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Anderson-Hubbard model in infinite dimensions
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We present a detailed, quantitative study of the competition between interaction- and disorder-
induced effects in electronic systems. For this the Hubbard model with diagonal disorder (Anderson-
Hubbard model) is investigated analytically and numerically in the limit of infinite spatial dimen-
sions, i.e. , within a dynamical mean-field theory, at half-6lling. Numerical results are obtained for
three different disorder distributions by employing quantum Monte Carlo techniques, which provide
an explicit finite-temperature solution of the model in this limit. The magnetic phase diagram is
constructed from the zeros of the inverse averaged staggered susceptibility. We find that at low

enough temperatures and suKciently strong interaction there always exists a phase with antiferro-
magnetic long-range order. A strong coupling anomaly, i.e. , an increase of the Neel temperature
for increasing disorder, is discovered. An explicit explanation is given, which shows that in the
case of diagonal disorder this is a generic effect. The existence of metal-insulator transitions is
studied by evaluating the averaged compressibility both in the paramagnetic and antiferromagnetic
phases. A rich transition scenario, involving metal-insulator and magnetic transitions, is found and
its dependence on the choice of the disorder distribution is discussed.

I. INTHODU CTION

The investigation of interacting electronic systems is
one of the most intriguing, albeit di%cult, subjects in
condensed matter physics. The same is true for the
study of disordered, non-interacting electrons. In view
of the theoretical complexity of the two problems taken
separately, it is understandable that their combination,
i.e. , the simultaneous presence of randomness and inter-
actions, as found in many real systems (e.g. , doped semi-
conductors near the metal-insulator transition, high-T,
superconducting materials close to T„etc.), leads to new,
fundamental questions to which only few secured answers
are known. This is all the more true when the interaction
and/or the disorder is strong, since there exist hardly any
tractable, and at the same time controlled, theoretical
method of investigation in this limit.

An important starting point for the investigation of
interacting, disordered systems was the field-theoretic
approach developed for the treatment of noninteract-
ing electrons, i.e. , the scaling theory of Anderson
localization. A generalization of this theory to 6-
nite interactions by Finkelshtein provided essential new
insight. However, the appearance of local magnetic mo-
ments in the renormalization group treatment discovered
by him and Castellani et al. turned out to be a fun-
damental obstacle for the study of the metal-insulator
transition (MIT) itself. A microscopic origin of this in-
stability towards the formation of localized moments can
already be traced within Hartree-Fock theory for the dis-
ordered Hubbard model ("Anderson-Hubbard model" )
with ofF-diagonal disorder. ' The results indicate that

the above renormalization-group approach, as well as is
starting point, i.e., Anderson-localization, are not ap-
propriate when it comes to the investigation of three-
dimensional disordered electrons with intermediate or
strong interactions close to half-filling (n 1). After
all, a MIT occurs even without disorder in this case, and
the lattice periodicity becomes essential. A nonpertur-
bative and qualitatively quite diA'erent, but essentially
uncontrolled, renormalization technique by which disor-
der and interactions can be treated on equal footing is
the real space renormalization-group approach. It was
erst applied by Ma and recently used by Yi et al.
to investigate the Anderson-Hubbard. model with diago-
nal disorder, i.e., random on-site energies, in dimensions

d = 1, 3 at n = 1 and in d = 2 for n 1, respectively.
However, in these investigations the formation of antifer-
romagnetic long-range order (AFLRO), which will always
set in at large enough repulsion (at least at n = 1) was
not considered. The strong-coupling limit of this model
was studied by Zimanyi and Abrahams using a slave-
boson formulation of the corresponding t-J model. The
considerably simpler, but still highly nontrivial, case of
disordered, Spinless fermions in d = 1 was also addressed
recently.

To obtain a global picture of the properties of inter-
acting, disordered systems it is desirable to know the
solution of a simple, microscopic model which is valid
for all input parameters (interaction, disorder, tempera-
ture, band filling). Since exact solutions are not avail-
able in d = 2, 3 one would like to construct, at least,
a thermodynamically consistent mean-6. eld theory that
is valid also at strong coupling. Such a (nonperturba-
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tive) approximation is provided by the exact solution of
a model in d = oo. It is now known that even in the limit
d -+ oo (Refs. 17 and 18) the Hubbard interaction re-
mains dynamical and leads to a highly nontrivial single-
site problem with infinitely many coupled quantum
degrees of freedom. This problem is, in fact, equiva-
lent with an Anderson impurity model complemented by
a self-consistency condition ' ' and is thus amenable
to numerical investigations within a finite-temperature
quantum Monte Carlo approach. In the absence of dis-

order this technique was already used by several groups
to investigate the magnetic phase diagram, ' ' the
Mott-Hubbard transition, ' ' transport properties,
and lately also superconductivity in a two-band version
of the Hubbard model in d = oo. These investigations
were also extended to the periodic Anderson model and
the Holstein model.

The dynamical mean-field theory of interacting elec-
trons obtained in the limit d = oo has many appealing
features; however, it also has its limitations, which are
due to the purely local nature of the theory. One ef-
fect which cannot be described within the d = oo mean-
field theory of disordered electrons is the phenomenon of
Anderson localization. That is, the electrons in infinite
dimensions are delocalized for arbitrary strength of the
disorder. The absence of localized states is caused by the
above mentioned single-site dependence, i.e. , by the fact
that momentum dependence enters the physical quanti-
ties oniy through the dispersion relation, whereby ver-
tex corrections to the conductivity vanish identically.
In fact, it was shown ' that for vanishing interaction,
when the Anderson-Hubbard model reduces to the An-

derson disorder model, the well-known and much-used
"coherent potential approximation (CPA), " ' which
does not describe Anderson localization, yields the exact
solution in d = oo. Nevertheless it should be stressed that
even in the absence of Anderson localization the pres-
ence of disorder can have a significant, nontrivial efFect
on the properties of an interacting system. First results
of a quantum Monte Carlo study of the competition be-
tween disorder and interaction in the Anderson-Hubbard
in d = oo with diagonal "binary-alloy" disorder were re-

cently reported by us. The importance of separable,
ofF-diagonal disorder in the formation of local moments
and the Mott transition was investigated by Dobrosavl-
jevic and Kotliar.

A good impression of how complicated the phase di-

agram and the dynamical properties of interacting elec-
trons with and without disorder are may be inferred from
the results for spinless electron in d = oo. ' The fact
that the interactions reduce to their Hartree-contribution
in this case, i.e. , are no longer dynamical, does not at
all imply that the properties of the model become trivial—quite the contrary. Many details of this model can be
obtained analytically in d = oo, thereby providing valu-
able insight into the efFects of interactions, the interplay
between interaction and disorder, and the d = ao limit
itself."

The correlations caused by interactions between elec-
trons and by the scattering of electrons in a disordered
medium, respectively, can be very difI'erent; indeed, they

may lead to opposite effects. For example, even an arbi-
trarily weak repulsive Hubbard interaction between elec-
trons on a bipartite lattice will induce AFLRO when the
band filling is sufficiently close to n = 1 (at least in di-
mensions d ) 2). By contrast, it is the very nature of
a random potential to oppose order. Hence interactions
and disorder are expected to compete with each other.
This conclusion may appear self-evident and almost triv-
ial but is really only based on a simple-minded superpo-
sition of the two individual physical effects (which may,
in fact, be quite correct for weak interactions and dis-
order). When the interaction and/or disorder is strong,
however, this picture looses its basis. In general, the
mutual interplay of those two efFects can be expected
to lead to novel, nonperturbative, quantum-mechanical
many-body phenomena, e.g. , new phases, which have no
analog in nonrandom, interacting or disordered, nonin-
teracting systems.

In view of the interplay between disorder and interac-
tion there are a number of simple questions whose an-
swers will be nontrivial. For example:

(1) Is there a /nike disorder strength above which
AFLRO ceases to exist? (After all, the Huctuations of
the ensembles around the average value n = 1 induced
by the disorder might become so large that AFLRO is
made impossible. )

(2) Does disorder always reduce the critical tempera-
ture for AFLRO, as one might expect intuitively?

(3) Do interactions always drive a system away from
metallic behavior into an insulating state?

(4) How important is the choice of disorder distribution
on the results?

These are questions which need to be answered by means
of controlled investigations of a well-defined microscopic
model. It is our intention in this paper to provide ex-
plicit, numerically exact answers to the above questions
within the dynamical mean-field theory obtained in the
limit of high spatial dimensions. A preliminary account
was presented in Ref. 42. The paper is structured as fol-
lows. In Sec. II, we introduce the model and discuss the
form of the corresponding averaged &ee energy in d = oo.
In Sec. III, we calculate correlation functions, i.e., the
averaged compressibility and staggered susceptibility, to
determine the thermodynamic stability of various phases.
The details of the model (input parameters, disorder dis-
tribution, etc.) are specified and the numerical procedure
is discussed in Sec. IV. This leads to the construction of
the magnetic phase diagram in Sec. V. In Sec. VI, the
results on magnetic phase transitions are then comple-
mented by those on metal-insulator transitions. A dis-
cussion of the combined phase transition scenario closes
the presentation.

II. MODEL AND AVER.ACED FB,EE ENEB.CY
IND=oo

The simplest microscopic Haxniltonian for conduction
electrons interacting via the local Hubbard interaction in
a disordered system is the so-called Anderson-Hubbard
model, which can be written as
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i,a

cies, and the generalized atomic partition function Z is
represented by a Grassmann functional integral,

H = H H„b+ ) (e, —p )n, , (2)

where HH„b is the usual Hubbard model,

Here, c, (c, ) create (annihilate) a o' electron, on site i,
with n; = c,. c; and p, is the chemical potential of the
o. electrons. In general, both the hopping amplitude t;~
and the atomic energies e, in (1) depend on the config-
uration of the atoms distributed on the lattice. In this
paper we restrict ourselves to the case of uncorrelated, di.—

agonal disorder. Hence, we assume the hopping elements
to be independent of the randomness (with t,~

= t fo—r
nearest-neighbor sites and t,~

= 0 otherwise), while the
atomic potentials e, are chosen as random; thus, short-
range order is neglected. The Hamiltonian under inves-
tigation is then given by

Z(g ', e;f = 17/'Dg*e (7a)

with the local action

d~~t (~)~T (~)~s (~)~4 (~)

g
—i G

—i +g

Here, 4 (7) are Grassmann variables that depend on the
imaginary time r, and 4 are their Fourier transforms
into ~„space. Only the random potentials ~; are config-
uration dependent. Furthermore,

Here, the hopping matrix element was written as

t = t*/~Z, t* = const,

with Z as the number of nearest neighbors on the lattice
(e.g. , Z = 2d on hypercubic lattices in d dimensions).
This scaling ensures that (3) remains nontrivial even in
the limit Z M oc. We can then write the averaged full
energy (grand potential) as

0 = —P ((1n Tr exp( —PH))), (5a)

where P = 1/k~T Here, the av. erage over the disorder is
defined as usual as

de~P(E'~) X(ei). . .
q el, ) )

0 „/L = —P ) dEN(E) in[i(u + p
em

—Z „—E]
+P ') lnG „' —P (lnZ(g ', e)) (6)

where N(E) is the density of states of noninteracting
electrons, ~ = (2n + 1)vrP are Matsubara frequen-

where L is the number of lattice sites, and P(e, ) is the
distribution of the random potentials e;. The explicit
form of the function P(e, ) will be specified later.

In realistic dimensions (d = 2, 3), it is impossible to
perform the trace over all fermionic states in (2) exactly.
However, in the limit of infinite coordination number or
spatial dimensions, significant simplifications occur in the
evaluation of thermodynamic properties. Two of us re-
cently showed that the averaged grand potential of the
disordered Hubbard model in d = oo can be reduced to
an expression, where the averaging is performed only on
a single site. The explicit expression for the grand po-
tential in the paramagnetic phase is given by

is an effective local propagator of the electrons. The
grand potential (6) is a functional of the complex quanti-
ties t and Z, which at this point enter as variational
parameters. That is, the physical values of G and Z
(namely, the local Green function, G—:G;, , and the
self-energy, Z = Z,;,of the electrons, respectively)
correspond to those for which (5) is stationary.

Each term of 0 in (6) has a clear mean-field inter-
pretation, which allows us to outline a simple construc-
tion of 0 on a mean-field level. ' We first introduce
a homogeneous, effective, energy-dependent potentialZ, which is defined in such a way that in the ther-
modynamic limit the system of disordered, interacting
electrons is equivalently described by a system of nonin-
teracting electrons in the potential Z . The free energy
Q»(E ~) is now constructed as follows:49 (i) we start
with the free energy of noninteracting electrons in the
potential Z [first term in (6)]; (ii) then we remove the
potential E from site i, i.e. , subtract its energy con-
tribution [second term in (6)]; and (iii) replace it by the
potential v,. = 2Un, . + e, —p, and finally average
over e; [last term in (6)]. To determine the potential

, we demand that the free energy obtained by this
construction be stationary under variation of K, i.e. ,
BA /OE = 0. This is a self-consistent equation for
Z . The major advantage of the mean-field grand po-
tential (6) is the property that the variational parameters
are not explicitly configuration dependent, i.e. , they are
determined only by averaged quantities which result from
the averaging in (6). Since the averaging is local, the
disorder only leads to local correlations on the same site.
DifI'erent lattice sites are efFectively decoupled and all the
information about the surrounding sites is contained in
the efFective potential E . Indeed, K is a generaliza-
tion of the "coherent potential" known from the theory
of random alloys. ' This may be seen as follows:
if we neglect the Hubbard interaction U, the Grassmann
functional integral (7a) becomes Gaussian and can be
performed exactly, leading to
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0 (U = 0)/L = —P ) dEN(E) in[ice„+ p
a,n

—Z.„—E] + (in[1+ G.„(Z.„

~2 BV

This is precisely the grand potential of a random al-
loy with noninteracting electrons within CPA, with
Z as the coherent potential expressed in Matsubara
frequencies. si Hence (6) can be understood as a field-
theoretic generalization of the CPA to random alloys with
interacting electrons, which becomes exact for Z ~ oo.

It should be noted that the averaged grand potential
(6) does not contain the complete information about the
equilibrium physics of random systems. For example,
averaged products of Green functions contain new, non-
trivial correlations and cannot be derived from (6). The
averaged grand potential does, however, carry the full in-
formation about the equilibrium thermodynamics of the
model. We concentrate in this paper exclusively on the
thermodynamics of the Anderson-Hubbard model.

It is well known that, for large enough U, the Hubbard
model itself leads to AFI RO at (or even close to) half-
Glling. This type of long-range order must, therefore, be
considered even in the presence of disorder. For the sake
of simplicity, we investigate only AFLRO on bipartite
lattices. In this case, the breaking of symmetry is caused
by a staggered inagnetic field h, with (+6,) on A and

(—6, ) on B sites. To be able to study this type of order
quantitatively, we extend the averaged grand potential
(6) to the symmetry-broken phase. The averaged grand
potential of a general antiferromagnetic solution has the
form

—Z+ „)(z(d„+ p j3 —Zgj „)—E ]

—) ) lnG '„+ ) (In' ) I, (10)
~,n p=A, B p=A, B

where the index p = (A, B)—:(+1,—1) corresponds to
sublattices A, B, respectively, and p~ = p+ o (ph, + h),
with 6 as a magnetic field. The local partition function
Zz in (10) is given by (7) with the replacements g

(r) ~ g~ (r), G m G, etc. , and integra-
tion over all Grassmann fields, i.e. , Z~ = J 17/X)g*e+»,
with

A =5 g* „(G '„+Z~ „—e, )@~ „

d~@*t(~)g t(r)g*~(r)g g(~). (11)

The full partition function is given by Z = Z~Z~. As
described above the physical values of G~ and E~ „in
(10) are then found from the stationarity conditions,

bO /hG~ „=0, SA /8Z~ „=0.

In the following, we will set h = 0 in (10) and exclude
the existence of ferrimagnetism. In this case the average
number of electrons on sublattices A and B are equal.
Then there appears a new symmetry: quantities with in-
dices p, o and —p, —0. coincide. Hence, the double index
p, a can be combined into a single one, n = (+, —), with
n = + for A g= B $ and n = —for A $= B g. Thereby
the number of independent parameters is reduced. Equa-
tion (12) then yields two coupled sets of self-consistent
equations for G and Z

N(E)
i(u„+ p —K „—E'/(iu)„+ p —Z „)'

(13b)

where p = p, + nh, . Here ()T represents the statistical
average with the local action as

III. CORRELATION FUNCTIONS
AND THERMODYNAMIC STABILITY

(14)

Note that (13a) merely expresses the fact that G „ is
the local element of the full Green function, i.e., is an
explicit function of the self energy E . Only Eq. (13b)
describes the actual dynamics of the system, determining
the self-energy Z~ as a function of the input parameters
T, p, U and the disorder distribution. Equation (13) fully
determine the one-particle properties of the Anderson-
Hubbard model in d = oc.

To decide about the stability of a particular solution
of (13), we have to evaluate averaged boo-particle cor-
relation functions or susceptibilities. Two such quanti-
ties are of particular interest in the Anderson-Hubbard
model: the averaged staggered magnetic susceptibility

g = y&F and the averaged compressibility K . The
former decides about the instability of the paramagnetic
phase with respect to AFLRO, while the latter not only
contains the information about a possible instability with
respect to phase separation (r ~ oo), but also provides
a thermodynamic criterion for a solution to be insulating
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(K „~0). Quite generally susceptibilities can be ob-
tained from the second derivative of the averaged grand
potential 0 with respect to some variable x as

1 0 Oav OAF + hs
I BX2 Kav) & = P.

where f" = 1 and f"* = n. Differentiating once more, we
obtain the desired susceptibilities (15). Note that these
susceptibilities are evaluated at zero staggered field 6„
i.e. , h, , is put to zero once the second derivative of 0
with respect to p or h, is taken (in this case p = y, ).
Thus, the susceptibilities are given by

The first derivative of 0 with respect to x yields, x =p Igx~aa x
nn', n'n'Ya~n~ ) (i6)1001)

I Ox 2P an

an, a' n'

where I' is the local two-particle correlation function,

paa'
n$ n] in2 n2 «i«i «2 «z exp (i(Cd„& Ti + (d„7.i —Ld„7 2

—M„»))
&& ((@ (~i)&*(»)@ '(~l)&' (~2))T) —((@ (ri)@'(»))~(@ '(rl)&* (7'2))T)

The quantity p = B(G + E )/Ox in (16) measures
the response of the averaged medium to an infinitesimal
change of the field x. %le will later see that p decides
about the (in-)stability of a given phase. This dynamical
response function is determined by an integral equation
in frequency space, which does not explicitly depend on
momentum. (Note that there are no convolutions in k
space in the d = oo limit as is typical for a mean-field
theory. ) This property does not imply, however, that
the response function p is local, too. lt only indicates
that p is c6agona/ in the momentum q. A momentum
dependence will enter by taking derivatives, e.g. , of the
local Green function, with respect to an external field
with a particular q dependence [q = 0 in the case of the
compressibility or the ferromagnetic susceptibility, and
q = (vr, . . . , ~) for the staggered susceptibilityj. Infrared
divergencies show up in the spectrum of p (t).

The integral equations for p are derived as follows.
Using the efFective propagator g = G + Z = (1+
G „E „)/G „,such that

G'
G'..=

I
v". + G,

" —f:)(-.
G'

+IV* +G, "—f
aa

a' n'

(21a)

(21b)

where G'„= OG „/Bx and ( „= {g2„(E))~,g „
(E g (E))@/z . Eliminating G' from (21), we ob-
tain the following matrix equation for p+ and p

p ) (pb„„.B„, + I„„,„,„)y*,„, = v „.
a' n'

(22)

R„=—(det D„) 'D„T„,
v„= R„ f,

(23a)

(23b)

The quantities B and v are a matrix and a vector,
respectively, with respect to the sublattice-spin index o.
and may be written as

p*„=ag „'/Ox,

we replace the self-energy in (13) by E = Q i —G
Then (13) reads

where

g+) n
Q'2

Q2

(24a)

G- = (g-(E))a

p «e"" (H-(~)@.'(r+))~),
0

(»a) /(+, - n+, - )
&&-,- &-,-)

where g (E) = (z —E /z ) i, with z = iur (24c)

(y(E))~ = dE N(E) y(E). (20)

To obtain p we difFerentiate (19) with respect to x.
This yields

In the paramagnetic phase, where f v = f v
Eqs. (23)—(25) reduce to (6) in Ref. 42. Equations (22)—
(24) det, ermine the dynamical response function p . The
latter has a clear physical meaning. From (16) we see that
the full susceptibility (A) is essentially a product of a
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purely local, frequency-dependent part (I') with a lattice
dependent contribution (p), which therefore represents
the surrounding of the single site under investigation.

To determine the boundary between the paramagnetic
and the antiferromagnetic phase it is sufFicient to cal-
culate OAF only in the paramagnetic phase. By con-
trast, K has to be evaluated in both phases since in
both phases a metal-insulator transition (MIT) is pos-
sible, in principle. Indeed, in the paramagnetic phase
of a random alloy with discrete disorder spectrum, a
MIT due to band-splitting may occur [at U = 0 this
is known to be the case, at least within CPA (Refs. 40
and 41)], and even in the presence of AFLRO, there are
indications that both a metallic and an insulating phase
exist. We will And that the most sensitive indicator for
an incipient transition are the dynamic response func-
tions p, x = p, h, , —especially their behavior close to
the Fermi energy (i.e. , their values for the lowest Mat-
subara frequencies), rather than y&F and r itself. The
latter quantities are much less sensitive to changes in the
ground state since they represent sums over the Matsub-
ara frequencies.

IV. 8PECIFICATION OF THE MODEL
AND OF THE NUMERICAL PROCEDURE

Equations (15)—(24) form the basis for the numerical
evaluation of r and OAF. Before they can be solved
quantitatively, we have to specify the model parameters
we use. The numerical calculations were performed with
a semielliptic density of states (DOS), with total width
2') i.e. )

~(@) (
2 @2)1/22

(25)

This DOS is chosen because of its sharp algebraic band
edges, resembling those typical for d = 3, and its simple
analytic form; it is exact for a Bethe lattice in the limit
ZM 00.

To study the inHuence of the disorder we investigate,
and compare, three qualitatively different distributions
of random potentials.

(a) Discrete, binary random alloy d-istributio-n,

1 4 1Pb;,„(e,) = —b(e; ——
) + b(e;+ —). —(26a)

(26b)

This is a much softer type of disorder. We found that

The atomic potentials e, = +4/2 are chosen with equal
probability to ensure an average band filling of n = 1
(only in this case, or n 1, is AFLRO expected to occur
at all). This distribution is important since it leads to a
disorder-induced MIT due to band splitting in the nonin-
teracting system [an exact result in d = oo (Refs. 38 and
39)], which may compete with the interaction-induced
Mott-Hubbard MIT.

(b) Continuous, semielliptic distribution,

a continuous, constant disorder distribution P, „,~(e, )
6 ( 2

—~e;~), leads to essentially identical results.
(c) Percolation typ-e disorder,

G„=8r/[1 —exp(br/G„)], (27a)

G(7) = p ') e' " G„, (27b)

with P = A8w. The same is done in the case of the
inverse effective local propagator g„, Eq. (8), leading
to a smoothed quantity Q ~(r). The latter is used in
the Monte Carlo evaluation of the new Green function
G (r) according to (13b). By inverting (27), we obtain
the new function G", and from the new self-energy,

g —(G" ), we obtain again the Green
function G by (13a). We then replace G by G and
continue the iteration procedure until self-consistency is
reached.

In the continuum limit &- —+ 0, the functions G and
G coincicle. The definition (27) preserves the relation
G(7 = 0) = n —1 even in the case of discrete 8r and sup-
presses unphysical and undesirable oscillations in G(r),
due to the discretization (see Fig. 1). In particular, by
smoothing G(r) in this simple way large-scale Fourier
transformations (namely, for every iteration) described
in Ref. 29 become unnecessary.

Exact summations over spin variables in the discrete

Pv„, (e, ) = (1 —x)8(e, ).

By using P~„,(e;) one may simulate doping in a non-
random system with impurities, which do not hybridize
with conduction electrons: with probability x an infinite
energy barrier is created, which prevents the electrons
from visiting these sites. The three distributions allow
us to test the universality of the magnetic behavior of
the model obtained for different types of disorder.

To be able to study the competition between magnetic
order caused by the electronic interactions and the dis-
ordering effects caused by the random potential, respec-
tively, we work with an average band filling n = 1.
Due to the symmetry of the distributions (26a,b) in the
random potentials e,. under the replacement e;
we can fix the chemical potential at p = U/2. This can
even be done for the distribution (26c): by considering
only the accessible lattice sites, i.e. , L —+ (1 —x)L and

~ (1 —x)K, where N is the number of electrons
with spin o., we are left again with a half-filled band be-
cause the Green function is itself weighted with an addi-
tional dilution factor of 1 —x.

For the numerical evaluation of the functional inte-
gral (14), we employ the algorithm of Hirsch and Fye.
We discretize the time variable, i.e. , P = ASr, with
0.25 & b~ & 1, and then extrapolate the quantities under
investigation to br ~ 0. (Note that in the literature the
number of time slices A is often denoted by I which we,
however, use for the number of lattice sites. ) To obtain
a smooth imaginary-time Green function G(r) even for
discrete values of 7, we use instead of G [the Fourier
transform of G(7) with respect to Matsubara frequencies
~„] the function
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Hubbard-Stratonovich transformation were used when-
ever possible, i.e. , for A & 22. For A ) 22 we used Monte
Carlo sampling. After typically 4-8 iterations an accu-
racy of 10 and 10 was reached in the exact summa-
tions and in the Monte Carlo sampling with 10 sweeps
per iteration, respectively. Close to the magnetic tran-
sition the convergence becomes significantly slower and
the Monte Carlo sampling less and less efricient. This
implies that in the immediate vicinity of the transition
this method cannot be used to obtain accurate results.

The integration over the continuous disorder dis-
tributions was performed using the Gauss-Legendre
quadrature. A discretization of the random energies in
steps of 8s/iU 0.2 gave an accuracy of 10 for all
observables. The required CPU time increases propor-
tional to A 2A and A for the exact summation and the
Monte Carlo sampling, respectively. Although the ran-
dom energies break the particle-hole symmetry, we never
encountered a minus-sign problem.

Setting h = k~ = 1, the only remaining physical di-
mension is that of an energy (U, Z, 4, T, etc.) or inverse
energy (G, K, y&&, P, kr). Departing from our earlier
convention, we now choose the half band width iU as our
energy unit since it does not depend on the limiting pro-
cess Z —+ oo. (This is in contrast to the scaling of the
hopping amplitude t = nt'/y Z, where n may be cho-
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FIG. 1. Local Green function G(7) for U = 0 and p = 0
(a), p = 0.5 (b) obtained by usual Fourier transformation
(dotted line) and by redefinition according to Eq. (13) (solid
line) .

sen at will. ) This convention agrees with that used by
Kotljar and collaborators. '2 ' O' To be able to com-
pare the results presented in this paper with our earlier
ones, 2 all numerical values of quantities with dimension
of energy (inverse energy) obtained in Ref. 42 must be
divided (multiplied) by a factor of 2. To compare with
the results of Jarrell and co-workers ' ' and that of
Georges and Krauth, 2 ' their numbers have to be di-
vided (multiplied) by a factor of ~2.

V. MAGNETIC PHASE DIAGRAM

The competition between disorder and correlations in
the Anderson-Hubbard model strongly afFects its proper-
ties both in the ground state and at finite temperatures.
Concerning the thermodynamics, the inHuence of diO'er-

ent kinds of disorder on the stability of AFLRO near
half filling is of particular interest. To determine the in-
stability of the paramagnetic phase with respect to the
formation of AFLRO we evaluate Eqs. (15)—(25) in the
paramagnetic limit for x = h„ in which case the de-
pendence on the index o; drops out; we set Z = E
etc. , and p"':—p . Note that the matrix equation (22)
separates into two identical scalar equations in this case.
As already mentioned below (17), it is not the averaged
susceptibility itself, which is of primary interest in the
investigation of the stability of the paramagnetic phase
but the dynamic response function p . The averaged
susceptibility diverges (becomes negative), if and only if
the real part of the response function p diverges for at
least one frequency. This is characteristic for the dynam-
ics of a quantum system of interacting particles possess-
ing infinitely many coupled internal degrees of freedom
labeled by the Matsubara frequencies. Each frequency
corresponds to one mode in the quantum mechanical sys-
tem which is described by complex variables. Note, how-
ever, that the Matsubara frequencies do not index the
actual independent modes, since I' „ is not diagonal
in frequency. Only the eigenvalues of the integral equa-
tion (22) represent the independent (eigen-)modes of the
interacting quantum system. We can ascribe a critical
(Neel) temperature T~

~ ~

to each eigenmode n whereby
T~ ~„~ ) T~ ~„] if ~n~ & ~n'~. In Fig. 2, we show the fullc-
tion p (T), being a linear combination of eigenmodes for
the lowest Matsubara frequencies, which lie very close
to the diverging independent soft mode. The functions

(T) diverge due to the contribution of the eigenmode
with the highest T~

~

~. The highest critical tempera-
ture T~

~ ~

is the thermodynamic critical temperature
T~. Higher eigenmodes with lower critical temperature
T~

~ ~

are physically unimportant for the static suscep-
tibility yAp considered here. However, in the dynamical
case some of the independ. ent eigenmodes may mix, lead-
ing to a difFerent dependence of p on T in I ig. 2, e.g. ,
the relation T~

~ ~

) T~
~ ~

if )n[ & [n') may no longer
hold.

Once the function p and the local vertex function
I' are known, one may calculate the averaged sus-
ceptibility. Above T~ this susceptiblity must obey the
Curie-Weiss law, provided there is such a T~ & 0. In
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Fig. 3, three characteristically difFerent temperature de-
pendencies of y&F are shown for one value of (binary al-

loy) disorder, E = 2, at di6'erent interactions strengths.
If U/A is sufFiciently large the Curie-Weiss law with a
finite T~ is obeyed as in the case without disorder. For
values of U L the low-temperature behavior begins to
be determined by the scattering ofF the frozen random
configurations and deviations from the Curie-Weiss-law
become apparent. For U/A ( 1, we observe a min-
imum in g&F (i.e., a maximum in OAF itself), which
separates the temperature-dominated regime from the
disorder-dominated regime. In the latter case the long-
range correlations are continually suppressed, due to im-
purity scattering. The phase diagram in the T —U plane
calculated from the zeros of y&F is plotted in Fig. 4(a)
for difFerent values of the binary-alloy disorder. We can
distinguish two diff'erent regimes. (a) U ( U 2.5: the
disorder gradually suppressed the long-range order and
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FIG. 3. Inverse averaged antiferromagnetic susceptibility

OAF vs T for the binary alloy with A = 2 and several values
of U.

FIG. 2. Dynamical antiferromagnetic response function p
vs temperature T. Binary alloy with disorder strength A = 1
and U = 2. Here and in the following figures lines are usually
guides for the eye, and error bars are roughly of the size of
the symbols unless shown explicitly.
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FIG. 4. (a) T —U-phase diagram for the binary alloy with
A = 0, 1, 2, 4 obtained from the zeroes of y~F (see Fig. 3).
The AF phase is stable below the curves. The dotted lines
at T = 0 depict the regimes where the Curie law would give
negative transition temperatures. Below the crosses yA~ has
no zeroes but a minimum and an AF phase can no longer
be expected. (b) T —U-phase diagrain for the semielliptic
distribution of the random energies with width A = 0, 2, 4, 6.

thus reduces the critical temperature. This is exactly
what one expects from scattering ofF frozen random con-
figurations; (b) U ) U, : here, the situation is strikingly
difFerent since T~ curves of constant disorder start to
cross. This means that a small amount of disorder sup-
ports the formation of AFLRO, i.e., the critical tempera-
ture increases with disorder as shown in Fig. 5. A maxi-
mal critical temperature is reached at some value 4 (U)
beyond which a further increase of disorder causes the
critical temperature to decrease monotonically to zero.
This efFect is particularly pronounced at strong coupling.
It is also observed, but less pronounced, in the case of the
continuous disorder distribution [Fig. 4(b)]. In the limit
U )& A, t the enhancement of T~ may be explained as
follows. The virtual hopping of an electron with spin o.

from a given site A with local energy e~ to a neighbor-
ing site B with energy e~ occupied by a (—/r) electron
leads to an energy gain Ji —— t /[U —(e~ —e—~)] and to
Jz ———t j[U + (e~ —e~)] for the reverse process. The
effective spin coupling J(e~, e~) is given by the sum of
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these energies, J(E~, e~) = Ji + J2, which for a bounded
disorder distribution, —

2
& e~ ~ & z, with U )) 4

(strong coupling) implies

22t' /'e~ —e~ l
J(ez, ea) = 1+

~

Assuming that even in the presence of disorder the
Neel temperature T~(U, 2 )oc( J(~» e&) ),we find

T~(U, 6)
T~(U, 0)

ding i&~ J(eg, ~e)P(eg) P(E~)

2 — 2=1+ U, )2 —pi( (29a)

for arbitrary disorder distribution P(e) pi and p2 a. re the
first and second moment of P(e), where pi = I doe'P(e).
For a symmetric, bounded distribution (pi ——0) one,
therefore, finds

FIG. 5. T vs A for the binary-alloy distribution at U = 3, 4,
and 5.5. Dashed lines: quadratic increase of T~ according to
Eq. (29b) with A = 1/2; dotted lines are guides to the eye
only.

Ter(U, &) = T~ (U)
1 (ai'

x 1—
2 EU)

for arbitrary U (Fig. 6). For U )) A, (31) reduces to
(29b).

It is well known that AFLRO may be destroyed by
doping the (nonrandom) system with holes, such that
n ( 1. This is a very interesting effect both from
an experimental and theoretical point of view. The ef-
fect of adding holes may be approximated by introducing
percolation-type disorder, (26c), where the random site-
energy is zero with probability 1 —x and infinite with
probability x. Since in d = oo the critical value for per-
colation is x = 1 (Ref. 55), AFLRO will persist up to
x = 1. The boundaries between the paramagnetic and
the antiferromagnetic phases for this type of disorder are
shown in Fig. 7. At weak coupling, the critical tem-
perature remains constant over a wide range of x and
then rapidly falls to zero. At strong coupling, however,
the critical temperature monotonicaLly decreases and ap-
proaches the linear behavior Tiv (x) = Tiv (0) (1 —x). The
latter dependence of T~, which is very different from the
one observed. in the previous two cases, is an exact result
in the case of the disordered Falicov-Kimball model.

The magnetic correlations are mediated by the local
magnetic moments. Their static average, m, is de-
fined by m = L P,. (((n;~ —n, g) )T ) „=1 —2d
Here, d = L id' /dU is the average double occu-
pancy of lattice sites. For the binary and the semiellip-
tic disorder distributions discussed above, m is shown
as a function of U in Fig. 8(a). The disorder is seen
to have two main effects which are independent of the
specific disorder distribution: (1) at a fixed value of U,
an increase of the disorder always reduces the moments.
(2) For fixed disorder strength A, an increase of U al-
ways enhances the moments, with saturation starting at
U A. Both features are easily explained in terms of the
effect the disorder and the on-site repulsion, respectively,
have on the average double occupancy d . For U (( 4,

T~(U, A) t'4)
T~(U )

+
&U)

(29b) 0.12

with A = 2p2/A2, i.e. , the disorder is indeed found to in
crease T~ irrespective of the type of disorder. This effect
is the more pronounced the more structure P(e) has at

2, i.e. , is larger for the binary alloy (A = —) than for
the semielliptic (A = s) distribution. This quadratic in-
crease of T~ with A is indeed found numerically at large
U (Fig. 5). Apparently, the mechanism that enhances T~
is effective already at U values as small as U 2.5. It is
interesting to note that for given strength of disorder A
the U value, where AFLRO begins to set in, U;„, given
by T~(U;„,A) = 0, tracks almost perfectly with 4, i.e. ,

U;„(A) A. More generally, for binary-allay disorder
the T~ curves are found to obey the phenomenological
scaling law,

0.10
CQ

0.08—

0.06
I

0.0

0.02 I

.
r

0 ~~ 4Ã9
I

0 1

V(1 —(6 /U)')
FIG. 6. Scaling plot of T~ for the binary-alloy distribution

according to Eq. (30); symbols as in Fig. 4(a).
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the local repulsion is weak, while the spatial fluctuations
of the atomic potentials are strong, such that d is at
its maximum value (d 1/2) and m is small. As U
increases the particles are forced to separate and d de-
creases, i.e. , m increases, too. The local magnetic mo-
ments do not show a critical behavior close to the transi-
tion temperature T~. In the case of the percolation-type
disorder IFig. 8(b)j, the density of local moments on the
reduced lattice with (1—x)L sites increases with concen-
tration x. In other words, in the presence of disorder, the
saturation of m sets in at smaller values of U than in
the pure system. The inBuence of the percolation-type
disorder can be explained by the reduction of the kinetic
energy by a factor of 1 —x, which is due to the reduced
average number of nearest neighbors. For large V, in the
Heisenberg limit, the factor t in the antiferromagnetic
coupling, J t2/U, has to be replaced by t2(1 —x) lead-
ing to a linear decrease of T~. For small values of U, the
inhuence of the repulsion increases due to the reduction
of the kinetic energy. Therefore, the double occupancy is
suppressed, i.e. , m is enhanced. by the percolation dis-
order. The enhancement of m leads to the stabilization
of AFLRO. This eKect is definitely not described within
the Hartree-Fock approximation; the latter only leads to
an exponential suppression of T~ if U or (1 —x) becomes
small.

In Fig. 9, the temperature dependence of the order
parameter (the averaged staggered magnetization M~F)
is shown. In the vicinity of the transition point, T T~,
it is well represented by a mean-fie'ld-type dependence
M~F(T) oc (T1v —T) / indicated by the dashed line.
We observe that the extrapolation of the Monte Carlo
data to M~F(T1v) = 0, using this law leads to the same
critical temperature as that obtained from the divergence
of y&F, i.e. , y&F(T1v) = 0, assuming a Curie-Weiss law

for T T~. Deviations from the square-root behavior of
MAF(T) set in at lower temperatures.
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FIG. 8. (a) Averaged quadratic local moment m vs U
at inverse temperature P = 16. Without disorder (full circle);
binary alloy with A = 2 (full square); semielliptic distribution
with A = 2 (open circle) and A = 4 (open square). (b)
Averaged quadratic local moment m /(1 —x) (normalized to
the concentration of sites with random energy zero) vs x for
the percolation-type disorder at P = 16 for several values of
U.
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FIG. 9. Staggered magnetization MAI; and inverse aver-
aged susceptibility OAF vs T for the binary alloy with A = 1,
U = 2, br = 2/3. Dashed line: square-root fit of the last two
points of MAp below the transition; dotted line: linear fit of
y~F. The arrow indicates the extrapolated Neel temperature.
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VI. METAL-INSULATOR TRANSITIONS

In the preceding section, we found that at weak
coupling the disorder suppresses the AFLRO. In the
ground state, the system is then a disordered paramag-
net. Whether it is metallic or not depends on the type
and strength of the disorder. In d = oo, where Anderson
localization does not occur, ' a paramagnetic insula-
tor only forms if the spectrum of the disorder distribution
is multiple connected, such as in the case of the binary-
alloy disorder. For this type of randomness, a MIT due to
band splitting is expected to occur at some value D ) 1.
In the noninteracting case, U = 0, the exact result in
d = oo [obtained by CPA (Ref. 40)] is A = l.

For U = 0, there are two equivalent criteria to decide
on whether the ground state in d = oo is metallic or insu-
lating. They correspond to (i) a spectral definition of an
insulator, based on the disappearance of the DOS at the
Fermi level (assuming that only extended electrons are
present), and (ii) a thermodynamic definition, employing
the disappearance of the compressibility However, in
interacting systems these two criteria need not coincide.
Hence, we will investigate both. In Fig. 10(a), the av-
eraged compressibility K, of interacting electrons in the
presence of binary-alloy disorder is shown as a function
of U for P = 16. Hence, Ic is calculated across the line
T = 0.0625 in Fig. 4(a), i.e. , within the paramagnetic
and the antiferromagnetic phase, respectively (the tran-

sition points are indicated by arrows). For a given A 1,
the curves display a common behavior as a function of
U: K is (exponentially) small at U = 0, then increases
and, at U 4, approaches a maximum, beyond which
it becomes (exponentially) small again for U )) A. This
behavior has a clear physical interpretation: For U « 4,
with L 1, the double occupancy of lattice sites is at
its maximum value (d —), at the same time the ki-
netic energy cannot delocalize these states. Hence, the
system is insulating. At T = 0 and U = 0, this is an
exact property for 4 ) 1 (split-band limit) in d = oo.
As U increases, the on-site Coulomb repulsion forces the
particles to separate from each other. As a consequence,
the particles become less localized. We then expect that,
at some critical value U, ', a macroscopic fraction of
the electrons becomes extended and the system starts to
be metallic. This real-space picture has its analogy in
k space (or with respect to energy): as the interaction
increases the previously separated bands change their
shapes, i.e., the interaction-induced energy exchange be-
tween particles leads to a transfer of states into the energy
gap, where the Fermi energy is located. At the critical
value U ' the (still algebraic) band edges reach the
Fermi level, producing a finite DOS there as well as a
finite overall compressibility. (We cannot rule out that
U ' = 0, i.e. , that the DOS at the Fermi level is finite
even at arbitrarily small U; however, this would require
the bands to acquire exponential tails a feature which
cannot be observed numerically. ) Hence, in contrast to
an interacting system without disorder, the Coulomb in-
teraction in a disordered system is able to improve the
metallicity of the system and may even turn an insulator

into a metal. Apparently, the interaction-induced energy
exchange smooths the energy spectrum of the disordered
system, thus leading to an easier transfer of energy.

For U & U ' the system is then expected to be a
metal without Fermi liqiiid properties [since ImZ(ur =
0) g 0, i.e. , the quasiparticles have a finite lifetime at
the Fermi level], at least in d = oo. As U is further
increased the DOS and v. increase, reaching a maximum
at U L. For even larger U, the efFect of pushing states
into the gap is reversed and v decreases again. Hence,
at some critical value U ' a second transition occurs,
back into an insulating state, where doubly occupied sites
are almost completely suppressed, whereby the mobility
is obstructed by the repulsive interaction.

In Fig. 10(b), tc for the continuous, semielliptic disor-
der distribution is shown. Here, v. behaves qualitatively
as in the nonrandom case, i.e., K decreases monoton-
ically since the DOS does not split at U = O, T = 0.
This reduction of e occurs in two steps: for U
v decreases almost linearly with U, corresponding to
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FIG. 10. Averaged compressibility r „vs U at P = 16.
(a) Binary alloy, K = 0, 1, 2, 4; (b) semielliptic distribution
arith A = 0, 2, and 4. Arrows indicate the transition to the
antiferromagnetic state.



10 422 M. ULMKE, V. JANIS, AND D. VOLLHARDT 51

the linear suppression of doubly occupied sites d, or
m [see Fig. 8(a)]; in this region the system is metal-

lic but not a Fermi liquid. Then, for U 4, when the
number of doubly occupied sites is almost zero so that
the local moments are almost saturated, K approaches
zero (exponentially) slowly. Strictly speaking, at finite
temperatures, one has r~ & 0 for U ( oo.

Next, we discuss the relation of U ' and U ' to
the critical interaction strength U, where the para-
magnet becomes unstable with respect to AFLRO. In
Fig. 10(a),(b), the position of UA is indicated by an
arrow. Since the local moments vanish in the (binary-
alloy) —disorder-induced insulating phase, the insulator-
to-metal transition at UMI occurs before the magnetic
order sets in, i.e., U ' & U, . This raises the question
of what happens as one goes through the magnetic transi-
tion into the ordered phase: will the compressibility jump
to zero discontinuously or will there be an antiferromag-
netic metal, i.e. , does the interaction-induced MIT coin-
cide with the magnetic transition or not? To answer this
question the behavior of v near the transition point has
to be investigated. In Fig. 11(a), the change of K due to
the onset of AFLRO in the case of binary-alloy disorder is
shown. The results for the paramagnetic phase are com-

pared with those for the ordered phase. At A = 0, the
AFLRO is seen to suppress v drastically. By contrast,
at Rnite disorder (A = 2), this difference almost vanishes.
Apparently the disorder stabilizes the metallic state close
to U . A similar behavior is observed for the continu-
ous disorder [Fig. 11(b)]. These results suggest that in
the vicinity of U, the system is an antiferromagnetic
meta/. However, MC techniques are not able to decide
whether this is true even at T = 0. We attempted to
extrapolate our finite-temperature data to T = 0, but
could not And a simple, accurate extrapolation law. In
Fig. 12, the averaged compressibility for the system with
binary-alloy disorder, calculated at T = 1/16 and 1/40,
is shown. Although at the lower temperature v is lower
and the slope is slightly steeper at the transition point,
the critical point (indicated by an arrow) seems to be well
inside the metallic phase. In particular, the tail behavior
for U & U, does not show any significant change.

To investigate whether, and how, an insulator evolves,
it is instructive to plot the dynamical response function
p „,or the quantities

(31a)

0.6

0.5

with

(31b)

0.4

0—

as a function of Matsubara frequency w = vrT(2n+ 1).
In Fig. 13(a), the real part of v. is shown for a system
without disorder, A = 0, for U = 1.75 and T = 1/64 [the
system is then well inside the antiferromagnetic region,
see Fig. 4(a)]. The behavior of ReK close to w = 0 is
seen to be very diferent for the antiferromagnetic and
the (hypothetical) paramagnetic solution. For the para-
magnetic solution, which is metallic, ReK is a monoton-
ically decreasing function of ~w ~. By contrast, in the
antiferromagnetic (i.e. , insulating) phase, this is only so

for ~cu
~

1, while for w close to zero, Rer„becomes)
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FIG. 11. Averaged compressibility e „vs U at P = 16 in
the paramagnetic phase (dashed lines) and in the antiferro-
magnetic phase (dotted lines). (a) Binary alloy, (b) semiellip-
tic distribution.

FIG. 12. Averaged compressibility v. vs U for the binary
alloy at P = 16 and 40. Arrows indicate the transition to the
antiferromagnetic state.
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strongly negative. In the former case, the sum over v.„,
i.e. , K, is then clearly positive, while in the latter case

becomes very small due to the negative contributions
close to u = 0. This behavior at 4 = 0 is now con-
trasted with that in the presence of binary-alloy disorder
[A = 2, see Fig. 13(b)] at U = 2.65 for two diferent
temperatures: T = 1/20 [close to the magnetic transi-
tion] and T = 1/64 [well inside the ordered phase; see
Fig. 4(a)]. At T = 1/64, the range of ur values for which
Re@ & 0 is now even narrower than in the case without
disorder. This shows that a definite answer to the ques-
tion of whether the antiferromagnetic phase close to U
is insulating (r = 0) or not at T = 0 can only be ob-
tained from the behavior of ReK at very small ~, i.e.,
from v. at very low temperatures (T ( 10 2). Within
the MC approach used here, such low temperatures are
not attainable.

The situation is similar in the case of —ImG„, the
imaginary part of the one-particle Green function GG, which yields a spectral condition for an insu-
lator {for n = 0 and in the limit T —+ 0, the function
—ImGovr coincides with the DOS at the Fermi level). If
ImGp M 0 for T ~ 0 the ground state of the system is in-
sulating. In Fig. 14, the influence of the onset of AFLRO

1.5

1.0

0.5

0.0

FIG. 14. Imaginary part of the one-particle Green function
G at the lowest Matsubara frequency ~o ——AT vs U for
a system without disorder (A = 0) and with binary-alloy
disorder (K = 2) at P = 16; P phase (dashed lines), AF
phase (dot ted lines) .
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FIG. 13. Real part of r vs m, (a) for A = 0, U = 1.75
and P = 64 in the paramagnetic phase (P) and the antifer-
romagnetic phase (AF); (b) for the binary alloy with A = 2,
U = 2.65 in the AF phase at P = 20 and 64.

on —ImGp is shown. Although in the disordered system
the difference between the magnetic and nonmagnetic so-
lution is now slightly stronger than in the case of K [see
Fig. 11(a)], the magnetic transition occurs where ImGo is
large, i.e., well inside the metallic phase. In Fig. 15, the
behavior of —ImG„at the few lowest values of w & 0
is plotted for the same values of U and P as for Rer„ in
Fig. 13. In the case without disorder [Fig. 15(a)], this be-
havior is qualitatively similar to that of Rer [Fig. 13(a)]:
the paramagnetic solution is clearly metallic, while the
antiferromagnetic phase is insulating since ImGp ~ 0. In
the presence of disorder [Fig. 15(b)], however, the down-
turn of —ImG in the phase with AFLRO (P = 64) sets
in only very close to ~w„~ 0, i.e., at very low temper-
atures. If close to the transition, the antiferromagnetic
phase were really insulating the decrease of —ImG will
have to be very rapid. In Fig. 16, we plotted our Monte
Carlo data for —ImGp in the case of binary-alloy disor-
der with L = 2 as a function of temperature for several
values of U. Both at very small U (i.e. , U ( 1, where the
disorder-induced gap of the DOS dominates the behav-
ior) and at large U (Heisenberg-limit) the temperature
dependence may be clearly extrapolated to —ImGp ——0
for T = 0, i.e., the ground state is insulating. However,
for U UPF(A, T = 0), with U, (2, 0) 2 —2.5, these
results cannot be safely extrapolated. Hence, the ques-
tion whether in the disordered system close to the mag-
netic transition the antiferromagnetic phase is metallic
or not remains open. As in the case of K, , one would

have to go to temperature T 10 to be able to decide
whether the ground state of the disordered system with
AFLRO is metallic or insulating. To summarize visually
the results of our investigation, we nevertheless tried to
construct a schematic ground state phase diagram of the
Anderson-Hubbard model in d = oc by extrapolating our
finite-temperature data to T = 0. In Fig. 17, the phase
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FIG. 17. Schematic phase diagram of the Ander-
son-Hubbard model in d = oo for a binary-alloy distribution.
Dashed lines indicate transitions whose existence at T = 0
has not yet been firmly established. (PI: paramagnetic in-
sulator; PM: paramagnetic metal; AFM: antiferromagnetic
metal; AFI: antiferromagnetic insulator. )
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diagram in the case of the binary-alloy distribution is
shown. For the continuous disorder distribution, (26b),
the phase diagram is quite similar, but there is no param-
agnetic insulating (PI) phase since disorder-induced band
splitting does not occur for any value of A. [The tran-
sition line between the PI phase and the paramagnetic
metal (PM) is effectively shifted to 4 = oo.]

VII. CONCLUSIONS

1,2

1.0
U=2.8

~ 0.8
C)

2 06
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o U=0.75
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---"—U =0.35

0.2

0.0
I

'
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I
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FIG. 16. Imaginary part of Go vs T for the binary alloy
with A = 2 for several values of U.

FIG. X5. Imaginary part of G vs ~ in the P and AF
phase; (a) no disorder, U=1.75, P = 64; (b) binary alloy with
A = 2, U = 2.65, P = 20, 64 (the two curves at P = 20 in the
middle are undistinguishable).

In this paper, we presented a detailed, quantitative
study of the physical e8'ects caused by the simultane-
ous presence of interactions and randomness in a sys-
tem of lattice electrons. To this end we investigated
the Anderson-Hubbard model with diagonal disorder at
half Riling in the limit of infinite spatial dimensions, i.e. ,
within a dynamical mean-field theory, for three di8erent
disorder distributions. Numerical results were obtained
by employing quantum Monte Carlo techniques that pro-
vide an explicit Rnite-temperature solution of the model
in d = oo. No further approximations were used.

To construct the thermodynamic phase diagram, we
derived and evaluated the appropriate averaged two-
particle correlation function, i.e., a dynamical response
function, whose poles determine the m.agnetic instabil-
ities of the disordered, interacting system. Only this
function and not the averaged staggered susceptibility
y&F itself, which is only a weighted sum of the response
function over the (Matsubara) frequencies fulfills a
closed equation that determines the two-particle spec-
trum. The value of the response function at the lowest
frequency is the most sensitive indicator for an insta-
bility of the system. In the temperature dependence of
y&F, two distinct disorder regimes are observed: (i) for
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weak disorder, the Curie-Weiss law holds, while (ii) at
strong disorder, yA& acquires a maximum at a temper-
ature below which a crossover from the temperature- to
the disorder-dominated regime takes place.

We demonstrated that at low temperatures and suf-
ficiently strong interaction there always exists a phase
with antiferromagnetic long-range order (AFLRO). Fur-
thermore, we discovered a new strong-coupling anomaly,
namely, that the Neel-temperature T~ is not always a
monotonously decreasing function of disorder. Indeed, at
strong coupling and not too large disorder T~ is always
found to be an increasing function of disorder, i.e. , disor-
der favors the formation of AFLRO in this regime. This
implies the existence of an unexpected disorder-induced
transition to a phase with AFLRO. Under the assump-
tion that T~ is proportional to the effective exchange
coupling between spins even in the disordered system,
we proved that for diagonal disorder the anomalous be-
havior is generic, i.e. , is independent of the type of dis-
order distribution. It is a consequence of the fact that
for diagonal disorder the difference between the local en-
ergies of neighboring sites becomes smaller on average,
thus leading to stronger effective exchange coupling.

We then studied the existence of metal-insulator tran-
sitions in the Anderson-Hubbard model. Although in
d = oo Anderson localization does not take place, the
presence of disorder may well have other strong effects.
In particular, binary-alloy disorder is able to cause band
splitting (thereby resembling the effect of genuine inter-
actions) and hence may induce a metal-insulator tran-
sition all by itself. Special attention was given to the
question of whether or not the disorder allows for the
stabilization of an antiferromagnetic (AF) metal. To this
end, the average compressibility v was evaluated both
in the paramagnetic (P) and AF phase. Contrary to
our expectation, the presence of disorder was found to
enhance the metallicity of the AF phase close to the P-

AF transition. This enhancement strongly suggests the
existence of an AF metal in the low-temperature phase
of the Anderson-Hubbard mode. To investigate whether
this AF phase persists to be metallic down to T = 0, at
least in d = oo, we studied the frequency components of
the one-particle Green function and of r, respectively,
down to T = I/64, our lowest temperature. However,
a reliable answer to this question can only be found at
still lower temperatures, which at present are beyond the
reach of the finite-temperature Monte Carlo techniques
used here. In any case, the transition scenario involving
metal-insulator and P-AF transitions obtained for the
Anderson-Hubbard model is remarkably rich. For alloy-
type disorder with A ) I (split-band limit for U = 0)
at T = 0, an increase of the interaction U from zero will
probably first lead to a transition &om a paramagnetic in-
sulator to a paramagnetic metal at U ', then, at U,
to an antiferromagnetic metal and finally, at U ', to
an antiferromagnetic insulator. No compelling evidence
was found that U and UMI' coincide. In the case of
a continuous disorder distribution, one has U~ ' = 0
since band splitting never occurs.

The above findings prove that the interplay between
electronic interactions and scattering from disorder leads
to interesting physical effects. In particular, the strong
coupling anomaly discovered here calls for an experimen-
tal verification.
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