RESONANT IMPURITY SCATTERING IN HEAVY FERMION SUPERCONDUCTORS
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The effect of resonant impurity scattering on the properties of
superconducting heavy fermion compounds proposed recently by Pethick
and Pines is investigated within a self-consistent theory of pair-breaking.
We discuss the thermodynamic and transport properties of axial and polar
type order parameters for a range of impurity concentrations and
scattering phase shifts. The results for the polar state with impurity
concentrations n;*10~4 and phase shifts 6, close to the unitarity limit n/2
appear to give a good description of data on UPts. Unusual behavior is

predicted to occur in a
To*T¢ - (nTe/Tg) /2.

The low temperature properties of the so-called
heavy fermion superconductors!»?»*  UPt,,
UBe,s and CeCu,Si; appear to obey power laws
in temperature in contrast to the exponential
behavior familiar from the usual BCS theory.
This and certain notions of the electron
correlations in a heavy fermion system*:® have
led to the suggestion that these materials may
be "unconventional”, non s-wave super-
conductors. However, early model calculations
exploring the possibility of anisotropic p-wave
superconductivity analogous to the super-

gapless

regime below a temperature

and Pines’, who argue that due to the large
effective mass any charged impurity potential
is strongly screened, such that the scattering
is essentially s-wave. In this case the Friedel
sum rule implies that the scattering phase shift
6o8%mq/N¢ , where qe is the charge of the
impurity and N; is the level degeneracy of the
scattering electrons. For q=1 and N=2 (only
spin degeneracy) the scattering is near the
unitarity limit é,=m/2. It has also been
suggested® that in a Kondo lattice model of a
heavy fermion system an impurity representing

fluidity in 3*He have only met with partial a missing Kondo ion is associated with a Kondo
success. rhase shift of §,=n/2.

For example, the evaluation of (orientation Resonance scattering implies that the
averaged) transport coefficients in the Born transport relaxation rates are dramatically
approximation valid in normal superconductors enhanced at low energy such that  the

yields invariably the same temperature
dependence as in the normal state, independent

transport coefficients are substantially reduced
compared to the normal state, as observed

of the gap structure. This arises because the experimentally. On the other hand, non-~
product of the density of states N(E) and the magnetic impurities cause pairbreaking in
transport time t(E) is energy independent in anisotropic, odd- and even-parity super-
this approximation®. By contrast, experimentally conductors, in contrast to ordinary s-wave

these coefficients vanish with a higher power
of T at low temperature.

A possible explanation of the transport
data has been proposed recently by Pethick

superconductors. Within the Born approximation
these effects are negligible at the amall
concentrations we consider here®.

However, resonant impurity scattering leads to
significant changes in the BCS single-particle

properties, such that a self-consistent
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Miyake and Varma® (see also ref.10). A number
of authors have considered the similar problem
of Kondo impurities in usual superconductors,
where one finds an impurity bound state in the
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gap!!s»'2, We shall concentrate on the low
energy (and, hence, low temperature) regime,
where pairbreaking is of dominant importance.
Furthermore, we investigate the rdle of
scattering phase shifts 6, different from m/2.
It turns out that small changes in §, may lead
to significantly different behavior. We also
discuss the actual temperature dependence of
various physical properties for temperatures
up to T.. We find that the power law energy
dependences of the density of states and the
mean free path do not automatically translate
into equivalent power laws in the temperature
dependences of the corresponding frequency
integrated physical quantities. This modifies
somewhat the conclusions drawn in ref, 8. At
low temperatures, where such power laws are
normally valid, a gaplesa behavior intervenes,
while at higher temperatures the power laws
are destroyed by the upper cutoff of
frequency power laws at w=A, and by the
temperature dependence of the order
parameter.

Within a single~site approximation the
effect of potential sacattering is given by the
T-matrix, which obeys the equation

T=K+KGT $))

Here T, the K-matrix K and G are matrices in
Nambu space. In particular K may be
approximated by its normal state limit K=Ky z,,
where Ky = - tané, (N, is the normal density
of states), because it is determined by virtual
excitation processes into states far from the
Fermi surface which are weakly affected by
pairing. The matrix G is the momentum
integrated Green's function, G(w) = (1/mN,)
b _Q(f,u). The Green's function is determined
self-consistently from the Dyson equation

(o To — €k Ts — Ok — E(w)) &K,0) = o, (2)

where ¢, is the quasiparticle energy, ap =
T, (0pttpt)/2 4+ x(8,-8,1)i/2 and 4y is the
gap function (the spin dependence of Ag is
irrelevant for our discussion and will be
omitted). Here t,, T,, Ty are the Pauli matrices
and T, is the unit matrix in Nambu space. x(e)
is the impurity self-energy matrix, which is
given in terms of the T-matrix by

I(») = ny () (o) ; (3)

with n; the impurity concentration and (N/V)
the electron density. In order to solve (1), (2)
and (3) we expand all the matrix quantities as

3
T= 1 Ty zy. The problem

=0
cons{derably if one makes use of(i) particle
hole symmetry, which implies G,(«)=0 and (ii)
the fact that G;{w)=0 for intrinsically real gap
functions, i.e. A=e!®1a,) with § independent of
k. Moreover, for odd-parity pairing states and
for most of the anisotropic even-parity states
that have been defined within a group
theoretical classification!®, A, changes sign
under at least one of the following symmetry
transformations (i) inversion, (ii) rotation by
n/2 or m, (iii) reflection, such that G,s0.
Possible exceptions are certain singlet states in

simplifies

hexagonal crystal symmetry, where G,#0 on
account of the hexagonal anisotropy of the
Fermi surface (the singlet state with lines of
nodes &, <« kyky would be of this type).
Keeping only Go and G; one finds the
components of the self-energy as

[
- Goz + Gll

Lo = Gol;/G, =T o2 (4)

where T' = (n;/mNy,)(N/V) is the normal atate
scattering rate in the unitarity limit and
cucoté, i8 a convenient measure of the

scattering strength. Note that c=0 at resonance,
whereas c¢»1 corresponds to the weak

scattering limit. The integrated Green's
functions are given by
Go(w) = i < = (5)

—————— )
(a2 - A:)‘/’ *

and a similar expression for G,, with &#uw-E,
replaced by ApsAp-I, in the numerator.
Similarly the gap function is determined
gelf-consistently from the gap equation

A =-TI I Ve, Ltr [ 6(K',0,)1, (6)

On k'

where Vpg' is the pair potential. Equations
{(1)-(6) provide a general framework for the
self-consistent calculation of single-site
impurity scattering in superconducting states
with arbitrary anisotropic {real) order
parameter. The generalization to complex gap
parameters is straightforward. For
simplification we s8hall put G;=0 in the
following, thus excluding certain even-parity
states in hexagonal crystals.

In the normal state Go=i, and
Lozil'sin26,mil'ye. The depression of T, by
potential scattering, which acts as pairbreaking
mechanism for triplet or singlet anisotropic
pairing, is given by the usual AG expression!*,
with the magnetic scattering rate replaced by
Iye The relevant dimensionless parameter
(Cy/2n1T;) in the unitarity limit is roughly
given by (n;Tg/T.) with n; the concentration
of impurities. Assuming T{~10*(m/m*)T,, a
concentration of several percent should be
sufficient to destroy superconductivity. On the
other hand given an estimated impurity
concentration!® of nominally pure samples of
n;~10-4, T. should not be affected. The gap
parameter is reduced in order [/T. for small
ny.

Whereas resonance scattering by a small
number of impurities does not affect those
thermodynamic quantities which involve
integration over energies of order T. or 4, it
does cause large changes in the low energy
and low temperature behavior and in the
transport properties in general. Thus we find
that the density of states is finite at zero
energy in an axial state (4,=4,8in@,) provided
the pair-breaking parameter ¥®(I'/4,) is
sufficiently large, i.e. ¥>2c?/n. For scattering
in the unitarity limit N(0) is finite for
arbitrarily small concentration. In the polar
atate N(0)>0 for all T',c. The dependence of N{(0)
on ¥y and ¢ is given for the axial state by

ﬁﬁg')'='—“—'f1(3’)
°

tan y ’



and for the polar state by (&)

Mo) o84 gy(y)

No sinh y ’

where y is the solution of f,2(y)=yy-c2. The
region in frequency over which N(w) is
markedly different from the result for the
pure state is roughly given by w.~y'/24,. Note
that for frequencies w)>w, self-consistency is
essentially irrelevant. In fig. 1 we show the
density of states for ¥=0.01 for the polar and
axial states and various values of c. It is seen
that the resonance peak centered at w=0 for
c=0 moves to finite « values as c increases.
These results are strikingly different from the
ones obtained in the Born approximation®.
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Fig. 1. Energy dependence of the density of
states of the polar and axial states for a
pair-breaking parameter of ¥=0.01 and different
values of ¢ = cotéy. The inserts illustrate the
behavior in the low-energy, gapleas region.

The specific heat C as a function of
temperature reflects essentially the density of
states. Thus the data on UPts!¢~!?, which may
be fitted by the law C(T)=aT+8T? above ~.3T.
are compatible with our results for the polar
state. If one extrapolates linearly to zero
temperature while preserving entropy balance,
C/T 1ia finite at T=0 !'?7, implying a finite
density of states N(0) corresponding to ¥~.03 at
c¢=0. The comparison is shown in fig. 2, where
C(T)/T is plotted for ¢=0 and 1 in the axial and
polar state. The data for UBe,s are more
closely fitted by a pure axial state2°,

As pointed out by Pethick and Pines’?, the
transport properties are strongly affected by
resonantly  scattering impurities. In the
unitarity limit the relaxation rate is found to
be proportional to 1/G, rather than G, as for
weak scattering. Since the pairing correlations
tend to force Go to zero in the limit of
excitation energy 20, the scattering at low
energies (w®a,) is seen to be strongly
enhanced, and the corresponding mean free
path becomes very short. On the other hand,
strong scattering means strong pair-breaking,
such that eventually a gapless regime is
reached at frequencies wfw=vh; (or corres-
pondingly low temperatures). In this regime the
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Fig. 2. Temperature dependence of the
normalized specific heat (C(T) T.)/(C,(T.)'T)
for the polar and axial states for c=0 and 1,
with /T, = .01, The experimental results of
ref. 18 on UPty are indicated by a dotted line.

system behaves as in the normal state, albeit
with reduced density of states, It is not to be
expected that the transport properties follow a
clean power law in temperature in the range
above the gapless regime, which would be
T/To> 0.1 in currently available samples. As we
will show, however, the behavior is sometimes
accidentally close to a pure power law.

Straightforward generalization to anis-
otropic superconductors of the satandard
theory2! for the eigenvalues of the thermal
conductivity tensor parallel and perpendicular
to the gap axis yields

L. S T I

ey - Tdo (2)? sech? S Ei(w) (8)

1
am? 1, T

where the dimensionless quantities X; are
given by the angular averages over the Fermi
surface:

Ki(e) =3 ﬁo—y <Pji? I(u;Aa))a (9)

where

= ol? - g2
I(w;ap) = -;R—:(—a; Re [2 @-ap? + RL il

ST
(10)

and 6z=w-L,(u). In the region of not too low

frequencies {temperatures) Waeg, the

renormalized complex frequency © may be
replaced by w in (10). For the polar state one
then finds in the unitarity limit for the
components Kj(w)%(1-x2/4)K(w) and Ky L]
(x2/2)K(u), with x = w/Ay, where
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s 352 1+/1—x2
K(w) b’ 1Go(w) 12 = e [ﬂ’ + 1n? ﬁ—]]
(1)
is the trace of K;. A numerical evaluation of
K(v) shows that to a good approximation
K(w)%1.6(w/8,) for 0.2 € w/A, < 1, which leads to
a T? power law of the thermal conductivity of
a polycristalline sample in the temperature
range from 0.1 to 0.5 of T.. A similar behavior
has been obtained by Schmitt-Rink et al.®. At
temperatures below To~w¢ the thermal
conductivity K| should vary linearly with T as
in the normal state, but reduced by a factor of
3¥/2. The parallel component should change
from a T4 behavior at higher temperature to
linear, the ratio to the normal state value
being much smaller and given by
ka(T)/xy(T)*3yy/a8inh?y, where y is the solution
of the transcendental equation given after eqn.
(7). Near T,, i.e. for A(T)«T, one finds
K (T)-x(T;) « - (1/3 -1/(3+p))a3(T), where p is
the exponent of the power law of K;(w). In
tig.3 we show the theoretical result for the
average thermal conductivity « = (1/3)Lx; in an
axial state and a polar state for two values of
the scattering phase shift (c=0 and c=1). The
low temperature experimental data!® for UPt,,
shown as the dotted line, are somewhat above
the theoretical result for small c-values
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Fig. 3. Temperature dependence of the
normalized thermal conductivity
(K(T) T.)/(Knq(Te)-T) for the polar and axial
states for c=0 and 1, with /T, = 0.01. The

low~-temperature experimental results of ref. 18
for UPt, are indicated by the dotted line.

(note that «(0)/xy(0) approaches the limiting
values 1/2 and 1/3 for the polar and axial
states in the weak-scattering limit), We have
tried various values of ¥y and c, but in no case
do we find a substantially better fit over the
entire temperature range. Better agreement

with the data would presumably obtain for a
gap function with additional points and/or lines
of nodes, which would enhance x(T) at low T.

In the hydrodynamic regime (uwz€l) the
absorption of ultrasound of polarization ey
propagating along direction q 3 is given by?2?

N @

a”(T)/au(Tc) = 27 { dw sech? 2T Au(u), (12)
where ay is the attenuation coefficient in the
normal state and

- N _ 2
Ajj(w) = N TTaT <1'r” I(u,Ap)>a (13)
1379
with @y = 1'3‘13] - 8;3/3 and I given by (10).

In the frequency regime w)>w, we find for a

polar state in the unitarity limit (c=0, axis
along z):
2 .
Axy “ {—: (1 - l;_ + :—) IGo"n
18 x2
sz L] : (1 - ‘2—) x? 'Go'z,
(14)
Axx & 57 (11 =5 x® +7= x4) 16,12,

3 _3 .2 4 2 e 2
Azz 7 (1 - 7 x* + = x*) 16,12,

which leads to approximate power laws Axy,
Agx; Azz = v and Axz « w® in the frequency
range 0.1 £ w/w, % 1. In fig. 4 the four
components dxx, @xy, Gxz and dzz are plotted
as functions of temperature for a polar state

with axis along 2z. The strikingly linear
10 T T T T T T T
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Fig. 4. Temperature dependence of the
normalized sound attenuation &(T)/a{T.) in the
polar state for various directions  of

propagation and polarization (c=0, I'/T.=0.01).



behavior of axy up to T, is in good agreement
with transverse ultrasound experiments??® on
UPty for 8 and 4 in the basal plane of the
hexagonal crystal. Furthermore, the calculated
dxz is compatible with the observed T3
dependence?® of a for 4 in the basal plane and
& parallel to the c-axis of the hexagonal
crystal. A T® behavior has also been observed
for §#é¢ and & in the basal plane?¢. These
findings are consistent with the assumption of
a polar phase for UPt,. Concerning longitudinal
sound there exist conflicting experimental
results with power laws ranging from T2 (ref.
25) to T® (ref. 24). Evaluating expression (12)
for the polar state we find that axxy and agzgz
are not as close to a simple linear power law
as may have been expected from the leading w
power in Ayx(w) and Agz{(w). Rather, az, varies
roughly proportional to T2 at higher
temperatures and approaches a linear behavior
only below ~0.5 T.. This finding is also not
inconsistent with experiment, in particular if
one allows for somewhat higher impurity
concentrations and/or finite values of c. It is
possible that the apparent contradictions among
the various longitudinal sound experiments on
UPt, reflect differences in concentrations and
kinds of impurities present.

For an axial state oriented along %, we
find approximately linear behavior above T,
only for agzz, whereas axy Oxx, and in
particular oxy fall off rapidly below T.. This is
in contradiction to experiment. However, we

115

are not able to exclude an axial type state with
nodes in the basal plane.

In conclusion, we find that by assuming
(i) resonant scattering of the heavy electrons
due to a low concentration of nonmagnetic
impuritiea and (ii) a polar type
superconducting state, we are able to provide
a consistent description of the available
experimental data for at least one of the heavy
fermion compounds, namely UPts,. Thia is in
qualitative agreement with the conclusions of
Schmitt-Rink et al.®, In particular, the
ultrasound data appear to require a line of gap
nodes, or possibly point nodes, in the basal
plane of the hexagonal crystal. Since polar
type odd-parity states do not appear to be
allowed by symmetry,'® even-parity states
should be considered. A possible candidate
state is the intrinsically complex singlet state
within the E; representation of D¢,
bpekz(kytiky), discussed by Volovik and
Gorkov.'* Nevertheless, on the basis of our
calculations, odd-parity states with point nodes
in the basal plane (as, for example, states 3
and 4 for hexagonal symmetry in Blount’s
classification!®) cannot be excluded with
certainty. Further progress may be made by
investigating more realistic model states.
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