1. Output
partitioning FAA us-
ing KaFFPa with k =
11

1 2
2 3
3 4
4 0
5 6
6 7
7 4
8 7
9 5

10 5
11 1
12 1
13 10
14 10
15 8
16 8

Listing 1.2. Output
partitioning FDA us-
ing KaFFPa with k =
10

1 7
2 7
3 1
4 0
5 0
6 9
7 9
8 6
9 6

10 2
11 2
12 1
13 0
14 4
15 4
16 9
17 8
18 8
19 6
20 5
21 5
22 2
23 3
24 3

Listing 1.3. Output
partitioning FDA us-
ing KaFFPa with k =
12

1 1
2 1
3 1
4 8
5 8
6 0
7 2
8 5
9 5

10 4
11 4
12 3
13 7
14 7
15 6
16 2
17 11
18 11
19 5
20 9
21 9
22 3
23 10
24 10
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LDM and pBrakeTorqueMap get together in one partition. Since there is no flag
in the EAST-ADL meta-model to identify diagnose components, we are using a
naming schema (the prefix “Diag ”) to recognize these components.

For KaFFPa we discuss two outputs with k = 10 (number of partitions
and solo components in SER analysis excluding the diagnose components) and
k = 12 (including diagnose components). The model was simplified for the paper
and the expert review by just using pBrakePedalLDM and pGlobalBrakeCon-
troller, while not explicitly modeling the diagnose components and the Brake-
ConrollerRequests pt for the KaFFPa input file. The lines to component mapping
is as follows: 1: pBrakePedalSensor, 2: pBrakePedalLDM, 3: pBrakeTorqueMap,
4: pHW Encoder RR, 5: pLDM Sensor RR, 6: pHW Encoder RL, 7: pLDM -
Sensor RL, 8: pHW Encoder FR, 9: pLDM Sensor FR, 10: pHW Encoder FL,
11: pLDM Sensor FL, 12: GlobalBrakeController, 13: ABS RR Pt, 14: pLDM -
Brake RR, 15: pHW Brake RR, 16: ABS RL Pt, 17: pLDM Brake RL, 18: pHW -
Brake RL, 19: ABS FR Pt, 20: pLDM Brake FR, 21: pHW Brake FR, 22: ABS -
FL Pt, 23: pLDM Brake FL, 24: pHW Brake FL.

Fig. 6. Zoom into KaFFPa partitioning results (k = 10 and k = 12) of the FDA
Brake-by-Wire Example.

In comparison to the SER analysis results, a noticeable difference in the
KaFFPa results for k = 10 and k = 12 is that all encoder and sensor elements
are in a partition together with the ABS component. Figure 6 shows an example
of the partitions for the set of elements to control the front right brake. For List-
ing 1.2 these are the block IDs 6 and 5 and for Listing 1.3 the block IDs 5 and 9.
This shows the difference to the SER characteristic, there all input edges have
to be routed over a single entry node, while KaFFPa does partitioning on undi-
rected graphs. From the expert review point of view, the SER results are more
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useful to get an understanding which groups of components may be executed
independently whereas KaFFPa tries minimizing the cutting. An additional dif-
ference in the partitioning for k = 10 is that the components pBrakePedalSensor,
pBrakePedalLDM and pBrakeTorqueMap do not form one partition. While the
first two form a partition (block ID 7), the pBrakeTorqueMap is placed together
with the GlobalBrakeController (block ID 1). While this may be an optimal
choice from the algorithms perspective, it would not be the natural one of an
engineer. We evaluated the KaFFPa output for values of k from [8, 16], but did
not find more useful sets for our approach.

In summary, the results of the SER are preferable for identifying independent
parts from the data flow perspective, while the KaFFPa partitions optimize the
data throughput. An open point is how to determine the value of k to get results,
which help the engineer understanding the architecture. Since the technical ar-
chitecture, which the systems is deployed on, is in most cases heterogeneous, k
equals number of ECUs or cores may not be a useful selection.

Using the analysis results, an engineer can check if the transition from the
analysis architecture to the design architecture is sound (e.g., having a closer
look, why one partition is now missing) and link the partitioned elements to
elements of the HDA. This allocation is supported by the key figures, which can
be calculated for the partitions.

7 Related Work

Using the KaHIP framework, the KaFFPa offers an option to perform a process
mapping communication and topology aware process mapping developed by [25].
It was designed to address the mapping problem on modern supercomputer sys-
tems and several assumptions have been made. The hardware topology is hierar-
chically organized and every hierarchy level is identical. For example, every node
in the topology has the same number of processors and every processor the same
number of cores. This also applies to the distance value of the communication
links inside each hierarchy level, which is assumed to be identical. On the other
hand, automotive technical system architectures are very heterogeneous, contain-
ing different bus systems (high/low data transfer rates, non-/deterministic, ...)
and ECUs (high/low performance, different architectures, ...). In addition, there
are timing and safety requirements that require certain properties of individual
hardware elements and thus constrain the mapping. Considering the differences,
the KaFFPa process mapping is not a useful option for our problem domain,
specifically for the HDA allocation task.

Marinescu et al. [16] propose a modeling extension for EAST-ADL and model
analysis with the focus on resource-usage. The analysis is applied on the FDA
using a priced timed automata to predict resource usage and optimizing resource
utilization. In contrast to our approach, theirs is focusing on resource usage and
allocation, while ours is proposing a general extension to describe partitions
and algorithms focusing on the analysis of data dependencies. A mapping of
parts of our extension to theirs is possible, e.g., EstimatedMemorySize (ours)
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to MemoryConstraint (theirs). In the development process, their resource-usage
analysis is placed after ours during the development of the Design Level elements.

Walker et al. [29] have developed a multi-objective optimization approach for
EAST-ADL system architectures. Such an automation to rapidly explore archi-
tecture variants enables system designers to focus on the challenging parts. Their
framework allows the connection of various analyses using an Analysis Wrapper.
The analyses are performed independently and just provide their results to the
optimization engine. This extension mechanism would make it possible to use
our partitioning analysis in their framework. However, there has to be done fur-
ther research how to derive and rate quantitative criteria for the optimizer from
the partitioning models.

8 Conclusion and further Research

In this paper, we presented an approach to support system designers during the
development process by doing partitioning on functional architectures. There-
fore, we proposed an extension to the EAST-ADL meta-model to capture par-
titions without the need to alter the architecture. Additionally two elements
are added to the extension to extend the analysis with additional information
concerning the memory consumption and executing time of functions. These
elements can be used to calculate key figure values of the partitions to get a
better understanding of them. We presented three algorithms (SCC, SER and
KaFFPa) to perform an automated analysis for partitions on the architectures
of the Analysis and Design Level (FAA and FDA). These analyses are indepen-
dent of the partitioning extension, if no persistence of the partitions is needed to
perform further analysis. Moreover, we applied the new approach to a small case
study from the EAST-ADL consortium and specifically done an expert review
to compare the SER and KaFFPa results with regard to our goals.

The results concerning our approach are very promising and in the next
steps we will evaluate it with additional scenarios. The best working approach
for getting a better understanding of the architecture and its potential for par-
allelization, seems to the SER analysis. We will further refine the introduced
analysis for partitioning of functional models on these levels of abstraction. We
think the proposed approach is not limited to the EAST-ADL modeling lan-
guage and can be transferred to similar concepts even outside the automotive
domain. Examples for other languages are SysML6 and AADL7, both strongly
influenced the EAST-ADL specification [3].
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evanz eines Multicore-Ökosystems für künftige Embedded Systems: Posi-
tionspapier zur Bedeutung, Bestandsaufnahme und Potentialermittlung der

6 Issued by the OMG, http://www.omgsysml.org/
7 Issued by the SAE International, http://www.aadl.info/



Partitioning EAST-ADL Models 21

Multicore-Technologie für den Industrie- und Forschungsstandort Deutsch-
land. https://www.bicc-net.de/workspace/uploads/subfeatures/downloads/

positionspapier_multicore_oekosys-1323952449.pdf (accessed July 15, 2019)
(2011)

2. AUTOSAR: AUTOSAR website. https://www.autosar.org/ (accessed July 15,
2019) (2019)

3. Blom, H., De-Jiu, C., Kaijser, H., LÃ¶nn, H., Papadopoulos, Y., Reiser, M.O.,
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