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Abstract
In this paper we suggest the use of Cooperative Ma-
chine Learning (CML) to reduce manual labelling
efforts while simultaneously generating an intuitive
understanding of the learning process of a clas-
sification system. To this end, we introduce the
open-source tool NOVA, which aims to combine
human intelligence and machine learning to an-
notate social signals in large multi-modal corpora.
NOVA features a semi-automated labelling process
in which users are provided with immediate visual
feedback on the predictions, which affords insights
into the strengths and weaknesses of the underly-
ing classification system. Following an interactive
and exploratory workflow, the performance of the
model can be improved by manual revision of the
predictions, a process that uses confidence values
to guide the inspection.

1 Introduction
In various research disciplines (Behavioural Psychology,
Medicine, Anthropology, ...) the annotation of social be-
haviours is a common task. This process includes manually
identifying relevant behaviour patterns in audio-visual mate-
rial and assigning descriptive labels. Generally speaking, seg-
ments in the signals are labelled using sets of discrete classes
or continuous scores, e. g., a certain type of gesture, a social
situation (e. g., conflict), or the emotional state of a person.
In Social Signal Processing (SSP), a subset of these events –
the so called social signals – are used to augment the spo-
ken part of a message with non-verbal information to enable
a more natural human-computer interaction [Vinciarelli et al.,
2009]1. To automatically detect social signals from raw sen-
sory input (e. g., speech signals) it is common practice to ap-
ply machine learning (ML) techniques. That is, sensory input
is transformed into a compact set of relevant features and a

1To give an example of a social signal, think of a situation where
we say something in a sarcastic voice to indicate that we actually
mean the opposite.

classifier is trained on manually labelled examples to opti-
mise a learning function. Once trained, the classifier is used
to automatically predict labels on unseen data.

However, since humans transmit non-verbal messages
through a number of channels (voice, face, gestures, etc. ) and
due to the complex interplay between these channels, large
amounts of annotated data are necessary to cover those phe-
nomena. Therefore, the progress in the field of SSP is di-
rectly linked to the availability of large and well transcribed
multi-modal databases rich of human behaviour under vary-
ing context and different environmental settings [Douglas-
Cowie et al., 2003]. Common challenges in creating such
datasets lie in the high degree of naturalness required of the
recording scenarios, how well one recording scenario gener-
alises to other settings, the number of human raters needed to
reach a consensus on labels, and of course the sheer amount
of data. When one considers the many hours of labelled data
that are required, gathering such large amounts of annotated
training samples may seem like an infeasible task, with re-
spect to time, cost and effort.

An obvious solution is to exploit computational power to
accomplish some of the annotation work automatically. How-
ever, to ensure the quality of the predicted annotations this
still requires human supervision to identify and correct er-
rors. To keep the human effort as low as possible, it is use-
ful to understand why a model makes wrong assumptions.
Therefore, it is not only important to provide tools that ease
the use of semi-automated labelling, but also to increase the
transparency of the decision process (a non trivial task given
that most modern classifiers come as black boxes). By vi-
sualising the predictions, for instance, even non ML experts
get an idea about the strengths and weaknesses of the under-
lying classification model and can immediately decide which
parts of a prediction are worth keeping. If a particular label is
regularly missed, a user could actively provide more training
examples for this phenomenon, or redesign the ML system to
capture its relevant characteristics better. Ideally, the system
even guides his or her attention towards parts where manual
revision is necessary. Once an annotation has been revised,
the model can be retrained to improve its performance for the
next cycle. This procedure can be repeated until a desired



performance is reached.
In this paper, we introduce an annotation tool called NOVA

((Non-)Verbal Annotator), which implements the described
workflow that interactively incorporates the ‘human in the
loop’. In particular, NOVA offers an interface to acquire
semi-automated annotations and provides visual feedback to
inspect and correct machine-generated labels. In that sense,
our work combines three hot topics of ML: Explainable Ar-
tificial Intelligence, as the transparency of the decision pro-
cess is increased via visualisation of the predictions; Active
Learning, since labels with low confidence are highlighted to
guide the user towards relevant parts; and finally, Interactive
Machine Learning, because human intelligence and machine
power can cooperate and improve each other. We subsume
our approach under the term Cooperative Machine Learning
(see Section 3).

2 Related Work
Despite vast resources of raw data, nowadays pervasive in
digital format and relatively easy and inexpensive to collect,
e. g., from public resources such as social media, the prob-
lem of efficiently gathering relevant annotations still needs to
be overcome. One approach is Active Learning (AL) [Zhu,
2005], a type of algorithm that interactively queries the user
to manually label certain data points. The core idea of AL is
to extract the most informative instances from a pool of unla-
belled data based on a specific query strategy [Settles, 2010].
These selected instances are then passed to human annotators
for labelling and a model is derived from this subset. This
approach significantly reduces the labelling effort.

The work by Zhang et al. [2015c] takes the idea of AL a
step forward and combines it with Semi-Supervised Learning
(SSL) techniques to efficiently share the labelling work be-
tween a human annotator and a machine: a pre-existing clas-
sifier is used to predict labels for the unlabelled data. For each
of those predictions a confidence level is calculated by the
classifier. Only if this level falls below a certain threshold a
human annotator is asked to revise the annotation. To further
save labelling efforts, one can apply Dynamic Active Learn-
ing (DAL) by choosing the most reliable raters first [Zhang
et al., 2015b]. Zhang et al. [2015a] developed an agreement-
based annotation technique that dynamically determines how
many human annotators are required to label a selected in-
stance. The technique considers individual rater reliability
and inter-rater agreement to decide on a combination of raters
to be allocated to an instance.

However, little emphasis is given to the question of how to
assist users in the application of these techniques for the cre-
ation of their own corpora. While the benefits of integrating
active learning with annotation tasks has been demonstrated
in a variety of experiments, annotation tools that provide
users with access to active learning techniques are rare. Re-
cent developments for audio, image and video annotation that
make use of active learning include CAMOMILE [Poignant
et al., 2016] and iHEARu-PLAY [Hantke et al., 2015]. How-
ever, systematic studies focusing on the potential benefits of
the active learning approach within the annotation environ-
ment from a user’s point of view have been performed only

rarely [Cheng and Bernstein, 2015; Kim and Pardo, 2017].
Interactive Machine Learning (IML) [Fails and Olsen,

2003; Amershi et al., 2014] aims to involve users actively in
the creation of models for recognition tasks. Most approaches
integrate automated data analysis and interactive visualisation
tools in order to enable users to inspect data, process features
and tune models. An example includes ModelUI [Wagner et
al., 2010]. It presents users with a graphical user interface
that allows them to test different ML algorithms on labelled
data. Labels are acquired by stimuli which may include tex-
tual instructions, but also images or videos. Afterwards, users
can review the recordings and correct the annotations.

Rosenthal and Dey [2010] investigated which kind of infor-
mation should be provided to users in order to reduce anno-
tation errors. They found out that contextual information and
predictions of the learning algorithms were in particular use-
ful for the annotation of activity data. In contrast, uncertainty
information had no effect on the accuracy of the labels, but
just indicated to the labellers that classification was difficult.
Amershi et al. [2009] investigated how to empower users to
select samples for training by appropriate visualisation tech-
niques. They found that a representative overview of best and
worst matching examples is of higher value than a set of high-
certainty images and conjecture that high-certainty images do
not provide much information to the learning processing due
to their similarity to already labelled images. In another pa-
per by Amershi et al. [2015], the authors suggest an inter-
active visualization technique in order to assess a models’
performance. By sorting samples according to their predic-
tion score, the user can directly retrieve additional informa-
tion and annotate them for better performance tracking. This
way, the tool allows users to monitor the performance of in-
dividual samples while the model is iteratively retrained.

In addition to presenting the outcome of a classification in
a structured way, one may aim at opening up what is usually
perceived as a ‘black box’: the classifier itself. Explainable
Artificial Intelligence (XAI) deals with the problem of mak-
ing AI decisions transparent and explainable [Samek et al.,
2017]. For example, displaying the closest match to an in-
stance can be a simple, yet effective way to increase trans-
parency of the classification process. However, in complex
AI systems where reasoning is no longer based on instance
matching such an approach is not sufficient. A detailed dis-
cussion of different theories of explanation is given in [Sørmo
et al., 2005].

Today, explainability becomes increasingly important as
we rely more and more on AI in our everyday life. For
instance, before trusting a ‘black box’ model in a mission-
critical applications, e. g., the diagnosis of Pneumonia, we
have to ensure that the prediction is not based on random fac-
tors such as overfitting and spurious correlation [Caruana et
al., 2015]. However, gaining insights into the inner work-
ings of a classifier may not just prevent misapplication, but
also bears potential for improving the system. Or as noted by
Samek et al. [2017]: “the first step towards improving an AI
system is to understand its weaknesses”.

Summing up, it may be said that multiple studies empiri-
cally investigated the potential of novel techniques in order
to minimise human labelling effort. In addition, some studies
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Figure 1: The scheme depicts the general idea behind Cooperative
Machine Learning (CML): (1) An initial model is trained on par-
tially labelled data. (2) The initial model is used to automatically
predict unseen data. (3) Labels with a low confidence are selected
and (4) manually revised. (5) The initial model is retrained with the
revised data.

were conducted to actually label novel data, rather than test
whether such method could save effort. Relatively little atten-
tion has been paid, however, to the question of how to make
these techniques available to human labellers. There is a high
demand for annotation tools that integrate ML techniques in
order to reduce human effort – in particular in the area of so-
cial signal processing where human raters typically disagree
on the labels [Lotfian and Busso, 2017].

3 Cooperative Machine Learning
In this paper, we subsume learning approaches that effi-
ciently combine human intelligence with the machine’s abil-
ity of rapid computation under the term Cooperative Machine
Learning (CML) [Dong and Sun, 2003; Zhang et al., 2015c].
In Figure 1, we illustrate our approach to CML, which creates
a loop between a machine learned model and human annota-
tors: an initial model is trained (1) and used to predict unseen
data (2). An active learning module then decides which parts
of the prediction are subject to manual revision by human
annotators (3+4). Afterwards, the initial model is retrained
using the revised data (5). Now the procedure is repeated un-
til all data is annotated. By actively incorporating the user
into the loop it becomes possible to interactively guide and
improve the automatic predictions while simultaneously ob-
taining an intuition for the functionality of the classifier. In
[Wagner et al., 2018], we report an experiment that measures
the increase in speed when the described CML strategy is ap-
plied within a realistic annotation task. Results showed that
manual work was reduced by a factor of 5

8 .
However, the approach not only bears the potential to con-

siderably cut down manual efforts, but also to come up with
a better understanding of the capabilities of the classification
system. For instance, the system may quickly learn to label
some simple behaviours, which already facilitates the work
load for human annotators at an early stage. Then, over time,
it could learn to cope with more complex social signals as
well, until at some point it is able to finish the task in a com-

pletely automatic manner. Such an iterative approach may
even help bridging the gap between quantitative and quali-
tative coding, which still defines a great challenge in many
fields in social science [Chen et al., 2016].

To efficiently apply the described strategy, we would like
to know the sweet spot for handing an annotation task over
to the machine. On the one hand, if we do it too early, the
model becomes unstable and predictions will be poor. On the
other hand, if we annotate more data than necessary, we give
away precious time. To avoid any of the described situations,
we are interested in finding a good trade-off between machine
performance and human effort. Unfortunately, we cannot eas-
ily guess what is the ideal moment to hand over the task to a
machine. This is because the amount of training data that is
required to build a robust model depends on a number of fac-
tors, such as the homogeneity of the data, the discrimination
ability of the extracted features, the number of subjects and
classes, and, not least, the complexity of the recognition prob-
lem. Alternatively, instead of trying to determine a sweet spot
beforehand (and possibly miss it), we could iteratively test the
applicability of the strategy and stop when the performance
seems promising. Therefore, we opt to make the described
strategy an integral part of a graphical interface (see Section
4). This allows annotators to visually examine the results at
any time and to individually decide whether more labelling is
required or not. This procedure can be further accelerated by
providing visual feedback on the quality of the predictions.
This way, annotators can concentrate on parts with low confi-
dence, i. e., correcting only labels with a high uncertainty2.

4 NOVA Tool
We will now introduce our novel annotation tool NOVA. The
interface is inspired by existing software, such as EUDICO
Linguistic Annotator (ELAN) [Wittenburg et al., 2006] and
Annotation of Video and Language (ANVIL) [Kipp, 2013],
which offer layer-based tiers to insert time-anchored labelled
segments – that is discrete annotations. In addition, NOVA
also supports continuous annotations, which allow an ob-
server to track the content of an audiovisual stimulus over
time along one ore more dimensions – a feature inspired
by software like GTRACE (General Trace) [Cowie et al.,
2012], CARMA (Continuous Affect Rating and Media An-
notation) [Girard, 2014] and DARMA (Dual Axis Rating
and Media Annotation) [Girard and Wright, 2016]. However,
whereas the mentioned tools offer none or only little automa-
tion, NOVA has been advanced with features to create semi-
automated annotations (see Section 3).

NOVA is open-source and available on Github:
https://github.com/hcmlab/nova.

4.1 Main Interface
The NOVA user interface has been designed with a special
focus on the annotation of long and continuous recordings in-
volving multiple modalities and subjects. A screenshot of a
loaded recording session is shown in Figure 2. On the top,

2Uncertainty can be derived from the distance a predicted sample
has to the decision boundaries of the other classes. In regression
problems, dropout can be used [Gal and Ghahramani, 2016]).



Figure 2: NOVA allows to visualise various media and signal types and supports different annotation schemes. From top downwards: full-
body videos along with skeleton and face tracking, and audio streams of two persons during an interaction. In the lower part, several discrete
and continuous annotation tiers are displayed. Annotations can be edited on a static fraction of the recording or interactively during playback.

several media tracks are visualised and ready for playback.
Note that the number of tracks that can be displayed at the
same time is not limited and various types of signals (video,
audio, facial features, skeleton, depth images, etc.) are sup-
ported. In the lower part, we see multiple annotation tracks
of different types (discrete, continuous and transcriptions) de-
scribing the visualised content.

To support a collaborative annotation process, NOVA
maintains a database back-end, which allows users to load
and save annotations from and to a MongoDB3 running on a
central server. This gives annotators the possibility to imme-
diately commit changes and follow the annotation progress
of others. Beside human annotators, a database may also be
visited by one or more “machine users”. Just like a human
operator, they can create and access annotations. Hence, the
database also functions as a mediator between human and ma-
chine. NOVA provides instruments to create and populate a
database from scratch. At any time new annotators, schemes
and additional sessions can be added.

NOVA provides several functions to process the annota-
tions created by multiple human or machine annotators. For

3https://www.mongodb.com/

instance, statistical measures such as Cronbach’s α or Co-
hen’s κ can be applied to identify inter-rater agreement. Fi-
nally, multiple annotations can be merged to a Gold Standard.
However, in the following we will concentrate on another fea-
ture of NOVA: the use of machine learning to support the user
during the annotation process.

4.2 Machine Learning
For best possible performance, tasks related to machine learn-
ing (ML) are outsourced and executed in a background pro-
cess. As backend we use our open-source Social Signal Inter-
pretation (SSI) framework4. Since SSI is primarily designed
to build online recognition systems, a trained model can be
directly used to detect social cues in real-time [Wagner et al.,
2013].

A typical ML pipeline starts by preprocessing data to in-
put data for the learning algorithm, a step known as fea-
ture extraction. An XML template structure is used to de-
fine extraction chains from individual SSI components. For
instance, the following template extracts the commonly used
Mel-frequency cepstral coefficients (MFCCs) from audio sig-

4http://openssi.net



Figure 3: The upper tier shows a partly finished annotation. Machine learning is now used to predict the remaining part of the tier (middle),
where segments with a low confidence are highlighted with a red pattern. The lower tier shows the final annotation after manual revision.

Figure 4: Feature extraction dialogue.

nals. It feeds the input signal through a pre-emphasis filter
and afterwards extracts the features over a sliding window of
25 ms with a frame step of 10 ms.

1 <c h a i n>
2 < r e g i s t e r name=” a u d i o ” /> <!−−l o a d components−−>
3 <meta f r a m e S t e p =” 10ms” r i g h t C o n t e x t =” 15ms” />
4 < f i l t e r> <!−−a p p l y f i l t e r i n g−−>
5 <i t em c r e a t e =” PreEmphas i s ” />
6 </ f i l t e r>
7 <f e a t u r e> <!−−e x t r a c t f e a t u r e s−−>
8 <i t em c r e a t e =” Mfcc ” o p t i o n =” mfcc ” />
9 </ f e a t u r e>

10 </ c h a i n>

A dialogue helps users to extract features by selecting an
input stream and a number of sessions (see Figure 4). The re-
sult of the operation is stored as a new signal in the database.
This way, feature streams can be reviewed in the GUI and
accessed by all users. Based on the extracted features, a clas-
sifier can be trained. Again, templates are used to define clas-
sification schemes, e. g., :

1 < t r a i n e r>
2 < r e g i s t e r name=” model ” />
3 <meta b a l a n c e =” under ” /> <!−−a p p l y unde r s a m p l i n g−−>
4 <n o r m a l i z e>
5 <i t em method=” S c a l e ” /> <!−−s c a l e t h e f e a t u r e s−−>
6 </ n o r m a l i z e> <!−−S u p p o r t Ve c t o r Machine−−>
7 <model c r e a t e =”SVM” o p t i o n =”svm” />
8 </ t r a i n e r>

To automatically finish an annotation, the user either se-
lects a previously trained model or temporarily builds one us-
ing the labels on the current tier. An example before and after
the completion is shown in Figure 3. Note that labels with
a low confidence are highlighted with a pattern. This way,
the annotator can immediately see how well the prediction

worked. He or she can now either revert the operation or con-
tinue based on the automated generated annotation. At any
time, usually after correcting a couple of false predictions or
adding some missing labels, the procedure can be repeated.
Over time, this should lead to increasingly stable predictions.

Summing up, the described methodology offers trans-
parency from two directions. By observing the output of the
classifier, the user can assess its performance and also trace
how it changes with new input. In addition, visualising the
input to the classifier (raw media or feature streams) can pro-
vide hints why a prediction was successful in one place but
failed in another. For instance, the user may find out that pre-
dictions were wrong due to failure of the tracking algorithm.
This way, users also learn in which situations they can trust
the model.

Note that users can extend NOVA’s ML tools by simply
adding new templates. SSI supports a variety of features sets
for different types of signals. For instance, it allows to extract
a large number of audio parameters based on the widely used
OPENSMILE toolkit [Eyben et al., 2013]. For the compu-
tation of facial points and action units from video streams,
the OPENFACE tool by Baltrušaitis et al. [2016] has been
integrated. In terms of classification models, SSI supports
(among others) Google’s neural network framework TEN-
SORFLOW5 or the popular THEANO6 library.

5 Conclusion
The goal of the presented work is to foster the application
of Cooperative Machine Learning (CML) strategies to sup-
port the annotation of social signals in large multi-modal
databases. Well described corpora that are rich of human be-
haviour are needed in a number of disciplines, such as So-
cial Signal Processing and Behavioural Psychology. How-
ever, populating captured user data with adequate descrip-
tions can be an extremely exhausting and time-consuming
task. To this end, we have presented a novel annotation tool
NOVA. It allows to distribute annotation tasks among multi-
ple human raters and offers an interface to ML algorithms for
semi-automated annotation.

The core idea of the presented work is to create a loop, in
which humans start solving a task (here labelling social sig-
nals), and over time, a machine learns to automatically com-

5https://www.tensorflow.org/
6https://github.com/Theano/



plete the task. In conventional approaches, this involves at
least two parties: an end-user, who has knowledge about the
domain, and a machine learning practitioner, who can cope
with the learning system. However, to make the process more
rapid and focused, our tool combines a traditional annotation
interface with techniques for automated labelling that can be
applied out of the box requiring no knowledge on ML. For
an optimised workflow, coders have the possibility to indi-
vidually decide when and how to use them in the labelling
process. Further, to assess the reliability of automatic pre-
dictions immediate visual feedback is provided, which gives
annotators the chance to gain insights into the ML model and
adapt their strategies at times. By interactively guiding and
improving automatic predictions, an efficient integration of
human expert knowledge and rapid mechanical computation
is achieved.

Our experiences with NOVA show that CML strategies not
only have the potential to speed up coding, but can also have a
positive influence coding quality. Because of the preciseness
machine-aided techniques introduce into the coding process,
the level-of-detail is improved while at the same time human
efforts are reduced. However, while a machine is able to an-
notate social signals much faster and more consistently than
humans can do, human raters still bring a better understand-
ing for the application in which the models to be trained will
eventually be applied. Furthermore, human raters do not just
look at the behaviours to be labelled, but also reason about
the context in which they occur [Baur et al., 2017]. Being
presented with the results of an automated labelling process
might influence human labellers in a positive manner. Nev-
ertheless, one should be aware of the risk that a machine-
like style of annotation might not always result in better sys-
tems. This is in particular true when social signals are anal-
ysed where raters usually disagree on the labels and no objec-
tive ground truth can be established. In order to benefit from
the complementary skills of machines and human raters, an-
notation tools like NOVA are needed that aim for a smooth
integration of human intelligence and resources.

In the future, we aim at further improving the explana-
tion capabilities of the system by providing more information
about the inner workings of the classifiers. This, for instance,
could be achieved by adopting explanation approaches like
the LIME-System of Ribeiro et al. [2016] or the Explicable-
Boundary-Tree-Explainer by Wu et al. [2018]. The idea here
is to not only visualize final predictions, but also disclose
what has lead to a specific decision. We believe that this
way, human resources could be applied even more effectively,
which may further shorten the time it takes to achieve a stable
classification performance.
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Daniel Leberle. SSI/ModelUI - A tool for the acquisition
and annotation of human generated signals. In DAGA 2010,
Berlin, Germany, 2010. TU Berlin.

Johannes Wagner, Florian Lingenfelser, Tobias Baur, Ionut
Damian, Felix Kistler, and Elisabeth André. The social sig-
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