Tests for Properness in Periodic Control of Functional Differential Systems

Fritz Colonius

Division of Applied Mathematics, Box F
Brown University, Providence, RI 02912

1. Summary

A fundamental problem in optimal periodic control may be formulated as follows: Suppose one has an optimal steady state \(x_0 \) corresponding to a constant control \(u_0 \). Can performance be improved by allowing for trajectories \(x \) and controls \(u \) being periodic with some common period \(\tau > 0 \). If this is the case, the problem is called proper. For systems governed by ordinary differential equations the so-called \(\Pi \)-criterion is a second order variational test for (local) properness. It has been proposed by Bittanti, Fronza, and Guarabaddi [1] and proven by Bernstein and Gilbert [3]; the most general version can be found in Bernstein [2]. Watanabe, Nishimura and Matsubara [12] gave a variant of the \(\Pi \)-criterion ('singular control test' or 'infinite frequency \(\Pi \)-criterion') which tests properness for sufficiently high frequencies and requires significantly less computational effort.

The \(\Pi \)-criterion is of some relevance in chemical engineering and aircraft flight performance optimization (cp. Sincic and Bailey [9], Speyer [11] and the survey papers by Matsubara, Nishimura, Watanabe, Onogi [7] and Boldus [8]).

This paper presents a generalization to functional differential systems of the \(\Pi \)-criterion and its "high-frequency" variant.

2. Problem Formulation

We consider the following optimal periodic control problem:

\[\text{(OPC)} \quad \text{Minimize} \quad \int_0^T g(x(t),u(t)) \, dt \]

s.t. \((2.1)\) \quad \(x(t) = f(x(t),u(t)) \) a.a. \(t \in [0,\tau] \)

\((2.2)\) \quad \(x_0 = x_\tau \)

where \(\tau > 0 \) is fixed, \(x_\tau(s) = x(t+s) \in \mathbb{R}^n \), \(s \in [-h,0] \), \(u(t) \in \mathbb{R}^m \), and \(h > 0 \) is the length of the delay. The maps \(f : C([-h,0]; \mathbb{R}^n) \times \mathbb{R}^n \to \mathbb{R}^n \) and \(g : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \) are assumed to be twice continuously Fréchet differentiable. The controls \(u \) are taken in \(L_\infty(0,\tau; \mathbb{R}^m) \).

In this problem formulation, the periodicity condition for \(x \) is incorporated into \((2.2)\). Observe that the finite dimensional condition

\[x(0) = x(\tau) \]

does not guarantee periodic extendability of \(x \) to a solution of \((2.1)\) for \(t \geq 0 \) (with periodic extension of \(u \)). Instead we have to consider the constraint \((2.2)\) involving the states \(x_0 \) and \(x_\tau \).

Assumption: For every initial function \(x_0 = \psi \in C([-h,0]; \mathbb{R}^n) \) and every control \(u \in L_\infty(0,\tau; \mathbb{R}^m) \), equation \((2.1)\) has a unique absolutely continuous solution \(x \).

The optimal steady state problem corresponding to (OPC) has the following form.

\[\text{(OSS)} \quad \text{Minimize} \quad g(x_0,0) \]

s.t. \((2.3)\) \quad \(0 = f(x_0,u) \)

where \(x_0 \in C([-h,0]; \mathbb{R}^n) \) is the constant function \(x(s) := x \).

We are interested in the property specified by the following definition.

Definition: Let \((x_0,u_0) \in \mathbb{R}^n \times \mathbb{R}^m \) be an optimal solution of (OSS). Then \((x_0,u_0) \) is called locally proper if for all \(\varepsilon > 0 \) there exist \(x \) and \(u \) satisfying \((2.1)\) and \((2.2)\) with \(\|x - x_0\|_\infty < \varepsilon \), \(\|u - u_0\|_\infty < \varepsilon \), and

\[\frac{1}{\tau} \int_0^\tau g(x(t),u(t)) \, dt < g(x_0,u_0). \]

3. Tests for Properness

Let \((x_0,u_0) \in \mathbb{R}^n \times \mathbb{R}^m \) be a steady state, i.e., satisfy \((2.3)\). Then we can linearize the system equation \((2.1)\) around \((x_0,u_0)\) and find

\[x(t) = Lx(t) + Bu(t) \text{ a.a. } t \in [0,\tau] \]

where

\[L := L_1 f(x_0,u_0) : C([-h,0]; \mathbb{R}^n) \to \mathbb{R}^n \]

\[B := L_2 f(x_0,u_0) : \mathbb{R}^m \to \mathbb{R}^n. \]

The corresponding characteristic matrix \(\Delta(z) \) is given by

\[\Delta(z) := zI - L(e^{zt}) \]

where \(e^{zt} \) denotes the function \(\exp(zt) \), \(z \in [-h,0] \), and \(I \) is the \(n \times n \) unit matrix. Introduce the function \(H: C([-h,0]; \mathbb{R}^n) \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \)

\[H(\psi,u,\cdot) := g(\psi(0),u) + \int_0^\tau f(\psi(u),u). \]

Then the following expressions exist (here \(j := \sqrt{-1} \)).
\[P(\omega) = \mathcal{D}_1 \mathcal{D}_2 \mathcal{H}(x^0, u^0, \lambda)(e^{j\omega \tau}, e^{-j\omega \tau}) \]
\[Q(\omega) = \mathcal{D}_2 \mathcal{D}_1 \mathcal{H}(x^0, u^0, \lambda)(e^{j\omega \tau}, e^{-j\omega \tau}) \]
\[R = \mathcal{D}_2 \mathcal{D}_2 \mathcal{H}(x^0, u^0, \lambda). \]

We identify \(P(\omega), Q(\omega), \) and \(R \) with elements in \(\mathbb{C}^{n \times n}, \mathbb{C}^{n \times m}, \) and \(\mathbb{R}^{m \times m}, \) respectively. Define for \(\omega \in \mathbb{R} \) the complex \(m \times m \) matrix \(\Pi(\omega) \) by
\[\Pi(\omega) := E \Pi^{-1}(-j\omega) \mathcal{P}(\omega) \Pi^{-1}(j\omega) E^T + Q(\omega)^{-1}(j\omega)S + E \Pi^{-1}(-j\omega)T(\omega) + R. \]

The matrix \(\Pi(\omega) \) is Hermitian. We assume that the following normality condition for \(\Pi(\omega) \) is satisfied:
\[\mathbb{R}^n = \mathcal{D}_1 \mathcal{D}_2 f(x^0, u^0) \mathbb{R}^n + \mathcal{D}_2 f(x^0, u^0) \mathbb{R}^m. \]

Then the following \(\Pi \)-Criterion is valid:

Theorem 1: Suppose that \((x^0, u^0) \in \mathbb{R}^n \times \mathbb{R}^m \) is an optimal solution of \(\text{(OSS)} \) and that \(f(x, u, k) \in \mathbb{C}, k \in \mathbb{Z}, \) is not a zero of \(\Delta(z) \) for \(\omega = 2\pi / \tau. \)

(i) Then there exists \(\lambda \in \mathbb{C}^n \) such that
\[0 = \mathcal{D}_2 \mathcal{H}(x^0, u^0, \lambda) \]
\[0 = \mathcal{D}_2 \mathcal{H}(x^0, u^0, \lambda). \]

(ii) Let \(\lambda \in \mathbb{R}^n \) satisfy (i) and suppose that there exists \(\eta \in \mathbb{R}^n \) with
\[\pi^T \Pi^{-1}(\omega) \eta < 0. \]

Then \((x^0, u^0) \) is locally proper. Suppose that \(\Delta(z) \) has no zeros in the closed right half plane \(\mathfrak{C} \in \mathbb{C} : \text{Re } z > 0. \) Then a high frequency variant of this \(\Pi \)-criterion can be obtained through the following series expansion of \(\Pi(\omega) \): Let
\[A(\omega) : = \Lambda(e^{j\omega \tau}) \]
and define
\[R_0 = R \]
\[R_k = \begin{bmatrix} G^T(-\omega) A(-\omega) & 0 & -R_k \end{bmatrix} \begin{bmatrix} B & \xi & \Theta(\omega) \end{bmatrix} \begin{bmatrix} -\mathcal{P}(\omega)(j\omega) & -A^T(-\omega) \end{bmatrix} \]
\[\begin{bmatrix} \mathcal{Q}(\omega) \end{bmatrix}. \]

Then
\[\Pi(\omega) = \sum_{k=0}^{\infty} (j\omega)^k R_k(\omega). \]

and one can prove the following high-frequency \(\Pi \)-Criterion.

Theorem 2: There exists \(\omega_0 > 0 \) such that for all \(\omega > \omega_0 \) either of the following conditions implies that the optimal steady state \((x^0, u^0) \) is locally proper:

(i) For all \(k = 0, 1, \ldots, 2^k-1 \) one has \(R_k(\omega) = 0 \) and there exists \(\eta \in \mathbb{R}^n \) such that \((-1)^{k+1} \eta^T R_k(\omega) \eta < 0. \)

(ii) For all \(k = 0, 1, \ldots, 2^k \) one has \(R_k(\omega) = 0 \) and there exists \(\eta \in \mathbb{R}^n \) such that
\[(-1)^{k+1} \eta^T R_{2^k-1}(\omega) \eta < 0. \]

Remark: The system equation (2.1) also allows the delays to depend on state and time. Manitius [6] computed the corresponding Frechet derivatives. Sincic, Bailey [10] use the same formulae for the derivatives, and indicate the formulae for the second derivatives.

They give a (formal) proof of the \(\Pi \)-Criterion in this case.

References

