
An Efficient Online Heuristic for Mobile Network
Slice Embedding

Katja Ludwig
Department of Computer Science

Universität Augsburg
Augsburg, Germany

katja.ludwig@informatik.uni-augsburg.de

Andrea Fendt
Department of Computer Science

Universität Augsburg
Augsburg, Germany

andrea.fendt@informatik.uni-augsburg.de

Bernhard Bauer
Department of Computer Science

Universität Augsburg
Augsburg, Germany

bauer@informatik.uni-augsburg.de

Abstract—The fifth generation (5G) of mobile networks facili-
tates the management of various new use cases like autonomous
driving, eHealth and the Internet of Things (IoT) along with
dense sensor networks. Those use cases induce diverse require-
ments on the mobile network infrastructure. Network Slicing
is one of the key features in 5G to address this issue. Network
Slicing organizes the applications in network slices, whereby they
are isolated, logical end-to-end networks for different use cases,
sharing a common physical network infrastructure. They can
be set up, changed and deactivated dynamically and in real-
time. Therefore, efficient Network Slice Embedding algorithms
are required for the assignment and allocation of network
slice resources. In this paper, a novel, efficient approach for
such an algorithm is proposed. It is a heuristic which meets
the specific requirements of Network Slice Embedding, based
on the algorithm provided by Cheng et al. In addition to
their topology-aware node ranking algorithm, three alternative
ranking techniques for the node mapping are introduced. The
Network Slice Embedding heuristic and its ranking algorithms
are evaluated on three generic blueprints of network slices
and multiple mobile network sizes. The results show that the
proposed heuristic is suitable for real-time embedding as it is
robust, flexible and scalable and achieves high acceptance ratios.

Index Terms—5G, Network Slicing, end-to-end mobile net-
works, Virtual Network Embedding, topology

I. INTRODUCTION

Together with the growing demand for high data rates in
mobile networks, new use cases introduce a wide range of
requirements for mobile networks [1]. For example, safety
critical applications like autonomous cars and eHealth require
extremely reliable low latency communication. Other use
cases, e.g., sensor networks and the Internet of Things (IoT)
need a huge amount of concurrent mobile data connections.
Services like video streaming, so called enhanced Mobile
Broadband (eMBB) use cases, necessitate high availability
and high data-rates. In order to deal with these new use cases,
Network Slicing is seen as a key enabling technology for the
fifth generation (5G) of mobile networks since network slices
offer isolated end-to-end connections on a shared network
infrastructure [2]. They contain all required resources as
defined in the Service Level Agreements (SLA) between
network slice customer or tenant and network slice provider
[3]. Network Slicing can simultaneously integrate services

and applications with diverse requirements and serve a huge
number of connected devices.

The variety of network slices that emerge through these use
cases needs to be embedded in a common physical network.
This means to allocate the resources for services and appli-
cations and the required mobile data connections to the user
equipments (UEs) (e.g., smartphones, notebooks, connected
cars, sensors) on the cloud serves of the wired and wireless
communication links of the mobile network infrastructure,
also referred to as the substrate. As the architecture of the
5G substrate is currently not clear, the flexibility of our
approach is shown by considering two variations of possible
5G substrate topologies proposed by [1] and [3]. They are
depicted in Fig. 1. Apart from the two substrate topologies,

Access Node Cloud NodeNetworking NodeNode B

Edge
Cloud

Edge
Cloud

Main
Cloud

RAN

Layer Substrate Cyclic Substrate

Fig. 1. Layer and cyclic substrate topology

three generic 5G network slice types are considered: ultra
Low Latency (uLL), IoT and eMBB slices. uLL slices have
extremely strong latency constraints. They might host au-
tonomous driving services or eHealth applications. IoT slices
include a large number of UEs, but have relaxed latency,
throughput and computing constraints, examples are large
sensor networks. eMBB slices are characterized by higher
throughput and computing resource demands, together with
medium latency constraints. Video streaming services as well
as augmented reality applications belong to this class. The
process of mapping the virtual resources to the physical
resources is called Network Slice Embedding (NSE). Finding
the optimal NSE is non-trivial. The problem is strongly related
to the Virtual Network Embedding (VNE) problem, which is
known to be NP-hard [4]. Removing the UEs from the NSE
problem results in a VNE problem, hence the NSE problem
is also NP-hard. Therefore, computing the optimal solution is978-1-7281-5127-4/20/$31.00 ©2020 IEEE

23rd Conference on Innovations in Clouds, Internet and Networks (ICIN 2020)

139

time-consuming. In contrast to VNE, NSE deals with end-to-
end networks including UEs. In our previous work [5], the
NSE problem is solved by a nearly-optimal Integer Linear
Programming (ILP) approach which is slow for large problem
instances and only works in offline scenarios. In this paper,
four heuristic algorithms providing an efficient and faster
online Network Slice Embedding with high acceptance ratios
are implemented.

II. RELATED WORK

In contrast to VNE, which is a well researched problem,
there are few publications on the NSE problem. Vassilaras et
al. [2] concentrate on the algorithmic challenges that arise with
efficient Network Slicing, e.g., efficient allocation, manage-
ment and control of the slices in real time. Furthermore, they
define the optimal, offline optimization problem as well as the
online, dynamic version and state that heuristic algorithms are
unavoidable for solving these problems in real-life. In previous
work, we concentrate on an offline resource allocation and
optimization model for Network Slicing, formalized as an
ILP [5]. A nearly optimal solution can be calculated with
generic solvers. In contrast, this paper focuses on heuristic
algorithms that generate good but not necessarily optimal
solutions in a fraction of the time that is needed for solving
the corresponding ILP. The presented heuristic algorithm is
based on rankings of substrate and network slice elements.
Furthermore, this paper takes the online version of the NSE
problem into account, meaning that the slices are not known
in advance and the requests for embeddings arrive over time.
Embedded slices can be decommissioned dynamically. The
ranking-based heuristics presented in this paper are similar
to the VNE heuristics with rankings in [6]–[8]. However, the
proposed approaches are not tailored to NSE in end-to-end
5G mobile networks. Especially, latency requirements are not
taken into account. Similar to the approach of Cheng et al.
[6] for solving the VNE problem, topology-aware ranking
methods are considered. In this paper, we evaluate the ranking
technique of Cheng et al. [6] which is called NodeRank
(NR) as well as three additional ranking algorithms. A simple
resource dependent algorithm called ResourceRank (RR), the
PageRank (PR) algorithm by Page et al. [9] and a combination
of RR and PR, which is called PageResourceRank (PRR) is
introduced. To the best of the authors knowledge, RR and PRR
are novel and unevaluated ranking techniques for end-to-end
NSE.

Furthermore, Liao et al. [8] propose different online, heuris-
tic algorithms as well. Their ranking algorithms are similar
to the ones analyzed in this paper. However, They pursue a
different approach in analyzing the topology of the networks,
based on parameters like degree, closeness (measuring the
centrality of the nodes) and the so called betweenness, quan-
tifying how many times a node appears along the shortest path
of two other nodes. However, for 5G NSE, resource centered
and connectivity-based approaches (like PageRank) seem to
be more promising since the network topologies are rather
homogeneous.

III. FORMAL PROBLEM DEFINITION

The model used in this paper is losely related to the models
presented in Cheng et al. [6] and Fendt et al. [5]. Substrate
networks and network slices are both modeled as instances of
undirected graphs G = (V,E). Let vi, vj ∈ V be two vertices
of the graph, then the notation ei j = (vi, vj) for the edge
between these vertices is used. Two subtypes of vertices are
distinguished: user vertices VU and central vertices that are
cloud nodes in substrate networks (VC) and applications (VA)
in network slices. For nodes ci ∈ VC ∪ VA, their CPU power
is denoted by P (ci) and their memory capacity by C(ci). The
resources of links eij ∈ E are characterized by their through-
put T (eij) and their latency L(eij). In substrate networks,
these attributes indicate the currently available resources and
capabilities of the cloud nodes and links, i.e. embedding a new
network slice reduces the remaining resources in the substrate,
while deactivating a network slice frees the previously occu-
pied resources. In network slices, the attributes specify the
required resources and capabilities. Note that the model could
easily be complemented by additional resources or capability
if needed. The NSE problem is modeled as follows: A network
slice N = (VN , VA, EN) shall be mapped on a substrate
network S = (VU , VC , ES), where other slices might already
be embedded. All slices are embedded sequentially. If two or
more network slice requests arrive at once, they are processed
one after another. VU is the set of all UEs, VC are the cloud
nodes of the substrate and ES is the sef of the substrate links.
For the network slice, VN ⊂ VU . The applications VA and the
virtual links EN should be embedded in the substrate. The
embedding is a mapping M : N → {0, 1} with M(N) = 1,
if slice Ni is embedded, and M(N) = 0, if not. N is the set
of all network slices. In this paper, a is used for application
vertices, c for cloud node vertices, u for user vertices and v
for vertices in substrate networks as well as network slices.

If M(N) = 1, two further mapping functions MA : VA →
VC and ME : EN → P are defined. P is a set of paths
in the substrate, p = (eij , ejk, ..., elm, emn), p ∈ P,∀e ∈
p : e ∈ ES . We write e ∈ p if the edge e is part of
the path p. Since MA and ME are functions, each slice
element is mapped to exactly one substrate element (a path
is considered as one element here). The mapping is subject
to the following constraints: A network slice may either be
mapped completely or not at all, i.e., if M(N) = 1, all slice
applications are mapped to cloud nodes in VC and all virtual
links are mapped to substrate paths from P . If the slice is not
mapped, M(N) = 0, no element of the slice is embedded.
Furthermore, the embedding must respect the topology of the
slices. If a link connects two nodes in the slice, the mapped
path must connect the mapped nodes. With p = (eij , ..., emn),
this can be formalized as

∀ekl ∈ EN :ME(ekl) = p⇒MA(ak) = ci ∧MA(al) = cn
(1)

When trying to embed a network slice, the following
resource and capability constraints need to be satisfied.

∀a ∈ VA, X ∈ {P,C} : X(a) ≤ X(MA(a)) (2)

140

∀e ∈ EN ∀e′ ∈ME(e) : T (e) ≤ T (e′) (3)

∀e ∈ EN :
∑

e′∈ME(e)

L(e′) ≤ L(e) (4)

Similar to the work of Cheng et al. [6], the utility of an
embedding is measured with the so called acceptance ratio.
It is defined as the number of embedded slices divided by the
number of all network slice requests. Let Emb(N) = {N ∈
N :M(N) = 1}, then

AccR(M) =
|Emb(N)|
|N |

(5)

IV. ALGORITHMS

The embedding heuristic is based on the RW-BFS method
proposed by Cheng et al. [6]. As we deal with end-to-
end networks, it is extended to include the UEs. The RW-
BFS technique requires a ranking algorithm. Apart from the
ranking NR that is proposed by Cheng et al. [6], we consider
three additional ranking algorithms: RR, PR and PRR. The
ranking results are needed multiple times during the embed-
ding process. Rankings that depend only on the topology of
the physical network and network slice do not change over
time since the network topology is fixed. Therefore, this paper
extends the approach of Cheng et al. with storing reusable
ranking results for higher runtime efficiency. Additionally, in
layer substrates, the Dijkstra algorithm [10] with equal edge
weights is used to determine the shortest paths between two
nodes. For cyclic substrates we propose a faster approach that
takes advantage of the cycle to find the shortest path between
two nodes. For two arbitrary nodes v, w, it works as follows.
At first, all direct paths Pv from v to Networking Nodes v′ and
all paths Pw from w to Networking Nodes w′ are calculated.
If v or w is a UE, the paths include a link to an Access Node
and a link from this Access Node to a Networking Node. If
v or w is a Cloud Node, the path includes the link to its only
neighbor which is a Networking Node. The path is empty, if v
or w is a Networking Node itself. Afterwards, both directions
of paths through the cycle from v′ to w′ are computed and
included in the set Pv′w′ . The lengths of all possible paths (v
to all possible v′ via Pv , then to all possible w′ via Pv′w′ and
finally via Pw to w) are compared. The shortest one in terms
of number of hops is chosen. This concatenated path is the
shortest one from node v to node w.

1) ResourceRank (RR): RR ranks the network nodes
according to their own resources and to their accessible
resources associated with its adjacent communication links. It
assigns a memory (f1), CPU (f2) and throughput value (f3)
to each node. The memory and CPU values are computed
by dividing the respective resources of the considered node
by the total amount of required/provided resources in the
network slice/substrate. For the throughput value, the sum
of the required/provided throughputs of all links connected
to the node is divided by the sum of the throughputs of all
links, whereby the resources of the links between two non-
user nodes are doubled as they have to be considered twice,
once for each connected node. All fi values are multiplied

with an importance factor αk, k = 1, 2, 3,
∑3

k=1 αk = 1.
In this paper, node and link resources are considered to be
equally important, therefore the importance factors are set to
0.25 for memory and CPU and 0.5 for the link throughput.
RR is computed as the weighted sum of all factors:

RR(v) =
∑3

k=1
αkfk (6)

2) PageRank (PR): PR only considers the topology of
the network. It is the work of Page et al. [9] and Brin et
al. [11] and was initially designed for web pages and links.
The hyperlinks in the web are directed, whereas the links
of the networks in this paper are undirected. Hence, the
number of backlinks used in [9] cannot be used here and
is replaced by the number of neighbors: For a vertice v ∈ V ,
Neighbor(v) = {w ∈ V | ∃eij ∈ E : vi = v ∧ vj = w}.
Then,

PR(v) = c
∑

v′∈Neighbor(v)

PR(v′)

|Neighbor(v′)|
+ s (7)

The PR of a node is high if it is highly connected to
other nodes, including connections over multiple hops. s in
Equation 7 is the rank source that is needed for dealing with
rank sinks in this recursive calculation. Not including s would
lead to unwanted high ranks in cycles [9]. As proposed in [11],
s is set to 1−c

|U∪V | and the damping factor c is set to 0.85. A
rank has to be assigned to all nodes, including the UEs. These
UE ranks are required to receive accurate importance ranks,
especially for their direct neighbors.

Evaluations show that PR calculations are slow for network
slices. Since the network slices have a quite simple topology,
a faster approximation is used for the network slices:

PRN (v) =
|Neighbor(a)|

|Ei|
(8)

This version assigns the highest rank to the node with the
highest number of connecting links. Due to the simple struc-
ture of the slices, the result of the ranking is similar to the
original method. An analysis shows that it is nearly 5 times
faster than PR and only 0.07 percentage points behind in terms
of acceptance ratio. Therefore, in the evaluation, the original
PR method is used for the substrate and combined with the
simplified PRN algorithm for the network slices.

3) PageResourceRank (PRR): PRR combines RR and PR:

PRR(v) = 0.5 · PR(v) + 0.5 ·RR(v) (9)

With the factor 0.5 for both PR and RR, topology and
resource characteristics are weighted equally for the final
rank. Combining these two rankings seems to be a promising
approach, since the topology as well as the resources are
crucial aspects for a successful and efficient NSE.

4) NodeRank (NR): NR is an alternative approach for
combining resource and topology characteristics in one rank-
ing. NR is proposed by Cheng et al. [6]. Only bandwidth
(or throughput in our case) and CPU are taken into account,
memory and latency are not considered.

141

V. EVALUATION

For the evaluation of the NSE heuristic, a dedicated Java
program is used. All results are collected on a MacBook
Air 2013 with a 1.3 GHz Intel Core i5 and a 4 GB 1600
MHz DDR3. The evaluated substrate networks as well as
the network slices are generated randomly. That means, the
resources of each node and link, the link latencies and the
number of links are selected randomly from defined ranges.

The ILP-based approach of [5] is used for a first runtime
comparison. It computes a nearly optimal solution. A small
layer substrate network is used in this simulation (40 UEs, 20
Nodes B, 5 Edge Clouds, 1 Main Cloud) with small (1–10
UEs and 1–5 applications) slices of all three network slice
types. Each run of the evaluation has a new substrate and
one slice. The runtime of the algorithms is divided into two
parts: the time taken by the ranking and by the embedding.
Both together form the total time. The result computed from
120 runs can be found in Fig. 2. As the ILP-based NSE

small layer, reality slice generator

PRR NR RR PR ILP

Acceptance Ratio 0.8333333333333330 0.8333333333333330 0.8333333333333330 0.8333333333333330 0.8416666666666670

Ranking Time/Generation Time 8.108333333333330 1.775 0.20833333333333300 5.283333333333330 52.1

Total Time 8.3 1.9833333333333300 1.275 5.658333333333330 351.55833333333300

Embedding Time/Solution Time 0.191666666666668 0.208333333333333 1.06666666666667 0.375 299.4583333333330

0%
25%
50%
75%

100%

Acceptance 
Ratio

PRR NR RR PR ILP

0

3

6

9

0
100
200
300
400

Total TimeRanking Time (light) &
Embedding Time (dark)

ms ms

�2

Fig. 2. Runtime and acceptance ratio evaluation with ILP

is a nearly optimal approach, it is capable of embedding in
average 84.2 % of the slices, whereas the other algorithms
have average acceptance ratios of 83.3 %, but this comes at a
high expense. The heuristic algorithms have average ranking
times between only a fraction of a millisecond and around
8 ms. Their average embedding times are around 1.1 ms. This
evaluation shows that the ILP-based NSE, with an average
total runtime of around 350 ms, is far slower than the heuristic
approaches.

For a deeper evaluation of the runtime and scalability of
the proposed NSE heuristic, compared to the near-optimal
ILP-based solution, they are evaluated on differently sized
substrates. 20 runs, each including three slices, are executed

TABLE I
RUNTIME WITH DIFFERENT SUBSTRATE SIZES

PRR NR RR PR ILP

SA 1.733 ms 2.067 ms 1.217 ms 1.667 ms 772.7 ms
SB 2.983 ms 2.317 ms 0.800 ms 2.233 ms 2127 ms
SC 3.500 ms 2.867 ms 1.200 ms 3.733 ms 6071 ms
SD 6.133 ms 4.350 ms 1.450 ms 4.317 ms 12.02 s
SE 10.87 ms 8.400 ms 2.667 ms 9.267 ms 15.96 s

to determine the average values. The slices are approximately
50% smaller than in the evaluations above in order to also
fit into SA, the smallest tested substrate. SA contains 20
UEs, 10 Nodes B, 3 Edge Clouds and 1 Main Cloud. The

size of the substrates is increased in each step, 20 UEs, 10
Nodes B and 2.5 Edge Clouds (properly rounded) are added.
Hence, the substrate sizes increase nearly linearly in the table.
SE , the largest substrate, has around 5 times the size of SA.
The results of this evaluation clearly show that the ILP-based
approach is not scalable on large problem instances. On SE ,
it is nearly 1500 times slower than the heuristic with the
slowest ranking algorithm and nearly 6000 times slower than
the heuristic with the fastest ranking algorithm. Therefore,
ILP-based NSE is not applicable in real world scenarios.

Next, the differences between the ranking algorithms are
analyzed. The network configuration is as follows. The layer
substrates have 50 UEs, 30 Nodes B (P,C ∈ [100, 200]),
10 Edge Clouds (P,C ∈ [200, 700]) and 1 Main Cloud
(P,C ∈ [5000, 10000]). There are 1–3 links per user to
Nodes B with T ∈ [30, 80], L ∈ [3, 7], 2–6 links per Node
B to Edge Clouds (T ∈ [80, 150], L ∈ [3, 5]) and every Edge
Cloud is linked to the Main Cloud (T ∈ [200, 500], L ∈ [2, 4]).
The cyclic substrates contain 50 UEs as well, 5 Access Nodes
(P,C ∈ [200, 500]), 20 Networking Nodes (P,C ∈ [50, 200])
and 25 Cloud Nodes (P,C ∈ [500, 5000]). Users are con-
nected to 1–3 Access Nodes with T ∈ [50, 100], L ∈ [3, 8]
and Access Nodes are linked to 3–5 Networking Nodes (T ∈
[80, 150], L ∈ [2, 3]). The links on the network circle have
T ∈ [300, 500] and L ∈ [1, 2]. Each Networking Node may
be linked uniquely to 1–4 Cloud Nodes (T ∈ [100, 500], L ∈
[1, 2]). The evaluation includes three types of slices. The uLL
slices contain 1–10 UEs, 1–5 applications with P,C ∈ [3, 15]
and 1–3 links per app with medium throughput and strong
latency constraints (T ∈ [10, 40], L ∈ [10, 30]). The eMBB
slices include 1–10 UEs and applications, whereby the appli-
cations have medium to high CPU and memory requirements
(P,C ∈ [10, 40]). There are 1–3 links per application with
medium latency and medium to high throughput constraints
(T ∈ [10, 40], L ∈ [25, 50]). The IoT slices contain more
users, 15–30, and 1–5 applications with P,C ∈ [1, 3]. Each
application can have 5–20 links with low throughput and high
latency constraints (T ∈ [1, 5], L ∈ [50, 100]). The slices
arrive over time and are deactivated after a predefined lifetime.
For the evaluation results, 50 runs are executed. Table II shows
the average acceptance ratios for each substrate topology (C-
for the cyclic and L- for the layer substrate), each slice
type and each algorithm. The average standard deviations are
between 0.028 for L-IoT and 0.080 for C-IoT and PR.

TABLE II
AVERAGE ACCEPTANCE RATIO IN %

C-IoT L-IoT C-uLL L-uLL C-eMBB L-eMBB

NR 63.83 96.06 69.34 56.62 65.02 61.83
PR 60.09 96.10 73.09 56.59 71.19 61.69
RR 62.58 96.06 70.22 56.68 65.68 61.87
PRR 60.97 96.03 72.90 56.48 70.65 61.65

In general, all algorithms achieve high acceptance ratios
within short runtimes, no matter which slice type or sub-
strate topology is selected. However, some small differences

142

between the ranking algorithms are recognizable. The largest
difference is observed with eMBB slices on cyclic substrates:
PR and PRR perform notably better than RR and NR, the
difference is 6.17 %. The results of the evaluation with IoT
slices on the cyclic substrate also show notable differences and
are contrary to the ones of the eMBB evaluation. NR and RR
perform well with a big gap to PRR and PR is the worst. The
difference in the average acceptance ratio over all network
slice types between the best (NR) and the worst ranking
algorithm (PR) is 3.74 %. This difference might not sound
large, but compared to the difference between ILP-based NSE
and the heuristic approach of 0.9 % in the first evaluation,
the difference here is up to 6 times higher. Regarding the
total number of slices of around 2000, 6.17 % mean that NR
embedded around 120 more slices. The highest total runtimes
in this evaluation are observed with the IoT slices on the cyclic
substrate: PRR is the slowest algorithm with 9.0 ms total time
per slice. On the layer substrate, the IoT slices have the fastest
runtimes. All algorithms need only around 0.05 ms in average
per slice. With the same substrates and slices, ILP-based NSE
has the fastest results for low latency slices with 2.5 s and the
highest total runtimes for IoT slices with 77 s. This shows
again that the runtime of the ILP-based approach increases
enormously with larger network instances, whereas the times
of the heuristic algorithms stay in the same magnitude.

The heuristic algorithms also scale for even larger, ran-
domly generated substrates. Based on the substrate sizes of
the previous evaluation (Table II), the substrate size for this
evaluation is denoted by UxNy . This means that the number
of UEs is increased x times and the number of all other
nodes except from the main cloud is increased y times. For
example, U10N5 has 500 UEs and its layer substrates 150
Nodes B and 50 Edge Clouds. For each substrate size, the
averages across 10 runs with 12 slices from all three types
are taken. Fig. 3 shows that the runtime for NR is always
the highest and it grows exponentially for larger numbers
of cloud nodes. Therefore, it might not be applicable for
large real world scenarios. All other algorithms scale quite
well. RR is the fastest algorithm in most cases. On the layer

cyclic

C-NR L-NR C-PR L-PR C-RR L-RR C-PRR L-PRR

10U10N 105.7 83.42 21.01 5.675 21.77 3.967 19.38 7.433

100U10N 203.9 121.7 98.84 48.35 88.21 6.783 90.11 51.28

100U50N 11526 7944 116.8 75.2 160.8 16.57 136.2 88.89 0 0 0 0 0 0

1000U10N 3523 2685 1547 852.6 745.1 81.28 1572 855.7

0
50

100
150
200
250

C-NR L-NR C-PR L-PR C-RR L-RR C-PRR L-PRR

0

3000

6000

9000

12000

0
800

1600
2400
3200
4000

0

50

100

150

U100N50

msms msms

U100N10 U1000N10

�1

Fig. 3. Runtime evalutation with large substrates

substrate, its average total time is 81.28 ms even for substrate
size U1000N10. The total times of all other ranking algorithms
are more than 10 times higher. Only on cyclic substrates with
the size U100N50 PR performs better. Hence, for even larger
scenarios, RR and PR are the most promising approaches.

VI. CONCLUSION AND OUTLOOK

This paper proposes an online, ranking based heuristic
for solving the NSE problem, which is based on the VNE
heuristic provided by Cheng et al., but considers the specific
end-to-end requirements of NSE. Three new ranking algo-
rithms, a new RR mechanism, a topology-aware PR algorithm
and a combination of them, are presented. These ranking
algorithms and the NR algorithm provided by Cheng et al. [6]
are evaluated. Extensive simulations show that the proposed
heuristic is robust to various network slice types, including
eMBB , IoT and uLL network slices and different mobile
network topologies. All ranking techniques achieve similar
acceptance ratios, whereby the best algorithm is dependent
on the slice and substrate type. Beyond that, the proposed
four variants of the NSE heuristic, especially RR and PR, are
scalable for large, real world problem instances. Evaluations
show that the NSE heuristic is up to 6000 times faster than
the near-optimal ILP NSE solution.

Since none of the proposed ranking algorithms is best for
every network slice type and substrate topology, a conditional
ranking might be useful. In future work, the best ranking
algorithm could be chosen by analyzing the characteristics
of the underlying embedding problem. By means of, for
instance, Machine Learning (ML), such a classification system
cloud be established. Furthermore, future work should support
dynamic changes of network slices, e.g. in resource demands,
or deployment of new services within a slice. This might result
in the necessity to rearrange network slices during runtime.
This reconfiguration of the resource assignment should also
be used for optimizing the embedding of the network slices
in the mobile network infrastructure.

REFERENCES

[1] NGMN, “NGMN 5G white paper,” NGMN 5G Initiative, 2015.
[2] S. Vassilaras et al., “The algorithmic aspects of network slicing,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 112–119, 2017.
[3] I. Labrador Pavon et al., “5g norma network architecture – intermediate

report,” deliverable D3.2, 5G NORMA, 2017.
[4] M. Rost and S. Schmid, “NP-completeness and inapproximability of

the virtual network embedding problem and its variants,” arXiv preprint
arXiv:1801.03162, 2018.

[5] A. Fendt, S. Lohmuller, L. C. Schmelz, and B. Bauer, “A network
slice resource allocation and optimization model for end-to-end mobile
networks,” 5G World Forum, 2018.

[6] X. Cheng et al., “Virtual network embedding through topology-aware
node ranking,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 2, pp. 38–47, 2011.

[7] Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, X. Zhao, and S. Su,
“Energy-aware virtual network embedding,” IEEE/ACM Transactions
on Networking (TON), vol. 22, no. 5, pp. 1607–1620, 2014.

[8] J. Liao, M. Feng, T. Li, J. Wang, and S. Qing, “Topology-aware virtual
network embedding using multiple characteristics,” KSII Transactions
on Internet & Information Systems, vol. 8, no. 1, 2014.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” tech. rep., Stanford InfoLab, 1998.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[11] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

143

