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Composite solitons in 3He-A in the presence of superfiow
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W'e have studied theoretically the effect of superflow on the composite solitons in 3He-A f'or
H Il v, and HA. v, . Here H is a static magnetic field and v, is the superfluid velocity, The
domain-wall energy as well as related NMR satellite frequencies are determined as functions of
v, . In the parallel geometry {H llv, ), we predict hysteresis in the satellite frequencies when the

superfluid velocity v, is changed, due to the existence of two branches of stable textures. In

both configurations there exist critical velocities v, {& 1 mm/sec), at which the domain-wall en-

ergy becomes negative indicating the global instability of the uniform texture.

I ~ INTRODUCTION

Textures in superfluid 'He-A are of current in-

terest. The simplest among them are domain-wall-
like textures" (composite solitons), which are stable
in a strong magnetic field (H ))HO=20 Oe). The
existence of composite solitons has been verified by
the appearance of satellite frequencies in NMR exper-
iments.

The domain-wall configuration may be modified by
a variety of external perturbations. The object of the
present paper is to study the effect of superflow on
the composite solitons in He-A, which can be readily
tested experimentally.

Textures in He-A are characterized by two unit
vectors I (which describes the symmetry axis of the
quasiparticle energy gap) and d (the spin axis of the
condensate). The superflow couples to the texture
via the anisotropy energy and the torque energy; the
former tends to align the t vector parallel to v„ the
superfluid velocity field, while the latter introduces
nonplanarity into the texture; the superflow tends to
wind the I vector around the direction of the flow.
The latter effect ultimately leads to the instability of
the uniform texture. 6

In the present paper we confine our analysis to two
arrangements of v, and H; (i) the parallel case
(H il v, ) and (ii) the perpendicular case (Hz v, ),
where H is the static magnetic field, This magnetic
field confines both the I and d vectors in the plane
perpendicular to H, in the absence of superflow. "
The superflow theri breaks the planarity of the / vec-
tor even in the high-field limit. For simplicity we
limit our considerations to the ease k lI v„where k is

a unit vector normal to the domain wall, since in
most of the experimental setups the smallest cross
sectional area (favored by the domain wall) is likely
to be perpendicular to the flow.

Within the present limit, we need four variables to
characterize textures in He-3; l and d and 4, the

phase of the order parameter where d is still confined
in the plane perpendicular to H. This leads to four
coupled differential equations to determine the equili-
briurn texture, which have to be solved
simultaneously —usually an unmanageable task. In
this situation a variational approach is much more
tractable.

Therefore, most of the calculations are done varia-
tionally except for a few situations, where the exact
solutions are available. In these cases our variational
solutions are compared with the exact ones, which
shows that the errors are always within only a few
percent. In the case of v, i H, we find that the
domain-wall energy first increases slightly as the su-
perflow velocity v, increases but then decreases
monotonically, awhile for v, II H the domain-wall ener-

gy always decreases monotonically until in both cases
it eventually passes zero when u, ——fj42m(j (= I

mm/sec), where m is the mass of 'He atom and (q
[—= (2pst jxg)'~'/ Q~ ——14 pm] is the dipolar coherence
length. According, to Landau's criterion, at this
point, where the domain-wall energy vanishes, the
uniform texture (in a strong magnetic field) becomes
unstable against the formation of domain ~alls. In
the parallel case (H II v, ) the corresponding critical
velocity is 0.88 of the critical velocity associated
with the local instability of the uniform texture in

this particular geometry (H Ilv, ).' However, whether
the present instability triggers the transformation of
the uniform texture into another texture (say, the
composite-soliton lattice) or not can only be answered
when the creation mechanism of the domain wall is
clarified. We have also calculated the NMR satellite
frequencies associated with the composite solitons as
a function of the superflow velocity v, . In both
parallel and perpendicular cases, the transverse shift
initially decreases monotonically as v, increases.
Then in the parallel case at q = q, ~ the shift jumps to
a small value signaling a dramatic textural transfor-
mation to a bendlike pure I texture. When the super-
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flow is reduced at this point, however, the satellite
frequency stays at the lower branch and varies only
slightly; the satellite frequency should thus reveal a
remarkable hysteresis behavior as a function of v, .
This is due to the local stability of the l texture for all

v, . The longitudinal satellite frequencies, on the oth-
er hand, increase initially with v, in both configura-
tions. Therefore, composite solitons provide an ex-
cellent superflow monitor in situ.

We believe that most of the satellite frequencies
seen in 3He-A in the presence of superflow by Flint
et al. are associated with the composite solitons
considered here. For example, although none of
their configurations correspond to the present cases
under consideration, the observed transverse shift did
decrease as v, was increased as we have seen in our
limited cases. We hope that we shall extend the
present calculations to more genera1 configurations
with an arbitrary angle between v, and H in the near
future.

In Sec. II, we'describe the free energy of the com-
posite soliton (the domain-wall energy) in the pres-
ence of superflow. Section III is devoted to the cal-
culation of the NMR resonance frequencies. The,
results are summarized in Sec. IV.

In all of the calculations reported here, the A-phase
order parameter is given by A „;= d„b„with

S, = [S,/ir] e"( 8, + i 8,), ,

A A A A A

where 8~, 8z, and I(—= 8t&&82) constitute an orthonor-
mal triad describing the orbital component and d
represents a unit vector describing the spin com-
ponent. The spatial variation of these vectors is
determined in the Ginzburg-Landau regime' by the
free energy F = Fk,„+ED,

F„,„= ', sc „' d'r [ 3 l
v-

+l ~ xg l'+2{ g ~)dl'

where q', X, y, Q, and @ depend only on z.

Substituting Eq. (3) into Eq. (2), we obtairi

5= —,
'

A {2(1+sin'X)C&,'+(1+cos'X)y,

—4cosX@,y, +(1+2cos'X)X,'

+2(1+sin'X)(Q, +sin'Q@, )

+ 4' '[sin'u +4 0 (co su —0) 1 ], (4)

where u = X —Q,

0 =sinXsingsin'[z (y —g)],

and the suffix z on 4, X, etc. , implies the derivative
with respect to z.

Here 5 is the free-energy density and A = —,K 50.
Since 4 is a cyclic variable we have

—[(1+sin X)4, —cosXy, ] =0 .
d 2

dz

In particular, in the presence of a uniform flow in the
z direction with momentum q, Eq. (5) is solved as

4, = (q +cosXy, ) (1 + sin X) ' . (6)

4 cosXq y,
z

' + (1 + 2 cos' X)X,'
1 +sin X

+ 2(1 + sin'X) (Q,'+ sin'P$, ')

In the presence of uniform flow, it is more approp'ri-
ate to consider the Gibbs potential g = 5
—4, (BF/84&, ), where 4, is eliminated by Eq. (6).
This yields

1

2q' sin'X(3 —sin'X)
'yz

1 +sin X 1 +sin X

+
l Z I'(I & dl'+

I &»I')] (2) + 4' 2[sin2u +4 0 (cosu —0)] (7)

where in the weak-coupling theory' E is given by

6 N 7g(3)
Sm"

For the domain wall with the normal vector parallel
to the superflow v, (llz), I, d, and Z are parameter-
ized as

I = sin X(cosy» + sin yy) +cosXi,

d = sing(cos$x +sin$y) +costi,

Finally, let us recall, that in the presence of a
strong magnetic field H the d vector. is constrained to
the plane perpendicular to H. Therefore, we have

p =
2

vr for H II v, and $ =0 for HL v, .

II. DOMAIN-WALL ENERGY

In the following we shall consider the two limiting
cases separately'.

and

Z = [ Aa/~2]e'~

x {—sinyx+cosyy

+ i[sinXi —cosX(cosyx +sinyy)]], (3)

A. Parallel geometry (H llv, )

In the absence of superflow, the exact composite
soliton in this case is known. ' This solution requires
essentially only two parameters; a length q ', which
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is the characteristic length scale (i.e., the domain wall

thickness) over which the I vector deviates from the
asymptotic value, which is of the order of gt, and a
parameter ~, which determines the angle by which I
is twisted around. In the presence of superflow we
shall consider a variational solution, which allows
more degrees of freedom;

cosX = —)tsech(pgz), sin(y/r) = sech')z,

I.O—
t

)

. I

I T 1

T

p

sin(y —tti) =sechqz, tft =-,' m .

This variational solution contains the one for q =0;
in this limit we have X=0, p=1, v =0.8, and

q = v 5)l '. In Eq. (8), )t and p are new parame-
ters; A. allows I to have a component parallel to the
flow while p dictates the new length scale associated
with the nonplanarity of the I vector.

Substituting Eq. (8) into Eq. (7), the domain-wall
energy per unit surface is obtained by

Edomain wall 8~ 4J.

(9)

8

vari at.

exa ct

. 4

. 2 .4 .6 .8 I. 0

FIG. 1. Domain-mall energies for H II v, are shown as
functions of the superflow, q(~ l—= v, /eo, with

vie —= (A'/&2m) gl
' = I mm/seel. The solid curve is due to

the solution that connects smoothly to the twist soliton for

q =0, awhile the broken curve represents the planar I tex-
tures.

where g is the domain-wall energy normalized by the
one for the d soliton, and gti is the Gibbs potential
for the uniform texture. For fixed q values Eq. (9) is
minimized with respect to the variational parameters
A, , p, q, and v. The result is shown in Fig. 1 as a func-
tion of the superffow q. (Note that the superffuid
velocity v, is given in terms of q as v, = tq/2m;
therefore, q = gt

' corresponds to v, = tgq '/2m =0.71
mm/sec. ) For q =0 we recover the result g =0.447.
As the superflow q increases, the free energy de-

.2 .4 .6 .8 . 2 .4 .6,S

F1G. 2. Parameters descr~btng the composite soltton tor
H II v, are shown as functions of qg~.

creases slowly, while A, increases almost linearly with

q so that the pure twist texture now acquires a bend
around the middle of the domain wall (see Fig. 2).
Simultaneously v increases and p decreases slowly.
At q = q„(=—0.638(l ') and g =0.409 the present
solution becomes locally unstable, the instability be-
ing announced already for q & q, ~ by a sharp increase
in A.. At this point A. and ~ jurnp to unity, while p
goes to zero and q diverges so that pq is finite; the
texture makes a transition to a different configura-
tion, which is stable and has a much smaller
domain-wall energy. The new texture is planar and is
a pure I texture~ (i.e., d stays constant throughout the
domain wall). The reason why this configuration is

energetically so favorable can easily be understood.
~=1 and q ~ implies that the twisting of half of
the texture takes place only in a very narrow region
so it can take full advantage of the torque energy.
However, this does not lead to a very high gradient en-
ergy as the turning occurs when I is almost parallel to
the flow (X= I). These textures are sketched in Fig.
3. The twist composite soliton for q =0 is sho~n in

(a); in the presence of superflow I acquires a small
bend (i.e., a finite component into the flow direction)
(b); it finally transforms into the pure I texture for

q ~q, l, (c). When q is further increased the free ener-

gy of this soliton decreases almost linearly with q
mainly due to the torque energy and ultimately the
domain-mall energy becomes negative for
q ) q, 2(=—0.893/i '). It is important to point out that
if the superflow is decreased after the transition into
the I texture, the domain wall stays on the I texture
in the whole range of q(0 ( q ( q, q), although for
small q the domain-wall energy of the I texture be-
comes higher than that of the composite soliton we
have started with (see Fig. I). This is because the
pure I texture is a local minimum of the free energy
and to bring down the I texture to the composite soli-
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v, llHIlz B. Perpendicular geometry (HL vg)

In this case we assume that the magnetic field
points in the y direction. Again we choose a varia-
tional ansatz, which is a generalization of the one for
q =0 to accommodate the additional effects of a su-
perflow on the texture

sinu = sechqz,

X = o.u+ (I —u) sin '[sech(pgz)I,

y = 2(a —b sinX), @=0,

Ocq4', q,

(c)
FIG. 3. Spatial conformations of three typical domain

walls are shown schematically. (a} The twist soliton for

q =0, (b} the twist soliton with a mixture of bend in l, and

(c} the planar I texture. Here the solid arows indicate the
direction of I, while the broken arrows indicate that of d.

ton it appears to require a large -perturbation to the
system; we expect therefore a remarkable hysteresis
when q is first increased and then decreased, which
should be readily monitored by the NMR satellites
(see Sec. III).

In the case of the pure I texture, the domain-wall

energy as well as the solution are obtained analytical-

ly, which are given in Appendix A. However, for
our purpose of determining the satellite frequencies,
variational solutions are more convenient. Further-
more, we can test the accuracy of the variational
solution against the exact solution in the present
case. As to the variational solution we take again Eq.
(8) with X = I, r =1, p 0, rt ~, and qp=(.
With this ansatz the normalized domain wall energy
is easily obtained from Eq. (8)

(10)

with

The above domain-wall energy is compared with the
exact value in Appendix A. As expected, the varia-
tional value is slightly higher than the exact value.
However, as seen in Fig. I, the energy difference is

always less than 2% of the wall energy at q =0, which
is quite reassuring. As already mentioned Eq. (10)
tells that g vanishes for q = q, z, while at this point $

is still finite. This feature is in strong contrast to the
case of the perpendicular geometry where the soliton
delocalizes at the critical value of q.

where u = X —Q.
Here q, o., p, a, and b are variational parameters,

which have the following physical meaning: (i) ri
' is

again the length over which the angle between l and
d varies from 0 to m (mostly governed by the nuclear
dipolar energy). (ii) At q =0, n describes the
asymptotic orientation of I outside the domain wall.
In the presence of superflow a no longer gives the
asympotic configuration; however it still describes the
reminant tendency. (iii) p

' stands for the second
length scale introduced by the superflow, (iv) 2a is

the azimuthal angle of I in the asymptotic region and
finally, (v) 2b depicts the winding angle of I to take
advantage of the torque energy due to the superflow.
It should be made clear from the outset that the
composite soliton in the present geometry (Hx v, ) is
globally unstable in the presence of superflow; there
exists a solution with I continuously delocalized but
with large winding, which has a domain-wall energy
unbounded from below (the domain-wall energy be-
comes —~ as the size of the domain wall becomes
infinite). The proof is given in Appendix B. Howev-
er, for small q, the solution which leads to this insta-
bility (which we shall label from now on as the delo-
calized solution) lies quite far away in the functional
space from the solution that can be obtained by a
small modification of the equilibrium solution at
q =0. Therefore, we believe that in an actual experi-
ment the latter texture is more relevant and we shall
concentrate on it from now on.

Substituting Eq. (11) into Eq. (9), we have minim-
ized g with respect to the parameters q, o, , p, a, and
b For small q we c.an expand Eq. (9) in powers of
qgt. In this limit p =0.307qgt, while a and b in-

crease quadratically with (qgj). This implies that a
small superflow has mainly two effects: (i) it aligns I

parallel to v, at a distance of the order of q
' from

the center of the domain wail, (ii) it slightly tilts I out
of the plane perpendicular to the magnetic field.
(This is schematically shown in Fig. 4.) The normal-
ized domain-wall energy g and the variational param-
eters are sho~n as functions of q in Figs. 5 and 6,
respectively. The energy initially increases slightly
with increasing q but then drops monotonically as q is
further increased. At q =q, (=0.77gq ') the solution
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v, llz, H II y
.8

I I I

= 0 2. 4

1.6

0. 8

q&O
. 2 .4 .6 .8 .2 .4 .6 .8

q(

FIG. 6. Parameters describing the splay composite soliton
(Hs v, ) are shown as functions of q(&.

have a symmetric dipole energy. We have, however,
also examined other configurations in which d is

symmetric, P(—z) = P(z), for instance

FIG. 4. Spatial conformations of the splay soliton for

q =0 and q & 0 are shown schematically. Here solid arrows

indicate the direction of I. As the superfluid velocity in-

creases the central part of I begins to wind around v„as in-

dicated by small arrows.

sin(X —Q) = sech71z,

sing = X sech(p71z),

y =2(a —b sinX), (12)

becomes locally unstable against unlimiting winding
of I around v, and the texture delocalized. In other
words at this point (q = q, ), the potential barrier in

the functional space, which separates the equilibrium
soliton and the delocalized solution, suddenly disap-
pears. The solution we have just analyzed is charac-
terized by an antisymmetric configuration of the d
vector, P(—z) = —p(z), which is the unique way to

I

~here p, q, X, a, and b are again variational parame-
ters.

This solution has always higher domain-wall energy
and a smaller critical velocity, where the domain wall

becomes locally unstable. The domain-wall energy of
this variational solution is also shown in Fig. 5. In
contrast to the case of the parallel geometry, all of
these solutions become locally unstable at finite q's.

III. MAGNETIC RESONANCE

6—

.2-

0
I

.6
I

.8

Nuclear magnetic resonance experiments"' have
been crucial for the identification of the composite
solitons in 'He-A. In general the. domain wall in
He-3 carries a local deficit of nuclear dipole energy.

As already shown elsewhere, ' a domain wall gives
rise to potential ~elis for the spin oscillations; they
accommodate just one bound state for both the longi-
tudinal and transverse mode. The bound spin-wave
spectrum then provides a unique probe of the spatial
configuration of the domain wall involved.

FIG. 5. Domain-wall energies for Hs v, as functions of
q(~. The solid curve corresponds to the domain wall with

asymmetric d configuration, the broken curve for the one
with symmetric d. The latter domain-wall energy is always

larger than the former.

A. Parallel geometry (H ll v, )

In this case we shall fi~st ~rite d as

d =cosg[cos(@+f)x s+in(@+ f)yl —singz, (13)
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where @ is given by the equilibrium d configuation,
Eq. (8) and f and g describe the fluctuation around
the equilibrium d.

Replacing $ and P in Eq. (7) by @+f and p+g,
we expand it in powers of f and g. Retaining the
quadratic terms in f and g only, we can construct the
fluctuation free energy. Then the eigenvalues associ-
ated with the f and g oscillation are related to the sa-
tellite resonance frequencies by'

Ql'= X'~'0 0J'= (N'+ A. 0')' '

where coI', and co,' are the longitudinal and transverse
satellite frequencies, O~ is the longitudinal resonance
frequency of bulk 3He-A, and ep is the Larmor fre-
quency. The eigenvalues A~ and A,, are given by

+ sin'x[1 —2 sin'(y —P)]f,
A.gg = ——

gg
—[(1+sin x)g,]g

+ [sin'X cos'(y —@) —cos X

——,
' gg'(1+sin'x) d,']g .

Substituting X, y, and @ given in Eq. (8), we have
solved Eqs. (14) and (15) variationally, by assuming
that f ~sech"(qz) and g ~sech"(qz) where u and p,
are variational parameters. The eigenvalues are
determined as functions of q and shown in Fig. 7. In
the figure we denote X~ and ) g by A.I and X„respec-

tively, as the former appears in the longitudinal reso-
nance, the latter in the transverse resonance. ) I in-
creases slowly as q increases and then suddenly jumps
up at q =0.636$q, at the textural transformation
into a pure I texture. Similarly A., initially decreases
slowly and then jumps down to a smaller value at
q =q, ~. The corresponding values of A.l and A, , for
the pure I texture are also determined variationally
and shown in Fig. 7. These A~ and X, continue
smoothly beyond q =q, 2, where g becomes 0. There-
fore, this point does not correspond to any instability
of the domain wall. %hen q is decreased from
q. & q, ~, the texture always appears to be an I texture
and A. l and A., go back smoothly to those correspond-
ing to the pure I texture with q =0 (hysteresis
behavior). Therefore the satellite frequencies in
0 & q & q, ~ can be completely different depending on
how the domain walls are prepared. Furthermore, ) I

and A., at q =0 reproduce the earlier result, although
in the present situation A. ~ and A., have to be inter-
changed. In the earlier calculations the magnetic
field direction was taken to be in the y direction,
while in the present calculation H is in the .direc-
tion. The stability of the present configuration is
guaranteed by the superflow (in particular by the
torque energy), which was absent in the earlier
analysis.

%e have tried to improve our A.~ and A., values by
making use of variational functions with more than
two variational parameters. However, all these func-
tions failed to improve the present results by more
than a fraction of one percent. Therefore we believe
that the present result should be quite accurate; the
errors should be within a few percent. %'e have also
checked the accuracy of the potential energies ob-
tained by the variational equilibrium solutions by
comparing them to those given by the exact solutions
in the case of pure I textures. In Fig. 8 both solu-

~ 6

texture

0 I.O

0

FIG. 7. Parameters AI (broken curves) and A, , (solid '

curves), which describe the longitudinal and transverse sa-
tellite frequencies, are shown as functions of' the superfluid
velocity qg~ = v, /vp for H II v, .

z/g,
A

FIG. 8. Potential for longitudinal d fluctuations given by
the variational solution (broken curve) is compared with the
one of the exact solution (solid curve) for q(&=0.4 and H Ilv, .
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B. Perpendicular geometry ( H x v, )

In this case we write 1

d = [sin(P+ f)x +c so(P+ f)z] cosg + singy,

The eigenequations for f and g are given by

(16)

Xff = ——'gq —[(1+sin'X)f,]
2 ez

+ [cos2u+4sinXsin'~
2

x [sin(v —p) —sin X sin ~ cos2$] }f,
2

(17)

tions are shown for q =0.4' '. The agreement is

similar for all other values of q (0 ( q ( q,2).
The predicted q dependences of X~ and A. , are rath-

er weak in particular for small superflow, though the
domain wall in 'He-3 would provide an excellent
monitor of the superfluid velocity. .

again we denote X~ and Ag by A. ~ and A.„respectively.
The general q dependences of A. ~ and X, are quite
similar to the parallel case, although A. ~ and P, depend
more strongly on q in the present case, Furthermore,
in the region near q = 0.6(t ', A., exhibits more struc-
ture. Ultimately at q =q, (—=0.77$t '), X, jumps to
—~ signaling the intrinsic instability of the domain
wall. It appears that for q & q„ there are no longer
any stable domain-wall-like textures in sharp contrast
to the case of the parallel geometry. In Fig. 9 we
have also included X~ and X, associated with the
second texture [Eq. (12)] by broken curves. The
general tendency of A., resembles that observed by
the Florida group9 for an intermediate geometry [e.g. ,
angle (H, v, ) =45']. It appears that the domain
wall is the only viable candidate for the satellite struc-
ture in the magnetic resonance in 'He-A; All other
textures seem to have too small intensities, if they
are linear or pointlike. Furthermore, these other tex-
tures do not appear to exhibit any interesting NMR
structure. "

Xzg = —
z

(q'—[(1+sin'X)g, l
Qz

+ [ (cosu —2 sinX sing sin'~)' —sin'X sin'y
2

—
—,
' gt'(I +sin'X) y,']g . (18)

.8

0

4

FIG. 9. A.
&

and A., for Hj v, are shown as functions of
A

qg&. Here solid curves correspond to the asymmetric d

solution, the broken curves to the symmetric d solution.

Again the longitudinal and transverse satellite fre-
quencies are expressed in terms of Af and Ag, respec-
tively. The eigenvalues are determined variationally
with f n sech"riz and g ~ sech~qz. (Variational func-
tions with more than two parameters again could not
improve upon this ansatz by more than a fraction of
a percent. ) The results are shown in Fig. 9. Here

IV. CONCLUDING REMARKS

Making use of a variational approach, the compo-
site solitons in 'He-A in the presence of superflow
have been studied in two limiting geometries (v, II H

and v, t. H).
We find that (i) in the parallel geometry the

domain-wall energy decreases monotonically with q
until q = q, ~(—= 0.638 fq '), where the composite soli-
ton transforms into a pure l texture. Once the l tex-
ture appears, the texture remains a pure l texture
even if q is reduced, leading to hysteresis in the
NMR signal. As q is increased beyond q, ~, the
domain-wall energy decreases continuously and
passes through zero at q =—q, 2(—=0.893(q '). At this
point the uniform texture becomes globally unstable
against the creation of domain walls. However,
whether this instability actually implies the local ins-

tability of the uniform texture or not is yet to be ex-
amined. (ii) In the perpendicular geometry we note
that the domain wall itself becomes globally unstable
in the presence of superflow. However, the (delocal-
ized) solution leading to this instability is very far

away in the functional space from the solution that
is obtained by continuous modification of the equili-
brium solution for q =0, Therefore, the composite
soliton appears essentially stable at least for small q.
As q is increased, the solution becomes suddenly lo-
cally unstable against unlimited winding of l at

q = q, (=—0.77gt '). (iii) We have also calculated the
satellite resonance frequencies associated with these
two textures. We believe that the-composite solitons
provide an excellent superflow monitor of He-3
in situ.

In the case of the parallel geometry, the stable tex-
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ture beyond q = q, 2 can be a regular lattice of I tex-
tures, which individually have negative domain-wall
energy but have positive mutual repulsion. This pos-
sibility is currently being examined.

we have
l/2

g= —Jl dy (3 —2y') I—i It' (q4)
4(1+y2)

1——mq(i .
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APPENDIX A: ANALYTICAL RESULTS FOR
THE PURE I TEXTURE (H IIV, )

+4(i 'cos'X ——,mq(i, (Al)

Substituting / =0, i[i = , rr, an—d sing =sechqz with

~ into Eq. (9), we find the domain-wall energy
in the presence of superflow;

p oo cos2Xg= —
gi dz (I +2 cos'X) Ii,' —q'

1+sin X
t

Finally, the first integral is integrated numerically and
shown in Fig. 1. Equation (AS) is compared with the
variationai result Eq. (10) in the text.

APPENDIX B: GLOBAL INSTABILITY OF
THE COMPOSITE SOLITON IN THE PRESENCE

OF SUPERFLOW (HL v, )

To see that there exists a class of localized solu-
tions which leads to global instability, as an example
we take a variational ansatz

SinX =SeChqz, $ =0, i]r = —, rr,l

y = —b' sech(qz/b) . (81)

Furthermore, we concentrate on the limit b
A

The present ansatz describes a localized pure I tex-
ture, which is strongly wound up around the direction
of superflow. Substituting Eq. (81) into the
domain-wall energy Eq. (9), we obtain

g = ,'(~&,) [I +0-(b ')]b'-
where the last term is obtained from

q cosx rr cosx(0) qllrn -" I +sin'X I +sin'X(0)
(A2) where

+T~(v)$1) '[I +c(q(i) ] —
2 (q(t)b (82)

(by this the torque energy is maximized). The
Euler-Lagrange equation for X is easily integrated.
For an isolated domain wall, we have

c = [8]'i21n[J2+I] =0.3116...

and p, =1.873.
Eliminating q from Eq. (82) we have

X, =4(i cos X I ——
2

— (I +2cos X)2 -1
4 1+sin2X

g = —,
'

b [p, [I + c (q (,) ']I'" —
—,
'

(q g, ) b'

wh][ch yields
~=4g [I+c(qg,)']/b'. (84)

2/i z= d$
X

cos@
'
(I +icos ib) (2 —cos ib)

I + sin'@ —
~ (q (t) ' . (A4)

In Fig. 8 the potential for the longitudinal mode
Vi(z) ~ I —sin'X is shown as a function of z, for

q =0.4', which is compared with the variational
one, sin x=tanh qz. Eliminating X, from Eq. (Al)

From Eq. (83) we see immediately that, for any
q & 0, g can be arbitrarily negative as b increases.
Since b describes the winding of l as well as the spa-
tial extension of the winding, b ~ corresponds to a
completely delocalized solution Eq. (84). However,
the above estimate is only valid for b )& 1. On the
other hand, the localized solutions we are interested
in have rather small b( & rr) In these . solutions b
only starts to increase rapidly when q approaches q„
where the domain wall becomes locally unstable.
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