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A self-consistent, conserving mean-field theory for one-particle properties of disordered electronic sys-
tems is presented. It is based on a systematic perturbation expansion in 1/Z, where Z is the coordina-
tion number of the lattice. To obtain a nontrivial limit for large Z, it is crucial to rescale the hopping in-
tegral t according to t ~1/V'Z. In the limit Z—> o, the well-known coherent-potential approximation
(CPA) is found to become exact for any lattice. Explicit proofs are presented within the locator and
propagator formalism. This explains why CPA often yields quantitatively correct results even for values
of the disorder not accessible by conventional perturbation theory. Exact results are presented for the
Bethe lattice, with the disorder given by a box and a binary-alloy distribution, respectively. Explicit 1/Z
corrections to the results for Z = oo are calculated and the additional effects are discussed.

I. INTRODUCTION

Investigations involving statistical disorder are usually
faced with substantial technical difficulties, particularly
when it comes to working in a parameter regime that is
not accessible to perturbation theory. In general, even
one-particle quantities, such as the density of states
(DOS), cannot be calculated exactly. Counterexamples,
where exact results have been obtained, are the Lloyd
model,! with its Lorentzian probability distribution for
the disorder, Wegner’s calculation? of the DOS at the
band center in the quantum Hall regime, and one-
dimensional disordered systems.® Nevertheless, in the
overwhelming number of cases, one is forced to employ
approximation schemes of various kinds.*> Of these, the
coherent-potential approximation®’ (CPA) is probably
the most widely used when it comes to calculating one-
particle properties.®”!1%%5 This self-consistent approxi-
mation is recognized as the best single-site approximation
for the spectral properties of disordered systems; indeed,
it has the structure of a mean-field approximation. The
CPA becomes exact in certain limiting cases (low and
high concentrations of impurities, small scattering
strengths, atomic limit) and yields an analytic interpola-
tion in between these limits, the validity of which cannot
be assessed within the CPA itself. On the other hand, the
interpolation in the intermediate regime of parameters is
known to yield good quantitative information about sys-
tems in dimensions d=3 (and even lower), if cluster
effects are unimportant. Hence, the CPA is even better
than one might expect from the assumptions entering this
approximation. It remains to clarify the origin of this
success.

Mean-field approximations are widely used to gain in-
sight into gross, overall features of a problem, when an
exact solution is not available. To assess the validity of a
mean-field theory requires knowledge of a limit in which
this theory becomes exact, only then can the theory be
improved —at least, in principle—by a perturbation ex-
pansion around this limit. It is well known that for clas-
sical and quantum spin models (e.g., Ising, Heisenberg)
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the mean-field results for the free energies become exact
for high coordination number Z, i.e., for spatial dimen-
sion d — 0. !"12 However, the situation is quite different
in the case of fermionic models, i.e., when there are
itinerant quantum-mechanical degrees of freedom. For
this class of problems the limit d — « has been intro-
duced only recently by Metzner and Vollhardt.!* In this
limit it is vital to scale the kinetic energy correctly to ob-
tain a nontrivial Hamiltonian. The application of this ap-
proach to the study of correlated fermion models has
since made possible investigations which are not tractable
in any finite dimension.!* In the spirit of mean-field
theories for classical models, we may define the exact
solution of a fermionic model in Z = o to be a mean-field
theory for this model. In view of the existence of a small
parameter, 1/Z, which can be used for expansions
around the mean-field limit, we call this a controlled
mean-field theory, in contrast to mean-field theories
where a systematic improvement cannot be made.

In this paper we will investigate the problem of disor-
dered electrons in the limit Z — «. The exact expression
for the one-particle Green function, and thus the DOS, is
derived. Thereby we obtain a controlled mean-field
theory for these quantities in the sense described above.
The self-consistent equation determining the Green func-
tion is found to be identical to that obtained by use of the
CPA in the limit Z— . Hence, we find that for Z = «,
the CPA yields exact results for the one-particle proper-
ties over the whole parameter range of impurity concen-
trations and scattering strengths. This explains why the
CPA works so well even for intermediate values of the
parameters in d=3. Apparently the dimension d=3 is
already rather high (Z=6 for a simple-cubic lattice), such
that 1/Z is a sufficiently small (expansion) parameter.

It should be noted that the importance of the small pa-
rameter Z ~! for the CPA was already recognized in an
important paper by Schwartz and Siggia.!> These au-
thors asked precisely the question discussed above, name-
ly whether it is possible to identify a parameter such that
the CPA is the first term in a systematic expansion in this
parameter. Investigating the moments of the electronic
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DOS, they found that, in addition to the impurity con-
centration and the potential strength, these moments de-
pend on the “hidden” parameter Z !, and that Z !
governs the size of the corrections to the CPA moments.
However, by studying only the moments, Schwartz and
Siggia!® did not investigate the full problem itself in the
limit Z — o ; most importantly, they did not scale the ki-
netic energy (i.e., the bandwidth) properly, which is
essential to obtain a nontrivial Hamiltonian for Z = .
Hence their approach is not a consistent expansion in
Z~'. This has direct consequences for the perturbation
expansion (diagrammatic classification). They em-
phasized that Z ~! was a relevant small parameter only
for the moments of the self-energy and the DOS, while we
can now show that the CPA, and the concept of the ap-
proximation itself, becomes exact for Z— «. The latter
can be proved in several different ways (expansion in the
disorder or in the hopping) and is valid for arbitrary lat-
tices (e.g., hypercubic, Bethe) and disorder distributions
(e.g., box-shaped, binary alloy).

The paper is organized as follows. In Sec. II the disor-
der model and the different diagrammatic perturbation
techniques for its investigation are introduced. In Sec.
III the diagrammatic simplifications occurring in the lim-
it Z — oo are discussed. The connection with the CPA is
clarified in Sec. IV. The results thus obtained are evalu-
ated explicitly in Sec. V for the box-shaped and binary-
alloy distributions on the Bethe lattice. A discussion
(Sec. VI) ends the presentation.

II. THE MODEL OF DISORDER

The basis of our investigations is a tight-binding Ham-
iltonian with diagonal disorder, '

H=7 t,-jc,-ch +3 sic,-*ci , (1)
ij i

where c,-T (c;) are the creation (destruction) operators for
fermions on site i. The hopping integral between the sites
i and j is t;;, which equals ¢ in case the sites i and j are
nearest neighbors, and equals zero otherwise. The energy
€; is a stochastic variable drawn from some distribution
function P(g,¢€,,...,€y), where N is the number of lat-
tice sites. A physical quantity, X, which is a function of
all site energies, is averaged with respect to this distribu-

tion as
YE«X(EI,-..,EN)»Zfds, e fdsNX(sl, e

XP(gy, ...

,EN)
JEN)
(2)

Concerning the distribution function, we assume that
there are no correlations between the sites and that the
distribution function is site independent. In this case the
distribution factorizes as

N
en)= I P(g;) . (3)

i=1

P(g,, ..

The choice of P(€) will be postponed until explicit exam-
ples are treated. Particular cases with which we shall
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work are the ‘“box” distribution,
)= 8! w/2—g])

W ’
where O(z) is the unit-step function, and the “binary-
alloy” distribution,

P(e)=cd(e—W/2)+(1—c)d(e+W/2), (5)

P(e (4)

where 8(z) is the §-function and ¢ determines the relative
weight of the &-functions, i.e., ¢ is the concentration of
impurities. In both cases, W is the width of the distribu-
tion. From a calculational point of view, the latter distri-
bution is particularly convenient.

For the calculation of physical quantities, the Green-
function formalism is well suited. The equation of
motion for the Green function G;;(w) is given by’

(0—€)G (@) — 3 14 Gy;(@)=8 (6)
k

ij >
where o is the frequency.

A. Propagator versus locator formalism

Within perturbation theory, the equation of motion (6)
can be solved by two different approaches.*>

(i) The random energy may be chosen as the expansion
parameter. In this case we work in the so-called “propa-
gator formalism.” Solution of Eq. (6) with €; =0 provides
a Green function, denoted Gi‘}(w), which is called the
bare propagator. The Green function G;;(w), called the
full propagator here, is found using the iteration
Gj(0)=G)(w)+ T G0, Glo) . 7

k

(i) The hopping integral can be chosen as the expan-
sion parameter. Then we work in the locator formalism.
Solution of Eq. (6) with 7;;=0 provides a Green function,
denoted gX(w), which is called the bare locator. The
Green function G;;(w) is found from

Gj(0)=gX )8, +g(®) 3 1, G;;(w) . (8)
k

The diagonal element G;;(w) is called the full locator and
is denoted g;(w).

The averaging procedure, Eq. (2), can also be per-
formed in two different ways.

(a) Averaging can be carried through directly in Egs.
(7) and (8). In the propagator formalism the self-energy is
defined as

%i,k(w)ékj(ﬂ))z<<E,G,]((U)>> ) 9)

where an overbar denotes an averaged quantity, so that
we can write a Dyson equation for the averaged Green
function G;;(w) as

k,!

Since every diagram occurs only once in G;;, ;; contains
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only irreducible diagrams with respect to G,»‘J’-. On the
other hand, one can define—in the locator formalism —
in analogy to Eq. (10), a Dyson-like equation,!’

Cl)) ;U (D)+2§lk tleIJ(m) (11)

in which £, ;j(@) is the so-called self-resolvent. It contains
all irreducible diagrammatic contributions with respect
to t;;. All problems regarding the actual calculation of

(w) are then shifted to the self-energy or the self-
resolvent respectively. All further investigations focus
on these quantities. One problem is overcounting. This
is a direct consequence of the summation over all sites in
Egs. (10) and (11). If one takes for the self-energy (or the
self-resolvent) the set of all irreducible diagrams, then
some classes of diagrams in G;; are overcounted. There-
fore the diagrammatic definitions of the self-energy and
the self-resolvent must be changed in such a way that this
overcounting does not take place. This correction pro-
cedure!” is known as multiple-occupancy correction
(MOQ).

(iii) One can try to order the diagrams in such a way
that, when the averaging is carried through, no over-
counting takes place. This implies that restrictions must
be imposed on the summations over the sites in Egs. (7)
and (8) before averaging takes place. This technique is
known as the renormalized perturbation expansion
(RPE).'®5 Since the RPE is particularly useful for the
Bethe lattice, we will study this technique in more detail
in the next subsection.

B. The RPE locator formalism

As discussed above, we must regroup the diagrams if
we want to apply the RPE. To this end, we write an
equation for the full locator with base site i, g;(w), in
analogy to the Dyson equation in the propagator formal-
ism,

g(0)=glw)+glw)o;(w)g;(v), (12)

where o;(w) is the site-dependent self-energy. When the
|

—igre ey

8 (0)=glw)+g w)o,

Uy
o

k

Formally, these equations equal Egs. (12) and (15) for
n=0. Note that the dependence of the problem on the
underlying lattice enters only through Eq. (17) for the
self-energy.

In order to gain a better insight into the simplifications
arising in the limit Z— o and on the Bethe lattice, we
express the equations obtained so far in diagrammatic
language. The diagrammatic elements are depicted in
Fig. 1. The bare (full) locator g°(g;) consists of a vertical,
dotted (solid) line terminating at site i indicated by a
cross. The hopping matrix elements t;; are represented
by directed (see arrow), horizontal solld lines leading

~(yyeensd,) —(fyyen-
1 n(w) ; 1
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Green function is expressed in terms of the full locators,
the first signs of the RPE become visible:

Gij(w)=gi(w)5ij +g,-—(j)(“’)tiigi(w)

+ zgi—("
k

Koty w8 (w)+ -«

(13)

Here a superscript representing one or more sites with an
overall minus sign implies that the locator does not de-
pend on the energy of these particular sites. Thus, for ex-
ample, the expansion of g; @ in terms of bare locators
contains all possible bare locators except g°. This nota-
tion will later prove to be useful, since diagrammatic
simplifications—for example, in the case of the Bethe
lattice—can be recognized easily. In the interpretation
of this expression some care has to be taken. In spite of
the exclusion of site k from the locator based at site i,
g~ Yk correlations with respect to the averaging pro-
cedure given in Eq. (2) between the two locators g, %
and g; " do exist. This subtlety will also be of impor-
tance in a diagrammatic representation of the equations.

It is also desirable to have an expression for the self-
energy o;(w). Making use of G;;(w)=g;(w) and Egs. (12)
and (8), we find

o(w)g(w zt,ka,((o . (14)

In terms of full locators, this reads

2 18k

+ 3 tagr "o)tyg
Py

O'i((l) w)tkt

Nty + -+ . (15

It thus becomes clear that the general quantities of the
theory are the full locator and the self-energy with the
above-mentioned exclusion of any number of sites. These

o ~ Gy e e rdy) =) .
are indicated by g; and o , Tespective-
ly. The equations connecting them are generalizations of
Egs. (12) and (15), i.e.,

I w) (16)

- cendy) _ —(f s end,) =G hfyyeeeyj,) (L jyyeney )
i "(0)= 3tz "o tk1+zt:kgk : o)tyg T )+ an

from site i to site j (these sites are not explicitly indicat-
ed). The self-energy o; consists of a directed line with a
dot marked i. In Figs. 2(a), and 2(b), we see the diagram-
matic representation of Egs. (12) and (15), respectively.
In the figure the summation over internal site variables is
assumed. The subtlety regarding the correlations be-
tween different full locators is illustrated in Fig. 2(c).
This diagram is a typical example of an element con-
tained in the second expansion term on the right-hand
side of Eq. (15). This makes it clear that there is a corre-
lation between the two locators, namely through some
site p.
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(a) (b)
P
(c)
i
—’.—.—’—
(d)
FIG. 1. Diagrammatic elements within the locator formal-

ism: (a) bare locator, (b) full locator, (c) hopping integral, and (d)
self-energy.

Having discussed the general diagrammatic representa-
tion, it remains to explain how the averaging is done. At
this level it can only be performed in a formal way. We
indicate the general, averaged element with n excluded
sites by the superscript [n]; explicitly, we have

ghl=«g, iy (18)
glrl= (o, Uity (19)

Thus, the price paid for avoiding the MOC procedure is
that one is left with a whole set of averaged self-energies,
instead of just one.

In summary, we see that in the RPE locator formalism
the equation of motion is written as Egs. (16) and (17). If

yeeend)
these are solvable, i.e., if the general elements g; U

and o; “Ure ) can be calculated, averaging can be per-
formed by Eqgs. (18) and (19). The averaged full Green
function, G;;(®), is found directly by averaging of Eq.
(13).
[,
(a)

0] -0 “(ilm) -m) ()

]k Ik Il k I m
—— = + + +

FIG. 2. (a) Dyson equation for the full locator, (b) expansion
of the self-energy in full locators, and (c) diagrammatic element
with correlated locators contained in the second diagram in the
expansion of the self-energy, shown in (b).
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III. DIAGRAMMATIC SIMPLIFICATIONS

The diagrammatic structure of the theory depends cru-
cially on the geometry of the underlying lattice. Compar-
ison of the hypercubic lattice with the Bethe lattice'®
shows that the latter leads to much simpler mathematical
expressions. In both cases the limit Z— o« can be per-
formed. Metzner and Vollhardt'® have shown that in this
limit the hopping integral between nearest neighbors, z,
has to be rescaled according to

_ .
vz’
for the kinetic energy to remain finite for Z — . Hence,
t is of order of 1/V'Z. All diagrams can thus be Sys-
tematically classified according to the power of 1/VZ
that they contribute.

Let us first find out which diagrams remain in the limit
Z — . The expansion of the full locator [Eq. (12)] is
given in Fig. 3(a). In the limit Z — oo the different self-
energies become uncorrelated. To illustrate this point,
we have to take a look at two diagrams contained in the
third expansion term of g;. The first, given in Fig. 3(b),
contains four hopping integrals and one free site k; the
latter is a direct neighbor of the ﬁxed site i. The total
contribution is (1/VZ *Z = Z7}, resulting from four
hopping events, multiplied by Z, the number of possibili-
ties for k to be a neighbor of i. This diagram can thus be
neglected in the limit Z— «. The second, given in Fig.
3(c), contains four hopping integrals too, but has two free
sites k and [ that are direct neighbors of i. Therefore
there is an extra factor Z compared to the first case,
which implies that the contribution is of order Z°=1.
This diagram remains in the limit Z — c. This example
illustrates that all diagrams having correlations between
the different self-energies are at least of order Z ! and do
not survive in the limit Z — o0.

The arguments that led to the conclusion that different
o; are uncorrelated in the expansion of a single full loca-
tor g; are also valid for the self-energies o; and o in the
expansion of a product of full locators in which g; and g;
are present. These correlations may thus also be neglect-
ed in the limit Z — . This is important for instance in
the expansion of ¢; itself [Eq. (15), or Fig. 2(b)].

=const, (20)

II xi Xi X i
— ; + .‘.. i ‘~‘. + ‘_-' i s 1 .'.. + cee

FIG. 3. (a) Expansion of the full locator in terms of self-
energies and bare locators, (b) diagrammatic contribution of or-
der 1/Z, and (c) diagrammatic contribution of order 1.
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xk x| xm xk Al xm Xk Xl xm

xr xr xr

(a) (b) (c)

FIG. 4. Third term in the expansion of the self-energy in Fig.
2 expanded into bare locators. As a result of RPE, the site 7 in
diagrams (a)—(c) is subject to different constraints (see text).

There are more simplifications in the limit Z— .
These are connected with the negative site superscripts.
To illustrate this point, we can take a look at Fig. 4. The
third expansion term of o; [Eq. (15), or Fig. 2(b)] is ex-
panded into bare locators. The negative site superscripts
on the full locators have implications for the site marked
r in Figs. 4(a)-4(c). In general, we have the following
situation. The site » may be equal to site k£ or / in Fig.
4(a). The site r may be equal to site k, but not equal to
site m in Fig. 4(b); and in Fig. 4(c), site » may not be equal
to site /, and not equal to site m either. In the limit
Z — o, however, a diagram like Fig. 4(b), with site r
equal to m, or Fig. 4(c), with site r equal to site / or m
(both diagrams are forbidden by the rules of RPE) would
not contribute because they are at least of order Z .
The restrictions with respect to the negative site super-
scripts, which are a direct consequence of the RPE, may
therefore be relaxed. In other words, by including certain
(formally forbidden) diagrams, which do not contribute
for Z— «, inconvenient restrictions may be dropped,
thus yielding a simpler theory. This relaxation does not

J

g(w)= 2 t,-k«gk(w)»tk,-+ 2 2 t,~k«gk(w)»tk1

k (i) 1 (#0) k(Fi,D)

This equation can be condensed further by introducing
the number of closed, non-self-intersecting paths of m
steps, £(m), via

Flo)= 3 Em+1D[gw)]™™ . (24)

m=1

Thereby it becomes apparent how the lattice structure
enters into the calculation of the self-energy. The same
can be done for the full Green function, G;;(»). Using
the function £;;(m), giving the number of non-self-
intersecting paths from site i to site j in exactly m steps,
one obtains

5;','((0): > §,-j(m)[§(a))]m+lt"’ . (25)
m=1

To recapitulate, we see that for Z— o the general
problem, expressed by Egs. (13), (16), and (17), together
with the averaging in Egs. (18) and (19), simplifies to Egs.
(25), (22), and (24). As such, the latter equations are the
central ones of this paper.
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apply to the base site of a full locator. It is thus not al-
lowed to make site / equal to m in Fig. 4(c); the diagram
that arises in this case already contributes and would
then be counted twice. Hence, in the limit Z — o,
gi ™ must be interpreted as g, with k & {i,l,m}. We
shall simply call this phenomenon “index relaxation.” Of
course, the simplifications just discussed also hold for the
Green function given in Eq. (13).

A. Averaging and the limit Z — o

What are the consequences of the simplifications dis-
cussed thus far? Owing to index relaxation, all the aver-
aged full locators, g'"}, are now equal, i.e., independent of
n; likewise, all ") are the same for arbitrary n. They
can simply be indicated by g and 7, respectively. The full
locator can now easily be averaged in the limit Z — o us-
ing Eq. (12) instead of the more complicated Eq. (16).
Furthermore, the different o, can be treated as uncorre-
lated as stated above; hence,

(g ()M =Uglw)+glo){ o (@) Ng; () . (21)

Expanding Eq. (21) and making use of the decorrelation
between the different o; gives rise to a geometric series in

207 (o). Summation  and  substitution  of
g(w)=(w—e¢;)" ! leads to

glo)r=(————). 22)
0—g;—0(w)

Owing to index relaxation, the averaged self-energy,
(w), is directly obtained from Eq. (15) rather than from
the more complicated Eq. (17). Making further use of the

decorrelation of internal self-energies inside g,-_(j1 """ I,
we obtain
(gl Nty + -+ . (23)

B. Correctionsin 1/Z

The next step is to construct an expansion in the pa-
rameter Z ~!. The first correction to the limit Z — o is
to take all diagrams into account up to the order Z 1. In
Fig. 5(a) the general diagrammatic element is depicted
that must be part of any diagram to ensure that its con-
tribution is reduced by at least a factor 1/Z compared to
the same diagram having, instead, a bare hopping at this
place. One example was already encountered in Fig. 3(b).
Two more are shown in Figs. 5(b) and 5(c).

Furthermore, the implementation of the index relaxa-
tion is changed. For example, in Fig. 4 we see that, if we
make site 7 in Fig. 4(b) equal to site m, a diagram of order
1/Z results. This formally inadmissible diagram will
then give a contribution to the order of interest, 1/Z.
Any further violation of the RPE restrictions will not
change the result in the order 1/Z. Thus we may con-
clude that the index relaxation only applies to diagrams
that are already of order 1/Z.

Of great importance for the calculation of the 1/Z
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(a) (b) (e)

FIG. 5. Diagrammatic corrections in 1/Z: (a) general ele-
ment contained in any diagram contributing at least to order
1/Z; (b) example of a diagram of order 1/Z, which only con-
tributes when the sites i, j, and k form a triangle on the lattice;
(c) same as (b), but the sites i, j, k, and / have to form a square
on the lattice.

corrections is the underlying lattice structure. Not every
diagram of order 1/Z is compatible with the lattice. For
example, the diagram in Fig. 3(b) contributes for every
lattice structure. The diagram in Fig. 5(c) contributes on
the hypercubic lattice, but not on a Bethe lattice, because
the latter only allows for self-retracing closed paths. The
diagram shown in Fig. 5(b) contributes to neither case—
such a diagram only contributes when the site i, j, and k
form a triangle on the lattice. It is therefore not possible
to write an equation, such as Eq. (22), in a lattice-
independent form from which the averaged quantities,
correct in the order 1/Z, can be calculated.

C. The Bethe lattice

In the following we will assume the underlying lattice
to be a Bethe lattice. Let us define the connectivity by
K =Z —1. The absence of closed loops in this case leads
to great simplifications in the equations of motion;’ this
was already exploited by Abou-Chakra et al.'® Therefore,
in every diagonal quantity, e.g., the locator and the self-
energy, the electron must follow a self-retracing path.
Note, however, that the sublety concerning the correla-
tions between different full locators, discussed in Sec. II B
in the context of Fig. 2(c), remains. The expression for
the Green function then simplifies to

§=§“]+;§w<<[w—s,-—aw(w)]"2>>+ou<*2’ ,

({lo—e =T ()] 2N -8 1 ([o—e—7T
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G,-j(a))zg,-(a))Sij +gi¥(j)(w)tijgj‘w)
+ 38 Plolpgr Nl g )+, (26)
k

where for every pair of fixed sites i and j only one term of
the expansion contributes. The expression for the full lo-
cator [Eq. (12)] does not change, but the self-energy
reduces to

o(0)=3 tygc N0y , 27
3

i.e., only the first term in Fig. 2(b) remains.

Even for the Bethe lattice, with general connectivity K,
the DOS is not exactly calculable for the disordered elec-
tron problem. However, the problem can be simplified
further by taking the limit of infinite branching: K — 0.
The theory discussed so far is directly applicable in this
situation. The rescaled hopping is denoted in the form
7*=Kt?, with 7 finite. In this limit Egs. (22) and (27)
must be solved taking into account the index relaxation.
This yields

o)
0w—€;— 0 ,(w)

7 .(0)=7g, (o).

(28)

The subscript o is meant to distinguish between the re-
sults for infinite branching and those including K !
corrections. This set can also be derived directly from
Eqgs. (22) and (24). In this case one must realize that for
the Bethe lattice the number of non-self-intersecting
closed loops is given by £(m)=(K +1)§,, ,. Substitution
into Eq. (24) then brings us directly to Eq. (28). The aver-
aged, full Green function can also directly be found using
§(m)=3,, |;_;; this yields

G,

ij

(0)=g(0)[F(0)]" /. (29)
For the Bethe lattice it is possible to obtain explicit equa-
tions for the K ~! corrections. However, this calculation
is rather lengthy and is given in Appendix A; here we
merely state the result. Up to order K ~2 in perturbation
theory, one obtains

(30

(1] [
gll=g.+= -
8=k 12 [o—s¢,—

IV. THE CONNECTION TO THE CPA

The coherent potential approximation®™!® (CPA) is
usually formulated in the propagator formalism. The
CPA is a single-site approximation'”!° that embeds the

T ()] %N

—

individual scatterers in an effective medium. This
effective medium is determined self-consistently by the re-
quirement that the scattering from a given site in the
medium equals the scattering of the medium as a whole.
As a consequence, the self-energy =(w) is a diagonal ma-
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Z <00
2
w
[y
0 %
0 c 1
(a) (b)

FIG. 6. The CPA is exact in the hatched region of parame-
ters (disorder vs concentration). (a) Z < oo; the CPA becomes
exact for low (¢ —0) and high (c — 1) concentrations of impuri-
ties, as well as for weak scattering (W —0) and in the atomic
limit (7—0). (b) Z= o0; the CPA is exact for every value of ¢
and W.
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gimes, i.e., for low (¢ —0) and high (¢ —1) concentra-
tions of impurities, as well as for weak scattering (W —0)
and in the atomic limit (1—0). As pointed out by
Leath,'® the region of parameters where the CPA is ob-
tained by perturbation theory can be summarized graphi-
cally as shown in Fig. 6(a). [Note, that for t=const and
W — o0, an exact solution does not exist; hence the
hatched region at the top of Fig. 6(a) only refers to an ex-
pansion around the atomic limit, not to a general pertur-
bation expansion in 1/W.] In the interior region the
CPA gives a simple and analytic interpolation, which
often yields surprisingly good quantitative results, even in
d=3 and lower dimensions, particularly if cluster effects
can be neglected.

Let us formulate the CPA using the RPE locator for-
malism. This is, in fact, much easier to do in this than in
any other formalism, because the RPE effectively isolates
contributions from single sites. From Eq. (15) it is seen
that o; does not contain the local potential €;. Therefore,
by expansion of Eq. (12) it is clear that €; appears only in
g;. The single-site approximation implies that the averag-
ing is decoupled at every place where €; appears in the

The CPA is known to be exact in several limiting re-  expansion of g;. Hence,
J
«cr,-—(j1 """ j")(co)g,‘—(jl """ o)) = a,-_(j' """ @)Y «gi-(j' """ /")) under the CPA . (32)

Thus, the CPA is given by a whole hierarchy of equations rather than a single one such as Eq. (31). This is why, to our
knowledge, this formulation has never been used before to derive the CPA. We apply this decorrelation approximation

to Egs. (16) and (17).
Resummation yields

gmz«__l_m»:«gio(w—a["])» , foralln .
(JJ—E,-—O'

The latter expression is similar in structure to that obtained by formulating the CPA in the propagator formalism.

In Eq. (16) it is possible, as we did in Eq. (21

~(11 """ n

), to expand g; into a geometric series.

(33)

6,7,10

It connects the averaged full Green function to the averaged bare Green function at a displaced energy. The CPA

hierarchy is closed by the coupling between &
follows from Eq. (17) that

Koy T )))—Ztk«gk

"l and g

which can be simplified to

gt e+ 3
iy, ..., Jn

The exclusion of the sites j,,...
paths that pass through j, ..., j, and appear in the cal-
culation of %) with k <n. If we want to cast this into a
form where specific sites do not appear, introduction of a
loop operator £1")(m) is necessary. Here, £(°)(m ) simply
gives the number of non-self-intersecting closed paths of
my steps on the given lattice; hence it equals the function
£(myg) introduced in Eq. (24). Similarly, £')(m ) gives
the number of closed, non-self-intersecting paths of m,
steps, with the additional restrlctlon that the path does
not intersect the path in £°(m,). In general, £")(m,)

,Jn is due to closed

(oo i) —Gb s rdy)
I N+ 3t e
k1

) k(Fik,jy, -

, m >n, determined by the lattice structure. Using Eq. (32), it

oWty lg I N+ -, (34

g 2(w)g" T o)+ - . 35)

,j,,)

[

gives the number of closed, non-self-intersecting paths of
m, steps, with the additional restriction that the paths
does not intersect any of the paths in £¥l(m,), with
k < n, appearing in products of the form

5["]("1" )g[n—l](mn_l)x e Xé—[l](ml)g[o](mo) . (36)
This simplifies Eq. (35) to

) [emtl, (37)

T2 (e
I_I n

"N o)= 3 EM(m+1)

m=1




4644

In the limit Z — <, Eq. (33) reduces to Eq. (22) as a re-
sult of the index relaxation discussed above. This equa-
tion, however, is exact in the limit Z — . The same ap-
plies to Egs. (37) and (24). This is because the arguments
which led to the index relaxation of ") and &!" are also
directly applicable to &"l(m), ie., EM(m)—&(m) as
Z — . The results may, of course, be also directly un-
derstood on the basis of Eq. (32) itself, because it is an
identity in the limit Z — o0.

Therefore, we have proven that the CPA becomes ex-
act in the limit Z — oo. This result does not depend on
the lattice structure. The analogous proof within the
propagator formalism is given in Appendix B. We also
see that the CPA and the limit Z — o are not equivalent.
In fact, the results of the latter limit can be recovered
from the CPA only by imposing additional simplifications
(namely, index relaxation). Hence, approximating a sys-
tem having a finite number of next neighbors by one with
Z = is more restrictive than applying the CPA (also
see Sec. V C).

This result clarifies why, for Z < «, e.g., finite dimen-
sions on a regular lattice, the CPA can be so successful
even for intermediate values of the parameters (concen-
tration, scattering strength) where this can no longer be
justified by perturbation theory. Indeed, our result shows
that, for Z = o, the CPA is correct in the entire region of
parameters, i.e., the hatched region in Fig. 6(a) expands
for increasing Z and eventually fills out the whole region,
as shown in Fig. 6(b). Hence, the interpolation provided
by the CPA, whose validity is a priori uncertain, is, in
fact, seen to be controlled by the parameter Z !, because
for Z !0 this interpolation yields the exact result. It
is therefore not surprising that, for d=3, where
Z '~0.17 for a simple-cubic lattice (and even smaller
for other lattices, e.g., a face-centered-cubic lattice), the
CPA may give qualitatively and even quantitatively
correct results.

The foundations of the CPA were investigated by
Schwartz and Siggia,'’ who recognized that the inverse of
the number of nearest neighbors, Z 7! is the relevant
small parameter. They concluded that the CPA, in addi-
tion to being exact to first order in the concentration ¢
and to third order in the impurity potential W, retains
just those contributions of higher order in ¢ and W that
are independent of Z ~1. However, they also stated that
Z ~!is a relevant parameter only for the moments of the
self-energy and DOS. Therefore they concluded that it
was not possible to make any specific statements about
the validity of the CPA. In fact, these authors did not
base their conclusions on the explicit calculation of the
diagrams contributing to the CPA, but on an interpreta-
tion of the limit Z— o« as being equivalent to the self-
consistent single-site approximation. Since they did not
scale the kinetic energy with 1/V'Z (in their case, it de-
creases proportionally to V'Z, such that the hopping be-
comes irrelevant), a diagrammatic summation will not
lead to the CPA. The fact that the CPA becomes exact
in the limit Z — o, using the correct scaling of the hop-
ping amplitude, was already anticipated by Miiller-
Hartmann® and by Czycholl.!

Previous extensions of the CPA (such as, for example,
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in Refs. 22 and 23, and references therein) were obtained
by treating an n-site cluster exactly and embedding it into
the effective medium in some self-consistent way. There
is no small parameter in such a procedure and, hence, the
extension is not systematic on a perturbational level.
This in contrast to the extension of the limit K — o in
the small parameter 1/K, Eq. (30). Since it is a perturba-
tional extension, it is systematic and controlled. Of
course, it is only valid as long as perturbation theory
holds, e.g., away from the band edges, where, according
to Eq. (30), the perturbation theory diverges. This can
only be cured if the 1/K corrections are included on a
self-consistent level.

V. APPLICATIONS: CHOICE OF THE DISORDER
DISTRIBUTION

The DOS, N(w), is found from the full locator by
N(co)=—$lm[§(w)]. (38)

We shall calculate N(w) for the Bethe lattice in the limit
K — o0, as well as the corrections to this result of order
1/K. We will do so both for the box distribution [Eq. (4)]

and for the binary-alloy model [Eq. (5)] . The DOS for
free electrons on a Bethe lattice is
2\ 2
N(w):—l—K(K+1)(4 o) (39)

2r (K+1)?—Ke?

for general K. In this equation, and in the rest of this sec-
tion, all energies are scaled with Z. In this case the band-
width is equal to 4 for all K, i.e., even in the limit K — .
This is in contrast to the situation for the simple hypercu-
bic lattice where, in infinite dimensions,!? the DOS is a
Gaussian. It was already recognized by White and
Economou?® that one has to scale the hopping integral
with VK to obtain a sensible DOS in the limit K — .
However, they made no further use of this observation.
The DOS for the Bethe lattice, expanded in 1/K, be-
comes
wr—1

1+ +0
K

(4—?)17?
2T

1
K2

N(w)= (40)

For infinite branching we have the Hubbard half-
ellipse.”> Note that this model DOS is often used as an
additional approximation in combination with the CPA
(see, for example, Ref. 8). For K = 6 the expansion in Eq.
(40), including the 1/K correction, is excellent, while for
2=<K =5 it is still good, at least in a qualitative sense.
Only in the extreme case of K =1 is the result even quali-
tatively incorrect.

A. The box distribution

The DOS for the disordered system can be calculated
analytically for the box distribution in the limit of infinite
branching on the Bethe lattice. Performing the averaging
integral, Eq. (2), with this distribution, Eq. (4), a closed
equation for the full locator in the limit K->, g, in
Eq. (28), is obtained. Dividing the full locator into a real
part, 2, and an imaginary part, J , and making use of the
fact that w is real, we find
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2 172
- W2 i)+ | |eostD+ 2o sin(9) | —1
exp(R)= cos(J)+ 57 sin(J)E | cos 57 Sin ,
o=+ ¥ exp(272) — 1 (@1)

W+7 exp(2R)—2exp(R)cos(J)+1 ’
B, =(R+iTV/W .

The result for N(w) is plotted in Fig. 7. The free case (W =0) is compared to the disordered case for different values of
the coupling parameter W. A band broadening is clearly observed; this is in agreement with early results by Brouers.?®
Furthermore, the curve shows great resemblance with the half-ellipse for the free case, and the same polynomial decay
is seen at the band edges. The band broadening can be explicitly calculated by solving Eq. (41) for F=0. The band-

width B equals

2 W +wwr+4)'”? 4

B=W+-=In |1+ + ; (42)
w { 2 W+(W?+4)!7

which is a monotonic function in W.
The 1/K corrections are calculated using Eq. (30). A straightforward but lengthy calculation gives
42.. 16(Z ., —0){4—8% [4E., —w)’—W?])

=8+ = w2 ra(s 2w am 2_pn2 K 43)

(4, —)P—W?] [4F,—0)P—W?[4g,—w)—W'—4] | K

This result is depicted in Fig. 8 for three different values
of the branching parameter: K= 1, 2, and 3. Qualita-
tively, these curves look the same. Naturally the correc-
tion becomes stronger for decreasing K. At the band
edges the DOS diverges and becomes negative (not indi-
cated in the figure). As mentioned, this problem is relat-
ed to the fact that only the corrections of order K ! are
taken into account. To resolve the problem, one has to
include higher orders in 1/K in a suitable manner, e.g.,
self-consistently in the parameter 1/K.

At the band center a lowering of the DOS is observed,
and at the sides (w=12.9) two peaks appear. These
peaks are also known to be present in the free-electron
limit for K 22. Qualitatively, the result depends only
weakly on the strength of the disorder. For decreasing
disorder the distance between the two minima decreases,
until they merge for some finite value of the disorder.

B. Binary alloy

The binary-alloy model is the most extensively studied
case, especially within the CPA.%!% Solving Egs. (2) and

0.4

0.0—
-4

FIG. 7. DOS for the box disorder distribution on a Bethe lat-
tice with infinite branching for three different disorder strengths
(W).

—

(28) for the binary-alloy distribution, Eq. (5), a cubic
equation for g, is obtained,

73 (0)—(20)g% (0)+H(*—W?/4+1)g  (0)
—[o+(2c—1)W/2]1=0. (44)

The DOS is plotted in Fig. 9 for different values of the
disorder strength and relative weight ¢ (concentration of
impurities) of the &-functions. We see that a band gap
opens for a finite value of the disorder. Our results may
be compared with those by Velicky ef al.® These authors
applied the CPA in combination with the semielliptical
model DOS, which we identify to be exact on the Bethe
lattice with infinite branching.

Calculation of the 1/K corrections using Eq. (30) is
easy because of the simple structure of Eq. (5). In Fig. 9
the result for the values K=2 and 3 is shown in compar-
ison with the result for infinite branching. As in the case

0.3 T T T T T T T
— K=@ - K=2
- - K=1 ---- K=3 —
02 S
3 L -
N
Z
0.1+ —
0.0 ] L1 1 L1 1
-4 -3-2-10 1 2 3 4

@

FIG. 8. DOS for the box disorder distribution on a Bethe lat-
tice with infinite branching, compared with calculations includ-
ing corrections of order 1/K for various values of K; W=5 in
all cases.
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N(w)

N(w)

FIG. 9. DOS for the binary-alloy model on a Bethe lattice
with infinite branching, compared with calculations including
corrections of order 1/K for various values of K: solid curve,
K = w; long-dashed curve, K=3; short-dashed curve, K=2. (a)
W=1, c=1/16. (b) W=5, c=1/16. (c) W=1, ¢c=1/2. (d)
W=5,c=1/2.

of the ‘“box” distribution, a more pronounced structure
emerges and the DOS diverges at the band edges, which
signals the breakdown of the validity of the 1/K expan-
sion as discussed in Sec. V A. In Figs. 9(a) and 9(b) the
DOS is shown for ¢=1/16, where we can distinguish a
host and an impurity band. In the host band the DOS is
lowered and the two peaks, known to be present also in
the free-electron limit, appear. In the impurity band,
however, we observe an increase of the DOS. In the
split-band situation these effects appear isolated [Fig.
9(b)], whereas in the single-band situation it results in a
kink in the DOS [Fig. 9(a)]. For ¢=1/2, Figs. 9(c) and
9(d), similar behavior is observed. In the split-band case
the (unphysical) divergence at the band edges is particu-
larly large and dominates the DOS-enhancement peaks
for low |w|. In the single-band case these peaks give rise
to an increase of the DOS at w=0, in addition to the
overall decrease of the DOS at the center.

C. Hypercubic lattices

For a Bethe lattice, the DOS, Eq. (39), is seen to be
bounded for all Z, and corrections to the limit Z — o are
analytic in 1/Z. In contrast, for a hypercubic lattice the
DOS acquires infinite (exponential) tails in the limit
Z — «, and for finite Z there are not only corrections of
order Z ", but also nonanalytic corrections of order
exp(—Z), due to van Hove singularities.?”?® The latter
corrections cannot be treated in perturbation theory in
1/Z. To work on a hypercubic lattice for finite d =Z /2,
starting from d = «, we must therefore use the exact d-
dimensional DOS for free lattice electrons. If on the di-
agrammatic level we include corrections of order d ",
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the error introduced thereby will clearly be one order
higher, i.e., of order d ~"*!) apart from nonanalytically
small corrections.

In particular, inserting the exact, free d-dimensional
DOS into the results for d — «, the CPA for a d-
dimensional system is recovered exactly. In the propaga-
tor formalism, such a procedure means that we work
with the exact free propagator for d dimensions instead
of the one for d — «. On the other hand, in the locator
formalism this implies that the index relaxation is not ap-
plied in the simplification scheme discussed in Sec. III.
Using this technique in combination with perturbation
theory in 1/d, one obtains the 1/d expansion around the
CPA.

VI. DISCUSSION

We have shown that the limit of large coordination
numbers allows for the formulation of a self-consistent,
conserving (see Appendix B), mean-field theory for one-
particle properties in the disordered-electron problem.
We derived the CPA within the RPE locator formalism,
and proved that this approximation becomes exact in the
limit Z— oo, irrespective of lattice type. As a conse-
quence, the quantitative and qualitative success of the
CPA even for intermediate values of the disorder and the
impurity concentration may easily be understood. The
astonishing fact that the CPA can be formulated in terms
of diagrams that are structurally equivalent in both the
locator and propagator formalisms also becomes clear.
The reason for this lies in the equivalence of the scaling
of the hopping integral and the bare propagator, respec-
tively.

Owing to the existence of a small parameter, Z !,
which is independent of the original input parameters of
the model (disorder, impurity concentration), corrections
to the mean-field theory can be calculated systematically
within perturbation theory in Z ~!. For this it is essential
that the correct scaling of the hopping integral, with
1/V'Z, is used. Therefore the above mean-field theory is
a controlled approximation.

Our theory does not yet include the 1/Z corrections on
a self-consistent level. Hence our present results cannot
describe the behavior close to the band edges, where pure
perturbation theory is bound to fail. We expect that, in
contrast to previous attempts (for a discussion, see Ref.
23), a self-consistent 1/Z expansion can be constructed
that has the required analytical properties,? as is the case
for the CPA.*® An alternative approach, for which self-
consistency is not required, is the traveling-cluster ap-
proximation introduced by Mills and Ratanavararaksa.’’

The applications discussed in this paper (i.e., disor-
dered systems on a Bethe lattice with box- or binary-alloy
disorder distributions) show that results can be obtained
in a straightforward manner. For the box model a band
broadening is found, in agreement with earlier results.?®
An explicit expression for the bandwidth was derived.
By including 1/K corrections, some of the structure
known to exist in the free-electron case for K =2 is re-
tained. In the binary-alloy model we rederived a result of
Velicky et al.® In their paper the equation for the DOS
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was a result of using the CPA in combination with the
semielliptical model DOS for the free-electron problem.
In our formulation this approximation is shown to be-
come exact for disordered electrons on a Bethe lattice.

While the limit Z— o, and hence the CPA, has
proved to be a very useful approximation scheme for the
calculation of one-particle properties, it is inadequate to
describe two-particle properties, e.g., the dynamical con-
ductivity. It is well known that, for finite disorder, local-
ized states cannot exist in any single-site theory such as
the CPA.3? This is also clear from a diagrammatic point
of view, since in the limit Z — o the retarded and ad-
vanced Green functions entering into two-particle quanti-
ties essentially decouple, leaving no room for the impor-
tant quantum-mechanical multiple-scattering processes
that are essential for the Anderson transition.* Simple
perturbation theory in 1/Z does not alter this picture;
the essential point is that the 1/Z corrections again have
to be incorporated self-consistently to yield a localization
transition. The construction of such a theory is presently
under investigation.
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APPENDIX A: 1/K CORRECTIONS
FOR THE BETHE LATTICE

The 1/K correction, Eq. (30), will now be derived. The
general form of the averaged full locator [Eq. (12)] is
given by

g >>=(< %@?)ﬂﬂ«wm»» . (A1)

The averaging over the different self-energies does not
decouple for K < . Instead, we have to write

<<<a,.>>>z«o,.»"+%<<a,. W% (A2)

00 = E («Ui,(j)ai,(j)»_«Ui,(j)»«ai,(j)») . (A3)
J

The first term in the above expansion, Eq. (A2), results
from the limit K — o ; the second is the first correction.
The subscript i,(j) indicates that the two hopping matrix
elements occurring in the definition of the self-energy,
Eq. (27), are connected to the site j, i.e., 0;(;,=1;8 "t;.
Substitution of Eq. (A2) into Eq. (Al), and carrying
through the different sums, results in

() s)
=\—— oo\ .
& 1—g% (1—g% )

Let us first have a look at the term oo, which is already
of order 1/K and thus allows for the replacement of & by
T, in the second term of Eq. (A4). Using the relation for
the self-energy on the Bethe lattice [Eq. (27)], the first

(A4)
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term of oo is given by
<< Ui,(j)ai(j) )) = t‘i << gj-(i)gj_(i) )) t3
0)2
=t4<<“——(1 (gio)_ " » : (A5)
—gi 0%

In Eq. (A5) we expanded both locators into a geometric
series as in Eq. (A1), and resummed the result. Since oo
is already of order 1/K, we were allowed to substitute &
for the emerging Uj"“)». The second term of oo sim-
ply gives (o, ;W o, ,» = t’g!"t%g"), in which g!"]
may also be replaced by g, . Thus we obtain

e
(1—-glo 2l &=

For &, appearing in the factor (o, ))" % from Eq. (A2),
we write

g=(K+1eg",

co=(K+1)* (A6)

(A7)

and, for g“], a relation analogous to Eq. (A4) is deduced:

0 (g?)?

§[11=<<;‘_1>>+;5l11<<—g—» , (A8)
1—g05!!] (1—g%7,,)°

o= (Lo, Bo N =L N KoM . (A9)

k

Thereby two new terms are generated, ' and Go''.
However, since we are only interested in corrections up
to 1/K, these are given by

col''=57 .

glll=kKe2g | (A10)

This closes the set of equations. Note that in Eq. (A10)
one cannot replace g!!’ by g, because this would violate
the self-consistency.

By setting g!''=g_ +zllk, the system of Egs. (A4),
(A7), (A8), and (A 10) can be solved for g‘[,l/]K, yielding

gilk= op . (A11)

g.
K g )
(1—g% . )?

Thus g 1l is known, whereby ") and & are determined
by Egs. (A10) and (A7). This is used in Egs. (A6) and
(A4) to find g. The result is given in Eq. (30).

APPENDIX B: EXACTNESS OF THE CPA
FOR Z — © (PROPAGATOR PROOF)

In the propagator formalism the mathematical formu-
lation of the CPA is well known and has a simple struc-
ture;*>%10 see Eq. (31). The exactness of the CPA in the
limit Z— « can also be proved within this formalism.
However, for the proof to be lattice independent, one
cannot employ a momentum representation (on the Bethe
lattice, k states are not defined). In contrast to the loca-
tor formalism, the bare Green function in the propagator
formalism (bare propagator), G,-(}(co), depends on Z; in
particular, for large Z, %28
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(d) (e) 1)

FIG. 10. Different diagrammatic contributions to the gen-
erating functional ®. (a) Single, (b) double, and (c) triple
scattering at a single impurity. (d)-(f) Several pair contribu-
tions to P.

Gz limi2 (B1)
such that3*

3 Ghe, Gz 72, (B2)

To do power counting in 1/Z for one-particle quantities,
the generating-functional approach of Baym and Ka-
danoff>*® can be used. The self-energy, 2,;(w), is de-
duced from some functional ® by 3,;(0)=89/5G;(»).
In general, ® is given by all irreducible diagrams
equipped with the proper weight factor, depending on its
symmetry. Some diagrams are given in Fig. 10. Note
that the cross indicates a cumulant C (/) (instead of the
impurities itself), where / is the number of scattering pro-
cesses at the impurity, so that the MOC is taken into ac-
count automatically. There is a simple way to calculate
this generating function for C(l) (see Ref. 15), and it is
given by f(x)= In{( exp(xe) ).
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Taking the limit Z — o, we find that all diagrams with
two or more nondiagonal propagators disappear. For ex-
ample, in Fig. 10, diagrams (a)—(c) are of order 1 because
they consist only of diagonal propagators. Figures 10(d)
and 10(e) are at least of order Z ~!, as a result of four off-
diagonal propagators and one free site. Finally, Fig. 10(f)
is at least of order Z ~2. Therefore, we end up with a
series of diagrams such as Figs. 10(a)-10(c). Hence, the
self-energy becomes diagonal. On the other hand, the
severe reduction of the relevant diagrams implies that all
MOC diagrams that result from diagrams that we elim-
inated in the limit Z — o0 must also be left out. A resum-
mation of the remaining diagrams is possible within the
diagrammatic approach of Leath.!” Following his
method for the calculation of the modified cumulants,
C, (1), one finds, using a generating function g(x) defined
as

gx)= 3 C (x'71, (B3)

and using a similar definition for the generating function
for the disorder distribution, D(x),

D(x)= i €eMx!"t, (B4)

=1

that g(x) and D(x) satisfy

__ D)
g(y) 14D ()’ (B5)
x
= B6
Y 1—xg(y) (B6)

Since 3, =g(G;;), one recovers, after some algebraic ma-
nipulations, the CPA formula [Eq. (31)] . From this ap-
proach it is also immediately clear that our mean-field
theory (and CPA) is conserving in the sense of Baym and
Kadanoff.3>-3¢
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