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Narrow-band metals, ' heavy-fermion materials, and
liquid He are well-known examples of correlated Fer-
mi systems with a strong short-range, repulsive interac-
tion. In the presence of a lattice the latter is often
modeled by an interaction of two fermions with opposite
spin on the same lattice site. The addition of a kinetic
energy for next-neighbor hopping leads to the Hubbard
model. For its investigation, variational methods have
proven to be helpful. Gutzwiller constructed a particu-
larly simple variational wave function, '

~
tlto) =Q; [1 —(1 —g )n;!n;1] ~

titp),

where n; are number operators for spins o at site i and

~
ttrp) is the wave function of the noninteracting Fermi

system. The correlation factor in (1) reduces the num-
ber of doubly occupied sites of

~
ttlp), i.e. , controls local

charge fluctuations. The correlation parameter 0 ~ g~ 1 has to be determined variationally. In spite of the
simplicity of

~
tltG) and the long history of the problem

exact analytic evaluations of such expectation values in

the thermodynamic limit could not be performed —not
even in one dimension. Therefore perturbative tech-
niques, Gutzwiller-type approximations, and numerical
methods ' were employed.

Most recently Metzner and Vollhardt' presented a
new, analytically tractable approach to the problem
which allows for an exact evaluation of the expectation
value (6) =(tiff

~
6

~
tiro)/(tlIG

~
tiIG) of an operator 6 in

terms of
~

tito —at least in one dimension (the method it-
self is applicable to arbitrary dimensions). Differing
from other approaches, its expectation values are ex-
pressed as power series in 1

—g, whose coefficients can
be calculated to arbitrary order. For example, the on-
site interaction Ht =Up, D;, D; =n;!n;1, is obtained as

(Ht) =ULg g (g —1) 'c
m=-]

and L the number of lattice sites. Here {. . .jp implies the
usual sum over all pairs of contractions in the nonin-
teracting ground state (index zero) corresponding to con-
nected graphs (superscript c) with, however, one essen-
tial diff'erence: In these contractions the usual 6f, f.
terms are always zero, since the application of Wick's
theorem to (Dr, Dr )p (( )p { jp) happened
when all f; were diff'erent. ' Nevertheless in the sum-
mation over the { jp this restriction on the f; may be
relaxed, allowing one to go over the connected graphs.
The c are then calculated as c =(—n) +'/2(m+1),
where n =N/L ( 1 is the density of particles (n! =n

~=
2 n); hence

(H ) = —,
' UL[g/(1 —g )] (G —

1
—lnG ),

with G2=1 —(1 —g )n. This yields the density of dou-
bly occupied sites d =(Ht)/UL; for 1 ( n ( 2, d(n)
=d(2 —n)+n —1. The momentum distribution (nk) has
also been calculated —in this case by a recursive tech-
nique. Therefore the ground-state energy of a Hubbard
Hamiltonian with general kinetic energy is obtained in
terms of

~
tire) without approximation. ' The correlation

parameter g is then uniquely determined by the actual
interaction U.

The approach may also be used to calculate correla-
tion functions (CF's) in terms of

~
tirG). Here we present

approximation-free, analytic results for four dift erent
CF's in one dimension, which are relevant for Hubbard-
type models. In such models a lattice site may be singly
occupied, doubly occupied (D site), or empty (hole). We
introduce number operators at site i for the spin (5;
=n;! —n;1), density (N; =n;1+n;1), D sites (D; =n;tn;1),
and holes [H; =(1 —n;t)(1 —n;1)], and define the CF's
between them as

with

c =[L(m —1)!] ' g {Df ' ' Df jp,

where L;, Y; =5;,N;, D;,H; and
Fourier transforms are denoted
=n~ = —,

' n there are seven CF's,

X=L 'g, A;, etc. ;

by C (q). For n 1

four of which are in-
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dependent.
The spin CF, Cj, has already been studied in de-

tail. ' ' ' For the Hubbard model exact values for
C~ are only known for j=1 ' and j=2' in one dimen-
sion in the atomic limit with n=1, where the correspon-
dence to the antiferromagnetic Heisenberg model may
be employed. To evaluate C (q) we proceed as in the
case of (Hi) We o.btain

Css(q) =2 g (g' —1) s™(q),
m=0

where

~ 0.6
cT

0.4

00 02 0.4 0.6

g=O 2

g= 0.7
g= 1.0
g=0.7

0.8 1.0
g (m)( ) g iq (r, —f~)

L rn~ f

x I[nr, tnr, t
—nr, tnf t]Dr ' ' ' Df IQ. (3)

The s ™(q)again correspond to connected graphs,
which join sites f~ and f2 across m other lattice sites. In
one dimension they are polynomials:

m+1s' '(q)= g al' '( —'n) +' '(~q~/x)',
1=0

inF(g), O~g~n,
C (q)=—,x'

lnF(n), n ~ Q ~ l.

For n =1, C (q) diverges logarithmically at
~ q ~

=2kF.
In Fig. 1, C (q) is shown for n=0.7 and different
correlation parameters g in comparison with the exact
result for the noninteracting case. The numerical results

(4)

with
~ q ~

~ 2kF =en The. sum rule (2x) ' f dq
XC (q) =n —2d connects the at with the coefficients
c which determine d (see above). Use of particle-hole
symmetry and the differentiability of C (q) with re-
spect to n at n=1 yields ai =BI +&( —1) /2(m+1).
With the introduction of the function F(x) = I —(1—g )x, the spin CF is then found as (Q =

~ q ~
/x)

FIG. 1. The spin- and density-correlation functions
Cs (q) for n =0.7 and different correlation parameters g.
In the noninteracting case (g =1) they coincide.

(5)

for C (q) given by Yokoyama and Shiba ' agree ex-
tremely well with (4).

The expression for C~ in real space is easily calculat-
ed. In the atomic limit (g=o) and for n= 1,

Css Si(xj) ( —1) j)0,
J

where Si(x) is the sine integral. The numerical evalua-
tions for j=l ' and j=2' are therefore seen to be
very accurate. The ( —1)~/j behavior in (5), known
from the exact result for the Hubbard model, ' was al-
ready suggested by Horsch and Kaplan. ' The corre-
sponding divergence of C (q) at

~ q ~

=2kF (antiferro-
magnetic transition) reproduces the behavior of the ex-
act result of the Hubbard model. In Table I we have
compared the values from (5) with exact' ' and numer-
ical results for the antiferromagnetic Heisenberg
chain. ' ' They are well described by (5)—both quali-
tatively (oscillation about

~ C~ ~
1/2j for j ~) and

quantitatively. On the other hand, for n & 1, C (q) no

TABLE I. The spin-correlation function CP in the atomic (g=0) calculated with the
Gutzwiller wave function (GWF), Eq. (5), as compared with exact and numerical results for
the antiferromagnetic Heisenberg chain (AHC). Numbers in parentheses indicate uncertain-
ties in the last digit.

r SS~j GWF, g =0
Eq. (5)

—0.589 490
0.225 706

—O. 177 698
0.118742

—0.104021
0.080 534

—0.073 488
0.060 922

Exact

—0.590863 '
0.242 719

Cj I AHC

Numerical '
—0.59084(1)

0.242 60(2)
—o.2oo 47(8)

0.13798 (8)
—0.121 1 (4)

0.0943 (6)
—0.082 ( I )

0.069 (1)

N umerical

—0.5908 (2)
0.242 65 (20)

—0.2009 (1)
0.1386(3)

—0.1235(3)
0.0982 (4)

—0.0899(6)
0.0760(6)

'Reference 15.
Reference 16.

'Reference 18.
Reference 19.
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longer diverges at q =2k', but only shows a kink, in contrast to the numerical results.
Next we calculate the density CF, C, the hole CF, C, and the CF between D sites and holes, C . They are re-

lated via a particle-hole transformation (n =2 —n ~ I ):

C (q, n) =C (q, n)+C (q, n) —2C (q, n), C~~(q, n) =C~~(q, rf) (6)

The density CF may be written as C ' (q) =C (q) + T(q), where T(q) =4+ a (g —I ) t ™(q)is determined by

1 1 I q. (f, —f, )
f (q) Q e [[l2f fnf f+2m6f f flf f+m(m 1)8f f 6f f ]Df ' Df Jo.

L m! f

The same three terms in (7) ' also determine C and C . In one dimension they all have the structure
n +' gP+0' b~~ 'y' with y = q! /zen; in the third term y is replaced by 2 —

y for ! q! ~ 2kF. There are then four dis-
tinct contributions, i.e. , sets of coefftcients b, that have to be determined. To this end we employ (6) and the con-
tinuity of the first two derivatives of the above CF's at n=1. This yields just enough equations to calculate the
coe%cien ts.

For —', ~ n ~ I, the density CF is found as (n =2 —n, Q =2 —Q)

Q[1 —
—,
' lnF(n —Q)/F(n)] =:Cf;~ (q), 0~ Q ~ 2(1 —n),

2
C' ' (q) =, 2(1 —n)+

g
2

C(„') (q)+
1
—g-

ln + 2 Q ln =:C~;;~ (q), 2(1 —n) ~ Q ~ n,
F(rf —Q), F(n —Q)

F(n) F(n —Q)

InF(n —Q)+ —,
'

Qln =:C~;;;~(q), n ~ Q ~ 1.
F(n —Q)

For n ~ —,', the boundaries Q =2(1 —n) and Q=n of the
three regimes (where the third and first derivatives by q,
respectively, are discontinuous) have to be interchanged.
In Fig. I, C (q) is shown for n =0.7 and different
values of g. Again the numerical results of Ref. 13 are
seen to be very accurate, and the suppression of density
fluctuations is clearly borne out. In real space and for
strong correlations C~ varies as I/j for I & j&& I/2d,
where I/2d is the average separation of D sites and holes,
and only for j» I/2d» I does it vanish as I/j .

As pointed out by Gros, 3oynt, and Rice' the hole CF
C (q) allows for a further assessment of the CJutzwiller
wave function. For n & 1 and g=0, holes act as nonin-
teracting, spinless fermions. In this limit Cg —0 =Cz —0.

2

!
Clearly, the exact result is given by the free density CF
C~=~ with n nh = I —n, kF kF =en', i.e. , C~=o(q)
is equal to ! q! /2z for ! q! ~ 2nf, /n and is equal to nf,

otherwise. ' There is a correlation hole of width I/2nq
around each empty site with oscillations of wavelength
I/nf„ the average separation of holes. In Fig. 2 Cg=o(q),
as obtained with ! yo), is compared with the exact result.
Although there is no sharp kink at q =2k', the overall
feature is well borne out. The agreement improves for
nI, 0. The kink at q =2k p is an artifact of the Gutz-
willer wave function which is based on the ground state
of free electrons rather than holes. ' The expression for
C (q) for general n ~ I and g has a similar structure
as C (q). For n = I one obtains

CHH( )
2(1 —g')

22— —I c (q) —c"(q)— ()— ()
g

2
q

1+g
g

2

Finally„ the CF between D sites and holes is given by
(n = I )

C "(q) =C (q) —
—,
' C (q). (10)

I n real space and for strong correlations (10) yields
Cj 2 Cj . Hence, in the Gutzwiller wave function
the correlation between D sites and holes is essentially
determined by the a~erage separation of spins. On the
other hand, for g 0 one should expect a strong next-
neighbor correlation between D sites and holes, since this
makes it easier for an energetically costly D site, once
formed, to dissociate again. The missing correlation was

! first discussed by Kaplan, Horsch, and Fuble in their in-
vestigations of finite rings. Indeed, it may well be the
main origin for the logarithmic corrections to E in the
approximation-free result obtained with ! yo), ' which
make E quite a bit larger than the exact result.

The above results for the CF's in terms of ! 1|1'), to-
gether with the results for the momentum distribution
(nk), ' can be directly used to calculate the ground-state
energy of Hubbard-type models with interactions more
complicated than on-site interactions.

In summary, the correlation functions between up and
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FIG. 2. The hole-correlation function in the atomic limit
(g=0) for diff'erent hole concentrations nt, as compared with
the exact result.

Electron Correlation and Magnetism in Narro~-Band Sys-
tems, edited by T. Moriya, Springer Series in Solid-State Sci-
ences Vol. 29 (Springer-Verlag, Berlin, 1981).

down spins, doubly occupied sites, and empty sites
relevant for Hubbard-type models have been calculated
analytically with the Gutzwiller wave function in one di-
mension for arbitrary density and correlation strength.
Spin-spin correlations for n= 1 and hole-hole correla-
tions for n ~ 1 are in very good agreement with the avail-
able exact results in the atomic limit. On the other
hand, as noted before, the correlations between doubly
occupied sites and holes close to this limit appear
insufficient. The results allow for a detailed, approxi-
mation-free evaluation of the quality of this variational
wave function. In more than one dimension results may
be obtained by numerical techniques.
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