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There are bvo more experimental points by
T. Pierce, P. M. Sherman, and D. D. McBride, Astro-

naut. Acta 16, 1 (1971), that have a nucleation onset at
much higher pressure for T =55 K than the results of
Refs. 1 and 2 by Stein and Wu, Wegener, and Stein (see
Ref. 2). We have not plotted these points in our Fig. 2
in order not to introduce dispersion in the data, but we
stress that more data are necessary at high T to clear
up the situation.
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We consider a system of fermions interacting via both strong spin-conserving and weak
(spin-nonconserving) magnetic dipole forces. An expression for the spin relaxation rate
1/Tq in terms of the incoherent dynamic structure factor Sq(q, ~) is derived by treating
the dipole interaction as a perturbation. We have calculated &~ for normal liquid He at
all temperatures using the polarization-potential approach of Aldrich and Pines as well
as the measured spin-diffusion coefficient and find good agreement with available data.
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Recently the dynamics of Fermi liquids on the
atomic scale has attracted new interest due to
both the first neutron scattering data for liquid
'He (Ref. 1) and their theoretical interpretation in

terms of the so-called polarization-potential the-
ory. ' Since neutron scattering experiments are
difficult to perform, one may consider whether
there are any other physical quantities that can be
employed for probing the dynamics of the liquid
at large frequency (u and/or wave vector q. In
this Letter, we want to show that one such quanti-
ty is the spin-relaxation time T„which samples
the spin-density excitation spectrum of the liquid
for wave vectors up to twice the Fermi wave vec-
tor kF

A nonequilibrium homogeneous spin polarization
(S) of a Fermi liquid may relax in the bulk be-
cause of spin-orbit interactions such as the dipole
interaction of the magnetic moments associated
with the fermion spins. In the event that the di-
pole energy is small in comparison with the char-
acteristic energies of the system (which is the
case in 'He), the time scales of the relaxation of
the total spin and the motion of the other degrees
of freedom (single-particle excitations, collective
modes) are well separated and the spin-relaxa-

tion rate may be calculated in perturbation theory
with respect to the dipole interaction. The ele-
mentary spin-relaxation process then consists in
the decay of a homogeneous (q= 0) spin fluctuation
into two spin modes with momenta + q via the
spin-orbit force, a process by which spin angular
momentum is transformed into orbital angular
momentum.

We consider a system of fermions interacting
via strong spin-conserving forces and the weak
dipole-dipole forces associated with the spin mag-
netic moments, as described by the Hamiltonian

a, = —~ny'Q[s-, s -„-3(q ~ s-,)(q s -„)].
q

Here S~ is the Fourier component of the spin-den-
sity operator with wave vector q, y is the gyro-
magnetic ratio, and q =q/~q ~. The last term in
the q sum in II~ clearly breaks spin rotation in-
variance. It is this interaction that governs the
relaxatlon of the total spin operator S =Sq=o

S =2v~'0 'g[(q x S-)(q ~ S ~)+H.c.]. (1)

Our aim is to express the spin-relaxation rate
1/T, in terms of the spin-density response func-
tion y(z) defined by

y((o+ i0) =(i/h') f, dte' '([S'(t), S'(0)] ) =—(M((o+t0)/[~ yM(~ yt0)])g(0) (2)
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X„r(0,0)/X„r='(0, 0) chosen such as to yield the
experimentally determined' spin susceptibility
X(0, 0) = [1/X„(0,0}-f,'(0)] '. The polarization
parameter f, '(q) was calculated numerically along
the lines of Ref. 2 taking the relative range dif-
ference 6 [6=1—r~1/x~~, where r~1 (r~~} is the
range of the effective repulsive interaction be-
tween particles of antiparallel (parallel) spin']
equal to 5=0.011 for saturated vapor pressure
and 5=0.0032 for P=27 bars. ' The q dependences
of n(q) as plotted in Ref. 2 and of f,'(q} are very
well approximated for q &2k F by the following ex-
pressions (y —=q/2k F): n(q) = 1 —y'(0.416+0.172y')
and f, '(q)/f, '(0) =1 —y'(1.2-0.5y') for P=O and

fo'(q)/fo'(0) =1 —y2(0. 7+ 0.ly') for P = 27 bars.
The temperature broadening' of the spectral den-
sity X„"(q,(u)/(u as a function of co, which is ne-
glected in our approximation, is expected to give
rise to a small correction only.

Substituting (5) into (4) the contribution to the
spin-relaxation rate in the degenerate Fermi-liq-
uid regime is found (in random-phase approxima-
tion) to be

(4)

Note that X" is related to the incoherent dynamic
structure factor S,(q, (u) = —,'hX" (q, (u)/[1 —exp(- h
&& (d/kBT)], which is measured by magnetic neu-
tron scattering. Measurements of T, can there-
fore serve to assess the quality of approximations
of the dynamic structure factor.

We now turn to the evaluation of (4) using ap-
proximations for X"(q, w).

(1) In the collisionless regime, for q &q„we
approximate g' by the polarization-potential ex-
pression of Aldrich and Pines, '

(6)

where E,' is the Landau parameter [F,'= —0.67
(-0.74) at P =0 (P = 27 bars)] and c is a dimen-
sionless function of pressure [c=0.33 (0.24) at
P=O (P=27 bars)]. The relaxation rate is seen
to be ~E~'(k&T}2/EF', as found previously by
Ipatova and Eliashberg. ' However, the prefactor
is enhanced by (1+E,') ' = 30-60 due to spin-po-
larization effects in the nearly ferromagnetic
Fermi liquid 'He. In order to investigate the
factorization approximation involved in deriving
(4) from (3) we have evaluated the four-spin cor-
relation function in (3) by means of an exact fac-
torization for the free Fermi gas and found this
to be smaller by a factor of 2 compared with (6)
putting E,'=0. The additional contribution stems
from totally incoherent processes which are not
enhanced by spin-polarization effects and there-
fore can be expected to be much smaller than the
main contribution (6). It should be mentioned that

X"(q, ~) =Im[X,.'(q, ~+io)-f:(q)] ', (5)

where X„(q,u+ iO) is a screened spin-density
response function and f;(q) is a wave-vector-de-
pendent but temperature-independent polarization
parameter, which tends to the spin-antisymmet-
ric l = 0 Landau parameter f,' in the limit q -0.
In the region of the ~-q plane we are interested
in, higher l components of the polarization po-
tential such as the backflow term (l =1) are negli-
gible. We approximate X„(q, &u) by the T=O Lind-
hard function multiplied by a strength factor o.(q)
for single-particle-hole excitations [the contri-
bution of multipair excitations to (4) is negligible
in the temperature range considered here] and
multiplied by a temperature-dependent factor
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where in the last equality we have defined a spin-relaxation function M. For &u -0, M(e+ i0) tends to
an imaginary constant i /T„where T, is the longitudinal spin-relaxation time (= T„ for small magnetic
fields). M is expected to vary with frequency on a scale given by the thermal energy k BT, the single-
particle level width h/T, or the Fermi energy E F, all of which are much larger than the dipole energy
E~= (Hg = y'fi'n (n is the particle density). Consequently there exists a frequency range where (uT,
»1 and M(&u+ iO) = (1/T, )[i+0(hm/k ~T, h(u/EF, (us)], such that by expanding (2) in (1/AT, ) one obtains

I/T, =~[imX(&+iO)/X(0)l ~=.= [X(0)@'~) 'J «e' '([S'(f) S'(0}]-)l~=' (3)

Substituting 8' from (1), 1/T, is seen to be given
by a four-spin correlation function multiplied by
the square of the dipole coupling constant. This
complicated correlation function may be factor-
ized into two-spin correlation functions if either
the interactions in the system are weak in gener-
al or if the spin-density excitations are well de-
fined. The latter is true for 'He, where in the
collisionless regime the spin fluctuations are
strongly enhanced by the spin-polarization poten-
tial, while in the hydrodynamic regime there ex-
ists a spin-diffusion mode. After the factoriza-
tion 1/T, may be expressed in terms of the ab-
sorptive part of the wave-vector dependent dy-
namic spin susceptibility X"(q, cu) as

(r'h')' „. d x "(q, ~)
T, 3w' X(0)kBT sinh(A~/2k~ T)
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the result of the exact factorization is identical
to the one of Ref. 8 if the angular average appear-
ing in their result is actually performed. En Fig.
1, the result of a numerical evaluation of FRp~
=(1/T, )Rp„with use of parameter values' appro-
priate for normal liquid 'He at pressures of 0 and
27 bars is shown as a function of temperature.
The prefactor of the T' law [the constant c in

(6)] as well as the high T plateau value depend
sensitively on the q dependence of g" (q, &u) [i.e.,
fo'(q) and a(q)]. Taking f, '(q) =f '(0) and n(q) =1
the relaxation rates (1/T, ) Rp„are always higher
(about a factor of 4 at P =0 ba.r and a factor of 2

at P = 27 bars).
(2) For q &q, =1/l, where I is a mean free

path (and ar &1/T), the dynamics of the system is
governed by the hydrodynamic equations and
hence y'(q, ~) =Dq'~/(&u'+D'q') g(q, m =0), where
D is the spin-diffusion coefficient. We have ap-
proximated y(q, can =0) by the expression for the
collisionless regime which should provide a good
interpolation formula. The contribution to the
spin-relaxation rate is then given by

(1/T, ); = (4m/5) y'II'[k Tg (0)/Dd(P, T)]. (7)
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Here we have introduced a temperature- and pres-
sure-dependent length d(P, T) =(3w/10)(fq, ) ',
where f(P, T) is a dimensionless function close
to unity, so that d(P, T) = q, '. The deviation of

f from 1 depends on the q dependence of X(q, ~
=0). The cutoff wave vector qo may be deter-
mined by requiring the diffusion broadening at q
=q, to be equal to the single-particle level broad-
ening, i.e., Dq, '=1/w. D is related to ~ by the
Einstein relation D = [n/4 m(T)g(0)] T, where we
have introduced a temperature-dependent effec-
tive mass m*(T) which tends to the Fermi-liquid
effective mass and to the bare mass, respective-
ly, in the limits T«T„and T» TF, m*( T) = (p')/
2(E)= ~{[pF'+ (3mk sT)'] /[E „'+(3k BT/2)'])'~'
From the definition of qo it follows that in the
Fermi-liquid regime d~ T while for T ~0.5 K
d(P, T) levels off to essentially a constant but
still pressure-dependent length d, =1.9 A (d, =1.0
A) at P=0 (P=27 bars). The temperature depen-
dence of d(P, T) for T ~ 2.5 K is well approxi-
mated by the expression d(P, T)/d, = [1+(BTF'/
T')~]'~~wit ~=0.63 and B=1.5x10 '. At low
T~ Fd'If (1/Ty)d ff therefore varies as T' so that
its contribution to the total relaxation rate is neg-
ligible. On the other hand, in the classical regi-
me, when y(0) =S(S+1)n/(3k, T), our result (7)
reduces to the well-known formula of Bloember-
gen, Purcell, and Pound" (BPP), which success-
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FIG. &. The two contributions ~dj f f and I'RpA (dashed
curves) to the total relaxation rate I, t =1/T~ (full
curve) as functions of temperature &' at two pressures:
(a) P=0 bar and (b) P=27 bars (see text).
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fully predicts the relaxation rates of many classi-
cal liquids. We observe that d(P, T) is essential-
ly the mean free path, rather than a pressure-
and temperature-independent length (half of "dis-

0
tance of closest approach, "' i.e., about 1 A for
'He) and hence (7) is a generalization of the BPP
formula to all temperatures T ~ TF. For the
dense, classical liquid (P = 27 bars) both lengths
are seen to coincide, however. In Fig. 1, the
relaxation rate I'dff f (I/Tg) jdf f is shown as a
function of temperature for two values of pres-
sure (P = 0 and 27 bars). The temperature-depen-
dent spin-diffusion constant was taken from Hart
and Wheatley" for P =0 and from darwin and
Reich' and Wheatley' for I = 27 bars. Also
shown in Fig. 1 is the total spin-relaxation rate
I

~ t = 1 /T = (1/T ) RpA+ (1/T„) d ff, In the low-tem-
perature range (T &0.2 K) the contribution from
the collisionless regime always dominates the
hydrodynamic contribution. At higher tempera-
tures the relative contribution to the relaxation
rate of both mechanisms strongly depends on
pressure. At low pressure the main contribution
is due to particle-hole excitations (liquid He at
these temperatures and pressures is rather like
a dense gas), while at the higher pressure the hy-
drodynamic contribution takes over at T ~0.5 K,
i.e., the relaxation rate is then fairly well de-
scribed by merely our generalized BPP formula
for the dense classical liquid.

We have collected the available experimental
data for the relaxation time T, in Fig. 1 (numbers
in parentheses indicate experimental pressures
measured in bars): In Fig. 1(a) the low-pressure
data of Romer" (open circles) and Heal and Hat-
ton (BH)' (full squares) are shown, while in Fig.
l(b) the elevated pressure data of BH' and recent
results by Amend, Eska, and Wiedemann (AEW)"
(open circles) are displayed; the data are seen to
be in good agreement with theory. We have also
included the relaxation time of highly polarized
'He measured by Chapellier, Frossati, and Bas-
mussen (CFR),"which does not appear to deviate
much from the zero-field values of T,.

Under usual experimental circumstances there
exist further relaxation mechanisms beside the
bulk (intrinsic) mechanism studied here, e.g. ,
wall relaxation. However, in all of the above-
mentioned experiments great efforts were made

to eliminate spin relaxation at the wall —at low
temperatures this becomes increasingly difficult,
of course.

In conclusion, we believe to have demonstrated
that the spin-relaxation time in a Fermi liquid
provides a probe of the spin dynamics at low to
intermediate wave vectors (i.e., on the atomic
scale). The polarization-potential approach of
Aldrich and Pines to the spin dynamics yields
values of the temperature-dependent spin-relaxa-
tion time in good agreement with experiment,
which may be interpreted as a further successful
test of that theory.

Note added. —After submitting the paper, Dr. H.
Godfrin kindly informed us that they have recently
investigated" the spin-relaxation time T, of liquid
'He at pressures P =0 and 22 bars for tempera-
tures 0.05-2 K. No dependence on magnetic field
was observed up to 7.3 T. Their data are well
described by our theoretical results.
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