
The CPAL programming language
Design, Simulate, Execute

Embedded Systems

Nicolas Navet, University of Luxembourg

October 29th, 2015

Talk @ CEA LIST, Palaiseau

Lean Model-Driven Development

through Model-Interpretation

Outline

www.designcps.com 2

Real-time embedded systems: where are we now?

What is CPAL ?

Processes are recurrent Finite State Machines

Declarative programming & timing-augmented design flow

CPAL at work : 4 case-studies

A

D

B

C

E

www.designcps.com 3

ɈThe question [..] is no longer
primarily, Ɉcan it be builtɉ,
but should it be built?ɉ

Real-time embedded systems: where are we now?

Cross-domain technologiesare there imo for
the needs of the next 10-20 years: switched
Ethernet, hypervisor, multicore, ...

Safety : a large body of standards, processes,
tools, and know-how available Ą process-based
to product-based

From federated to integrated architecture:
complexity moved from hardware to software
but remains high

Ongoing R&D (most low risks imo): mixed-
criticality systems, predictable multicore
platforms, hierarchical scheduling, incremental
verification/certification, correctness in the value
domain

Timing verification techniques: Deterministic
resources + bounded workload = worst-case
timing verification, end-to-end verification
with heterogeneous resources possible,
accuracy excellent even for large systems

V Biggest threat to correctness is
complexity

V Needed now is affordability (time,
effort, money)

V We can simplify design phase &
execution platforms thanks to
computing power - our proposal:
MBD with Model-Interpretation
and Time-Triggered execution

What is CPAL?

www.designcps.com 4

Contribution towards addressing what Thomas Henzigerin [4]
called the grand challenge in embedded software design

A

Ɉ Offering high-level programming models that

- permits the programmer to express desired reaction and
execution requirements,

- Permits the compiler and run-time systems to ensure that
theserequirements are satisfied ɉ

CPAL: an interpreted language running on a real -time execution engine

www.designcps.com 5

5-steps of MBD
Matlab/ Simulink

Scade CPAL

Figure from [2] and [3]
Inspired from interpreter -based SIL4 interlocking systems

e.g.: RATP, SNCF [5], Westingshouse

What is CPAL?

www.designcps.com 6

A language to develop CPS - offering the right abstractions for
functional and non-functional properties : activation patterns,
FSM, scheduling, communication channel, introspection, etc

A real-time execution engine that can be run on bare hardware

Write-Once Run-Everywhere with equally acceptable timing behaviors

Modelling and simulation language for Design Space Exploration

A design flow to learn and teach MDD

A

D

B

C

E

A joint project from RTaWand University of Luxembourg

Hello, world

www.designcps.com 7

Development environment
available from http://designcps.com

www.designcps.com 8

Functional view

Finite State Machine describing the logic
of a process

Code

Activation of the tasks over time

http://designcps.com/

Hello, world

www.designcps.com 9

Why a new programming language for

Embedded Systems ?

www.designcps.com

o General purpose programming languages do not offer the right abstractions
for:

o Periodic activities and real-time scheduling

o Time measurements and manipulation

o Finite state machines

o High-level interfaces to I/Os

o etc

o Design for facilitating the writing of correct embedded code (incl. restrictions)

o ά²ǊƛǘŜ ƻƴŎŜΣ wǳƴ !ƴȅǿƘŜǊŜέ ƻŦ WŀǾŀ ŘƻŜǎ ƴƻǘ guaranteeanything about
timing behaviour on different platforms

o Development environments are unnecessary complex and often expensive

o Model interpretation, although slower, brings benefits in terms of ease of
development, error monitoring at run-time, security, no semantics distortion
between model and code, scalable redundancy, independence from the
platform, etc.

10

Both functional and
non -functional concerns

Through declarative programming, then
system synthesis

Process introspection

www.designcps.com

First time when the
current and previous
instances obtained

the CPU

Introspection can serve to implement
adaptive behaviours, such as algorithms
that depend on the rate of execution or

the jitter of the process

11

State-of-the art

www.designcps.com 12

o With respect to synchronous languages ?
o Less demanding programming style

o No time-determinism but rather timing-predictability

o Not amenable yet to verification in the value domain

o Unlike pure Architecture Description Languages like Giotto
and Prelude, CPAL is also a programming language and an
execution platform
o Same time-triggered execution model as Giotto

o Could take advantage of the rich data-flow language of Prelude

o With respect to Papyrus-RT?

CPAL = Imperative programming in the functional
domain + declarative programming in the non -
functional domain + Time -Triggered execution

platform

www.designcps.com

Processes: recurring activities whose

logic is described as Finite State Machine

13

Finite-state Machines to

describe the logic of processes

www.designcps.com

Boolean condition

Timed transition

Timed transition
and condition

Code both in states
and transitions

14

Periodic activation of a process

www.designcps.com

Execute first a
transition (if

possible) then the
current state

Ą best responsiveness
to external events

Move to next state

A transition
can be fired ?

Wait until period has elapsed

NoYes

Stayin current state

Executestate-specificcode

One execution step
of the FSM

Executecommoncode

Activation condition
met or none ?

No Yes

15

www.designcps.com

Simulation and Real-Time

Execution Mode

16

CPAL Execution Modes

www.designcps.com

Execution order of processes
remains the same in

simulation mode and in
real -time mode

Event-order determinism is not always needed and is not always
ǎǳŦŦƛŎƛŜƴǘΣ ƴŜŜŘ ŦƻǊ ŀ ŎƻƴŎŜǇǘ ƻŦ άǘƛƳƛƴƎ-ŜǉǳƛǾŀƭŜƴǘ ŜȄŜŎǳǘƛƻƴέ

17

Simulating execution times

www.designcps.com 18

Timing annotations can be inserted manually or
by a Worst -Case Execution Time analyzer and

are used by the simulator

Process activation model

www.designcps.com

offset period

Activation conditions are for
functioning modes and event -

triggered activities

19

Declaring timing correctness

www.designcps.com 20

Constraints: deadline,
frequency, jitters, data -flow

(precedence, prod. rate),
safety, etc

Allocate the models to the core

Set offsets and possibly periods

A

B

Set scheduling parametersC

Ideas drafted in [6] but scheduling
synthesis not implemented yet

Basic schedulability analysis

www.designcps.com 21

o WCET by measurements (runtime monitoring)

o Current scheduling policy is FIFO
¦Non-preemptiveness+ enforce event-order determinism

¦Work-conserving unlike static cyclic scheduling

¦But limited resource usage, offsets helps here

o Schedulabilityanalysis with offsets is difficult
¦Exact analysis but exponential time

¦Polynomial time but approximate

o Better resource usage with the digraph task model

Ongoing work [7]

www.designcps.com

Use-Cases

22

Simulation: Some/IP SD [8,9]

www.designcps.com 23

SOME/IP SD: service discovery for automotive Ethernet
Objective: find the right tradeoff between subscription

latency and SOME/IP SD overhead

Max analysis
4.005ms

Max simulation
3.98ms

Subscription
latency

for a client

V Simulation complementary to analysis
V Models have been coupled with low -level simulator
V Same models could be used to implement testbeds

UC#1

