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POINTWISE A POSTERIORI ERROR ESTIMATES FOR
MONOTONE SEMI-LINEAR EQUATIONS

RICARDO H. NOCHETTO, ALFRED SCHMIDT, KUNIBERT G. SIEBERT,
AND ANDREAS VEESER

Abstract. We derive upper and lower a posteriori estimates for the maxi-
mum norm error in finite element solutions of monotone semi-linear equations.

The estimates hold for Lagrange elements of any fixed order, non-smooth non-

linearities, and take numerical integration into account. The proof hinges on
constructing continuous barrier functions by correcting the discrete solution

appropriately, and then applying the continuous maximum principle; no geo-

metric mesh constraints are thus required. Numerical experiments illustrate
reliability and efficiency properties of the corresponding estimators and inves-

tigate the performance of the resulting adaptive algorithms in terms of the

polynomial order and quadrature.

1. Introduction

Adaptive finite elements methods (AFEM) are a popular and efficient method
for the approximation of solutions to partial differential equations (PDE). A crucial
theoretical step in designing these methods are a posteriori error estimates that
relate the error to quantities that are computable in terms of the discrete solution
and data. For an overview on these methods, techniques, and their development,
we refer to the books [2, 25].

Most a posteriori error estimates have been derived for the energy norm error. In
contrast, the pointwise error has been investigated much less and, up to now, only
for linear finite elements: [9, 16] analyze the linear elliptic problem, while [18, 19]
treat the elliptic obstacle problem.

In this article we consider the Dirichlet problem for a monotone semi-linear PDE,

(1.1) −∆u+ f(·, u) = 0 in Ω, u = g on ∂Ω,

in a polyhedral domain Ω ⊂ Rd with d ≥ 2, and approximate its solution with
continuous finite elements of any fixed polynomial degree; we thus study the so-
called h-AFEM. Instead of the Laplacian ∆, we could examine more general elliptic
operators with variable coefficients, but the analysis would inevitably get much
more involved, which we want to avoid here. Denoting the finite element solution
by uh, our main result (see Theorem 4.2) reads

(1.2) ‖u− uh‖∞;Ω ≤ η∞ + ηd + ηd/2.

The contribution η∞ estimates the residual in an appropriate dual norm and the
approximation of the boundary values, while ηd + ηd/2 estimates the error due to
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numerical integration. The proof of (1.2) hinges on the construction of barrier
functions for (1.1). They are obtained by suitably altering the discrete solution
uh via the Riesz representation w ∈ H̊1(Ω) of the residual, namely uh ± w, plus
additional constant corrections (vertical shifts). This idea has already been used
by Nochetto, Siebert, and Veeser for the elliptic obstacle problem [18, 19], but the
analysis here is simpler and thus more transparent. Complementing local lower
bounds are also established (see Theorem 4.3). Several comments are in order:
• For the linear case, where f does not depend on its second argument, the
aforementioned estimates generalize [9, 16] in two aspects: the polynomial degree
is not restricted to one and numerical integration is taken into account. They
are both novel features in maximum norm error analysis.
• The use of numerical integration for (1.1) corresponds to the discretization of
the constraint in the obstacle problem, where the nonlinearity f is a maximal
monotone graph. The treatment of quadrature here and discretization of the
constraint in [18, 19] are different. We propose a novel multidegree splitting which
evaluates a posteriori the effect of quadrature and does not require smoothness
of f(x, ·) beyond continuity (see §3.2).
• In (1.2) the contribution ηp, p = d/2, d,∞, is the `p-norm of the corresponding
local indicators. These contributions thus “accumulate” in different ways. An
estimator with such a property was also used in [18] and handled with an appro-
priate two-step marking strategy. Here we use a similar strategy and investigate
its performance in Remark 4.4 and §5.
• Since we use the continuous maximum principle to deal with barrier functions,
our current results are neither restricted to polynomial degree one nor impose
any geometric mesh constraints such as weak acuteness.
We study the Riesz representation w of the residual in §3, whereas we construct

barrier functions and prove error estimates in §4. We conclude in §5 with several nu-
merical experiments which explore reliability, efficiency, and performance of AFEM
for different polynomial degrees, quadrature, and interesting model problems; the
implementation has been realized within the toolbox ALBERTA [23, 24].

2. The Continuous Problem and its Discretization

Let Ω be a bounded, polyhedral, not necessarily convex domain in Rd with
d ≥ 2. The nonlinearity f : Ω̄× R → R is assumed to be continuous in Ω̄× R and
non-decreasing in the second argument; however, we could also treat a piecewise
continuous f in the first argument, with respect to the underlying mesh. The
Dirichlet boundary datum g satisfies g ∈ H1(Ω) ∩ C0,α(Ω̄) with 0 < α ≤ 1.

Let u be a weak solution of (1.1). More precisely, if we write 〈ϕ, ψ〉 for
∫
Ω
ϕψ,

then u satisfies

(2.1) u ∈ g + H̊1(Ω) : 〈∇u, ∇v〉+ 〈f(·, u), v〉 = 0 for all v ∈ H̊1(Ω).

It is well known that such u exists and that it is unique [10, Section 9.3], [14, Section
III.3]. Since x 7→ f(x, u(x)) is a bounded function, then regularity theory for linear
elliptic PDE ensures that u is Hölder continuous in Ω̄ [10, 11, 12, 14].

Therefore, it makes sense to approximate u in L∞(Ω). To this end, we shall use
finite elements of any order and numerical integration for the nonlinearity f . Given
a conforming and shape-regular triangulation Th of Ω̄, made of closed elements T ,
let Vh indicate the space of continuous piecewise polynomial finite element functions
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of degree ` ≥ 1. We set V̊h := Vh ∩ H̊1(Ω) and gh := Ihg, where Ih is the Lagrange
interpolation operator onto Vh.

For ϕ, ψ ∈ C0(Ω), we define

(2.2) 〈ϕ, ψ〉h :=
∑

T∈Th

QT (ϕψ),

where QT is a quadrature formula for the integral over T ∈ Th that is induced by
a fixed quadrature formula Q̂ on a reference element T̂ . We suppose that Q̂ has
positive weights, is exact for polynomials of degree q with

(2.3) q ≥ max{2`− 2, 1}

and that all quadrature points are contained in T̂ ; q ≥ 1 is the order of Q̂. Restric-
tion (2.3) is consistent with the a priori analysis [8, Section 4.1], and is crucial to
obtain optimal convergence rates for uniform refinement which can be a particular
case of adaptive refinement.

The discrete problem then reads as follows:

(2.4) uh ∈ gh + V̊h : 〈∇uh, ∇vh〉+ 〈f(·, uh), vh〉h = 0 for all vh ∈ V̊h.

Thanks to the positivity of the weights in the quadrature formulae, the discrete
nonlinearity is monotone and thus Problem (2.4) admits a unique solution; see [20].

3. Estimation of Residual and its Riesz Representation

Key ingredients of our a posteriori error analysis are the residual Rh ∈ H−1(Ω),

(3.1)
〈Rh, ϕ〉 = −〈∇uh, ∇ϕ〉 − 〈f(·, uh), ϕ〉

= 〈∇(u− uh), ∇ϕ〉+ 〈f(·, u)− f(·, uh), ϕ〉

for all ϕ ∈ H̊1(Ω), and its Riesz representation w ∈ H̊1(Ω) satisfying

(3.2) 〈∇w, ∇ϕ〉 = 〈Rh, ϕ〉 for all ϕ ∈ H̊1(Ω).

In this section, we first establish a posteriori estimates of Rh in negative norms
which are then used to derive pointwise estimates for w. Correcting the discrete
solution uh with w yields barriers for the true solution u. These barriers combined
with the pointwise control of w by estimates of Rh finally lead to a posteriori control
of the pointwise error ‖u− uh‖∞;Ω; see §4.1 and §4.2.

3.1. Estimating the residual. We start by introducing some notation. Let Γh be
the union of (closed) inter-element sides (edges in 2d and faces in 3d, respectively)
of Th and [[∂nuh]] be the jumps of the normal derivatives of uh across inter-element
sides. More precisely, given a common side γ = T+ ∩ T− ⊂ Γh, we have on γ

[[∂nuh]] =
(
∇uh|T+ −∇uh|T−

)
· n,

where n is the normal of γ that points from T− to T+.
Let hT be the diameter of an element T and denote by h ∈ L∞(Ω) the piecewise

constant function with h|T̊ = hT , T ∈ Th; recall that elements T ∈ Th are closed. In
the following analysis the symbol ‘4’ stands for ‘≤ C’, where the generic constant
C does not depend on h but may depend on
• the shape-regularity of the partition Th,
• the quadrature formula defined on the reference element,
• the domain Ω and its dimension d.
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By Πh we denote the Clement interpolation operator into the space of continuous
finite element functions that are piecewise affine over Th and have homogeneous
boundary values. The following properties are valid for all 1 ≤ p ≤ ∞, T ∈ Th

‖Πhϕ‖p;T 4 ‖ϕ‖p;Uh(T ) ϕ ∈ Lp(Ω),(3.3a)

‖∇Πhϕ‖p;T 4 ‖∇ϕ‖p;Uh(T ), ϕ ∈ W̊ 1
p (Ω),(3.3b)

‖ϕ−Πhϕ‖p;T 4 hT ‖∇ϕ‖p;Uh(T ) ϕ ∈ W̊ 1
p (Ω),(3.3c)

‖ϕ−Πhϕ‖1;T 4 h2
T ‖D2ϕ‖1;Uh(T ) ϕ ∈W 2

1 (Ω) ∩ H̊1(Ω).(3.3d)

Hereafter, Uh(T ) denotes the set of all triangles T ′ ∈ Th that have a non-empty
intersection with T .

We now start by estimating the residual Rh. In view of the definition (2.4) of
uh, we may write

(3.4) 〈Rh, ϕ〉 = 〈Rh, ϕ−Πhϕ〉+
〈
f(·, uh),Πhϕ

〉
h
−

〈
f(·, uh),Πhϕ

〉
for all ϕ ∈ H̊1(Ω). The estimation of the first term is fairly standard; for conve-
nience of the reader, we give the main steps. Piecewise integration by parts yields

(3.5) 〈Rh, ϕ−Πhϕ〉 =
∫

Γh

[[∂nuh]] (ϕ−Πhϕ) +
∫

Ω

[
∆uh − f(·, uh)

]
(ϕ−Πhϕ).

Here, ∆uh has to be understood element-wise. To simplify notation, we define for
any 1 ≤ p ≤ ∞ the residual indicator Rp over T ∈ Th by

(3.6) Rp|T := h
−1/p′

T |T |−1/p‖ [[∂nuh]] ‖p;∂T\∂Ω + |∆uh − f(·, uh)|,
where p′ = p/(p − 1) is the dual exponent of p (with the usual conventions for
p = 1,∞); the first term is the jump residual and the second one is the interior
residual.

Lemma 3.1 (Residual estimates). For any 1 ≤ p ≤ ∞, we have

〈Rh, ϕ−Πhϕ〉 4 ‖h2R∞‖∞;Ω‖D2ϕ‖1;Ω, for all ϕ ∈W 2
1 (Ω) ∩ H̊1(Ω)(3.7a)

〈Rh, ϕ−Πhϕ〉 4 ‖hRp‖p;Ω‖∇ϕ‖p′;Ω for all ϕ ∈ W̊ 1
p′(Ω).(3.7b)

Proof. Estimate the right hand side of (3.5) with the help of the stability and
approximation properties of the Clement interpolant (3.3) as well as a scaled trace
inequality. �

3.2. Estimating the quadrature error. Let us turn to the last two terms in
(3.4), which are related to the quadrature error. Defining Eh ∈ H−1(Ω) by

(3.8) 〈Eh, ϕ〉 =
〈
f(·, uh),Πhϕ

〉
h
−

〈
f(·, uh),Πhϕ

〉
for all ϕ ∈ H̊1(Ω),

we have

(3.9) 〈Eh, ϕ〉 =
∑

T∈Th

[
QT

(
f(·, uh)Πhϕ

)
−

∫
T

f(·, uh)Πhϕ
]

=:
∑

T∈Th

ET

(
fhϕh

)
.

Hereafter, we use the abbreviations fh := f(·, uh), ϕh := Πhϕ, and ET (·) stands
for the local quadrature error on T , T ∈ Th. In view of our assumptions on QT ,
the error ET satisfies

|ET (ψ)| =
∣∣QT (ψ)−

∫
T

ψ
∣∣ ≤ 2|T | ‖ψ‖∞;T for all ψ ∈ C0(T )(3.10a)
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and

ET (ψ) = 0 for all ψ ∈ Pq(T ).(3.10b)

In order to proceed further, it is useful to notice the following facts:

• the cancellations (3.10b) in the quadrature error are related to the product fhϕh

and not only to fh or the discrete test function ϕh;
• in general, fh = f(·, uh) is not polynomial and thus usually fhϕh can not be

integrated exactly;
• we do not suppose that the nonlinearity f is differentiable; hence, an application

of the Bramble-Hilbert lemma involving derivatives of fhϕh and thus of f is not
possible.

We overcome these difficulties by a multidegree splitting of the consistency error
using different interpolation/projection operators. The idea is based on the method
used in [8, Section 4.1] for estimating the quadrature error in the a priori analysis.

Lemma 3.2 (Consistency estimates). Let q ≥ ` be the quadrature order. For ψ ∈
C0(Ω̄) and j = q, q − 1 let Ij

hψ be any element-wise approximation of ψ satisfying
Ij
hψ|T in Pj(T ), T ∈ Th. For 1 ≤ p ≤ ∞, let | · |p be the `p(R#Th) norm and εj

p the
sequence given by

(3.11) εj
p,T = |T |1/p‖f(·, uh)− Ij

hf(·, uh)‖∞;T for all T ∈ Th.

The following estimates for the consistency error hold

〈Eh, ϕ〉 4
[
|εq

d/2|d/2 + |hεq−1
d |d

]
‖D2ϕ‖1;Ω(3.12a)

for all ϕ ∈W 2
1 (Ω) ∩ H̊1(Ω) and

〈Eh, ϕ〉 4
[
|h−1εq

d/2|d/2 + |εq−1
d |d

]
‖∇ϕ‖p′;Ω(3.12b)

for all ϕ ∈ W̊ 1
p′(Ω) and 1 ≤ p ≤ ∞ with p′ = p/(p− 1) the dual exponent of p.

Remark 3.3 (Choice of Ij
h). The optimal choice for Ij

hfh|T would be the best
approximation in L∞ of fh = f(·, uh) in Pj(T ). In general, for j > 0 this best
approximation is not easy to compute. Since Ij

h can be any approximation operator,
we have used the computationally convenient Lagrange interpolation operator into
the space of piecewise polynomials of degree ≤ j in our implementation. Note that,
in view of the stability of Lagrange interpolation in C0, this is a quasi-optimal
choice.

Proof of Lemma 3.2. In addition to the operators Ij
h we need the L2-projection P 0

h

onto the space of piecewise constant functions over Th, i. e. P 0
hψ|T = 1

|T |
∫

T
ψ for

ψ ∈ L2(Ω) and T ∈ Th. As a first step, we decompose the discrete test function ϕh

into

ϕh = P 0
hϕh + [ϕh − P 0

hϕh].
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Using representation (3.9) along with (3.10b) – quadrature QT is exact of degree
q ≥ 1 – and the fact that ϕh|T ∈ P1(T ) for all T ∈ Th, this splitting implies

〈Eh, ϕ〉 =
∑

T∈Th

ET

(
fhϕh

)
=

∑
T∈Th

[
ET

(
fhP

0
hϕh

)
+ ET

(
fh[ϕh − P 0

hϕh]
)]

=
∑

T∈Th

ET

(
[fh − Iq

hfh]P 0
hϕh

)
+

∑
T∈Th

ET

(
[fh − Iq−1

h fh][ϕh − P 0
hϕh]

)
.(3.13)

We now estimate the sums on the right hand side of (3.13) separately and start
with the first one. The stability of quadrature (3.10a) readily implies

ET

(
[fh − Iq

hfh]P 0
hϕh

)
≤ 2hd

T ‖fh − Iq
hfh‖∞;T ‖P 0

hϕh‖∞;T

for each element T ∈ Th. Using the stability of P 0
h in L∞(T ), an inverse estimate,

and the local stability property (3.3a) of Πh, we obtain for the second factor

‖P 0
hϕh‖∞;T ≤ ‖ϕh‖∞;T 4 h2−d

T ‖ϕh‖d/(d−2);T 4 h2−d
T ‖ϕ‖d/(d−2);Uh(T ),

using the convention d/(d − 2) = ∞ for d = 2. Thus summing over T ∈ Th, the
Hölder inequality in R#Th with p = d/2 and p′ = d/(d− 2) gives

(3.14)

∑
T∈Th

ET

(
[fh − Iq

h]P 0
hϕh

)
4

∑
T∈Th

h2
T ‖fh − Iq

hfh‖∞;T ‖ϕ‖d/(d−2);Uh(T )

≤

[ ∑
T∈Th

hd
T ‖fh − Iq

hfh‖d/2
∞;T

]2/d

‖ϕ‖d/(d−2);Ω 4 |εq
d/2|d/2‖D2ϕ‖1;Ω,

as a consequence of definition (3.11) of εq
d/2 and the global Poincaré-type inequality

‖ϕ‖d/(d−2);Ω 4 ‖D2ϕ‖1;Ω. The latter follows from [11, Corollary 7.11] for d > 2
and [6, Lemma 4.3.4] for d = 2, after removing the lower order terms in ‖ϕ‖W 2

1 (Ω)

because ϕ has zero trace.
For the second sum in (3.13), we use again quadrature stability (3.10a) to get

ET

(
[fh − Iq−1

h fh] [ϕh − P 0
hϕh]) 4 hd

T ‖fh − Iq−1
h fh‖∞;T ‖ϕh − P 0

hϕh‖∞;T .

Proceeding as before, now with stability property (3.3b) of Πh, we obtain

‖ϕh − P 0
hϕh‖∞;T 4 h1−d

T ‖ϕh − P 0
hϕh‖d/(d−1);T

4 h2−d
T ‖∇ϕh‖d/(d−1);T 4 h2−d

T ‖∇ϕ‖d/(d−1);Uh(T ).

As above, we combine this with an Hölder inequality and the Poincaré-type in-
equality ‖∇ϕ‖d/(d−1);Ω 4 ‖D2ϕ‖1;Ω [10, Theorem 2 - p. 265] to write

(3.15)

∑
T∈Th

ET

(
[fh − Iq−1

h fh][ϕh − P 0
hϕh]

)
4

∑
T∈Th

h2
T ‖fh − Iq−1

h fh‖∞;T ‖∇ϕ‖d/(d−1);Uh(T )

4

[ ∑
T∈Th

h2d
T ‖fh − Iq−1

h fh‖d
∞;T

]1/d

‖D2ϕ‖1;Ω 4 |hεq−1
d |d‖D2ϕ‖1;Ω.

Estimate (3.12a) is now a consequence of (3.13) combined with (3.14) and (3.15).
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We proceed similarly to show (3.12b), and only give the main steps. To estimate
the first contribution in (3.13) we now use

‖P 0
hϕh‖∞;T 4 h1−d

T ‖ϕh‖d/(d−1);T 4 h1−d
T ‖ϕ‖d/(d−1);Uh(T ),

whence∑
T∈Th

ET

(
[fh − Iq

hfh]P 0
hϕh

)
4

∑
T∈Th

hT ‖fh − Iq
hfh‖∞;T ‖ϕ‖d/(d−1);Uh(T )

≤ |h−1εq
d/2|d/2;Ω

[ ∑
T∈Th

‖ϕ‖d/(d−2)
d/(d−1);Uh(T )

](d−2)/d

= |h−1εq
d/2|d/2;Ω‖ϕ‖d/(d−1);Ω,

because |ξ|d/(d−2) ≤ |ξ|d/(d−1) for all ξ ∈ R#Th . The Poincaré-type inequality
‖ϕ‖d/(d−1);Ω 4 ‖∇ϕ‖p′;Ω, valid for all p′ ≥ 1, finally yields

(3.16)
∑

T∈Th

ET

(
[fh − Iq

hfh]P 0
hϕh

)
4 |h−1εq

d/2|d/2;Ω‖∇ϕ‖p′;Ω.

For the second term in (3.13), we use

‖ϕh − P 0
hϕh‖∞;T 4 h1−d

T ‖ϕ‖d/(d−1);Uh(T )

together with similar arguments to those above to arrive at

(3.17)
∑

T∈Th

ET

(
[fh − Iq−1

h fh][ϕh − P 0
hϕh]

)
4 |εq−1

d |d‖∇ϕ‖p′;Ω.

Estimate (3.12b) is then a consequence of (3.13), (3.16), and (3.17). �

Combining the residual estimates (3.7) and quadrature estimates (3.12), in con-
junction with (3.4), directly implies the following estimates for the negative norms

|||ψ|||−2,∞;ω := sup
{
〈ψ, ϕ〉 | ϕ ∈ H̊1(ω) ∩W 2

1 (ω), ‖D2ϕ‖1;ω ≤ 1
}
,

|||ψ|||−1,p;ω := sup
{
〈ψ, ϕ〉 | ϕ ∈ W̊ 1

p′(ω), ‖∇ϕ‖p′;ω ≤ 1
}
,

defined for any open subset ω ⊂ Ω, 1 ≤ p ≤ ∞ and p′ = p/(p − 1), the dual
exponent of p; the use of ω ⊂ Ω will be essential in §4.2.

Corollary 3.4 (Control of the residual). Let the residual Rh be given by (3.1).
Then, the following negative-norm estimates hold true

|||Rh|||−2,∞;Ω 4 ‖h2R∞‖∞;Ω + |εq
d/2|d/2 + |hεq−1

d |d(3.18a)

and

|||Rh|||−1,p;Ω 4 ‖hRp‖∞;Ω + |h−1εq
d/2|d/2 + |εq−1

d |d.(3.18b)

Remark 3.5 (Relation between residual and error). Having established in (3.18a)
an estimate for the residual norm |||Rh|||−2,∞;Ω, one might think that this would be
equivalent to the pointwise error ‖u− uh‖∞;Ω. In §4.2 we will show

‖u− uh‖∞;Ω 4 ηh,

where the error estimator ηh contains the terms from the right hand side of (3.18a)
plus the boundary correction term ‖g−gh‖∞;∂Ω. Integration by parts in (3.1) yields
the following identity for any function ϕ ∈W 2

1 (Ω) ∩ H̊1(Ω)

〈Rh, ϕ〉 = −〈u− uh, ∆ϕ〉+
∫

∂Ω

(u− uh)∂νϕ+ 〈f(·, u)− f(·, uh), ϕ〉 .



8 R.H. NOCHETTO, A. SCHMIDT, K.G. SIEBERT, AND A. VEESER

Hence, we infer that for any subdomain ω ⊂ Ω

(3.19) |||Rh|||−2,∞;ω 4 ‖u− uh‖∞;ω + |||f(·, u)− f(·, uh)|||−2,∞;ω

holds just as well

(3.20) |||f(·, u)− f(·, uh)|||−2,∞;Ω 4 |||Rh|||−2,∞;Ω + ‖u− uh‖∞;Ω 4 ηh.

From these estimates we see that error ‖u − uh‖∞;Ω and residual |||Rh|||−2,∞;Ω do
not relate directly. For |||Rh|||−2,∞;Ω to be an effective error measure we need to
enlarge the error concept and incorporate |||f(·, u)− f(·, uh)|||−2,∞;Ω.

Remark 3.6 (Order of consistency estimators). The proof of Lemma 3.2 only re-
quires q ≥ `. However, since q ≥ max{2` − 2, 1} > ` for ` > 2 and interpolation
operators of order q and q − 1 occur in the definitions of εq

d/2 and εq−1
d , we may

wonder how our a posteriori error analysis compares with the well established a pri-
ori error analysis [8, Section 4.1]. We first note that the test for the residual Rh in
(3.4) involves only piecewise linear polynomials rather than polynomials of degree
≤ `. This allows us to exploit more cancellation in (3.13) than it is possible in the a
priori analysis. For smooth functions f(x, u), the consistency estimators may decay
faster than the residual estimator ‖h2R∞‖∞;Ω. On the other hand for rough func-
tions this may not be the case; we explore this issue further in Remark 4.4. In any
event, it is the collective contribution of both residual and consistency estimators
what controls |||Rh|||−2,∞;Ω and eventually the pointwise error.

3.3. Estimating the Riesz representation. In this section, we use (3.18) in
order to prove an a posteriori L∞ estimate for the Riesz projection w = (−∆)−1Rh.
We establish this bound in three steps: We first bound w in a Hölder space, thus
stronger than L∞(Ω). We then give an estimate weaker than ‖w‖∞;Ω, and finally
we combine these two estimates. We use the same techniques as in [18] but, since
they are not standard, we repeat them here for the reader’s convenience.

Lemma 3.7 (Hölder continuity of w and its control). The Riesz representation w of
the residual Rh is Hölder continuous. More precisely, for every p > d there exists
α ∈ (0, 1) such that

‖w‖C0,α(Ω̄) ≤ C |||Rh|||−1,p;Ω ,(3.21)

where the constant C depends on Ω and p, and blows up as p ↓ d.

Proof. Estimate (3.21) is a classical Hölder estimate of De Giorgi and Nash (see
e. g. [14, Theorem C.2]). �

Recalling estimate (3.18b) for |||Rh|||−1,p;Ω we realize that the right hand side of
(3.21) is a first order estimator only, while we have to estimate ‖w‖∞;Ω by a second
order estimator (assuming a smooth nonlinearity f). A key step for recovering a
second order estimator is performed next.

Since w is continuous and satisfies w|∂Ω = 0, there exists a point x0 ∈ Ω with
|w(x0)| = ‖w‖∞;Ω. Invoking the uniform cone property of Ω [1, Section 4.7], we can
choose a ball B with radius ρ such that B ⊂ Ω, dist(x0, B) 4 ρ, and ρ = Chβ

min,
where hmin is the minimal meshsize of Th, i. e.

hmin = min
T∈Th

hT ,
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and β > 1 will be chosen later. Now, let δ ∈ C∞
0 (Ω) be a regularization of the

Dirac mass satisfying

(3.22) supp δ ⊂ B,

∫
Ω

δ = 1, 0 ≤ δ 4 ρ−d.

Taking x1 ∈ B such that 〈δ, w〉 = w(x1), we may write

(3.23) ‖w‖∞;Ω ≤ | 〈δ, w〉 |+ |w(x0)− w(x1)|.
Lemma 3.7 implies the following estimate for the second term of (3.23):

(3.24) |w(x0)− w(x1)| 4 hαβ
min |||Rh|||−1,p;Ω .

A bound for the first term in (3.23) is established in the next lemma.

Lemma 3.8 (Estimate for 〈δ, w〉). The regularized Dirac mass δ of (3.22) and the
Riesz representation w of the residual Rh satisfy

|〈δ, w〉| ≤ C | log hmin|2 |||Rh|||−2,∞;Ω ,

where the geometric constant C depends on β via ρ.

Proof. Introducing the regularized Green’s function G ∈ H̊1(Ω) defined by

〈∇G, ∇ϕ〉 = 〈δ, ϕ〉 for all ϕ ∈ H̊1(Ω),

we obtain in light of (3.2)

|〈δ, w〉| = |〈∇G, ∇w〉| = |〈Rh, G〉| 4 |||Rh|||−2,∞;Ω ‖D
2G‖1;Ω.

The assertion of the lemma now follows by applying the following estimate of No-
chetto [16] in two and of Dari et al. [9] in three space dimensions for the second
derivatives of the regularized Green’s function in any polyhedral domain:

‖D2G‖1;Ω 4 | log hmin|2.
The constant hidden in 4 depends on β via ρ. �

Combining the two previous lemmas yields the main result of this section.

Proposition 3.9 (Pointwise estimate of |w|). The maximum norm of the Riesz
representation w of the residual Rh satisfies the a posteriori bound

(3.25) ‖w‖∞;Ω 4 | log hmin|2
[
‖h2R∞‖∞;Ω + |εq

d/2|d/2 + |hεq−1
d |d

]
.

Proof. Combining (3.23) and (3.24) together with Lemma 3.8 yields

(3.26) ‖w‖∞;Ω 4 | log hmin|2 |||Rh|||−2,∞;Ω + hαβ
min |||Rh|||−1,p;Ω .

Estimate (3.18a)

|||Rh|||−2,∞;Ω 4 ‖h2R∞‖∞;Ω + |εq
d/2|d/2 + |hεq−1

d |d
directly gives the desired second order estimator for the first term of the right hand
side of (3.26).

Let p > d be fixed and let α ∈ (0, 1) be given by Lemma 3.7. Now choosing
β = 1/α, we see hαβ

min = hmin ≤ hT for all T ∈ Th and, recalling (3.18b), we achieve
the second order estimator also for the second term of (3.26)

hαβ
min |||Rh|||−1,p;Ω 4 hmin

[
‖hRp‖∞;Ω + |h−1εq

d/2|d/2 + |εq−1
d |d

]
4 ‖h2R∞‖∞;Ω + |εq

d/2|d/2 + |hεq−1
d |d,
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where we have used a Hölder inequality for the first term. �

4. A Posteriori Error Estimates

The a posteriori upper bound for the pointwise error ‖u− uh‖∞;Ω is established
in two steps. In the first step, the Riesz projection w of the residual Rh is used for
constructing barrier functions for the true solution. These barrier functions together
with the pointwise estimate (3.25) of w then directly yield the upper bound.

4.1. Barrier functions for the true solution. The basic idea for the construc-
tion of the barrier functions for the true solution is a correction of the discrete
solution uh by means of w and a term due to approximation of boundary values.

Proposition 4.1 (Upper and lower barriers). Let uh be the discrete solution given
by (2.4), w be the Riesz representation (3.2) of the residual Rh, and gh be an
approximation of boundary data g. Then, the functions

u∗ := uh + w + ‖w‖∞;Ω + ‖g − gh‖∞;∂Ω(4.1a)

and

u∗ := uh + w − ‖w‖∞;Ω − ‖g − gh‖∞;∂Ω(4.1b)

are an upper, respectively lower barrier to the true solution u of (2.1), i. e.

u∗ ≤ u ≤ u∗ in Ω.

Proof. To establish that u∗ is an upper barrier of u, we let v = (u − u∗)+ =
max{u− u∗, 0} be the non-negative part of u− u∗. On ∂Ω, we have

u− uh − w − ‖w‖∞;Ω − ‖g − gh‖∞;∂Ω ≤ g − gh − ‖g − gh‖∞;∂Ω ≤ 0,

whence v = 0 on ∂Ω. By the definition (3.1) of the residual Rh we obtain

‖∇v‖2
2;Ω = 〈∇(u− u∗), ∇v〉 = 〈∇(u− uh), ∇v〉 − 〈∇w, ∇v〉

= 〈∇(u− uh), ∇v〉 − 〈Rh, v〉 = −〈f(·, u)− f(·, uh), v〉

= −
∫
{v>0}

[
f(·, u)− f(·, uh)

]
v dx.

Let x ∈ Ω with v(x) > 0. This implies u(x) > u∗(x) which gives

u(x) > uh(x) + w(x) + ‖w‖∞;Ω︸ ︷︷ ︸
≥0

+‖g − gh‖∞;∂Ω ≥ uh(x).

The monotonicity of f in the second argument then yields f(x, u(x)) ≥ f(x, uh(x))
for v(x) > 0 whence

[
f(x, u(x))− f(x, uh(x))

]
v(x) ≥ 0. Therefore

‖∇v‖2
2;Ω ≤ −

∫
{v>0}

[
f(x, u(x))− f(x, uh(x))

]
v(x) dx ≤ 0

which implies v ≡ 0 since v ≡ 0 on ∂Ω. Hence, we derived the upper bound u ≤ u∗.
To establish that u∗ is a lower barrier of u, we now use v = (u∗ − u)+ =

max{u∗ − u, 0}. As above v = 0 holds on ∂Ω, thanks to the correction term
−‖g−gh‖∞;∂Ω in the definition of u∗. Definition (3.1) of the residual Rh then gives

‖∇v‖2
2;Ω = 〈f(·, u)− f(·, uh), v〉 =

∫
{v>0}

[
f(·, u)− f(·, uh)

]
v dx.
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For points x ∈ Ω with v(x) > 0 we conclude

u(x) < uh(x) + w(x)− ‖w‖∞;Ω − ‖g − gh‖∞;∂Ω ≤ uh(x).

Monotonicity of f implies f(x, u(x)) ≤ f(x, uh(x)) for v(x) > 0, which yields

‖∇v‖2
2;Ω ≤

∫
{v>0}

[
f(x, u(x))− f(x, uh(x))

]
v(x) dx ≤ 0

and thus u∗ ≤ u. This is the asserted lower bound. �

4.2. Error estimator: Pointwise upper and lower bounds. A consequence
of the barriers (4.1) is the bound

(4.2) ‖u− uh‖∞;Ω ≤ 2‖w‖∞;Ω + ‖g − gh‖∞;∂Ω.

Pointwise control (3.25) of w in terms of the discrete solution and given data now
directly gives rise to the a posteriori error estimator

ηh = | log hmin|2
[
c0‖h2R∞‖∞;Ω + c1|εq

d/2|d/2 + c2|hεq−1
d |d

]
+ ‖g − gh‖∞;∂Ω.

Here hmin is the smallest meshsize, R∞ is the local residual, defined in (3.6), q is
the quadrature order (2.3), εj

p is the local consistency estimate, defined in (3.11),
and gh = Ihg is the approximation of boundary data in Vh. Finally, c0, c1, c2 are
the constants appearing in the analysis presented above, and may depend on q, the
shape regularity of the underlying triangulation Th, and Ω.

Theorem 4.2 (Reliability). Let u be the true solution given by (2.1) and uh the
discrete solution given by (2.4). Then the following a posteriori estimates hold

‖u− uh‖∞;Ω ≤ ηh, |||f(·, u)− f(·, uh)|||−2,∞;Ω 4 ηh.

Proof. The estimate for ‖u − uh‖∞;Ω is obvious in view of (3.25) and (4.2). The
estimate for |||f(·, u)− f(·, uh)|||−2,∞;Ω then directly follows from estimate (3.20) in
Remark 3.5. �

Finally, the lower bounds are proven with the standard techniques introduced by
Verfürth [25]. We also refer to [16, 18] for the L∞ analysis. We sketch the proofs
and start by defining data oscillation as follows:

osc(fh;ω) := ‖h2[f(·, uh)− f̄(·, uh)]‖∞;ω,

where ω is a union of elements and f̄ is a piecewise polynomial approximation of f of
degree ≥ q + 1 so that osc(fh;ω) is formally of higher order than any contribution
in ηh. We say that a local (global) indicator is locally (globally) efficient if it is
dominated by the local (global) error plus local (global) data oscillation.

Theorem 4.3 (Local efficiency). The residual indicator ‖h2R∞‖∞;Ω and boundary
datum indicator ‖g− gh‖∞;∂Ω are locally efficient. In particular, for all T ∈ Th the
bound
‖h2R∞‖∞;T + ‖g − gh‖∞;∂T∩∂Ω

4 ‖u− uh‖∞;ω(T ) + |||f(·, u)− f(·, uh)|||−2,∞;ω(T ) + osc(fh;ω(T ))

is valid, where ω(T ) is the union of all simplices in Th that share one side with
T . On the other hand, if q ≥ `− 1, the consistency indicators are locally efficient,
namely

εq
d/2,T + hT ε

q−1
d,T 4 ‖u− uh‖∞;ω(T ) + |||f(·, u)− f(·, uh)|||−2,∞;ω(T ) + osc(fh;ω(T )).
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Proof. Since g−gh = u−uh, the estimate for the boundary data indicator is trivial.
We now recall the definition (3.6) of R∞|T for T ∈ Th, and first deal with the

interior indicator. We again set fh = f(·, uh) and define f̄h = f̄(·, uh). Since
(∆uh − f̄h)|T is a polynomial of degree k ≥ q + 1, we have

‖∆uh − f̄h‖∞;T 4
∫

T

(∆uh − f̄h)ζT bT

for a suitable ζT ∈ Pk(T ) with ‖ζT ‖1;T ≤ 1; here bT is a suitable bubble function
in W 2

1 (T ) ∩ H̊1(T ); see [16, 18, 25]. Integration by parts and (2.1) yield∫
T

(∆uh − f̄h)ζT bT = 〈Rh, ζT bT 〉+
∫

T

(fh − f̄h)ζT bT ,

whence, with the aid of ‖ζT bT ‖2,1:T 4 ‖D2(ζT bT )‖1,T 4 h−2
T and (3.19), we deduce

h2
T ‖∆uh − fh‖∞;T 4 ‖u− uh‖∞;T + |||f − fh|||−2,∞;T + osc(fh;T ).

We consider next the jump residual. Given a side S, let bS be a suitable bubble
function in W 2

1 (ω(S)) ∩ H̊1(ω(S)), where ω(S) is the union of the two elements
sharing S; see [18]. Since [[∂nuh]] ∈ P`−1(S), for a suitable function ζS ∈ P`−1(ω(S))
such that ‖ζS‖1;S 4 1, we have after integration by parts

‖ [[∂nuh]] ‖∞;S 4
∫

S

[[∂nuh]] ζSbS = 〈Rh, ζSbS〉+ 〈fh −∆uh, ζSbS〉 ,

whence

‖ [[∂nuh]] ‖∞;S 4 h−1
S |||Rh|||−2,∞;ω(S) + hS‖fh −∆uh‖∞;ω(S).

Combining this with (3.19) and the previous estimate for the interior residual, we
obtain the desired local estimate for ‖h2R∞‖∞;T .

We finally deal with the consistency indicators. We note first that

εq
d/2,T 4 h2

T ‖fh − Iq
hfh‖∞;T 4 h2

T ‖fh − f̄h‖∞;T + h2
T ‖f̄h − Iq

hfh‖∞;T

Since f̄h − Iq
hfh is a polynomial in T , there exists a polynomial ζT of the same

degree with ‖ζT ‖1;T 4 1 such that

‖f̄h − Iq
hfh‖∞;T 4

∫
T

(
f̄h − Iq

hfh

)
ζT bT

=
∫

T

((
fh −∆uh

)
− Iq

h

(
fh −∆uh

))
ζT bT +

∫
T

(
f̄h − fh

)
ζT bT

because ∆uh ∈ P`−2(T ) and q ≥ `− 2. Consequently, we conclude

h2
T ‖fh − Iq

hfh‖∞;T 4 ‖h2R∞‖∞;T + osc(fh;T )

and thus the asserted estimate for εq
d/2,T is established. We next observe that

hT ε
q−1
d,T 4 h2

T ‖fh − Iq−1
h fh‖∞;T , and so the same argument as of εq

d/2,T applies
whenever q − 1 ≥ `− 2. This completes the proof. �

Remark 4.4 (Global efficiency). The local bounds for the indicators ‖h2R∞‖∞;T

and ‖g − gh‖∞;∂T∩∂Ω in Theorem 4.3 immediately imply a corresponding global
lower bound and so these estimator contributions are globally efficient too. This is
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not clear for the consistency indicators εq
d/2,T and hT ε

q−1
d,T , since they accumulate

differently from the maximum norm error: contrast

|εj
p|pp =

∑
T∈Th

(
εj
p,T

)p =
∑

T∈Th

|T | ‖fh − Ij
hfh‖p

∞;T .

with
‖u− uh‖∞;Ω = max

T∈Th

‖u− uh‖∞;ω(T ).
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Figure 4.1. Decay of error and estimators (residual and consis-
tency parts) vs. number of degrees of freedom (NDOF) for a lin-
ear problem with non-smooth right hand side: uniform refinement
(left) and adaptive refinement (right).

In order to investigate this issue, which is unrelated to the nonlinear structure of
(1.1), we numerically compare the computable part of the error ‖u − uh‖∞;Ω and
the two estimator contributions ‖h2R∞‖∞;Ω +‖g−gh‖∞;∂Ω and |εq

d/2|d/2+ |hεq−1
d |d

for the linear Poisson equation

−∆u = f in Ω, u = g on ∂Ω.

For smooth right hand sides f , numerical experiments suggest that the local con-
sistency indicators, which read |T |1/p‖f − Ij

hf‖∞;T for the linear problem, exhibit
enough local cancellations for an optimal decay of the global consistency estimates
|εj

p|p. This is also observed for the nonlinear problem; see §5.2.
For the discussion on nonsmooth data, consider now the exact solution u(x) =

(|x| −R)α
+ with the corresponding forcing function

f(x) = α
(
α− 1 +

(|x| −R)+
|x|

)
(|x| −R)α−2

+

with α = 2.5, R = 0.5 and Ω = (0, 1)2; the solution u is related to the semilinear
example of §5.3. Since f is Hölder continuous with exponent 1/2 but not C1, the
effect of quadrature is noticeable for all polynomial degree ` ≥ 1. Figure 4.1 depicts
the results for the case of uniform and adaptive refinement, using the marking
strategy designed in §5.1, with ` = 3 and q = 4 for d = 2. It suggests that:
• the quadrature indicators are not globally efficient in general;
• for this particular example, the convergence rate of the estimator is slightly less

than the rate (`+ 1)/d = 2 for regular forcing functions f , thereby indicating a
suboptimal decay for non-smooth data due to the missing global efficiency of the
quadrature indicators;
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• in spite of the preceding observation, adaptive refinement is still far superior to
uniform one.

Remark 4.5 (Efficient consistency control). As already observed in [18], the quan-
tity |||Eh|||−2,∞;Ω is globally efficient. In fact, combining the relation of residual and
consistency error (3.4) with the bound for the residual (3.19) yields

|||Eh|||−2,∞;Ω 4 ‖u− uh‖∞;Ω + |||f − fh|||−2,∞;Ω .

However, |||Eh|||−2,∞;Ω is a global and noncomputable quantity and thus of little
practical value. Due to the product structure of the cancellation in Eh, we are
forced to deal with Sobolev spaces Ld(Ω) and W 1

d/2(Ω) instead of W 2
1 (Ω) in the

derivation of local and computable indicators. We conclude that the efficient control
of quadrature deserves further investigation even for linear PDEs.

5. Numerical Experiments

We have implemented the nonlinear solver, error estimator and corresponding
marking strategy using the adaptive finite element package ALBERTA1 [23, 24]. In
ALBERTA, an initial simplicial macro-mesh is refined by successive bisections of its
elements. Moreover, it can later be coarsened, by operations of junction of two
elements which initially constituted a single element.

The discrete nonlinear problems are solved with a damped Newton iteration.
The resulting linearized equations are solved by a preconditioned CG method. For
the experiments shown below, the Newton solver converged quite well with only
few damping steps.

5.1. Marking strategy. The aim of adaptive finite element methods (AFEM) is
the generation of a sequence of meshes by local refinement such that eventually the
error is below a given tolerance whereas the number of degrees of freedom (NDOF)
used for the finite element solution is as small as possible.

We follow the common, but still heuristic, practice of marking elements with
relatively large error indicators [5]; in general, this leads to quasi-optimal meshes,
a crucial property that has not yet been proved theoretically. In the present case,
however, the error estimator consists of three terms with different accumulation
properties:

η∞ := c0‖h2R∞‖∞;Ω + ‖g − gh‖∞;∂Ω,

ηd/2 := c1|εq
d/2|d/2,

ηd := c2|hεq−1
d |d.

A marking strategy aiming at quasi-optimal meshes must account for this fact.
Similarly to [18], we proceed in two steps:
• We select an estimator ηp, p ∈ {d/2, d,∞}, solely whenever it is relatively large

with respect to the total estimate, and thus its role is expected to be significant.
We implement this idea by first computing

ηmax = max{η∞, ηd/2, ηd}

and then choosing ηp provided ηp ≥ θ̄ηmax, where 0 < θ̄ < 1 is a given parameter.

1The original name of the toolbox ALBERT had to be renamed due to copyright reasons.
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• For each ηp so chosen, we use the maximum strategy to mark elements T̂ ∈ Th

such that
ηp(T̂ ) ≥ θ max

T∈Th

ηp(T ),

where 0 < θ < 1 is a given parameter and ηp(T ) is the element indicator.

In the experiments below, we have neglected the logarithmic factor
∣∣log h2

min

∣∣2
in the estimator and used, instead, η̃ = η∞ + ηd/2 + ηd. The L∞-norms of element
indicators are approximated by computing the maximum absolute value among all
Lagrange nodes for 7th order polynomials. Parameters for the marking strategy
were θ̄ = 0.7 in selecting contributions and θ = 0.5 for the standard maximum
strategy.

Table 5.1 shows results of the marking strategy for piecewise linear P1, quadratic
P2, and cubic P3 finite elements for the free boundary problem of Section 5.3 in
the case d = 2. It records, for each iteration of our AFEM, the current number of
mesh elements NE, the number NR of elements marked due to residual indicator,
and the number NC of elements marked due to consistency estimate. After the
residuals get smaller during the first iterations, the consistency indicators cause
some additional mesh refinements. Consistency marking is more pronounced for
higher order approximations because the residuals decay faster. The effect of the

P1 P2 P3

Iter NE NR NC NE NR NC NE NR NC
1 4 4 0 4 4 0 4 4 0
2 16 16 0 16 16 0 16 14 0
3 64 48 0 64 52 0 62 30 0
4 222 170 0 240 10 0 178 62 12
5 766 464 0 276 86 20 420 12 0
6 2332 472 0 592 186 0 460 148 16
7 4108 2626 6 1246 0 38 1044 40 56
8 12806 1036 10 1456 470 80 1532 0 10
9 16792 9806 14 3526 474 18 1602 0 86

10 48812 0 30 5348 0 104 2208 136 4
11 49006 4998 48 5994 506 56 2760 0 24
12 68284 0 18 8394 3234 132 2952 0 124
13 68420 37698 58 20358 0 100 3954 248 36
14 188980 0 32 21136 682 60 5322 0 76
15 189194 0 86 24420 0 338 5962 0 282
16 189774 19666 128 26698 4472 168 8162 262 22

Table 5.1. Free boundary problem (d = 2): Behavior of the
marking strategy for the first 16 iterations of AFEM. NE is the
number of mesh elements, and NR, NC are the number of elements
marked due to residual indicator and consistency indicator, for
piecewise linear P1, quadratic P2, and cubic P3 finite elements. The
role of quadrature is more pronounced for higher order elements
because the residuals decay faster.

consistency estimator is even more noticeable in the boundary layer example of
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Section 5.4, where the nonlinearity blows up and dominates the computation. After
a few iterations, nearly all refinement is due to consistency indicator.

5.2. Smooth nonlinearity. The nonlinear stationary Poisson-Boltzmann equa-
tion for the potential u corresponding to a given charge density ρ(x) reads

−∆u+ κ2 sinh(u) = ρ(x).

For κ = 1 and ρ = 0, an exact solution in 1d is given by (compare [22], e.g.)

ũ(s) = ln
(

1 + cos(s)
1− cos(s)

)
.

For a = (1.0, 2.0)/
√

5 ∈ R2, we consider here the exact 2d solution u(x) = ũ(0.1 +
〈x, a〉) on the unit square Ω = (0, 1)2. The direction a was chosen such that the
gradient is not aligned with any mesh side. Function u attains its maximum in
the origin, u(0) ≈ 6, which implies f(u(0)) = sinh(u(0)) ≈ 200. Figure 5.1 shows
the convergence of AFEM for piecewise linear, quadratic, and cubic approximation.
For each polynomial degree, the decay of estimate and exact error, together with a
straight line giving the optimal decay, are depicted. For this smooth nonlinearity,
AFEM is able to attain the optimal decay rate after a few iterations, when the
behavior near the origin is resolved.
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Figure 5.1. sinh nonlinearity: Error estimate, exact error, and
optimal decay, for piecewise linear (left), quadratic (middle), and
cubic elements (right). AFEM achieves optimal decay rate after a
few iterations, when the behavior near the origin is resolved.

5.3. Free boundary problem. We now consider exact solutions of the form

uR,α(x) = (|x| −R)α
+,

on a bounded domain, where s+ := max{s, 0} denotes the nonnegative part of s.
The solution attaches to the zero level on the ball of radius R around 0, the contact
set; thus ∂B(0, R) ∩ Ω is the free boundary. The corresponding Dirichlet problem
is

−∆u(x) + f(x, u) = 0 in Ω ⊂ Rd, u = uR,α on ∂Ω

with nonlinearity

f(x, u) = α

(
α− 1 + (d− 1)

(|x| −R)+
|x|

)
u

α−2
α

+ ,
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For α > 2, the nonlinearity is Hölder β with β = α−2
α < 1 but nondifferentiable at

0. Problems of this form arise in reaction in porous media and have been studied
in [3, 21].

102 103 104

NDOF

10-6

10-4

10-2 Cons Est
Res Est
Err
Opt

Figure 5.2. Free boundary problem: Convergence of consistency
estimator (upper curve), residual estimator (middle curve) and er-
ror (lower curve) for AFEM, together with dashed line showing
optimal decay versus number of degrees of freedom, for piecewise
cubic approximation.

Experiments were performed for d = 2, 3 on Ω = (0, 1)d with α = 2.5 and
R = 0.5. As the exact solution is known, we can compare the error estimate with
the exact error ‖u−uh‖∞;Ω. Figure 5.2 depicts the suboptimal decay of consistency
estimator, residual estimator, and pointwise error for AFEM with P3 elements; re-
call that a suboptimal decay was already observed for the linear case in Remark 4.4.
Figure 5.3 shows discrete solutions and meshes for two different iterations of AFEM.
In the interior of the contact region, for both d = 2, 3, mesh refinement is mostly
dictated by mesh conformity. Figure 5.4 illustrates this effect in 3d along with
isolines of solutions. Since u ∈ W 2

∞(Ω)\W 3
∞(Ω), quadratic approximation detects

the lack of regularity across the free boundary and refines accordingly (see Figures
5.3 and 5.4).

5.4. Boundary layer problem. We finally consider the problem

−∆u(x)− p(x)u(x)−γ
+ = 0 in Ω ⊂ Rd, u = 0 on ∂Ω,

with p(x) ≥ 0 and γ > 0. This equation is used to model the behavior of pseudo-
plastic fluids [7, 13], and is somewhat related to the black holes equation, for which
γ = 7 but the boundary condition is of Robin type [4].

Due to the blow-up behavior of the negative power u−γ for u→ 0, the function
u 7→ f(x, u) = −p(x)u−γ

+ is not continuous in R and does not fit our theory; in
particular, functions Iq

h(f(·, uh)) and Iq−1
h (f(·, uh)) would be undefined on ∂Ω for

all γ. We circumvent this matter upon considering the regularized problem

−∆uε(x) + fε(x, uε(x)) = 0 in Ω ⊂ Rd, uε = 0 on ∂Ω,

where
fε(x, s) = −p(x) max(s, ε)−γ .

Since the solution u is Hölder continuous for all γ > 0, the question arises whether
or not uε converges to u in L∞(Ω) with a prescribed rate. Before we explore this
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Figure 5.3. Free boundary problem in 2D: Solutions and meshes
from iterations 5 and 8 of AFEM using ` = 2, with 2557 (11587)
unknowns, error 2.82E-05 (1.64E-06). The solutions attach to zero
values in the circle B(0, 0.5), the contact region, where the mesh
remains rather coarse and is mostly driven by mesh conformity.

Figure 5.4. Free boundary problem in 3D: Mesh for piecewise
quadratic elements with 35812 unknowns, and isolines of solution
(at multiples of 0.01). The mesh remains rather coarse in the
contact region B(0, 0.5).

crucial issue, let us pause to comment on the boundary behavior of u as a function
of γ for p(x) uniformly positive; u is smooth in the interior of Ω, depending on the
regularity of p. Lazer and McKenna [15] show the following facts:
• for 0 < γ < 1, u dominates dist(x, ∂Ω), whereas for γ > 1 it behaves exactly like

dist(x, ∂Ω)
2

1+γ ;
• u ∈ H̊1(Ω) if and only if γ < 3 but u /∈ C1(Ω̄) if γ > 1;
• the boundary behavior of u can be compensated by p(x) tending to 0 with a

prescribed order.
We examine now the rate of convergence of uε to u. We claim that

(5.1) 0 ≤ u− uε ≤ ε in Ω;

note that there is no constant in (5.1) and that p plays no role on it. This result can
be proved upon modifying a technique developed by Nochetto [17], which is briefly
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described here. Consider two regularized solutions uδ and uε for δ < ε, and denote
e := uδ − uε. We observe that both functions uδ and uε are weak solutions and in
fact they are globally Lipschitz. If we take the difference of the corresponding PDE
and multiply by the test function e2k+1 ∈ H1

0 (Ω) with k an integer, then we obtain∫
Ω

∇e∇e2k+1 +
(
fδ(·, uδ)− fε(·, uε)

)
(uδ − uε)e2k = 0.

We first estimate the nonlinear term. Notice that if uδ ≥ ε, then fδ(·, uδ) = fε(·, uδ)
and the nonlinear term is nonnegative by monotonicity. If 0 ≤ uδ ≤ ε, instead, but
uε ≥ ε, then fε(·, uε) = fδ(·, uε) and the nonlinear term is again nonnegative. The
only case left is 0 ≤ uδ, uε ≤ ε, for which we have the bound∫
{0≤uδ≤ε}

p(x)
(
δ−γ − ε−γ

)
(uδ − uε)2k+1 ≤ Cε2k+1δ−γ |{0 ≤ uδ ≤ ε}| ≤ Cδ−γε2k+1

for all γ > 0. On the other hand, the gradient term can be bounded via Poincaré
inequality as follows:∫

Ω

∇e∇e2k+1 =
2k + 1

(k + 1)2

∫
Ω

|∇ek+1|2 ≥ C
2k + 1

(k + 1)2

∫
Ω

|e2(k+1)|.

Collecting the two estimates above, we arrive at∫
Ω

|e2(k+1)| ≤ C
(k + 1)2

2k + 1
δ−γε2k+1.

Computing the power 1
2(k+1) on both sides and taking the limit as k → ∞ yields

‖uδ − uε‖∞;Ω ≤ ε. We now take the limit as δ → 0, and use the fact that uδ →
u uniformly, to deduce the bound ‖u − uε‖∞;Ω ≤ ε. To prove the claim (5.1),
it remains to show that u ≥ uε. This follows from a weak maximum principle
argument because fε(x, s) ≥ f(x, s) implies

−∆u+ fε(x, u) ≥ −∆u+ f(x, u) = 0,

whence u is a supersolution of the regularized problem.

Figure 5.5. Boundary layer problem (scaled by factor 20) and
corresponding mesh for piecewise linear approximation with 3285
unknowns and estimated error ≈ 6e − 4. Compare the boundary
layer effect for p(x) > 0 with the smooth behavior where p(x) = 0.

We finally consider the example of Henson and Shaker [13] with

p(x) = max(0.25− x1, 0, x1 − 0.75),
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on Ω = (0, 1)2. The solution exhibits a boundary layer where p > 0 and a smooth
boundary behavior where p = 0. For positive ε, both the Newton solver and AFEM
work without any problems. Of course, the smaller ε, the stronger local refinement
is generated near the boundary where p > 0. The mesh refinement is now mostly
dictated by the consistency error indicator which accounts for quadrature error.
The computed solution for γ = 0.5 and ε = 0.001, together with the corresponding
locally refined mesh, are shown in Figure 5.5.
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[5] I. Babuška and W. Rheinboldt, Error estimates for adaptive finite element computations,

SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

[6] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods,
Springer (2002).

[7] A. J. Callegari and A. Nachman, A nonlinear singular boundary value problem in the

theory of pseudoplastic fluids, SIAM J. Appl. Math. 30, (1980), pp. 275–281.
[8] P. G. Ciarlet The finite element method for elliptic problems, North-Holland (1980).

[9] E. Dari, R. G. Durán, and C. Padra, Maximum norm error estimators for three-

dimensional elliptic problems, SIAM J. Numer. Anal., 37 (2000), pp. 683–700.
[10] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, AMS

(1998).
[11] D. Gilbarg and N. S. Trudinger, Elliptic partial diffferential equations of second order,

Springer (1983).

[12] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman (1985).
[13] V. E. Henson and A. W. Shaker, Theory and numerics for a semilinear PDE in the theory

of pseudoplastic fluids, Appl. Anal. 63, (1996), pp. 271–285.
[14] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and

their applications, vol. 88 of Pure Appl. Math., Academic Press, New York, 1980.
[15] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem,

Proc. AMS 111 (1991), pp. 721–730.
[16] R. H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded

meshes, Math. Comp., 64 (1995), pp. 1–22.

[17] R. H. Nochetto, Sharp L∞-error estimates for semilinear elliptic problems with free bound-
aries, Numer. Math., 54 (1988), pp. 243–255.



POINTWISE A POSTERIORI ERROR ESTIMATES 21

[18] R. H. Nochetto, K. G. Siebert, and A. Veeser, Pointwise a posteriori error control for

elliptic obstacle problems, Numer. Math., 95 (2003), pp. 163–195.

[19] R. H. Nochetto, K. G. Siebert, and A. Veeser, Fully localized a posteriori error estima-
tors and barrier sets for contact problems, SIAM J. Numer. Anal., 42 (2005), pp. 2118–2135.

[20] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several

variables, Academic Press, 1970.
[21] D. Phillips, Hausdorff measure estimates of a free boundary for a minimum problem, Comm.

Partial Differential Equations, 8 (1983), pp. 1409–1454.

[22] W. B. Richardson Jr., Sobolev preconditioning for the Poisson-Boltzmann equation, Com-
put. Meth. Appl. Mech. Engrg. 181 (2000), pp. 425–436.

[23] A. Schmidt and K. G. Siebert, Design of adaptive finite element software: The finite

element toolbox ALBERTA, Springer LNCSE Series 42, 2005.
[24] A. Schmidt and K. G. Siebert, ALBERT — Software for scientific computations and ap-

plications, Acta Math. Univ. Comenianae 70 (2001), pp. 105–122.
[25] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement tech-

niques, Wiley & Sons, Teubner, 1996.

Ricardo H. Nochetto, Department of Mathematics and Institute of Physical Science

and Technology, University of Maryland, College Park, MD 20742, USA.
URL: http://www.math.umd.edu/~rhn

E-mail address: rhn@math.umd.edu

Alfred Schmidt, Zentrum für Technomathematik Fachbereich 3 Mathematik und In-

formatik, Universität Bremen, Postfach 33 04 40, D-28334 Bremen, Germany.

URL: http://www.math.uni-bremen.de/~schmidt
E-mail address: Schmidt@math.uni-bremen.de

Kunibert G. Siebert, Institut für Mathematik, Universität Augsburg, Universitäts-
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