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Abstract

In this thesis, we consider the numerical approximation of solutions of par-
tial di�erential equations that exhibit some kind of multiscale features. Such
equations describe, for instance, the deformation of porous media, di�usion
processes, or wave propagation and the multiscale behavior of corresponding
solutions is typically the result of material coe�cients that include variations
on some �ne scale. To avoid global computations on scales that resolve the
microscopic quantities, the aim is to provide suitable approximations on some
coarse discretization level while taking into account these �ne-scale characteris-
tics of underlying coe�cients. To this end, we employ the framework of Localized
Orthogonal Decomposition that is able to cope with general heterogeneous coe�-
cients without the requirement for structural assumptions such as periodicity or
an explicit characterization of a �ne scale. The approach provides adapted �nite
element functions with improved approximation properties based on localized
corrections of classical �nite element functions. We introduce the method in an
abstract stationary setting and rigorously analyze its convergence behavior in
terms of theoretical and numerical investigations. We also present a higher-order
generalization of the approach based on non-conforming spaces and study the
interplay between the mesh parameter, the polynomial degree, and the localiza-
tion parameter. We provide convergence results with explicit dependencies on
the above-mentioned parameters and present numerical experiments. Further,
we consider an inverse problem of recovering information about an underlying
di�usion coe�cient from given coarse-scale measurements. Instead of recon-
structing the actual coe�cient, we follow the idea of �nding a coarse model in
the spirit of general numerical homogenization methods that is able to satis-
factorily reproduce the given data. Although this is a seemingly very di�erent
setting, the results of the inverse procedure provide a justi�cation of general
(forward) numerical homogenization methods (as, e.g., the Localized Orthogo-
nal Decomposition) and therefore solidify the approach from a di�erent point
of view. Beyond these stationary problems, we apply the Localized Orthogonal
Decomposition method to the wave equation and the multiphysics problem of
linear poroelasticity. We provide rigorous convergence studies and numerical
examples. The approach displays its full potential in these time-dependent set-
tings in the sense of an overall complexity reduction. In the context of the wave
equation, we focus on an explicit time stepping scheme and the e�ect of the
method on the time step restriction. For the poroelastic problem, we use an
implicit scheme and introduce an alternative approach that exploits the saddle
point structure which arises if the system is �rst discretized in time.
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1 Introduction

1.1 Motivation

Many physical processes in nature, as for example �uid �ows in porous media
or general wave propagation through multi-layered soil, involve multiple scales.
Typically, one distinguishes between the microscopic scales which describe the
highly heterogeneous material properties including the possibly very complex
textures of the materials on the one hand, and a macroscopic or e�ective scale
on which the resulting physical phenomena can be observed on the other hand.
The presence of multiple scales is also key in the manufacturing of modern
composites where �ber-reinforced materials are produced to enhance the overall
strength of the originally homogeneous workpiece. In this context, the arti�cial
microstructure changes the macroscopic behavior of the material and has to be
taken into account when modeling, for instance, the deformation under loading.
From a mathematical point of view, the physical processes such as �ows in

porous media or the deformation of a composite material are described by partial
di�erential equations (PDEs) with one or more material coe�cients that encode
the physical properties. With multiple scales involved, this means that the co-
e�cients and corresponding solutions of the PDE may vary on a microscopic
scale. Nevertheless, in general only e�ective information, i.e., the behavior of
the solutions on the macroscopic scale, is of interest for the understanding and
simulation of the respective processes. Although it might seem natural, the
straightforward approach of discarding micro-scale features of the coe�cients in
numerical simulations typically fails to provoke the desired e�ective solution on
the macroscopic scale. Then again, resolving the microscopic coe�cients would
generally be too costly and thus unfeasible for computer simulation, which calls
for an alternative strategy to overcome these problems. In particular, it is impor-
tant to diligently treat the mismatch between microscopic material properties
and the macroscopic observation scale. Corresponding techniques are commonly
referred to as homogenization. The key idea of classical homogenization is to
replace the original PDE by a homogenized or e�ective PDE whose solution
describes the behavior of the original solution up to variations on a microscopic
scale. Solutions of e�ective PDEs can then be simulated using standard numeri-
cal methods on the macroscopic scale because the microscopic scale has basically
been removed. The main drawback of classical homogenization models, however,
are structural assumptions such as a clear distinction of scales and periodicity
which are required in analytical homogenization theory on which these methods
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1 Introduction

are based. Although many manufactured composites like �ber-reinforced ma-
terials generally provide a clear separation of the involved scales, i.e., the size
of the �bers and the size of the workpiece, and even a periodic structure, these
assumptions are not ful�lled anymore in the presence of material imperfections
or perturbations. In the above-mentioned geophysical processes such as �ows
in porous media, structural assumptions such as periodicity or scale separation
are usually not ful�lled either.
In the general setting with only minimal assumptions on the microscopic

structure of involved coe�cients, so-called numerical homogenization methods
provide an alternative to classical homogenization. The main idea of these
approaches is to enhance standard �nite element (FE) methods by modifying
FE basis functions in a coe�cient-adapted way to obtain optimal approxima-
tion spaces on the macroscopic scale of interest. These methods generally have
in common an increased computational complexity in the sense that there is
a moderate overhead in the support of the basis functions or the number of
basis functions per mesh entity. Since this overhead can typically be controlled
by the macroscopic scale of interest and retains locality in a reduced sense,
these methods are called quasi-local in the following. Some more details on
such methods and particular examples are given in the next section.

1.2 Overview of the literature

As already mentioned in the previous section, homogenization techniques can
basically be divided into two groups: numerical homogenization methods and
classical homogenization methods. The latter are based on the mathematical
theory of homogenization, i.e., various types of convergence results for sequences
of problems indexed by a �ne-scale parameter ε which tends to zero.
A �rst convergence type is G-convergence introduced by Spagnolo [Spa68] for

elliptic second-order symmetric operators. The main result is the existence of
a so-called G-limit for any sequence of bounded and uniformly elliptic operators.
This limit corresponds to the homogenized coe�cient and the associated solution
captures the e�ective behavior of the solutions of the ε-dependent problems.
To overcome the necessity of symmetric operators, Murat and Tartar [MT97a,

MT97b,Tar78] generalized the concept of G-convergence to the non-symmetric
case. This type of convergence is known as H-convergence and requires some
additional assumptions on the sequence to compensate for the lack of symmetry.
Note that there are constructive proofs to the existence result of theH-limit, also
known as method of oscillating test functions or energy method [Tar78,MT97b]
from which corresponding numerical methods can be derived.
Another kind of convergence is the so-called Γ-convergence and was intro-

duced by De Giorgi [DG75, DG84]. It is characterized by the convergence of
minimizers of ε-dependent functionals and thus valid in relatively general set-
tings. The relevance of Γ-convergence to homogenization theory is mainly based
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1.2 Overview of the literature

on the fact that solving a linear, symmetric PDE is often closely connected to
�nding the minimizer of an appropriate functional.
A less general type of convergence is the so-called two-scale convergence which

traces back to Nguetseng [Ngu89] and Allaire [All92]. It is based on the ansatz of
a two-scale periodic expansion with a slow variable (macroscopic) and a fast one
(microscopic) which is justi�ed by a rigorous two-scale homogenization result.
For more details on the di�erent convergence types, see also, for instance, the
overview provided in [All97].
The most popular numerical approaches to homogenization which are based

on the above-mentioned theoretical results are the Multiscale Finite Element
Method (MsFEM) by Hou and Wu [HW97], the Two-Scale Finite Element
Method introduced by Matache and Schwab in [MS02], and the approach of E
and Engquist [EE03,EE05] known as Heterogeneous Multiscale Method (HMM).
The MsFEM uses a set of multiscale basis functions which are constructed by
solving operator-adapted problems in each element of a coarse mesh. Further,
these functions coincide with classical FE basis functions on the boundary of
the elements. The approach of [MS02] builds a two-scale FE space based on
a coarse mesh and a local �ne-scale space consisting of ε-periodic functions for
each coarse degree of freedom (DOF). The very general idea of the HMM is
to approximate the homogenized coe�cients from classical homogenization by
solving discrete local cell problems on small patches around quadrature points.
All these methods are powerful tools to deal with the discrepancy between mi-
crostructural quantities in PDEs and the desired e�ective behavior of respective
solutions. The main drawback, however, are the restrictive assumptions that
underlie the analysis of these approaches.

The aim to overcome the aforementioned structural restrictions gave rise to
many numerical homogenization methods which are designed to work in very
general settings. These methods have in common that they approximate the
e�ective behavior of the solution of a PDE on some coarse scale H, which is
typically the mesh size of the underlying FE grid. The involved coe�cient and
the corresponding solution are assumed to have some kind of �ne-scale variations
but an explicit characterization of a microscopic scale in terms of a parameter
ε is generally not required. In particular, these methods aim for error estimates
which do not depend on �ne-scale variations of the coe�cient and especially not
on ε (if available), in contrast to classical FE methods where such variations
severely impact the error estimates.
As far as elliptic problems are concerned, there are several methods which

fall into this category. Note that the ones presented here do not at all rep-
resent a complete list. One of these methods is the Generalized Finite Ele-
ment Method (GFEM) that is analyzed in [BL11] and traces back to earlier
works [BO83,BCO94]. The main idea is to decompose the domain of interest
into local (possibly overlapping) subsets and thus divide the global approxima-
tion space into local contributions in the spirit of a partition of unity approach.
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On each of the subdomains, so-called local particular solutions are computed as
well as a number of local eigenfunctions to approximate the space of harmonic
functions with respect to the given di�usion coe�cient. It can be shown that
the accuracy of the local approximations depends nearly exponentially on the
number of spectral problems, which means that the number of local functions
should depend logarithmically on the mesh sizeH to obtain an overall �rst-order
accurate method.
The general question on the necessary computational overhead was discussed

in [GGS12] in the context of so-called Adaptive Local Bases (ALB). The theo-
retical results state that the overhead should be logarithmically dependent on
the mesh size H. In particular, it was shown that, in d dimensions, choosing
O
(
| logH|d+1

)
non-polynomial local basis functions per mesh entity is enough

to retain an H1-error of order H, independently of the actual �ne-scale varia-
tions of the coe�cient. However, the approach is not constructive in the sense
that global �ne-scale problems need to be solved in order to derive the method.
This issue was later overcome with a fully practical approach in connection with
the ALB, see [Wey16].
Målqvist and Peterseim [MP14] were the �rst who proved that the solution

of quasi-local problems is su�cient to obtain a quasi-optimal approximation
space. Their approach is known as Localized Orthogonal Decomposition (LOD)
and was further re�ned by Henning and Peterseim in [HP13]. The construction
is based on the decomposition of the solution space into a �nite-dimensional
coarse approximation space and a �ne-scale space in the spirit of the Variational
Multiscale Method (VMM) introduced in [HFMQ98]. The main concept of the
LOD is to choose the approximation space as the orthogonal complement of
the �ne-scale space with respect to a coe�cient-dependent bilinear form. The
resulting space has improved approximation properties compared to classical
�nite elements with the same number of DOFs. There is even an explicit bijective
transformation between the classical FE space on some prescribed coarse scaleH
and the new space. This allows one to write the basis functions of the improved
space in terms of the classical FE basis functions by subtracting the solutions of
auxiliary corrector problems. These problems may be localized to local patches
of size H| logH| without an impact on the overall convergence rate, since the
solutions of the corrector problems decay exponentially fast. As this thesis is
substantially based on the LOD, this method is explained in more detail in
Chapter 2.
Another ansatz is based on Rough Polyharmonic Splines (RPS) and is de-

scribed in [OZB14]. There, a set of generalized splines which include �ne-scale
information is used to approximate the original problem. These generalized
functions, however, require the solutions of more demanding bi-harmonic cor-
rector problems.
The approach known as Generalized Multiscale Finite Element Method (GMs-

FEM) [EGH13] is based on the ideas of the MsFEM described above and is
divided into an o�ine and an online stage. In the o�ine stage, local snapshot
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1.3 Goal and main contribution of this work

spaces consisting of local solutions are computed on coarse elements using a �ne
discretization. Then, a spectral decomposition is used to reduce the dimension
of these spaces by only taking the eigenfunctions with large energy. In the on-
line stage, when speci�c model parameters are given, the precomputed spaces
are used to de�ne a global multiscale space in order to solve the global problem
on the coarse scale. One extension of this approach is the so-called Constraint
Energy Minimizing GMsFEM (CEM-GMsFEM) [CEL18], where the spectral
decomposition is used to compute new multiscale basis functions that minimize
the problem-dependent energy and, additionally, ful�ll an orthogonality prop-
erty in the spirit of the LOD. The aim of this approach is to achieve decay of
the basis functions even for problems with high contrast.
In contrast to the aforementioned approaches, Owhadi [Owh15,Owh17] stud-

ied the view on numerical homogenization from a game theoretical approach and
introduced so-called gamblets which are also based on a decomposition of the
solution space into orthogonal spaces similar to the LOD. Gamblets extend the
classical LOD not only to a multilevel setting but also allow one to go beyond
its conforming nature by writing the orthogonalization approach as constrained
minimization problem, which enables a wide range of possible constraint condi-
tions.

1.3 Goal and main contribution of this work

The overall purpose of this thesis is to show the potential of the LOD method
introduced by Målqvist and Peterseim [MP14] and consolidate the approach
from multiple perspectives. To this end, the LOD is �rst presented in a relatively
general framework in Chapter 2 including a systematic derivation with the aim
to obtain a �rst-order method that is able to cope with microscopic dependencies
without resolving the underlying scale. The method is rigorously analyzed in
the general setting, especially in terms of localization, and numerical examples
that show the potential of the method are given.
Another contribution is the extension of the original method to a higher-order

variant which enables convergence rates beyond �rst-order. These rates are
generally only limited by the regularity of the right-hand side of the variational
problem at hand. In this context, a rigorous analysis of the method in the
elliptic setting is presented in Chapter 3 with special focus on how the method
depends on the polynomial degree. Further, the interplay between the choice of
the polynomial degree and the oversampling parameter is studied. Besides the
theoretical investigation of this approach, also numerical studies are presented
that indicate an even better behavior of the higher-order LOD method.
The structure and ideas of the LOD are then used in Chapter 4 to justify

the general approach of using quasi-local e�ective models, i.e., models with
a controlled variation from locality, to overcome the issues that arise in the
presence of multiple scales as it is done for the LOD approach and in numerical
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homogenization in general. This is achieved in connection with inverse problems
where a general coarse-scale model is reconstructed from a given set of coarse
data using an iterative optimization technique. The key feature is to let the
algorithm decide whether to deviate from locality or not. It can be observed
numerically that a slightly non-local model is able to better capture macroscopic
e�ects. In that context, a variant of the LOD is used to motivate the inversion
algorithm in the sense that the multiscale model that is obtained with LOD
is provably a possible solution of the optimization problem. Moreover, these
�ndings also justify other numerical homogenization methods which are based
on some computational overhead per mesh entity, such as the ones mentioned
in Section 1.2.
Apart from the extension of the LOD to higher-order schemes and its gen-

eral justi�cation, this thesis shall also present advantageous side bene�ts that
occur in connection with time-dependent problems where multiscale aspects in
the PDE are independent of time and only depend on the spatial variables. As
a model example, the acoustic wave equation is considered in Chapter 5 and the
common procedure of applying the LOD to the stationary part of the PDE is
used to derive a semi-discrete multiscale method which is then combined with
an explicit time stepping scheme. The method is theoretically examined with
particular focus on the errors introduced by discretization and localization. Fur-
ther, the time step restriction, also known as Courant-Friedrichs-Lewy (CFL)
condition, which is crucial for explicit time stepping, is investigated. The side
bene�t that comes along with the method is a relaxation of this condition in the
sense that the time step only needs to be bounded in terms of the coarse mesh
parameter and is independent of any �ne discretization or microstructural quan-
tity. This leads to computational savings not only in the spatial discretization
but also in the temporal one and shows the true potential of the LOD.
Another time-dependent multiscale model discussed in this work is the prob-

lem of linear heterogeneous poroelasticity, which is described by two coupled
PDEs, an elliptic and a parabolic one. Besides proving the applicability of the
LOD to more involved multiphysics problems with multiple varying microscopic
parameters, the main contribution in this part is a variation of the classical ap-
proach of applying the LOD to the stationary equation as proposed in [MP17]
for the mathematically equivalent problem of linear thermoelasticity. Instead,
the method is motivated by the time step dependent problem that arises when
�rst discretizing with respect to the temporal variable. Since the resulting equa-
tions have a favorable saddle point structure, the coupling terms in the PDE
can be discarded with the side bene�t of decoupled corrector problems for the
two equations of the poroelastic system. These corrections are still independent
of the actual time point of the temporal discretization which leads to a simple
multiscale method based on a modi�cation of the classical LOD approach. This
method is investigated in terms of a theoretical error analysis and numerical
studies in Chapter 6.
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1.3 Goal and main contribution of this work

Parts of this thesis have already been published or submitted to scienti�c
journals. The work on the reconstruction of an e�ective model in connection
with numerical homogenization was submitted for publication and is available
as preprint [CMP19]. The �ndings on the LOD for the acoustic wave equa-
tion in combination with an explicit time discretization scheme were published
in BIT Numerical Mathematics [MP19]. Finally, the content on the LOD with
respect to the problem of linear poroelasticity was published in Journal of Com-
putational Mathematics [ACM+20]. The presentation of these �ndings partially
follows the one in the corresponding journal or preprint versions. However, some
parts are rephrased or extended and the notation might di�er in order to be in
line with the other content and the overall reading �ow of this thesis.
During the work on this thesis, further research articles were written in the

larger context of this thesis [AMU19,FAC+19,HMP+19]. These articles, how-
ever, are not directly taken into account in this work.

The numerical experiments presented throughout this thesis were generated
either with Python using an adaption of the software of Hellman [Hel17] or with
MATLAB based on preliminary code developed at the Chair of Computational
Mathematics at the University of Augsburg. A detailed description on the
implementation of the LOD method is provided in [EHMP19]. All computations
were performed on an HPC In�niband cluster.

Notation. Throughout this work, we use the following notation. We write
C for any positive constant that is independent of the mesh sizes h or H, the
polynomial degree p, the time step τ , the oversampling parameter `, and the
microscopic scale ε. Such constants are allowed to depend on the dimension d
and the domain D. Note that C might change from line to line in the estimates.
To indicate an explicit dependence on a parameter ξ, we may write Cξ. We
further abbreviate a ≤ C b and a ≤ Cξ b by a . b and a .ξ b, respectively, and
use a ∼ b if a . b and a & b.
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2 The Classical Localized

Orthogonal Decomposition

Method

This chapter is devoted to a review of the classical Localized Orthogonal Decom-
position (LOD) method introduced in [MP14] and further elaborated in [HP13]
for an elliptic model problem. As already mentioned in the introduction, the
objective of this technique is to provide suitable approximations of solutions
of PDEs on a coarse scale of interest. While classical FE approaches are gen-
erally well suited for the approximation of such problems, these methods fail
to satisfactorily describe the behavior of PDE solutions if the respective prob-
lems involve one or more heterogeneous coe�cients which may vary on some
microscopic scale. We show throughout this chapter that the LOD approach is
able to overcome the discrepancy between microscopic information and a coarse
approximation scale and works under minimal structural assumptions. This is
achieved by the idea of decomposing a given solution space into a �ne-scale
space and its coarse complement in a problem-adapted fashion. Since the com-
plementary space is well suited for computations on the coarse scale, the idea
of the method is a continuous Galerkin (cG) approach using a localized version
of this space. It is computed based on quasi-local auxiliary problems which ex-
plains the name Localized Orthogonal Decomposition. The method is designed
to work for relatively general settings and presents, to some extend, a natural
generalization of classical homogenization approaches. That is, in certain pe-
riodic regimes with an explicit characterization of microscopic coe�cients, the
(ideal) method recovers the classical homogenization limit in the elliptic setting;
see [GP17]. Note that there exist also alternative formulations of the method
as an iterative approach based on an overlapping domain decomposition. This
more abstract way of interpreting the LOD in terms of an additive Schwarz
method is, for example, investigated in [KY16,KPY18].
In the following, we formulate the classical LOD developed in [MP14,HP13] in

a relatively general framework that includes the cases of the subsequent chapters,
e.g., the stationary problem in connection with linear poroelasticity (Chapter 6).
A general setting has already been considered in [Pet16] but a complete gen-
eralized error analysis was only indicated. In this chapter, we �ll this gap and
provide a rigorous derivation and analysis of the LOD approach in the general
case and identify su�cient conditions for the applicability of the method.
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2 The Classical LOD

2.1 Model problem

Let d ∈ N and D ⊆ Rd be a bounded, convex, and polytopal Lipschitz do-
main. Further, let Γ ⊆ ∂D be the Dirichlet boundary with non-zero (d − 1)-
dimensional Hausdor� measure, i.e., |Γ| > 0, and denote with H1

Γ(D) the space
of H1 functions with values in R and vanishing traces on Γ. If Γ = ∂D, we write
H1

0 (D) := H1
∂D(D). Due to the Friedrichs inequality, also known as Poincaré-

Friedrichs inequality (see, e.g., [Bre03]), we equip the space H1
Γ(D) with the

H1-seminorm | · |H1(D) := ‖∇ · ‖L2(D), which is a full norm in H1
Γ(D). For some

n ∈ N, let

H := [L2(D)]
n

and V := H1
Γ1

(D)× . . .×H1
Γn

(D),

where Γi ⊆ ∂D (with |Γi| > 0) denotes the Dirichlet boundary of the ith
component. Let V∗ and H∗ be the dual spaces of V and H, respectively, and
observe that

V ↪→ H ∼= H∗ ↪→ V∗,
where ↪→ denotes a continuous embedding. For completeness, we also introduce
the space

V̄ := [H1(D)]
n ←↩ V

without boundary conditions. Further, de�ne V(S) and H(S) as the restrictions
of functions in V and H, respectively, to a subdomain S ⊆ D, i.e.,

V(S) = {v|S : v ∈ V} and H(S) = {v|S : v ∈ H}.

In this chapter, we consider the general variational model problem of �nding
the solution u ∈ V of

a(u, v) = F(v) (2.1)

for all v ∈ V , where F ∈ V∗ is a bounded linear functional, and a : V × V → R
is a bilinear form which is bounded from above by

|a(v, w)| ≤ β ‖v‖V ‖w‖V (2.2)

for all v, w ∈ V and that ful�lls the inf-sup condition

0 < α := inf
v∈V

sup
w∈V

a(v, w)

‖v‖V ‖w‖V
= inf

w∈V
sup
v∈V

a(v, w)

‖v‖V ‖w‖V
. (2.3)

Here and in the following, zero is implicitly excluded in the in�ma and suprema.
With regard to the possible choices of the space V , we can think of (2.1) as the
variational problem corresponding to a general linear second-order PDE. Note
that we do not require symmetry of the bilinear form a. Under the above
assumptions, it follows that (2.1) has a unique solution u ∈ V which is bounded
by

‖u‖V ≤ α−1‖F‖V∗ , (2.4)

see, e.g., [Bab71] for the details.
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2.2 Finite-dimensional approximation

2.2 Finite-dimensional approximation

In this section, we are concerned with �nite-dimensional approximations of prob-
lem (2.1). To this end, let {TH}H>0 be a family of regular decompositions
(also referred to as meshes) of the domain D into d-rectangles as described
in [Cia78, Ch. 2 & 3]. That is, any (d− 1)-dimensional face of a d-rectangle (or
element) K ∈ TH is either a subset of the boundary ∂D or a face of another
element. In particular, we pose the assumption that the domain D is such that
a decomposition into elements as described above is possible. However, we re-
mark that this condition is not necessarily required since, e.g., curved elements
(see [CR72, Zla73]) or non-matching decompositions could be used. Further,
we assume quasi-uniformity of the family {TH}H>0 in the sense that there are
constants cqu, Cqu > 0 such that for any mesh TH with characteristic mesh
parameter H, all elements K ∈ TH satisfy

cquHK ≤ H ≤ CquHK ,

where HK is the diameter of K. The quasi-uniformity allows us to only use the
mesh parameter H > 0 in the following, instead of the speci�c diameters HK of
elements K ∈ TH .
Let now H > 0 be �xed and denote with VH ⊆ V the corresponding conform-

ing Q1 FE space, i.e.,

VH :=

{
v ∈ V : ∀K ∈ TH : v|K is a polynomial of coordinate

degree ≤ 1 in every component

}
.

Alternatively, we could as well consider decompositions of D into simplices.
In this case, VH denotes the P1 FE space of piecewise a�ne and continuous
functions. We note that the following construction works analogously if P1

�nite elements are considered instead of Q1 elements and restrict ourselves to
decompositions TH into d-rectangles and the corresponding spaces. Further, we
emphasize that in view of the inclusion VH ⊆ V we also pose the assumption
that the Dirichlet boundaries Γi, i ∈ {1, . . . , n}, are unions of faces of elements
in TH .

2.2.1 Classical �nite element method

A straightforward approach of discretizing problem (2.1) with the classical cG
FE method reads as follows: �nd uH ∈ VH that solves

a(uH , vH) = F(vH) (2.5)

for all vH ∈ VH . In this general setting, the well-posedness of (2.5) requires
a discrete inf-sup condition, similar to the one in (2.3), i.e.,

0 < αH := inf
vH∈VH

sup
wH∈VH

a(vH , wH)

‖vH‖V ‖wH‖V
. (2.6)
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2 The Classical LOD

Let us also assume that there exists a constant α0 > 0 with

α0 ≤ inf
H>0

αH . (2.7)

With these additional assumptions on the discrete spaces, we can show the fol-
lowing quasi-optimality result (cf. [XZ03, Thm. 2]), also known as Céa's Lemma.

Lemma 2.2.1 (Céa's Lemma). Suppose that the assumptions (2.2), (2.3), (2.6),
and (2.7) hold. Then the discrete solution uH of (2.5) is quasi-optimal in the
sense that

‖u− uH‖V ≤
β

α0

inf
vH∈VH

‖u− vH‖V ,

where u ∈ V is the solution of (2.1).

Proof. Let G : V → VH be the Galerkin projection de�ned, for any v ∈ V , as the
solution of

a(Gv, wH) = a(v, wH)

for all wH ∈ VH , which is well-posed with (2.6). Note that Gu = uH by the
Galerkin orthogonality

a(u− uH , wH) = F(wH)−F(wH) = 0

which holds for all wH ∈ VH . Since G is a projection, we obtain for any vH ∈ VH

‖u− uH‖V = ‖(id− G)u‖V = ‖(id− G)(u− vH)‖V
≤ ‖id− G‖L(V,V) ‖u− vH‖V = ‖G‖L(V,V) ‖u− vH‖V

(2.8)

employing that ‖id−G‖L(V,V) = ‖G‖L(V,V) (see, e.g., [Szy06]). Here, id denotes
the identity operator. By (2.6), (2.7), and (2.2), we get that

‖Gv‖V ≤ α−1
0 sup

wH∈VH

a(Gv, wH)

‖wH‖V
= α−1

0 sup
wH∈VH

a(v, wH)

‖wH‖V
≤ β

α0

‖v‖V . (2.9)

Combining (2.8) and (2.9), we obtain

‖u− uH‖V ≤
β

α0

‖u− vH‖V .

Taking the in�mum over all vH ∈ VH yields the assertion.

Céa's Lemma allows us to reduce the problem of writing down an error es-
timate for the cG solution to the problem of �nding any discrete function in
VH that is able to suitably approximate the function u. Thus, from classical
interpolation results (see, e.g., [BS08, Thm. 4.6.14]) we may obtain an error
estimate of order H if the solution u ful�lls additional regularity assumptions,
which typically requires additional regularity of the right-hand side F . These
estimates are optimal in cases where the bilinear form a does not include any
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2.2 Finite-dimensional approximation

multiscale behavior in the sense of, e.g., a dependence of a, and thus u, on
a �ne-scale parameter ε.
In the setting where the bilinear form a depends on such a parameter ε and

the function u has microscopic features on the scale ε, the standard FE space
VH is not able to provide a convenient discrete function that approximates the
solution u for ε < H satisfactorily. In terms of explicit error estimates, this
means that error estimates of the form

‖u− uH‖V ≤ Cε,F H
s (2.10)

for some s > 0 involve a multiplicative constant Cε,F that blows up when ε tends
to zero. This especially means that H needs to resolve the microscopic scale,
i.e., H . ε, in order to obtain a viable estimate. In practical computations, one
observes a stagnation of the error curve in the regime H & ε, and only in the
case H . ε the expected convergence rate is obtained; see also Figure 2.1 in
Section 2.5.2 for an illustration of this behavior. This observation is known as
pre-asymptotic e�ect and calls for a thorough treatment of the �ne-scale features
of the bilinear form a. In the following section, we present the construction of
a multiscale method that is able to achieve ε-independent error estimates. In
particular, the results are also valid if a characterization of the �ne scale in
terms of an explicit parameter ε is not available.

2.2.2 General construction by orthogonal decomposition

As already mentioned in the previous subsection, the classical cG solution
uH ∈ VH of (2.5) fails to produce an acceptable approximation of the solution
u ∈ V of (2.1) in the V-norm if the discretization parameter H does not resolve
the microscopic scale. While a similar statement is still true if the error is mea-
sured in the weaker H-norm, there actually exist functions in VH that are able
to satisfactorily approximate u with respect to the H-norm. One may think of
such a function as one that approximates u in a macroscopic sense, since the
e�ect of microscopic oscillations mainly appears in the stronger V-norm. The
�rst goal of the following construction is to �nd such a macroscopic representa-
tion in the space H, which is then further adjusted to also obtain optimal error
rates in the V-norm.
The construction is built upon a linear, local, and projective quasi-interpo-

lation operator IH , i.e., a linear projection IH : H → VH which ful�lls suitable
stability and approximation properties. To be more precise, we assume that for
v ∈ H, it holds that

‖IHv‖H ≤ CIH‖v‖H, (2.11)

and, for v ∈ V and any element K ∈ TH ,

‖H−1(v − IHv)‖H(K) + ‖IHv‖V(K) ≤ CIH‖v‖V(N(K)), (2.12)
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2 The Classical LOD

where N(S), for any S ⊆ D, denotes the element patch around S de�ned by

N(S) :=
⋃{

K ∈ TH : K ∩ S 6= ∅
}
.

For later use, we also de�ne for ` ∈ N0 the element patch of order ` (or `-
neighborhood) around S by

N`(S) := N(N`−1(S)), ` ≥ 1,

N0(S) :=
⋃{

K ∈ TH : S ∩ K ⊆ K
}
.

(2.13)

Due to the locality in (2.12), a global result of the form

‖H−1(v − IHv)‖H + ‖IHv‖V ≤ CIH‖v‖V (2.14)

for any v ∈ V directly follows from summation over all elements in TH . Note
that the constants in (2.11), (2.12), and (2.14) are not necessarily identical.
For simplicity, we use the constant CIH whenever one of the three estimates is
employed.
The projection property of the operator IH leads to a unique decomposition

of a function v ∈ V into its �nite element part IHv ∈ VH and its �ne-scale part
v − IHv, i.e., the space V can be decomposed as

V = VH ⊕W

with the so-called �ne-scale space W de�ned by

W := (id− IH)V = ker IH |V .

Regarding a suitable approximation of the solution u ∈ V of (2.1) in the space
VH with respect to the H-norm, the �nite element part IHu ∈ VH seems to be
a good candidate. Indeed, with (2.11) and the projection property, it directly
follows that IHu is quasi-optimal with respect to the H-norm. To be more
precise, as in Lemma 2.2.1, it holds for vH ∈ VH that

‖u− IHu‖H = ‖(id− IH)(u− vH)‖H ≤ CIH‖u− vH‖H

and thus
‖u− IHu‖H ≤ CIH inf

vH∈VH
‖u− vH‖H. (2.15)

Further, from (2.14) and (2.4) we get the error bound

‖u− IHu‖H ≤ CIHH ‖u‖V ≤ α−1CIHH ‖F‖V∗ . (2.16)

Although the existence of an appropriate macroscopic approximation in VH
becomes evident from the above inequality, it remains unclear how to obtain
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2.2 Finite-dimensional approximation

IHu if the solution u is not known a priori. To overcome this issue, we �rst note
that for any v ∈ V , it holds that

a(IHu, v) = a(u, v)− a((id− IH)u, v) = F(v)− a((id− IH)u, v).

This especially means that IHu is a solution of the continuous Petrov-Galerkin
(cPG) formulation which seeks ūH ∈ VH that solves

a(ūH , ṽH) = F(ṽH) (2.17)

for all ṽH ∈ ṼH , where the test space is de�ned by

ṼH := {v ∈ V : ∀w ∈ W : a(w, v) = 0}. (2.18)

This result is the basis of the original LOD and known from the Variational
Multiscale Method, see e.g. [HS07]. It even holds for more general bounded
linear projection operators IH . The ideal test space ṼH comes along with the
alternative decomposition

V = ṼH ⊕W
which satis�es the orthogonality property

a(W , ṼH) = 0. (2.19)

Note that, with the aforementioned assumptions, this construction does not
automatically provide the uniqueness of the cPG solution ūH in (2.17). In order
to obtain uniqueness, a condition of the form

dimVH = dim ṼH (2.20)

must hold. The next subsection is concerned with an explicit construction of
the test space ṼH which guarantees that condition (2.20) is ful�lled.

2.2.3 Characterization of the ideal test space

In order to show that the dimensions of VH and ṼH are equal, we derive a char-
acterization of the space ṼH in terms of VH . In this subsection, we explicitly
construct a bijective operator R∗ : VH → ṼH that quanti�es the connection be-
tween the two spaces. In the Petrov-Galerkin setting, such an operator is usually
referred to as the trial-to-test operator.
We start the construction by introducing a correction operator C∗ : V → W

de�ned for any v ∈ V by
a(w, C∗v) = a(w, v) (2.21)

for all w ∈ W . Note that the well-posedness of (2.21) does not follow automat-
ically and requires the inf-sup condition

αW ≤ inf
v∈W

sup
w∈W

a(v, w)

‖v‖V ‖w‖V
= inf

w∈W
sup
v∈W

a(v, w)

‖v‖V ‖w‖V
(2.22)

15



2 The Classical LOD

with some constant αW > 0.
The correction operator C∗ provides an alternative characterization of the

space ṼH since the direct consequence that

a(w, (id− C∗)v) = 0

for all w ∈ W is exactly the condition in the de�nition of the space ṼH in (2.18).
This yields

ṼH = (id− C∗)V = (id− C∗)(IHV + (id− IH)V) = (id− C∗)VH

since (id− IH)V =W and (id− C∗)W = {0}. Thus,

R∗ := (id− C∗)|VH : VH → ṼH (2.23)

de�nes a bijective operator from VH to ṼH with inverse IH |ṼH : ṼH → VH . Due
to this explicit characterization, we also use the alternative notation

R∗VH = ṼH

in the following. This also means that given a basis B of VH , we directly get
a basis of ṼH by B̃ = R∗B.
Finally, we remark that condition (2.20) and thus the well-posedness of the

cPG problem (2.17) follow from the inf-sup condition (2.22), which is required
for the above construction. That is, we ultimately need an additional inf-sup
condition to obtain existence and uniqueness of the �nite-dimensional problem
(2.17), as for the classical FE approach (2.5).

2.3 Fine-scale correction of the discrete trial

space

In this section, we extend the method of the previous section in order to obtain
a good approximation of the solution u of (2.1) not only with respect to the H-
norm but also with respect to the stronger V-norm. This is achieved by adding
a speci�c function from the �ne-scale space W to the solution ūH ∈ VH of the
cPG problem (2.17), which is discussed in the next subsection.

2.3.1 Ideal trial space

The starting point of the approach is the observation that, due to the orthogo-
nality property (2.19), it holds for any w ∈ W that

a(ūH + w, ṽH) = a(ūH , ṽH) = F(ṽH) (2.24)

for all ṽH ∈ R∗VH . As for the test space, the idea is thus to connect the
trial space VH to an appropriate subspace of V with the same dimension by
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2.3 Fine-scale correction of the discrete trial space

subtracting suitable �ne-scale corrections. The goal is to replace the trial space
VH in (2.17) by a new space without losing the well-posedness of the discrete
problem. This can be achieved exploiting the property (2.24).
Similarly to (2.21), we de�ne the correction operator C : V → W by

a(Cv, w) = a(v, w) (2.25)

for all w ∈ W and de�ne

R := (id− C)|VH : VH → RVH (2.26)

with inverse IH |RVH : RVH → VH . Note that the well-posedness of (2.25) follows
from the inf-sup condition (2.22). Further, observe that by (2.25) and (2.26) we
also have

RVH = {v ∈ V : ∀w ∈ W : a(v, w) = 0}. (2.27)

The introduction of the operator R now provides an equivalent formulation of
problem (2.17) in terms of the ideal trial space RVH and the test space R∗VH :
�nd ũH ∈ RVH such that

a(ũH , ṽH) = F(ṽH) (2.28)

for all ṽH ∈ R∗VH . We call (2.28) the ideal method and refer to ũH as the ideal
approximation. A direct consequence of (2.24) is that IH ũH = ūH = IHu. The
subsequent theorem shows that the solution ũH ∈ RVH provides quasi-optimal
error estimates in the V-norm and the H-norm under additional regularity as-
sumptions on the functional F . To be more precise, we assume that

F(v) = (f, v)H (2.29)

for some function f ∈ H, where (·, ·)H denotes the scalar product in H.

Theorem 2.3.1 (Error of the ideal method). Suppose that the inf-sup conditions
(2.3) and (2.22) hold, F ful�lls the regularity condition (2.29), and a is bounded
according to (2.2). Then the solution u ∈ V of (2.1) and the ideal approximation
ũH ∈ RVH of (2.28) satisfy the error estimates

‖u− ũH‖V ≤ α−1
W CIHH ‖f‖H (2.30)

and
‖u− ũH‖H ≤ α−1

W C
2
IHH

2 ‖f‖H (2.31)

independently of possible oscillations of coe�cients encoded in a on some mi-
croscopic scale ε.

Proof. By construction, we have that IH(u− ũH) = 0 and thus u− ũH ∈ W . We
can even show that the error between the two functions is exactly the correction
of u, i.e.,

u− ũH = u− (id− C)IHu = u− (id− C)u+ (id− C)(id− IH)u = Cu,
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using the fact that C de�nes a projection onto W . From the inf-sup condition
(2.22), we further get the existence of a function w ∈ W with ‖w‖V = 1 such
that

‖u− ũH‖V = ‖Cu‖V ≤ α−1
W a(Cu,w) = α−1

W a(u,w) = α−1
W (f, w)H

≤ α−1
W ‖f‖H ‖w‖H = α−1

W ‖f‖H ‖(id− IH)w‖H
≤ α−1

W CIHH ‖f‖H

with the constant CIH from (2.14). This proves (2.30). Again exploiting the
fact that Cu ∈ W , we directly get

‖u− ũH‖H = ‖Cu‖H = ‖(id− IH)Cu‖H ≤ CIHH ‖Cu‖V

and thus
‖u− ũH‖H ≤ α−1

W C
2
IHH

2 ‖f‖H.
This completes the proof.

Theorem 2.3.1 shows that the function ũH , which is obtained as the solution
of the �nite-dimensional problem (2.28), is a suitable approximation of the solu-
tion u of (2.1). However, (2.28) does not provide a practicable method because
the spaces RVH and R∗VH are constructed by solving the in�nite-dimensional
corrector problems (2.25) and (2.21). Before we address this issue in Section 2.4,
we �rst show in the subsequent subsection how problem (2.28) can be reinter-
preted as a variational problem in the full space V subject to a �nite number of
constraints.

2.3.2 Reformulation as saddle point problem

The following results provide a useful alternative characterization of the mul-
tiscale spaces RVH and R∗VH , which allows us to circumvent an explicit com-
putation of the �ne-scale space W . Moreover, the alternative representation
creates a basis for an extension of the method to a higher-order method as it is
introduced in Chapter 3.

Theorem 2.3.2 (Alternative characterization of R and R∗). Assume that the
inf-sup condition (2.22) holds and let R and R∗ be the operators de�ned in
(2.26) and (2.23), respectively. Then, for any vH ∈ VH , the function RvH ∈ V
solves the saddle point problem

a(RvH , w) + (λvH , IHw)H = 0,

(IHRvH , µH)H = (vH , µH)H
(2.32)

for all w ∈ V and all µH ∈ VH , where λvH ∈ VH is the associated Lagrange
multiplier. Likewise, R∗vH ∈ V solves

a(w,R∗vH) + (IHw, λ∗vH )H = 0,

(µH , IHR∗vH)H = (µH , vH)H
(2.33)
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2.3 Fine-scale correction of the discrete trial space

for all w ∈ V and all µH ∈ VH , where λ
∗
vH
∈ VH is the corresponding La-

grange multiplier. Further, the solutions (RvH , λvH ) of (2.32) and (R∗vH , λ∗vH )
of (2.33) are unique.

Proof. Let vH ∈ VH and de�ne ṽH = RvH = (id − C)vH ∈ RVH . Further, let
λvH ∈ VH be the solution of the auxiliary problem

(λvH , wH)H = −a(vH ,R∗wH) (2.34)

for all wH ∈ VH . Note that (2.34) has a unique solution by the Lax-Milgram
Theorem (see, e.g., [BS08, Thm. 2.7.7]) and the inverse inequality

‖wH‖V ≤ CinvH
−1 ‖wH‖H (2.35)

for wH ∈ VH (see, e.g., [Sch98,GHS05,Geo08]). Thus, using (2.21), (2.25), and
the auxiliary problem (2.34), we get

a(ṽH , w) = a(ṽH , IHw) + a(ṽH , (id− IH)w)

= a(ṽH , IHw) = a(vH ,R∗IHw)

= −(λvH , IHw)H

for any w ∈ V . Since

IH ṽH = IH(id− C)vH = vH ,

the pair (RvH , λvH ) solves (2.32). From classical saddle point theory and with
the inf-sup condition (2.22), it follows that the solution of (2.32) is also unique
(see, e.g., [BBF13, Thm. 4.2.3]). Introducing λ∗vH ∈ VH as the unique solution
of

(wH , λ
∗
vH

)H = −a(RwH , vH)

for all wH ∈ VH , it follows with the same arguments as above that (R∗vH , λ∗vH )
is the unique solution of (2.33).

As a direct consequence of Theorem 2.3.2, the spaces RVH and R∗VH may
be obtained without explicitly de�ning the �ne-scale space W . Besides, the
reformulation also provides an alternative characterization of the solution ũH of
(2.28). This result is stated as a corollary.

Corollary 2.3.3 (Equivalent saddle point formulation). Assume that (2.3),
(2.22), and (2.2) hold. Then the solution ũH ∈ V of (2.28) can be equivalently
described as the solution of the saddle point formulation

a(ũH , w) + (λ̃H , IHw)H = 0,

(IH ũH , µH)H = (IHu, µH)H
(2.36)

for all w ∈ V and all µH ∈ VH , where λ̃H ∈ VH is a uniquely de�ned Lagrange
multiplier and u ∈ V is the solution of (2.1).
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2 The Classical LOD

Remark 2.3.4. If the bilinear form a is symmetric, the saddle point problems
(2.32) and (2.33) are equivalent, i.e., it holds that R = R∗. Further, one may
reformulate these problems as a constrained energy minimization problem. That
is,

RvH := arg min
v∈V

a(v, v) subject to IHv = vH (2.37)

for any vH ∈ VH . The fact that energy-minimizing functions that ful�ll a �nite
number of constraints present suitable trial and test spaces in the context of
multiscale problems is also the basis of the technique described in [Owh15,
Owh17] based on gamblets.

2.4 Fully discrete approximation

As already mentioned in the previous sections, the ideal approximation ũH in
(2.28) is not a practicable discrete approximation in the sense that its com-
putation involves the solution of in�nite-dimensional global problems. In this
section, we address this issue and present a strategy to derive a fully discrete
multiscale approach. The procedure consists of three main steps that are treated
in the next subsections: the splitting, localization, and discretization of the cor-
rection operators C : V → W and C∗ : V → W introduced in (2.25) and (2.21),
respectively. Since the strategies for C and C∗ follow the same arguments, we
only consider the operator C.

2.4.1 Splitting of the correction operator

The �rst step towards a fully discrete method consists in splitting the restricted
correction operator C|VH into its contributions of a (local) basis. Since a splitting
in terms of conforming FE basis functions leads to a pollution of the error
estimate in terms of a negative power of H (see [MP14]), we follow the approach
of [HP13] and further decompose these basis functions into its discontinuous
element-wise contributions. This alternative strategy turns out to enable much
better decay estimates.
To this end, we de�ne for K ∈ TH the nodal basis of V(K) by {ΛK,j}mK

j=1,
where mK is the number of vertices of the element K. We remark that any
function vH ∈ VH can be written as

vH =
∑
K∈TH

mK∑
j=1

vH(xK,j) ΛK,j,

where {xK,j}mK
j=1 are the vertices of K ∈ TH . Based on the above characteriza-

tion, we de�ne forK ∈ TH and j ∈ {1, . . . ,mK} the jth basis corrector qK,j ∈ W
by

a(qK,j, w) = a(ΛK,j, w) (2.38)
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2.4 Fully discrete approximation

for all w ∈ W . At this point, we have to assume that a is even well-de�ned on
the restricted spaces V(S1) × V(S2) for subdomains S1, S2 ⊆ D to justify the
right-hand side of (2.38). In that context, we also suppose that the boundedness
of a in (2.2) holds in a more local sense, i.e., we suppose that for v ∈ V(S1) and
w ∈ V(S2)

|a(v|S1
, w|S2

)| ≤ βloc ‖v‖V(S) ‖w‖V(S) (2.39)

with S = S1∩S2. Although this additional assumption seems restrictive at �rst
glance, such estimates are natural in the context of variational formulations of
linear second-order PDEs, which are typically de�ned by integrals.
From (2.38) and the linearity of a with respect to the �rst argument, we now

get that

CvH =
∑
K∈TH

mK∑
j=1

vH(xK,j) qK,j (2.40)

for any vH ∈ VH . Note that the functions qK,j in general have global support,
even though the right-hand side of (2.38) is restricted to the element K. Thus,
the splitting of the operator C|VH in (2.40) does not lead to localized contri-
butions. However, it is very valuable for the localization procedure, which is
discussed in the subsequent subsections.

2.4.2 Decay of the basis correctors

This subsection is devoted to proving that the basis correctors qK,j, de�ned in
(2.38), decay exponentially fast away from the support of the associated element
K. This observation is the key property to deriving a fully discrete method and
allows us to localize the computation of all the correctors (see Section 2.4.3).
In the general setting of this chapter, we need to assume that the inf-sup

condition (2.22) holds in a more generalized form, i.e., we assume that there
exists a constant αW,dec > 0 such that

αW,dec ≤ inf
v∈Wc

`,K

sup
w∈Wc

`,K

a(v, w)

‖v‖V ‖w‖V
= inf

w∈Wc
`,K

sup
v∈Wc

`,K

a(v, w)

‖v‖V ‖w‖V
(2.41)

for any K ∈ TH and ` ∈ N, where

Wc
`,K :=

{
w ∈ W : supp(w) ⊆ D \ N`(K)

}
.

Note that here and in the following we implicitly assume that ` is small enough
such that the space Wc

`,K is non-empty. We emphasize, however, that the sub-
sequent results trivially hold if ` is such that Wc

`,K = ∅.

Theorem 2.4.1 (Decay of the basis correctors). Assume that the inf-sup con-
dition (2.41) and the local boundedness condition (2.39) are ful�lled. Further,
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2 The Classical LOD

let K ∈ TH , j ∈ {1, . . . ,mK}, ` ∈ N, and qK,j ∈ W be the solution of (2.38).
Then it holds that

‖qK,j‖V(D\N`(K)) . exp(−Cdec `) ‖qK,j‖V (2.42)

with a constant Cdec that depends on CIH , αW,dec, and βloc.

Proof. We abbreviate q := qK,j ∈ W and Λ := ΛK,j ∈ V(K). For �xed ` ∈ N,
we choose a cuto� function η ∈ W 1,∞(D) with the following properties:

0 ≤ η ≤ 1,

η = 0 in N`+2(K),

η = 1 in D \ N`+3(K),

‖∇η‖L∞(D) ≤ CηH
−1.

Then, by (2.41) there exists a function w ∈ Wc
`+1,K with ‖w‖V = 1 such that

‖q‖V(D\N`+4(K)) = ‖(id− IH)q‖V(D\N`+4(K)) ≤ ‖(id− IH)(ηq)‖V
≤ α−1

W,dec a((id− IH)(ηq), w)

= α−1
W,dec

(
a((id− IH)q, w)− a((id− IH)((1− η)q), w)

)
= α−1

W,dec

(
a(Λ, w)− a((id− IH)((1− η)q), w)

)
,

where we use the fact that IH increases the support of a function by at most
one layer of elements due to (2.12). Since supp(Λ) ∩ supp(w) = ∅ and

supp((id− IH)((1− η)q)) ∩ supp(w) = N`+4(K) \ N`+1(K),

we further get

‖q‖V(D\N`+4(K)) ≤ α−1
W,decβloc ‖(id− IH)((1− η)q)‖V(N`+4(K)\N`+1(K))

. α−1
W,decβlocCIH ‖(1− η)q‖V(N`+4(K)\N`(K))

. α−1
W,decβlocC

2
IHCη ‖q‖V(N`+4(K)\N`(K))

employing (2.12) and the product rule. From the above computations and with
the identity

N`+4(K) \ N`(K) =
(
D \ N`(K)

)
\
(
D \ N`+4(K)

)
,

we obtain

‖q‖2
V(D\N`+4(K)) ≤ C ‖q‖2

V(D\N`(K)) − C ‖q‖
2
V(D\N`+4(K))

and thus

‖q‖2
V(D\N`+4(K)) ≤

C

C + 1
‖q‖2

V(D\N`(K)) ≤
( C

C + 1

)b`/4c
‖q‖2

V .

With the estimate( C

C + 1

)b`/4c
. exp

(
− 1

4

∣∣ log
(

C
C+1

)∣∣ (`+ 4)
)

and a shift in `, this yields (2.42) with the constant Cdec := 1
8
| log( C

C+1
)|.

22



2.4 Fully discrete approximation

2.4.3 Localization of the correction operator

The exponential decay of the basis correctors allows us to localize (2.38) to
patches around an element K ∈ TH . For j ∈ {1, . . . ,mK} and ` ∈ N, we de�ne
the localized basis corrector q`K,j ∈ W`,K by

a(q`K,j, w) = a(ΛK,j, w) (2.43)

for all w ∈ W`,K , where the local �ne-scale space W`,K is given by

W`,K :=
{
w ∈ W : supp(w) ⊆ N`(K)

}
.

Within the general setting of this chapter, we need to assume well-posedness of
(2.43), i.e., we suppose that there exists a constant αW,loc > 0 such that

αW,loc ≤ inf
v∈W`,K

sup
w∈W`,K

a(v, w)

‖v‖V ‖w‖V
= inf

w∈W`,K

sup
v∈W`,K

a(v, w)

‖v‖V ‖w‖V
(2.44)

for any K ∈ TH and ` ∈ N. In this subsection, we prove that the localized
correction operator C` : VH →W , de�ned for any vH ∈ VH by

C`vH :=
∑
K∈TH

mK∑
j=1

vH(xK,j) q
`
K,j, (2.45)

only introduces a moderate error if the so-called localization (or oversampling)
parameter ` is chosen appropriately. As a �rst step, we quantify the error
introduced by replacing one basis corrector by its localized counterpart.

Lemma 2.4.2. Let K ∈ TH , j ∈ {1, . . . ,mK}, and ` ∈ N. Assume that the
inf-sup conditions (2.22), (2.41), and (2.44) as well as the local boundedness
condition (2.39) hold. Then the solutions qK,j ∈ W of (2.38) and q`K,j ∈ W`,K

of (2.43) satisfy

‖qK,j − q`K,j‖V . exp(−Cdec `) ‖qK,j‖V (2.46)

with the constant Cdec from Theorem 2.4.1.

Proof. We use the short-hand notation q := qK,j ∈ W , q` := q`K,j ∈ W`,K , and
Λ := ΛK,j ∈ V(K). As in the proof of Theorem 2.4.1, we choose a cuto� function
η ∈ W 1,∞(D) that ful�lls

0 ≤ η ≤ 1,

η = 0 in N`+1(K),

η = 1 in D \ N`+2(K),

‖∇η‖L∞(D) ≤ CηH
−1.
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2 The Classical LOD

By (2.44), we know that there exists a function w ∈ W`+3,K such that

‖q − q`+3‖V ≤ ‖(id− IH)(ηq)‖V + ‖(id− IH)((1− η)q)− q`+3‖V
. C2

IHCη ‖q‖V(D\N`(K)) + α−1
W,loc a((id− IH)((1− η)q)− q`+3, w)

. C2
IHCη ‖q‖V(D\N`(K)) + α−1

W,loc a((q − q`+3)− (id− IH)(ηq), w)

. C2
IHCη ‖q‖V(D\N`(K)) − α−1

W,loc a((id− IH)(ηq), w)

. C2
IHCη ‖q‖V(D\N`(K)) + α−1

W,locβC
2
IHCη ‖q‖V(D\N`(K))

. (1 + α−1
W,locβ)C2

IHCη exp(−Cdec `) ‖q‖V ,

where we employ Theorem 2.4.1 in the last step. This proves the assertion.

Remark 2.4.3. Although Theorem 2.4.1 and Lemma 2.4.2 only quantify the
exponential decay and the localization error, respectively, of the basis correc-
tors qK,j, the results hold analogously for any function vK ∈ V(K) and its
corresponding correction qK given by

qK :=

mK∑
j=1

vK(xK,j) qK,j.

That is, we actually have

‖qK‖V(D\N`(K)) . exp(−Cdec `) ‖qK‖V
. exp(−Cdec `)α

−1
W βloc ‖vK‖V(K)

(2.47)

and ∥∥∥ mK∑
j=1

vK(xK,j) (qK,j − q`K,j)
∥∥∥
V
. exp(−Cdec `) ‖qK‖V

. exp(−Cdec `)α
−1
W βloc ‖vK‖V(K)

(2.48)

using the upper bound on ‖qK‖V which can be shown with (2.22) and (2.39).

With the above localization results, we are prepared to prove the main theo-
rem of this subsection, which quanti�es the error between the restricted operator
C|VH and its localized version C`.

Theorem 2.4.4 (Localization error). Let ` ∈ N. Suppose that the inf-sup con-
ditions (2.22), (2.41), and (2.44) are satis�ed and that a ful�lls the boundedness
condition (2.39). Then, for any vH ∈ VH , the global localization error is bounded
by

‖(C − C`)vH‖V . `(d−1)/2 exp(−Cdec `) ‖vH‖V . (2.49)

Proof. Let vH ∈ VH . As before, we can write

vH =
∑
K∈TH

mK∑
j=1

vH(xK,j) ΛK,j.
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2.4 Fully discrete approximation

Further, we de�ne for any K ∈ TH a cuto� function ηK ∈ W 1,∞(D) which ful�lls

0 ≤ ηK ≤ 1,

ηK = 0 in N`+1(K),

ηK = 1 in D \ N`+2(K),

‖∇ηK‖L∞(D) ≤ CηH
−1.

Since (C − C`+3)vH ∈ W , there exists a function w ∈ W with ‖w‖V = 1 such
that

‖(C − C`+3)vH‖V ≤ α−1
W a((C − C`+3)vH , w)

= α−1
W

∑
K∈TH

a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j ), w

)
.

(2.50)

For any K ∈ TH , it holds that

a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j ), w

)
= a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j ), (id− IH)((1− ηK)w) + (id− IH)(ηKw)

)
= a
( mK∑
j=1

vH(xK,j) ΛK,j, (id− IH)(ηKw)
)

− a
( mK∑
j=1

vH(xK,j) q
`+3
K,j , (id− IH)(ηKw)

)
,

where we use (2.38), (2.43), and the fact that (id− IH)((1− ηK)w) ∈ W`+3,K .
Since supp((id− IH)(ηKw)) ∩K = ∅, we further get

a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j ), w

)
= −a

( mK∑
j=1

vH(xK,j) q
`+3
K,j , (id− IH)(ηKw)

)
= a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j )|

N`+3(K)\N`(K)
, (id− IH)(ηKw)

)
− a
( mK∑
j=1

vH(xK,j) qK,j|N`+3(K)\N`(K), (id− IH)(ηKw)
)

. βlocC
2
IHCη

∥∥∥ mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j )

∥∥∥
V
‖w‖V(N`+4(K)\N`(K))

+ βlocC
2
IHCη

∥∥∥ mK∑
j=1

vH(xK,j) qK,j

∥∥∥
V(N`+3(K)\N`(K))

‖w‖V(N`+4(K)\N`(K)).
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We now employ the estimates (2.47) and (2.48). Altogether, this yields

a
( mK∑
j=1

vH(xK,j) (qK,j − q`+3
K,j ), w

)
. exp(−Cdec `)

∥∥∥ mK∑
j=1

vH(xK,j) ΛK,j

∥∥∥
V(K)
‖w‖V(N`+4(K)\N`(K)).

Going back to the estimate (2.50) and using the discrete Cauchy-Schwarz in-
equality, we obtain

‖(C−C`+3)vH‖V

. exp(−Cdec `)
∑
K∈TH

(∥∥∥ mK∑
j=1

vH(xK,j) ΛK,j

∥∥∥
V(K)
‖w‖V(N`+4(K)\N`(K))

)

. exp(−Cdec `)

( ∑
K∈TH

‖vH |K‖
2
V(K)

)1/2( ∑
K∈TH

‖w‖2
V(N`+4(K)\N`(K))

)1/2

. `(d−1)/2 exp(−Cdec `) ‖vH‖V ‖w‖V .

With ‖w‖V = 1 and a shift in `, this proves the assertion.

Theorem 2.4.4 allows us to replace the operators R and R∗ by their localized
counterparts R` : VH → R`VH and R∗,` : VH → R∗,`VH de�ned by

R` := id− C` and R∗,` := id− C∗,`.

With the localized spaces R`VH and R∗,`VH and under the assumptions of The-
orem 2.4.4, we can formulate the classical LOD method that seeks ũ`H ∈ R`VH
that solves

a(ũ`H , ṽH) = F(ṽH) (2.51)

for all ṽH ∈ R∗,`VH . With Theorem 2.4.4, we directly get the following result.

Theorem 2.4.5 (Error of the classical LOD method). Let ` ∈ N. Suppose that
the inf-sup conditions (2.3), (2.22), (2.41), and (2.44) hold. Further, assume
that F ful�lls the regularity condition (2.29) and a the boundedness condition
(2.39). Then the solution u ∈ V of (2.1) and the solution ũ`H ∈ R`VH of (2.51)
satisfy the error estimate

‖u− ũ`H‖V . H ‖f‖H + `(d−1)/2 exp(−Cdec `) ‖f ||H. (2.52)

Moreover, if ` & | logH|, we get

‖u− ũ`H‖V . H ‖f‖H. (2.53)
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2.4 Fully discrete approximation

Proof. First, we remark that ũ`H ful�lls a quasi-optimality result in the space
R`VH similar to the one presented in Lemma 2.2.1, i.e.,

‖u− ũ`H‖V . inf
ṽH∈R`VH

‖u− ṽH‖V .

Thus, we obtain

‖u− ũ`H‖V . inf
ṽH∈R`VH

‖u− ṽH‖V . ‖u− (id− C`)IHu‖V

. ‖u− (id− C)IHu‖V + ‖(C` − C)IHu‖V

. H ‖f‖H + `(d−1)/2 exp(−Cdec `) ‖f‖H

using Theorem 2.3.1, Theorem 2.4.4, (2.14), (2.4), and (2.29). This proves
(2.52). The estimate (2.53) follows directly with the choice ` & | logH|.

Note that the LOD method in (2.51) is still not fully computable since the
operators C` and C∗,` are de�ned by the solutions of (2.43) which are in�nite-
dimensional problems. This issue is resolved in the following.

2.4.4 Discretization at the microscopic scale

In this subsection, we introduce an additional discretization at the microscopic
scale in order to obtain a computable method. There are essentially two possi-
bilities to approach this last step. The idea of the �rst one is to discretize the
localized basis correctors by approximating (2.43) in the discrete space Vh∩W`,K

based on a standard �nite element space Vh ⊆ V with suitable mesh parameter
h < H. This strategy is, for instance, used in Chapter 5 in the context of the
wave equation. On the other hand, the whole construction of this chapter can
also be done when replacing the in�nite-dimensional space V with the discrete
space Vh. That is, instead of computing IHu in (2.17), where u ∈ V is the solu-
tion of (2.1), we compute IHuh, where uh ∈ Vh is the classical cG FE solution
that solves

a(uh, vh) = F(vh) (2.54)

for all vh ∈ Vh. Note that if the conditions (2.6) and (2.7) hold, the problem
(2.54) is well-posed.
Replacing V by Vh (and also R by Rh, R` by R`

h, etc.) has the direct conse-
quence that the �ne-scale space Wh in the decomposition

Vh = RhVH ⊕Wh

is also �nite-dimensional such that the correctors in (2.43) become computable.
After localization as described above, the fully discrete LOD method reads: �nd
ũ`H,h ∈ R`

hVH that solves

a(ũ`H,h, ṽH,h) = F(ṽH,h) (2.55)
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for all ṽH,h ∈ R∗,`h VH .
The bases of the spaces R`

hVH and R∗,`h VH are obtained by solving quasi-local
corrector problems in the form of discrete versions of (2.43) on the scale h < H.
To avoid an explicit characterization, these problems are usually computed using
the saddle point structure presented in Section 2.3.2. We remark that the proofs
of Theorem 2.4.1, Lemma 2.4.2, and Theorem 2.4.4 need to be slightly adjusted
following the proofs presented in [GP15], but the overall results remain valid in
the fully discrete setting if the corresponding inf-sup conditions are satis�ed.
Before we quantify the total error of the fully discrete LOD approach, we need

to estimate the error between the �ne-scale cG solution uh ∈ Vh of (2.54) and
the solution u ∈ V of (2.1). Similarly as in (2.10), we assume that this error
can be bounded by

‖u− uh‖V ≤ Cε h ‖f‖H (2.56)

with a constant Cε that depends on the scale of microscopic oscillations. There-
fore, choosing h appropriately allows us to retain the convergence rate of order
H. The �nal result is given in the following theorem.

Theorem 2.4.6 (Error of the fully discrete LOD method). Let ` & | logH|
and suppose that the assumptions of Theorem 2.4.5 hold in the case where V is
replaced by Vh. Further assume that (2.56) is ful�lled and h is small enough to
resolve the microscopic scale in the sense that

Cε h . H. (2.57)

Then the fully discrete LOD approximation ũ`H,h ∈ R`
hVH in (2.55) and the

solution u ∈ V of (2.1) satisfy the error estimate

‖u− ũ`H,h‖V . H ‖f‖H.

Proof. If ` & | logH|, we get from Theorem 2.4.5 in the case where Vh replaces
V that

‖uh − ũ`H,h‖V . H ‖f‖H,

where uh ∈ Vh is the solution of (2.54). With the classical FE estimate (2.56)
and the resolution condition (2.57), we further get that

‖u− ũ`H,h‖ ≤ ‖u− uh‖V + ‖uh − ũ`H,h‖V . H ‖f‖H,

which completes the proof.

We emphasize that the purpose of the resolution condition (2.57) in Theo-
rem 2.4.6 on the �ne mesh size h is mainly to retain the convergence rate of order
H. Alternatively, one could take a step back from the idea of rigorously tracing
convergence rates. That is, one may prescribe some �xed tolerance and balance
H and h with the aim to obtain an overall error below the given threshold.
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2.5 Numerical experiments

2.5 Numerical experiments

In this section, we present some illustrative examples that show the practical
performance of the LOD method. We remark that although the aim of the
previous sections was to quantify the full error between the exact solution u ∈ V
of (2.1) and the fully discrete LOD approximation ũ`H,h ∈ R`

hVH of (2.55) (see
Theorem 2.4.6), in practical computations generally only the error between the
solution uh ∈ Vh of (2.54) and ũ`H,h ∈ R`

hVH can be measured. Therefore, it
is always implicitly assumed that uh is a su�ciently good approximation of u,
e.g., in the sense of a given tolerance, as discussed in Section 2.4.4.

For our numerical experiments, we consider the following model problem: let
D = (0, 1)2 and seek u ∈ H1

0 (D) that solves

ˆ
D

Aε∇u · ∇v dx =

ˆ
D

fv dx (2.58)

for all v ∈ H1
0 (D) and given right-hand side f , which is the variational problem

corresponding to an elliptic PDE with scalar di�usion coe�cient Aε that is
bounded from above and below by positive constants and varies on the scale ε.
We study this problem in more detail in Chapter 3. However, we remark that
(2.58) is well-posed and, due to the coercivity of the involved bilinear form, the
inf-sup conditions in the above derivations are all satis�ed automatically.
As mentioned above, for the error estimates below we compare the coarse-

scale solutions to a �ne FE solution that resolves the �ne-scale oscillations of
Aε. In our experiments, this reference solution is computed on a mesh with
mesh parameter h = 2−9. Further, the errors are computed in the energy norm
‖ · ‖a := ‖A1/2∇ · ‖L2(D), which is equivalent to the classical norm on H1

0 (D).
Before we present numerical examples, we �rst introduce an explicit quasi-

interpolation operator with the properties quanti�ed in Section 2.2.2.

2.5.1 Choice of the quasi-interpolation operator

In this subsection, we brie�y present the quasi-interpolation operator that is
used for all the experiments in this thesis. We remark that this choice is not
unique and any other operator that ful�lls the required properties (2.11) and
(2.12) could be considered as well.
We set IH := πH ◦Π1

H , where Π1
H is the piecewise L2-projection onto Q1(TH),

the space of possibly discontinuous functions which are polynomials of coor-
dinate degree at most one in every component when restricted to an element.
Moreover, πH denotes the averaging operator that maps Q1(TH) to VH by as-
signing to each free vertex and each component the arithmetic mean of the
corresponding function values of the neighboring elements. Rigorously, for any
vH ∈ Q1(TH) and i ∈ {1, . . . , n}, the ith component of πH(vH) is characterized
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Figure 2.1: Illustration of the relative energy errors of the FEM (left) and the LOD

for ` = 2 (right) with respect to the mesh size H and for multiple checker-

board coe�cients on the scale ε.

by (
πH(vH)

)
i
(z) :=

∑
K∈TH :
z∈K

(
vH |K

)
i
(z) · 1

card{T ∈ TH : z ∈ T}

for all vertices z of TH with z /∈ Γi.
We emphasize that this choice of IH satis�es the stability property (2.11)

as well as (2.12) and refer to, e.g., [Osw93, Bre94, EG17] for a proof of these
conditions.

2.5.2 Comparison between �nite elements and LOD

In a �rst experiment, we study the behavior of classical �nite elements in the
presence of oscillating coe�cients. For a given scale ε, let Aε : (0, 1)2 → {1, 2}
be the periodic and piecewise constant checkerboard coe�cient that oscillates
between 1 and 2 on the mesh Tε. Besides, we choose the right-hand side
f(x) = 1{x1> 0.5}, where 1S denotes the indicator function for the set S ⊆ D.
For di�erent oscillation scales ε, the relative energy errors of the FE method

are depicted in Figure 2.1 (left). One observes the expected �rst-order conver-
gence rate in terms of the mesh parameter H if the scale ε is resolved. However,
in the regime H & ε the FE solution is not able to provide an appropriate ap-
proximation of the exact solution and the error curve stagnates although the
mesh size is decreased. This is the pre-asymptotic e�ect mentioned in Sec-
tion 2.2.1. Our experiment indicates that a resolution condition of the form
H . ε indeed should hold to observe the expected convergence rate. The ex-
periment also shows that such a bound is sharp.
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2.5 Numerical experiments

Figure 2.2: Multiscale basis functions (H = 2−4) in logarithmic scale: ideal basis

function (left) and localized basis function for ` = 2 (right).

For the same model, the energy errors of the LOD approximations with �xed
localization parameter ` = 2 are given in Figure 2.1 (right). Due to the �ne-
scale corrections, the LOD does not su�er from a pre-asymptotic e�ect and
shows the expected convergence behavior which is actually slightly better than
�rst-order. The experiment also shows that a condition of the form ` & | logH|
might even be too pessimistic in certain regimes where the coe�cient ful�lls
additional properties such as periodicity.
We emphasize that the comparison between the FE method and the LOD in

Figure 2.1 is only in terms of the convergence behavior. Of course, in terms of
computation time a FE method is always faster than a multiscale construction
as described above. The main goal of the LOD, however, is to avoid global
computations on a �ne scale, which could as well be seen as a distribution of
complexity. That is, since the computations of the correctors are independent
of each other, they can be parallelized and the parallelization procedure is only
limited by the speci�cations of the available computer system. Nevertheless,
the method shows its full potential if multiple right-hand sides to the same
di�usion coe�cient are given or if the PDE at hand is time-dependent, see also
Chapters 5 and 6.

2.5.3 Convergence studies in an unstructured setting

As a second example, we consider (2.58) with right-hand side

f(x) = (1 + sin(π x1))(1 + 2 cos(π
3
x2))

and a scalar heterogeneous coe�cient that is piecewise constant on the mesh
Tε with mesh size ε = 2−7. In each element K ∈ Tε, the value of the co-
e�cient is obtained from a uniform distribution with values in [0.5, 10], i.e.,
A|K ∼ U(0.5, 10). Further, we choose a nodal basis function Λ1 ∈ VH , H = 2−4,
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Figure 2.3: Illustration of the localization error |(Ch − C`h)Λ1| in logarithmic scale

(left) and localization error in the relative energy norm for di�erent basis

functions (right) on the scale H = 2−4.

and compute its multiscale counterpart Λ̃1 = RhΛ1 corresponding to the vertex
z1 = (0.4375, 0.5). The absolute value of Λ̃1 in logarithmic scale is depicted in
Figure 2.2 (left) and illustrates the decay property of such functions; cf. also The-
orem 2.4.1. Its localized counterpart R`

hΛ1, ` = 2, is shown in Figure 2.2 (right)
and the error between these two basis functions is depicted in Figure 2.3 (left) in
logarithmic scale. These illustrations show that the localized function captures
the essential characteristics of the global function provided that ` is chosen ap-
propriately. This can also be observed in Figure 2.3 (right), where we present
the localization errors ‖(Ch − C`h)Λi‖a/‖ChΛi‖a for di�erent values of ` and the
nodal basis functions Λi ∈ VH associated with the nodes zi, i ∈ {1, . . . , 4}, given
by

z1 = (0.4375, 0.5), z2 = (0.5625, 0.5), z3 = (0.0625, 0.5625), z4 = (0.125, 0.5).

As a reference, we include the behavior of the function exp(−2`) which con�rms
the theoretical �ndings of an exponential decay in ` as quanti�ed in Theo-
rem 2.4.4.
Finally, the total errors of LOD approximations in the relative energy norm

on di�erent discretization scales and for di�erent localization parameters ` are
depicted in Figure 2.4 (left). One can observe a convergence rate that is even
slightly better than the expected �rst-order rate provided that ` is chosen large
enough as predicted by the theory. If ` is not increased for smaller values of
H, the error curve stagnates since the e�ect of the localization dominates the
overall error. This is in line with the assertion of Theorem 2.4.5. Additionally, we
also provide L2-errors of the �nite element parts of LOD solutions for di�erent
H and ` in Figure 2.4 (right). Already for small `, we observe at least �rst-
order convergence which can be expected from the above theory; see, e.g., the

32



2.5 Numerical experiments

10−2 10−1
10−4

10−3

10−2

10−1

mesh size H

re
l
er
r
in
‖
·‖

a

` = 1
` = 2
` = 3
` = 4
order 1
order 2

10−2 10−1

10−3

10−2

10−1

mesh size H

re
l
er
r
in
‖
·‖

L
2
(D

)

Figure 2.4: Errors of the LOD approximations for di�erent localization parameters

` in the relative energy norm (left) and relative L2-errors of their �nite

element parts (right) with respect to the mesh size H.

ideal error estimate (2.16). The error curve even partially indicates second-
order convergence in the pre-asymptotic regime and if the scale ε is resolved.
This behavior is for instance discussed in [GP17]; see also Section 4.1.3 and
Theorem 4.1.1.

Overall, the numerical experiments verify the theoretical results presented in
this chapter when applied to the elliptic setting. In particular, the examples
show that the localization procedure described above is justi�ed and the con-
sidered localized multiscale method is �rst-order accurate already for moderate
choices of the localization parameter `. Moreover, the approach does not suf-
fer from pre-asymptotic e�ects in the presence of microscopic coe�cients and
provides reasonable approximations beyond structural assumptions such as pe-
riodicity.
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3 A Higher-Order Extension of the

Localized Orthogonal

Decomposition Method

In the previous chapter, we have presented an approach based on a �rst-order FE
space that constructs a multiscale space that is able to cope with heterogeneous
and possibly microscopic properties of, e.g., an underlying material coe�cient.
In general, one could generalize the idea and consider higher-order conforming
discrete spaces as used in the context of hp methods; we refer to, e.g., [BG96,
Sch98] for further details on hp �nite elements. Although there exist quasi-
interpolation operators for such spaces that ful�ll properties similar to (2.11)
and (2.12) without restrictive regularity assumptions [Mel05], a construction as
in Chapter 2 does not provide higher-order convergence rates with respect to
H for general non-smooth coe�cients. Therefore, the derivation of a higher-
order multiscale method calls for an appropriate adjustment of the construction
presented in Chapter 2.
In this chapter, we consider the use of discontinuous FE spaces for a higher-

order multiscale construction. This idea traces back to [EGMP13] and [HP13].
In [HP13], local corrections of element-wise discontinuous functions were consid-
ered as described in Section 2.4.1. It turned out that a splitting of conforming
FE functions into element-wise discontinuous contributions has a favorable e�ect
on the localization procedure in connection with the classical (conforming) LOD
as presented in Chapter 2. Then again, a truly discontinuous approach was used
in [EGMP13] to construct a �rst-order discontinuous Galerkin (dG) multiscale
method for an elliptic model problem. The approach is based on the decomposi-
tion of a �ne discontinuous FE space into a coarse discontinuous multiscale FE
space and the remaining (discontinuous) �ne-scale space which are orthogonal
with respect to the mesh-dependent bilinear form that arises in connection with
a symmetric interior penalty approach (see, e.g., [DD76,Arn82,HSW07]).
Here, we base the method on an orthogonal decomposition of the in�nite-

dimensional space V , as in Chapter 2, and build the higher-order ansatz on the
saddle point formulation described in Section 2.3.2, which allows for a general-
ization using discontinuous spaces. This approach is, for instance, also employed
in connection with gamblets [Owh15,Owh17], usually with spaces consisting of
piecewise constant functions. The aim of this chapter is to extend these ideas
to construct a higher-order variant of the LOD based on piecewise polynomials
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which allows for a thorough treatment of not only the convergence behavior
with respect to the mesh size H but also the polynomial degree p.
Since the abstract theory of Chapter 2 is not directly applicable to the higher-

order setting of this chapter, as discussed above, and the extension of the method
requires more re�ned arguments to successfully trace the involved parameters,
we restrict ourselves to an elliptic setting as introduced in the following section.
We emphasize that the overall construction also works for a more general set-
ting but the results presented below do not immediately follow and need to be
adjusted to the respective framework.

3.1 Elliptic model problem

In this section, we present the model problem used throughout this chapter. We
consider the variational formulation corresponding to the prototypical second-
order di�usion problem

− div(A∇u) = f in D,

u = 0 on ∂D,
(3.1)

where D ⊆ Rd, d ∈ {1, 2, 3}, is a bounded, convex, and polytopal Lipschitz
domain and f ∈ L2(D). We assume the coe�cient A to encode microscopic
features of the medium on some scale ε and to be admissible, i.e., it belongs to
the set

A :=

{
A ∈ L∞(D; Rd×dsym) : ∃ 0 < α ≤ β <∞ :

∀ξ ∈ Rd, a.a. x ∈ D : α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2

}
(3.2)

with minimal assumptions. For a given coe�cient A ∈ A, we write α for the
largest possible choice of α in the de�nition (3.2) and β for the L∞-norm of A,
i.e., β = ‖A‖L∞(D;Rd×d

sym ), although this choice of β might not be the minimal con-

stant with respect to the estimate in (3.2). We emphasize that also positive and
bounded scalar coe�cients are admissible, since these coe�cients may simply
be multiplied by the identity matrix.
With regard to the spaces in Chapter 2, we have V = H1

0 (D) as well as
H = L2(D). To derive the variational formulation of (3.1), we multiply its �rst
line with a test function v ∈ H1

0 (D), integrate by parts, and obtain

ˆ
D

A∇u · ∇v dx =

ˆ
D

fv dx (3.3)

using the boundary condition of u. The left-hand side of (3.3) motivates the
de�nition of the symmetric bilinear form a : H1

0 (D)×H1
0 (D)→ R,

a(v, w) :=

ˆ
D

A∇v · ∇w dx (3.4)
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for any v, w ∈ H1
0 (D). As in Chapter 2, we deduce from the Friedrichs inequality

that the H1-seminorm | · |H1(D) = ‖∇·‖L2(D) is actually a norm on H1
0 (D) which

is equivalent to the standard H1-norm. Using this and the fact that A ∈ A,
we directly get boundedness and coercivity of a, i.e., for any v, w ∈ H1

0 (D), it
holds that

a(v, w) ≤ β ‖∇v‖L2(D) ‖∇w‖L2(D), (3.5)

making use of the Hölder inequality, and

a(v, v) ≥ α ‖∇v‖2
L2(D). (3.6)

Note that from the de�nition of a in terms of an integral, we directly get that
the bilinear form a ful�lls the local boundedness condition (2.39) that had to
be explicitly assumed in Chapter 2.
With the bounds (3.5) and (3.6), we get from Chapter 2 or directly with the

Lax-Milgram Theorem that there exists a unique solution u ∈ H1
0 (D) that solves

a(u, v) = (f, v)L2(D) (3.7)

for all v ∈ H1
0 (D). Further, it holds that

‖∇u‖L2(D) ≤ α−1 ‖f‖L2(D), (3.8)

see also (2.4).

3.2 Construction of higher-order multiscale

spaces

Inspired by the �ndings presented in Chapter 2, the multiscale approach of this
chapter, which aims at �nding a discrete approximation of u in (3.7), is also
based on the idea of decomposing the space H1

0 (D) into a coarse FE-type space
VH on some scale H and an in�nite-dimensional �ne-scale space W . While this
decomposition was chosen in a conforming fashion in Chapter 2, i.e.,

VH ⊆ H1
0 (D) and W ⊆ H1

0 (D),

the construction of our higher-order variant is explicitly based on non-conform-
ing spaces. However, the multiscale space ṼH constructed from VH andW should
again be a conforming space such that the �nal multiscale decomposition

H1
0 (D) = ṼH ⊕ (W ∩H1

0 (D))

consists of two conforming spaces in contrast to the decomposition

H1
0 (D) ⊆ VH ⊕W
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3 A Higher-Order Extension of the LOD

with two non-conforming spaces. The main problem with this generalization to
non-conforming spaces is the fact that many of the arguments used in Chapter 2
explicitly rely on the fact that VH andW are subspaces of H1

0 (D). Nevertheless,
the saddle point formulation in Section 2.3.2 presents an ideal basis for the
non-conforming construction. Before we get into the details, we introduce the
discrete framework of this chapter.

3.2.1 Discontinuous discrete spaces

Let, as in Section 2.2, {TH}H>0 be a family of regular decompositions of the
domain D into quasi-uniform d-rectangles on the scale H and denote with V p

H

the space of piecewise polynomial functions with prescribed maximal coordinate
degree, i.e.,

V p
H :=

{
v ∈ L2(D) : ∀K ∈ TH : v|K is a polynomial

of coordinate degree ≤ p

}
.

Note that we explicitly indicate the dependence on the polynomial degree p ∈ N
because in this chapter the convergence not only with respect to the mesh pa-
rameter H is investigated but also with respect to the polynomial degree. For
any S ⊆ D, we further write V p

H(S) for the restriction of V p
H to the subdomain

S. In particular, for any K ∈ TH , the restricted space V p
H(K) is exactly the

space of polynomials up to degree p in each coordinate direction on the element
K. For later use, we also de�ne for k ∈ N the broken Sobolev space Hk(TH) by

Hk(TH) := {v ∈ L2(D) : ∀K ∈ TH : v|K ∈ Hk(K)}.

with the seminorm
| · |2Hk(TH) :=

∑
K∈TH

| · |2Hk(K),

where | · |Hk(S) := ‖∇k · ‖L2(S) denotes the H
k-seminorm on S ⊆ D.

As before, the next step of the construction consists in de�ning a projection
operator onto the space V p

H that ful�lls local stability and approximation prop-
erties in the sense of (2.11) and (2.12). The non-conforming nature of the space
V p
H , however, allows us to use a truly local projection. Here, we choose the
L2-projection Πp

H : L2(D)→ V p
H de�ned for any v ∈ L2(D) by(

Πp
Hv, wH

)
L2(D)

=
(
v, wH

)
L2(D)

(3.9)

for all wH ∈ V p
H . The above-mentioned locality of Πp

H comes from the element-
wise de�nition of the space V p

H and the possible discontinuities across element
boundaries. That is, the de�nition of Πp

H in (3.9) is equivalent to the element-
wise characterization (

(Πp
Hv)|K , q

)
L2(K)

=
(
v, q
)
L2(K)

(3.10)
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3.2 Construction of higher-order multiscale spaces

for all q ∈ V p
H(K) and K ∈ TH . For the sake of readability, in the following we

abbreviate Π := Πp
H if p and H are explicitly given and there is no possibility

of confusion.
For any K ∈ TH , the L2-stability of Π follows directly from equation (3.10)

with the choice q = (Πv)|K and reads

‖Πv‖L2(K) ≤ ‖v‖L2(K) (3.11)

for all v ∈ L2(K). Further, it holds that

‖(id− Π)v‖L2(K) ≤ CΠ
H

p
‖∇v‖L2(K) (3.12)

for all v ∈ H1(K); see, e.g., [Sch98,HSS02,Geo03]. If v ∈ Hk(K) for k ∈ N and
k ≤ p+ 1, we even have

‖(id− Π)v‖L2(K) ≤ CΠ Φ(p, k)Hk |v|Hk(K) (3.13)

with a constant CΠ that does not depend on H or p and

Φ(p, k) :=

(
(p+ 1− k)!

(p+ 1 + k)!

)1/2

. (3.14)

We emphasize that due to the true locality of the inequalities (3.11) and (3.12),
the results immediately generalize to unions of elements and, in particular, to
a global result on the domain D in the sense of an element-wise gradient on the
right-hand side. Based on the projection Π, we de�ne, as before, the �ne-scale
space W as the kernel of Π with respect to the space H1

0 (D), i.e.,

W := (id− Π)H1
0 (D) = ker Π|H1

0 (D).

At this point, we also introduce the inverse inequality for polynomials which
states that

‖∇q‖L2(K) ≤ CinvH
−1p2 ‖q‖L2(K) (3.15)

for K ∈ TH and for all polynomials q ∈ V p
H(K); see, e.g., [Sch98,GHS05,Geo08].

As above, this result also holds globally, i.e.,

|vH |H1(TH) ≤ CinvH
−1p2 ‖vH‖L2(D)

for all vH ∈ V p
H . We emphasize that Π: L2(D) → V p

H is obviously surjective
as an operator from L2(D) to the non-conforming space V p

H . Next, we show
that the projection operator Π is also surjective when restricted to functions in
H1

0 (D). To prove this assertion, we need the following lemma.

Lemma 3.2.1 (Local inf-sup condition). Let K ∈ TH . Then the inf-sup condi-
tion

inf
q∈V p

H(K)

sup
v∈H1

0 (K)

(q, v)L2(K)

‖q‖L2(K) ‖∇v‖L2(K)

≥ γ(H, p) > 0 (3.16)

holds with γ(H, p) ∼ Hp−2.
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Proof. Let κ ⊆ K be such that the edges, faces, etc. of κ are parallel to the
ones of K. According to [Geo08, Lem. 3.7], there exists a choice of κ such that
dist(κ, ∂K) = Cdist Hp

−2 and

‖q‖2
L2(κ) ≥

1

4
‖q‖2

L2(K) (3.17)

for all q ∈ V p
H(K), where dist(·, ·) denotes the Hausdor� distance. Now, let

ρ ∈ W 1,∞(K) ∩H1
0 (K) be a bubble function with

0 ≤ ρ ≤ 1,

ρ ≡ 1 in κ,

‖∇ρ‖L∞(K) ≤ CρH
−1p2,

where Cρ depends on Cdist. Using (3.17) and

‖∇(ρq)‖L2(K) ≤ ‖∇ρ‖L∞(K) ‖q‖L2(K) + ‖ρ‖L∞(K) ‖∇q‖L2(K)

≤ H−1p2(Cρ + Cinv) ‖q‖L2(K),
(3.18)

we get for any q ∈ V p
H(K) that

sup
v∈H1

0 (K)

(q, v)L2(K)

‖q‖L2(K) ‖∇v‖L2(K)

≥
(q, ρq)L2(K)

‖q‖L2(K) ‖∇(ρq)‖L2(K)

≥ 1

4

‖q‖2
L2(K)

‖q‖L2(K) ‖∇(ρq)‖L2(K)

=
H

4p2 (Cρ + Cinv)
=: γ(H, p) > 0.

Taking the in�mum over q ∈ V p
H(K), we obtain the assertion.

Theorem 3.2.2 (Surjectivity). The restricted operator Π|H1
0 (D) is surjective,

i.e., for any wH ∈ V p
H , there exists a function w ∈ H1

0 (D) such that Πw = wH .
Further, among all possible candidates exists a choice of w such that

‖∇w‖L2(D) .
p2

H
‖wH‖L2(D). (3.19)

Proof. Let wH ∈ V p
H . We de�ne w ∈ H1

0 (D) as the solution of

a(w, v) + (λwH
, v)L2(D) = 0,

(w, µH)L2(D) = (wH , µH)L2(D)

(3.20)

for all v ∈ H1
0 (D) and all µH ∈ V p

H . From classical saddle point theory (see,
e.g., [BBF13, Cor. 4.2.1]), we know that (3.20) has a unique solution if the
inf-sup condition

inf
vH∈V p

H

sup
v∈H1

0 (D)

(vH , v)L2(D)

‖vH‖L2(D) ‖∇v‖L2(D)

≥ γ̃(H, p) > 0 (3.21)
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3.2 Construction of higher-order multiscale spaces

holds and a is coercive. To show the inf-sup condition (3.21), let vH ∈ V p
H .

From the construction in the proof of Lemma 3.2.1, we get for any K ∈ TH the
existence of a function vK ∈ H1

0 (K) which ful�lls

(vH , vK)L2(K) & ‖vH‖2
L2(K) (3.22)

and similarly to (3.18) also

‖∇vK‖L2(K) . H−1p2 ‖vH‖L2(K). (3.23)

Using these local contributions, the inclusion⋃
K∈TH

H1
0 (K) ⊆ H1

0 (D),

and the estimates (3.22) and (3.23), we compute

sup
v∈H1

0 (D)

(vH , v)L2(D)

‖vH‖L2(D) ‖∇v‖L2(D)

≥
∑

K∈TH (vH , vK)L2(K)

‖vH‖L2(D)

(∑
K∈TH ‖∇vK‖

2
L2(K)

)1/2

≥ C Hp−2

∑
K∈TH ‖vH‖

2
L2(K)

‖vH‖L2(D)

(∑
K∈TH ‖vH‖

2
L2(K)

)1/2
= C Hp−2 > 0.

That is, the inf-sup condition (3.21) holds with γ̃(H, p) ∼ Hp−2. Thus, (3.20)
is well-posed and the stability estimates

‖λwH
‖L2(D) ≤

β

γ̃(H, p)2
‖wH‖L2(D)

and

‖∇w‖L2(D) ≤
2β1/2

α1/2γ̃(H, p)
‖wH‖L2(D)

hold (cf. [BBF13, Cor. 4.2.1]). Finally, we remark that the equality Πw = wH
follows by construction.

The construction in the proof of Theorem 3.2.2 is based on local subspaces
of H1

0 (D) and, thus, allows us to even �nd a conforming preimage w ∈ H1
0 (D)

under Π of a function wH ∈ V p
H which is supported only in the elements where

wH is non-zero. This straightforward consequence is given in the following
corollary.

Corollary 3.2.3 (Local bubble function). Let {Kj}nR
j=1 ⊆ TH be a set of ele-

ments and wH ∈ V p
H such that

wH |D\R = 0, where R =

nR⋃
j=1

Kj.

Then there exists a function w ∈ H1
0 (R) with w|D\R = 0 such that Πw = wH

and

‖∇w‖L2(R) .
p2

H
‖wH‖L2(R). (3.24)
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3 A Higher-Order Extension of the LOD

3.2.2 Ideal trial and test space

In the spirit of Chapter 2, we can now construct an operator R : V p
H → H1

0 (D)
that assigns to each vH ∈ V p

H a continuous function whose L2-projection is ex-
actly vH . From Theorem 3.2.2 or Corollary 3.2.3, we know that such functions
exist but, as before, we particularly want the space RV p

H to have improved
approximation properties compared to a classical FE space for which error es-
timates typically depend on the scale of microscopic oscillations.
To this end, we start our construction by adopting the de�nition of R pre-

sented in Section 2.3.2. We remark that in the setting of this chapter, it holds
that R∗ = R since a is symmetric. Thus, we do not distinguish between the
two operators in the following. We de�ne R : V p

H → H1
0 (D) for any vH ∈ V p

H as
the solution of the saddle point problem

a(RvH , v) + (λvH , v)L2(D) = 0,

(RvH , µH)L2(D) = (vH , µH)L2(D)

(3.25)

for all v ∈ H1
0 (D) and all µH ∈ V p

H , where λvH ∈ V
p
H is the associated Lagrange

multiplier. From the construction in the proof of Theorem 3.2.2, we know that
there exists a unique solution (RvH , λvH ) ∈ H1

0 (D)× V p
H of (3.25) and that

‖∇RvH‖L2(D) .
p2

H
‖vH‖L2(D) (3.26)

for any vH ∈ V p
H . Note that due to the symmetry of a, the operator R is

equivalently de�ned by

RvH := arg min
v∈H1

0 (D)

a(v, v) subject to Πv = vH . (3.27)

We now set Ṽ p
H := RV p

H ⊆ H1
0 (D) and observe that dim Ṽ p

H = dimV p
H because

R : V p
H → Ṽ p

H is a bijection with inverse Π|Ṽ p
H
. We use Ṽ p

H as test and trial space

to obtain a �nite-dimensional approximation of (3.7) in the next subsection.

Remark 3.2.4. In the one-dimensional setting with a constant coe�cient, the
above de�nition of R produces the classical spline space of order p + 2. This
smoothing property is, for instance, employed in [HMP+19] in connection with
a di�use approximation of jumping coe�cients to avoid spurious oscillations.

3.2.3 The ideal method

In this subsection, we introduce and analyze an ideal method to discretize prob-
lem (3.7) with a cG FE approach based on the space Ṽ p

H introduced in the
previous subsection: �nd ũH ∈ Ṽ p

H such that

a(ũH , ṽH) = (f, ṽH)L2(D) (3.28)
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3.2 Construction of higher-order multiscale spaces

for all ṽH ∈ Ṽ p
H . As for the variational problem (3.7), we directly get the well-

posedness of (3.28) from the Lax-Milgram Theorem using the coercivity of the
bilinear form a and the conformity of Ṽ p

H .
Before we further analyze the method, we state the following useful result.

Lemma 3.2.5 (Equivalent formulation). Let u ∈ H1
0 (D) be the solution of

(3.7). Then the solution ũH ∈ Ṽ p
H of (3.28) is equivalently de�ned as the function

ũH ∈ H1
0 (D) that solves

a(ũH , v) + (λΠu,Πv)L2(D) = 0,

(ΠũH , µH)L2(D) = (Πu, µH)L2(D)

(3.29)

for all v ∈ H1
0 (D) and µH ∈ V p

H , where λΠu ∈ V p
H is the associated Lagrange

multiplier.

Proof. The assertion follows with similar arguments as in the proof of Theo-
rem 2.3.2. For ṽH = RvH ∈ Ṽ p

H , we compute

a(RΠu, ṽH) = a(u, ṽH)− a((id−RΠ)u, ṽH)

= (f, ṽH)L2(D) − a((id−RΠ)u, ṽH).

Since Π(id−RΠ)u = 0, we get with (3.25) that

a((id−RΠ)u, ṽH) = 0.

Therefore, RΠu is the (unique) solution of problem (3.28).

The next theorem states that under additional (piecewise) regularity assump-
tions on the right-hand side f , the error between the solutions of (3.7) and
(3.28) scales optimally with respect to H and p and does not depend on the
oscillations of the coe�cient.

Theorem 3.2.6 (Error of the ideal method). Assume that f ∈ Hk(TH), k ∈ N0,
and de�ne s := min{k, p + 1}. Further, let u ∈ H1

0 (D) and ũH ∈ Ṽ p
H be the

solutions of (3.7) and (3.28), respectively. Then

‖∇(u− ũH)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH) (3.30)

and

‖u− ũH‖L2(D) .
Φ(p, s)

p2
Hs+2 |f |Hs(TH), (3.31)

with the notation H0(TH) := L2(D) and | · |H0(TH) := ‖ · ‖L2(D).
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3 A Higher-Order Extension of the LOD

Proof. Using the Galerkin orthogonality, (3.12), and (3.13), for k ≥ 1 we obtain

α ‖∇(u− ũH)‖2
L2(D) ≤ a(u− ũH , u− ũH) = a(u, u− ũH)

= (f, u− ũH)L2(D) = (f − Πf, u− ũH)L2(D)

≤ ‖f − Πf‖L2(D) CΠ
H

p
‖∇(u− ũH)‖L2(D)

≤ CΠ Φ(p, s)Hs |f |Hs(TH) CΠ
H

p
‖∇(u− ũH)‖L2(D)

employing that Π(u− ũH) = 0 by Lemma 3.2.5. Thus,

‖∇(u− ũH)‖L2(D) ≤ α−1C2
Π

Φ(p, s)

p
Hs+1 |f |Hs(TH).

With the same arguments but without inserting Πf , we get in the case k = 0
that

‖∇(u− ũH)‖L2(D) ≤ α−1CΠ
H

p
‖f‖L2(D).

This proves (3.30). To show the L2-error estimate, we use once again that
Π(u− ũH) = 0. Therefore, we get with (3.12) that

‖u− ũH‖L2(D) ≤ CΠ
H

p
‖∇(u− ũH)‖L2(D).

Combining the last estimate with (3.30), we deduce (3.31).

Remark 3.2.7. If p = 1 in the above construction, the error estimate in The-
orem 3.2.6 is comparable to the one presented in Chapter 2 in connection with
the classical conforming approach; see Theorem 2.3.1.

3.3 Derivation of a practical method

As already addressed in the previous chapter for the classical LOD, the ideal
method given in (3.28) is a �nite-dimensional approximation of the solution u
of (3.7) but the construction of the space Ṽ p

H involves the solution of in�nite-
dimensional problems. Thus, we follow the strategy presented in Section 2.4
and adapt it to the setting of this chapter with the non-conforming spaces V p

H

and W in order to derive a fully practical method. First, we investigate the
decay properties of functions in Ṽ p

H and especially focus on the dependence on
the polynomial degree p.

3.3.1 Decay of the basis functions

As a �rst step, we identify a suitable choice of a basis of Ṽ p
H which is constructed

from a basis of V p
H . For any K ∈ TH , let

BK := {ΛK,j}mK
j=1 with mK = (p+ 1)d
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be a basis of V p
H(K) and

B :=
⋃

K∈TH

BK

the corresponding (local) basis of V p
H . In our numerical computations, we choose

shifted Legendre polynomials on each element K, which are orthogonal with
respect to the L2-scalar product (·, ·)L2(K).

Using the isomorphism R between V p
H and Ṽ p

H , we directly get that B̃ := RB
is a basis of Ṽ p

H . In the following, we show that for any basis function Λ ∈ B,
the corresponding basis function RΛ ∈ B̃ decays exponentially fast away from
the support of the function Λ, which is exactly one element of TH .

Theorem 3.3.1 (Decay of the basis functions). Let ` ∈ N, K ∈ TH , and
Λ ∈ BK. Further, de�ne Λ̃ = RΛ ∈ B̃. Then it holds that

‖∇Λ̃‖L2(D\N`(K)) . exp(−Cdec `/p) ‖∇Λ̃‖L2(D) (3.32)

with a constant Cdec that depends on CΠ, α, and β.

Proof. We choose a cuto� function η ∈ W 1,∞(D) with the following properties:

0 ≤ η ≤ 1,

η = 0 in N`(K),

η = 1 in D \ N`+1(K),

‖∇η‖L∞(D) ≤ CηH
−1.

(3.33)

De�ne R := N`+1(K) \ N`(K). Since R is a union of elements of TH and
Π(Λ̃η)|D\R = 0, we know from Corollary 3.2.3 that there exists a bubble function

b ∈ H1
0 (R) which ful�lls Πb = Π(Λ̃η) and

‖∇b‖L2(R) .
p2

H
‖Λ̃η‖L2(R). (3.34)

We compute

α ‖∇Λ̃‖2
L2(D\N`+1(K)) ≤

∣∣∣ˆ
D

A∇Λ̃ · ∇(Λ̃η) dx
∣∣∣+
∣∣∣ˆ

D

A∇Λ̃ · ∇η Λ̃ dx
∣∣∣

=
∣∣∣ˆ

D

A∇Λ̃ · ∇(Λ̃η − b) dx
∣∣∣

+
∣∣∣ ˆ

D

A∇Λ̃ · ∇b dx
∣∣∣+
∣∣∣ ˆ

D

A∇Λ̃ · ∇η Λ̃ dx
∣∣∣

=
∣∣∣ ˆ

R

A∇Λ̃ · ∇b dx
∣∣∣+
∣∣∣ˆ

R

A∇Λ̃ · ∇η Λ̃ dx
∣∣∣,

where we use the fact that, by de�nition (3.25), a(Λ̃, v) = 0 for v ∈ H1
0 (D) with

Πv = 0. Therefore, we get with (3.12), ΠΛ̃|R = 0, (3.33), and (3.34) that

‖∇Λ̃‖2
L2(D\N`+1(K)) ≤ Cp ‖∇Λ̃‖2

L2(R),
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which leads to

‖∇Λ̃‖2
L2(D\N`+1(K)) ≤

Cp

Cp+ 1
‖∇Λ̃‖2

L2(D\N`(K)) ≤
(

Cp

Cp+ 1

)`+1

‖∇Λ̃‖2
L2(D)

as in the proof of Theorem 2.4.1. We further obtain( Cp

Cp+ 1

)`
= exp

(
− | log

(
Cp
Cp+1

)
| `
)
≤ exp

(
− 1

2C
`/p
)
.

Taking the square root, we deduce (3.32) with Cdec := 1
4C

after a shift in `.

Remark 3.3.2. Although Theorem 3.3.1 only quanti�es the decay of basis
functions Λ̃ ∈ B̃, with the same arguments the result also holds for any function
Rq, where q ∈ V p

H(K) and K ∈ TH . That is, we have

‖∇Rq‖L2(D\N`(K)) . exp(−Cdec `/p) ‖∇Rq‖L2(D). (3.35)

Remark 3.3.3. The p-dependence in Theorem 3.3.1 seems pessimistic and
could possibly be improved. If, for instance, ∇η is only supported on a portion
of the ring R in the proof of Theorem 3.3.1, one could expect some additional
(fractional) powers of p in the estimate (3.34) in the sense of

‖∇b‖L2(R) .
p2

H
‖Λ̃η‖L2(R) .

p2

H
p−δ ‖Λ̃‖L2(R)

for some δ > 0. However, decreasing the support of ∇η has an in�uence on its
L∞-bound. For that matter, one may relax the restriction in (3.33) to

‖∇η‖L∞(D) ≤ CηH
−1p

without an impact on the �nal estimates in the proof of Theorem 3.3.1 and
possibly even further dependent on δ.

The decay property of the basis functions inB that is proven in Theorem 3.3.1
is the key ingredient to de�ne a localized version of the operator R. This
localization procedure is explained and investigated in the following subsection.

3.3.2 Localized computation of the approximation space

As in Chapter 2, we base the de�nition of a localized operator R` on truncated
versions of the basis functions in B̃. Thus, for a given oversampling parameter
` ∈ N and any Λ ∈ B with supp(Λ) = K ∈ TH , we de�ne Λ̃` ∈ H1

0 (N`(K)) as
the unique solution of the saddle point problem

a(Λ̃`, v) + (λ`Λ, v)L2(D) = 0,

(Λ̃`, µH)L2(D) = (Λ, µH)L2(D)

(3.36)
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for all v ∈ H1
0 (N`(K)) and µH ∈ V p

H(N`(K)) with associated Lagrange multiplier
λ`Λ ∈ V

p
H(N`(K)). Then for any function vH ∈ V p

H which can be expanded as

vH =
∑
K∈TH

mK∑
j=1

cK,j ΛK,j,

we de�ne the corresponding function R`vH ∈ H1
0 (D) by

R`vH :=
∑
K∈TH

mK∑
j=1

cK,j Λ̃`
K,j. (3.37)

We set Ṽ p,`
H := R`V p

H and remark that B̃` := R`B is a basis of Ṽ p,`
H by con-

struction. We use this space to compute an approximation of the ideal �nite-
dimensional solution ũH ∈ Ṽ p

H of (3.28), i.e., we want to �nd ũ`H ∈ Ṽ p,`
H that

solves
a(ũ`H , ṽH) = (f, ṽH)L2(D) (3.38)

for all ṽH ∈ Ṽ p,`
H . With regard to Chapter 2, we refer to ũ`H as the LOD solution.

As a next step, we show an error estimate for the error u− ũ`H .

Theorem 3.3.4 (Error of the LOD method). Let ` ∈ N, f ∈ Hk(TH), k ∈ N0,
and de�ne s := min{k, p+ 1}. Further, let u ∈ H1

0 (D) be the solution of (3.7)
and ũ`H ∈ Ṽ

p,`
H the solution of (3.38). Then it holds that

‖∇(u−ũ`H)‖L2(D)

.
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖f‖L2(D)

(3.39)

with the constant Cdec from Theorem 3.3.1.

Proof. First, we observe that ũ`H is quasi-optimal by the Galerkin orthogonality;
see also Lemma 2.2.1. Therefore, we obtain

‖∇(u− ũ`H)‖L2(D) ≤
β

α
inf

ṽH∈Ṽ p,`
H

‖∇(u− ṽH)‖L2(D) ≤
β

α
‖∇(u− ū`H)‖L2(D),

where ū`H := R`Πu ∈ Ṽ p,`
H . With the triangle inequality and the solution

ũH ∈ Ṽ p
H of (3.28), we get that

‖∇(u− ū`H)‖L2(D) ≤ ‖∇(u− ũH)‖L2(D) + ‖∇(ũH − ū`H)‖L2(D). (3.40)

The �rst term can be estimated with Theorem 3.2.6, i.e.,

‖∇(u− ũH)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH).
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For the second term, we set w := ũH − ū`H . Further, for K ∈ TH we de�ne
a cuto� function ηK ∈ W 1,∞(D) with

0 ≤ ηK ≤ 1,

ηK = 0 in N`−1(K),

ηK = 1 in D \ N`(K),

‖∇ηK‖L∞(D) ≤ CηH
−1.

We set RK := N`(K) \ N`−1(K). By (3.36) and (3.37), for each K ∈ TH there
exists a Lagrange multiplier λ`K ∈ V

p
H(N`(K)) such that

a(R`(Πu|K), v) + (λ`K , v)L2(D) = 0,

(R`(Πu|K), µH)L2(D) = (Πu|K , µH)L2(D)

(3.41)

for all v ∈ H1
0 (N`(K)) and µH ∈ V p

H(N`(K)). Noting that

(1− ηK)w ∈ H1
0 (N`(K)) and Πw = 0,

we obtain with (3.25) and (3.41)

α ‖∇w‖2
L2(D) ≤

∑
K∈TH

a(R(Πu|K)−R`(Πu|K), w)

=
∑
K∈TH

−a(R`(Πu|K), (1− ηK)w + ηKw)

=
∑
K∈TH

(
(λ`K , (1− ηK)w)L2(RK) − a(R`(Πu|K), ηKw)

)
.
∑
K∈TH

(
‖λ`K‖L2(RK) ‖w‖L2(RK)

+ ‖∇R`(Πu|K)‖L2(RK) ‖∇(ηKw)‖L2(RK)

)
.
∑
K∈TH

(p+ 1) ‖∇R`(Πu|K)‖L2(RK) ‖∇w‖L2(RK).

(3.42)

In the last step, we use that

‖w‖L2(RK) ≤ CΠ
H

p
‖∇w‖L2(RK)

by the approximation result (3.12),

‖∇(ηKw)‖L2(RK) ≤ CηCΠ p
−1 ‖∇w‖L2(RK) + ‖∇w‖L2(RK),

and
‖λ`K‖L2(RK) . H−1p2 ‖∇R`(Πu|K)‖L2(RK).
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The last estimate follows from the arguments in the proof of Lemma 3.2.1. More
precisely, for any T ∈ TH , there exists a bubble function ρT ∈ W 1,∞(T )∩H1

0 (T )
as in the proof of Lemma 3.2.1 such that

‖λ`K‖2
L2(T ) ≤ 4 (λ`K , ρTλ

`
K)L2(T )

= −4 a(R`(Πu|K), ρTλ
`
K)

. H−1p2 ‖∇R`(Πu|K)‖L2(T ) ‖λ`K‖L2(T ),

(3.43)

where we employ the estimates (3.17) and (3.18).
Using Theorem 3.3.1 and Remark 3.3.2, which both equivalently hold with R

replaced by R`, we get with (3.42) and (3.35) that

‖∇w‖2
L2(D) .

∑
K∈TH

(p+ 1) ‖∇R`(Πu|K)‖L2(D\N`−1(K)) ‖∇w‖L2(RK)

.
p3

H
exp(−Cdec `/p)

( ∑
K∈TH

‖Πu|K‖
2
L2(K)

)1/2( ∑
K∈TH

‖∇w‖2
L2(RK)

)1/2

.
p3

H
`(d−1)/2 exp(−Cdec `/p) ‖Πu‖L2(D) ‖∇w‖L2(D).

Here, we employ the discrete Cauchy-Schwarz inequality and the stability of
(3.41), i.e.,

‖∇R`(Πu|K)‖L2(D) .
p2

H
‖Πu|K‖L2(K)

for any K ∈ TH . We now go back to (3.40) and obtain

‖∇(u−ũ`H)‖L2(D)

.
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖Πu‖L2(D)

.
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

p3

H
`(d−1)/2 exp(−Cdec `/p) ‖f‖L2(D),

where we use the stability of Π and (3.8). This completes the proof.

Remark 3.3.5. The additional H in the denominator of the estimate in The-
orem 3.3.4 may be explained by the fact that the localization error ũH − ū`H is
measured in the H1-norm while Πu is measured in the L2-norm. Although this
seems suboptimal, the pollution in terms of H in the second term of (3.39) is
also observed in our numerical experiments; see Section 3.4.

We can now use Theorem 3.3.4 to quantify the choice of the oversampling
parameter ` with respect to the polynomial degree p and the mesh size H de-
pendent on the regularity of the right-hand side f .
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Corollary 3.3.6. Let f ∈ Hk(TH), k ∈ N0, and de�ne s := min{k, p + 1}.
Further, let u ∈ H1

0 (D) be the solution of (3.7), and ũ`H ∈ Ṽ
p,`
H the solution of

(3.38). Then, for

` & | logH| p (s+ 1) + (log p) p (s+ 1), (3.44)

it holds that

‖∇(u− ũ`H)‖L2(D) .
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

(H
p

)s+1

‖f‖L2(D).

Note that if k = 0 and p = 1, Corollary 3.3.6 provides a similar error estimate
as in the conforming case of Chapter 2 with the same scaling of `. Of course,
if we increase p, the oversampling parameter ` in Theorem 3.3.4 needs to grow
as well in order to maintain the high convergence rate of Theorem 3.2.6 with
respect to H and p. Nevertheless, the experiments in Section 3.4 indicate that
the p-dependence of ` in (3.44) might be too pessimistic and the decay property
of Theorem 3.3.1 even slightly improves for larger values of p. Before we turn
our attention to these numerical investigations of the higher-order method, we
�rst need to discuss the last step towards a fully practical method, i.e., the
discretization at the microscopic scale.

3.3.3 Microscopic discretization

As discussed in Section 2.4.4, the localized operator R` does not provide a fully
discrete method since the localized basis functions (3.36) are obtained by solv-
ing in�nite-dimensional auxiliary problems. The easiest approach to resolve
this issue is to introduce a (conforming) �ne FE space Vh,p′ ⊆ H1

0 (D) based
on a decomposition Th with mesh parameter h and polynomial degree p′ that
replaces the space H1

0 (D) in the above construction. Ideally, the classical cG
solution in Vh,p′ should ful�ll an estimate similar to the one in Theorem 3.2.6.
Motivated by error estimates of the hp FE method (see, e.g., [BG96, Sch98]),
for f ∈ Hk(D), k ∈ N0, we assume that

‖∇(u− uh)‖L2(D) .
Φ(p′, s′)

p′
(Cε h)s

′+1 |f |Hs′ (D), (3.45)

where u ∈ H1
0 (D) is the solution of (3.7), s′ := min{k, p′ + 1}, and uh ∈ Vh,p′ is

the solution of
a(uh, vh) = (f, vh)L2(D) (3.46)

for all vh ∈ Vh,p′ . Note that the right-hand side of (3.45) depends on the �ne-
scale parameter ε through the constant Cε. This is typical for classical FE spaces
which do not take into account microscopic information.
We emphasize that on the one hand, the ideal approximation ũH ∈ Ṽ p

H char-
acterized by (3.28) ful�lls the higher-order estimate quanti�ed in Theorem 3.2.6
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3.3 Derivation of a practical method

by the (piecewise) regularity of the right-hand side f only. On the other hand,
in order to obtain a higher-order estimate of the form (3.45) for the classical FE
space Vh,p′ , the regularity of f needs to hold globally. Further, one requires ad-
ditional smoothness assumptions on the domain D as well as on the coe�cient
A (see, e.g., [Eva10, Thm. 5 in Sec. 6.3]) and, in particular, the microscopic
scale ε needs to be resolved. Another problem that occurs when discretizing
the �ne scales is the fact that the proof of the inf-sup condition in Lemma 3.2.1
is explicitly based on the space H1

0 (D). The result does not directly follow for
subspaces of H1

0 (D) and a similar inf-sup condition needs to be proven for the
respective discrete space Vh,p′ at hand.
With these problems in mind, the following lemma provides a condition on

the �ne mesh parameter h for which the inf-sup condition (3.16) and thus the
surjectivity results in Theorem 3.2.2 and Corollary 3.2.3 remain valid if H1

0 (D)
is replaced by the �rst-order space Vh ⊆ H1

0 (D), for which we omit the subscript
1. The explicit choice of the polynomial degree p′ = 1 is motivated by the fact
that higher-order estimates for the classical conforming FE space Vh,p′ would
require additional smoothness assumptions as mentioned above.

Lemma 3.3.7 (Discrete local inf-sup condition). Let K ∈ TH . Then there exists
a constant C > 0 independent of h, H, and p such that for

h ≤ C Hp−2

the inf-sup condition

inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)

≥ γh > 0 (3.47)

holds with γh ∼ Hp−2.

Proof. As in the proof of Lemma 3.2.1, let κ ⊆ K be such that its edges, faces,
etc. are parallel to the ones of K, dist(κ, ∂K) = Cdist Hp

−2, and

‖q‖2
L2(κ) ≥

1

4
‖q‖2

L2(K) (3.48)

for all q ∈ V p
H(K). Now, let ρ ∈ W 1,∞(K) ∩H1

0 (K) with

0 ≤ ρ ≤ 1,

ρ = 1 in κ,

‖∇ρ‖L∞(K) ≤ CρH
−1p2,

where Cρ depends on Cdist. Next, we de�ne for any q ∈ V p
H(K) the function

wq ∈ Vh ∩H1
0 (K) as the solution of

(wq, vh)L2(K) = (q, vh)L2(K)
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3 A Higher-Order Extension of the LOD

for all vh ∈ Vh ∩H1
0 (K). Note that wq is unique by the inverse inequality

‖∇vh‖L2(K) ≤ Cinv,h h
−1 ‖vh‖L2(K)

and the Lax-Milgram Theorem. The last auxiliary ingredient is an estimate of
the form

‖q‖L2(K) . ‖wq‖L2(K)

which can be obtained using a projection operator IKh : L2(K)→ Vh ∩H1
0 (K)

which ful�lls stability and approximation properties as in (2.11) and (2.14).
That is, for all v ∈ L2(K), it holds that

‖IKh v‖L2(K) ≤ CIKh ‖v‖L2(K)

and, for any v ∈ H1
0 (K), we have

‖h−1(v − IKh v)‖L2(K) + ‖∇IKh v‖L2(K) ≤ CIKh ‖∇v‖L2(K).

For an explicit choice of IKh , see Section 2.5.1. With the above inequalities, we
can show that
1
4
‖q‖2

L2(K) ≤ ‖q‖2
L2(κ) ≤ (q, ρq)L2(K) = (q, IKh (ρq))L2(K) + (q, (id− IKh )(ρq))L2(K)

= (wq, IKh (ρq))L2(K) + (q, (id− IKh )(ρq))L2(K)

≤ ‖wq‖L2(K)CIKh ‖ρq‖L2(K) + ‖q‖L2(K) CIKh h ‖∇(ρq)‖L2(K)

≤ CIKh ‖wq‖L2(K) ‖q‖L2(K) + CIKh (Cρ + Cinv)hH−1p2 ‖q‖2
L2(K)

and thus
‖q‖L2(K) ≤ 8CIKh ‖wq‖L2(K)

provided that

CIKh (Cρ + Cinv)hH−1p2 ≤ 1

8
.

With all the above estimates, it holds that

inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)

≥ inf
q∈V p

H(K)

(wq, wq)L2(K)

‖q‖L2(K) ‖∇wq‖L2(K)

≥ inf
q∈V p

H(K)

1

8CIKh

‖wq‖2
L2(K)

‖wq‖L2(K) ‖∇wq‖L2(K)

≥ h

8CIKh Cinv,h

=: γh > 0.

For h ∼ Hp−2, this is the assertion. For h . Hp−2, there exists an auxiliary
h′ ∼ Hp−2 such that Vh′ ⊆ Vh and thus

inf
q∈V p

H(K)

sup
vh∈Vh∩H1

0 (K)

(q, vh)L2(K)

‖q‖L2(K) ‖∇vh‖L2(K)

≥ inf
q∈V p

H(K)

sup
vh′∈Vh′∩H1

0 (K)

(q, vh′)L2(K)

‖q‖L2(K) ‖∇vh′‖L2(K)

≥ γh′ ∼ Hp−2.
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3.3 Derivation of a practical method

This completes the proof.

With Lemma 3.3.7, we can replace H1
0 (D) (and the solution u ∈ H1

0 (D) of
(3.7)) in the construction of this chapter by a conforming Q1 FE space Vh (and
the classical cG approximation uh ∈ Vh) provided that h is su�ciently small
with respect to H and p and, additionally, resolves the microscopic information
on the scale ε. This is quanti�ed with the resolution conditions

Cε h .
Φ(p, s)

p
Hs+1 and h . Hp−2, (3.49)

where the constant Cε indicates the dependence on the microscopic scale ε as in
(3.45). While a resolution condition on h with respect to H and p of the form
h ≤ Hp−s for some s ≥ 1 seems natural to resolve higher-order functions, the
left condition in (3.49) is mainly motivated by the aim to retain the convergence
properties with respect to H and p as derived in the previous subsections. In
a more practical manner, one could alternatively prescribe some certain toler-
ance and balance h, p′, H, and p such that the given tolerance is reached with
the respective approximation. We remark that a discrete inf-sup condition as
in Lemma 3.3.7 may also be obtained for a higher-order conforming FE space
and relaxes the resolution condition h . Hp−2 dependent on the choice of p′.
If additional smoothness conditions hold, the use of a higher-order space can
further provide a relaxation of the left resolution condition in (3.49) on h if p′

is suitably coupled to h and ε in the spirit of [PS12, Cor. 5.3].
Although such higher-order constructions may generally be considered for

the �ne discretization, we restrict ourselves to the �rst-order setting with p′ = 1
which only requires minimal regularity assumptions. Similar to the notation in
Section 2.4.4, we introduce the additional parameter h in the above construction
if H1

0 (D) is replaced by Vh, i.e., we write

Rh, R`
h, Ṽ

p
H,h, Ṽ

p,`
H,h instead of R, R`, Ṽ p

H , Ṽ
p,`
H .

Further, the solution ũH,h ∈ Ṽ p,`
H,h of the fully discrete LOD method is determined

by
a(ũ`H,h, ṽH,h) = (f, ṽH,h)L2(D) (3.50)

for all ṽH,h ∈ Ṽ p,`
H,h. The error of the fully discrete approach is quanti�ed in the

next theorem.

Theorem 3.3.8 (Error of the fully discrete LODmethod). Assume f ∈ Hk(TH),
k ∈ N0, and let s := min{k, p + 1}. Further, suppose that the resolution condi-
tions (3.49) hold and let u ∈ H1

0 (D) be the solution of (3.7) and ũ`H,h ∈ Ṽ p,`
H,h

the solution of (3.50). Then, with the choice

` & | logH| p (s+ 1) + (log p) p (s+ 1),

it holds that

‖∇(u− ũ`H,h)‖L2(D) .
Φ(p, s)

p
Hs+1

(
‖f‖L2(D) + |f |Hs(TH)

)
+
(H
p

)s+1

‖f‖L2(D).
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3 A Higher-Order Extension of the LOD

Figure 3.1: Multiscale coe�cients A1 (left) and A2 (right) on the scale ε = 2−7.

Proof. The assertion follows from a simple triangle inequality, the estimate
(3.45) with s′ = 0, the resolution conditions (3.49), and Corollary 3.3.6 in
the case where H1

0 (D) is replaced by Vh. To be more precise, with the solution
uh ∈ Vh of (3.46), we obtain

‖∇(u− ũ`H,h)‖L2(D) ≤ ‖∇(u− uh)‖L2(D) + ‖∇(uh − ũ`H,h)‖L2(D)

. Cε h ‖f‖L2(D) +
Φ(p, s)

p
Hs+1 |f |Hs(TH) +

(H
p

)s+1

‖f‖L2(D)

.
Φ(p, s)

p
Hs+1

(
‖f‖L2(D) + |f |Hs(TH)

)
+
(H
p

)s+1

‖f‖L2(D)

employing the estimates mentioned above.

3.4 Numerical experiments

In this section, we present some examples to verify the results of the previous
sections. As in Section 2.5, we remark that if the exact solution u ∈ H1

0 (D)
of (3.7) is not explicitly given, only the errors between the discrete solutions
uh ∈ Vh of (3.46) and ũ`H,h ∈ Ṽ

p,`
H,h of (3.50) can be measured. Thus, we need to

pose the assumption that the chosen mesh parameter h is indeed small enough
as quanti�ed in Section 3.3.3, and use uh as the reference solution. As before,
we measure the errors in the energy norm ‖ · ‖a := ‖A1/2∇ · ‖L2(D).

3.4.1 Two-dimensional examples

For the experiments of this subsection, we consider the domain D = (0, 1)2 as
well as the two scalar di�usion coe�cients A1 and A2 as depicted in Figure 3.1.
These coe�cients are piecewise constant on a mesh Tε with mesh parameter
ε = 2−7. In each element K ∈ Tε, the value of A1 is obtained as a uniformly
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Figure 3.2: Errors of the higher-order LOD in the relative energy norm for the �rst

(left) and the second model (right) with respect to H for di�erent values

of ` and p.

distributed random number in [0.2, 2]. Similarly, A2 takes values in {1, 5}.
Further, we take the right-hand sides

f1(x) = sin(5π x1) cos(3π x2)

and
f2(x) = (x1 + sin(3π x1))x2 cos(π x2).

For the �rst model, we choose the coe�cient A = A1 and the right-hand side
f = f1 in (3.7) and compute the solution ũ`H,h ∈ Ṽ p,`

H,h of (3.50) for multiple
choices of the polynomial degree p and the localization parameter `. The relative
energy errors of these approximations with respect to the reference solution on
the scale h = 2−9 are depicted in Figure 3.2 (left). Similarly, we present the
energy errors for the second model with the coe�cient A2 and the right-hand
side f2 in Figure 3.2 (right), where again h = 2−9. The error curves in both
examples show a convergence rate between p + 1 and p + 2 with respect to H
for di�erent polynomial degrees p if ` is chosen large enough. These results are
in line with the �ndings in Theorem 3.3.4 which predicts a convergence rate of
up to order p+ 2 in H dependent on the regularity of f and provided that the
second term in the estimate (3.39) is small enough. For the �rst model, we also
provide the relative errors in Table 3.1 as well as the respective experimental
orders of convergence (EOCs). For two mesh sizes H1 > H2 with corresponding
errors e1 and e2, the EOC is de�ned by EOC := log

(
e1
e2

)
/ log

(
H1

H2

)
.

Apart from the observed higher-order rates for appropriate parameter regimes,
the two examples also indicate that there might be a pollution in terms of some
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Figure 3.3: Errors of the higher-order LOD in the relative energy norm for the �rst

(left) and second model (right) with respect to ` for di�erent values of H
and p.

negative power ofH as obtained from the theory. That is, instead of a stagnation
of the error curve for smaller H, the overall error grows again if ` is not chosen
appropriately. We further study this e�ect in Section 3.4.2.
For completeness, we present the errors of the LOD method also with respect

to the localization parameter ` in Figure 3.3. The plots show the exponential
convergence rate in ` as in the theory. The curves stagnate for larger values of
` where the localization error is small enough and the �rst term in the estimate
(3.39) dominates the overall error.
Since the previous experiments indicate that the exponential convergence in `

even slightly improves when p is increased, we further investigate the sharpness
of the decay estimate quanti�ed in Theorem 3.3.1. To this end, for H = 2−4 we
choose an elementK ∈ TH in the middle of the domain and compute the relative
energy error between the ideal multiscale basis functions Λ̃K,j := RhΛK,j and its
localized versions Λ̃`

K,j := R`
hΛK,j for di�erent values of ` and j ∈ {1, . . . ,mK}.

For the �rst model, Figure 3.4 (left) shows the decay of the localization error
for di�erent basis functions with respect to `. To be more precise, for each p,
we show the localization error corresponding to the highest-order basis function
ΛK,j (with maximal polynomial degree p in both components). The results
seem to contradict the scaling in p as predicted by Theorem 3.3.1. Instead, the
rate even slightly improves when the polynomial degree p is increased, which is
possibly due to the fact that the decay estimates are not sharp as explained in
Remark 3.3.3. In Figure 3.4 (right), we show the localization error for di�erent
` and p corresponding to the respective lowest-order basis function, i.e., the one
whose L2-projection onto V p

H(K) is constant. Again, the curves show an error
reduction when p is increased which is slightly ampli�ed by `. That is, these
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Figure 3.4: Localization errors of the higher-order LOD basis functions on the scale

H = 2−4 for the �rst model with respect to ` (left) and p (right) in the

relative energy norm.

results also indicate a better scaling in p than quanti�ed in Theorem 3.3.1. The
commencing stagnation of the errors in Figure 3.4 (right) for larger p is probably
related to the fact that h = 2−9 is not �ne enough to handle higher polynomial
degrees. This issue is addressed in the following.

3.4.2 One-dimensional considerations

The aim of this subsection is to provide a study of the higher-order method in
one spatial dimension. The motivation of this is the fact that the resolution
conditions derived above require h to be much smaller than H subject to the
choice of p. In this regard, the setting of this subsection allows us to compute
LOD solutions with higher polynomial degree p and smaller H.
We consider a coe�cient A which is piecewise constant on the scale ε = 2−12

with element-wise randomly chosen values in [0.5, 10]. Further, we set

f(x) = sin(5π x).

With respect to the mesh size H, the errors of the higher-order LOD compared
to a �ne-scale solution on the scale h = 2−16 are depicted in Figure 3.5. The
plot seems to con�rm the higher-order decay as quanti�ed in Theorem 3.3.4
as well as the presence of a polluting term proportional to H−1. The errors
presented in Figure 3.6 with respect to p indicate that the dependence on p of
the second term in (3.39) is probably too pessimistic and that there might even
be some positive scaling with respect to p which is ampli�ed by increasing values
of `. Lastly, we mention that the exponential convergence rate with respect to
p as quanti�ed in Corollary 3.3.6 is observed in Figure 3.6 provided that ` is
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Figure 3.5: Relative errors of the higher-order LOD in one dimension in the energy

norm with respect to H for di�erent values of p and `.
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norm with respect to p for di�erent values of H and `.
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chosen large enough. If the localization parameter is too small, the error curve
stagnates.

The numerical experiments of this section overall con�rm the theoretical re-
sults for the higher-order construction considered in this chapter. The only
deviation is in the scaling with respect to the polynomial degree p which seems
to be better than predicted by the theory. That is, the result presented in
Theorem 3.3.1 is most likely not sharp with respect to p and can possibly be
improved. An enhanced estimate would also directly relax the condition on `
which is quanti�ed in (3.44).
Note that although the approach numerically and theoretically shows a pol-

lution of the total error for small mesh sizes H, this issue can be compensated
for by a correct scaling of `. Nevertheless, the method shows its best potential
for relatively coarse mesh sizes which, combined with higher-order polynomials,
already provide very good approximations. Moreover, the locality of the higher-
order construction in principle allows us to even choose di�erent polynomial
degrees on the respective coarse elements.

59



3 A Higher-Order Extension of the LOD

Table 3.1: Relative errors and EOCs of the higher-order LOD for the �rst two-

dimensional model in the energy norm for di�erent values of the mesh

size H, the polynomial degree p, and the localization parameter `.

` H p = 1 p = 2 p = 3 EOCp=1 EOCp=2 EOCp=3

1 2−1 0.97207 0.48187 0.25088 � � �
1 2−2 0.21859 0.07310 0.09682 2.15 2.72 1.37
1 2−3 0.20948 0.20747 0.19511 0.06 -1.51 -1.01
1 2−4 0.50299 0.45793 0.51348 -1.26 -1.14 -1.40
1 2−5 0.82963 0.82471 0.85400 -0.72 -0.85 -0.73
1 2−6 0.95424 0.96866 0.98334 -0.20 -0.23 -0.20

2 2−1 0.97207 0.48187 0.25088 � � �
2 2−2 0.21018 0.07184 0.01204 2.21 2.75 4.38
2 2−3 0.06752 0.03169 0.02515 1.64 1.18 -1.06
2 2−4 0.06258 0.05128 0.03704 0.11 -0.69 -0.56
2 2−5 0.20347 0.14435 0.14524 -1.70 -1.49 -1.97
2 2−6 0.47862 0.50940 0.66576 -1.23 -1.82 -2.20

3 2−1 0.97207 0.48187 0.25088 � � �
3 2−2 0.20940 0.07370 0.01037 2.21 2.71 4.60
3 2−3 0.03759 0.00726 0.00260 2.48 3.34 2.00
3 2−4 0.02069 0.00950 0.00571 0.86 -0.39 -1.14
3 2−5 0.02416 0.01306 0.01103 -0.22 -0.46 -0.95
3 2−6 0.08455 0.08169 0.12815 -1.81 -2.65 -3.54

4 2−1 0.97207 0.48187 0.25088 � � �
4 2−2 0.20940 0.07370 0.01037 2.21 2.71 4.60
4 2−3 0.03891 0.00480 0.00045 2.43 3.94 4.52
4 2−4 0.00826 0.00117 0.00055 2.24 2.04 -0.27
4 2−5 0.00380 0.00160 0.00102 1.12 -0.45 -0.90
4 2−6 0.01251 0.01081 0.01765 -1.72 -2.76 -4.11

5 2−1 0.97207 0.48187 0.25088 � � �
5 2−2 0.20940 0.07370 0.01037 2.21 2.71 4.60
5 2−3 0.03888 0.00473 0.00041 2.43 3.96 4.67
5 2−4 0.00648 0.00029 0.00005 2.59 4.03 3.08
5 2−5 0.00145 0.00025 0.00014 2.16 0.20 -1.49
5 2−6 0.00174 0.00139 0.00233 -0.26 -2.47 -4.11

6 2−1 0.97207 0.48187 0.25088 � � �
6 2−2 0.20940 0.07370 0.01037 2.21 2.71 4.60
6 2−3 0.03884 0.00474 0.00041 2.43 3.96 4.65
6 2−4 0.00638 0.00026 0.00002 2.61 4.21 4.52
6 2−5 0.00100 0.00004 0.00002 2.68 2.59 0.06
6 2−6 0.00024 0.00018 0.00031 2.08 -2.09 -4.16
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4 Justi�cation of Quasi-Local

Numerical Homogenization

Methods by Inversion

In this chapter, we consider the numerical homogenization technique described
in the previous chapters from a di�erent perspective. So far, we have considered
an LOD approach on some coarse scale H that is able to cope with general
microscopic quantities encoded in, e.g., a di�usion coe�cient corresponding to
a second-order elliptic PDE. This includes the case of variations on some known
�ne scale ε� H. The approach is quasi-local in the sense that communication
among the degrees of freedom (DOFs), which can be associated with the vertices
in the underlying mesh, includes not only communication between neighboring
DOFs but also between those that are within ` layers of elements for some
oversampling parameter `. This is due to the fact that the basis functions of the
constructed multiscale space are supported on some subdomain consisting of `
layers of elements. The previous chapters have shown that the choice of ` with
respect to H (and possibly the polynomial degree p) is crucial to avoid reduced
orders of convergence. Further, the fact that the deviation from true locality,
i.e., only neighbor-to-neighbor communication, is to some extent controlled by
the parameterH (and conceivably p) marks the di�erence between the described
quasi-local approach and a fully non-local one.
This chapter aims at illustrating the advantage of quasi-local approaches (such

as the LOD) compared to truly local ones to deal with general microscopic co-
e�cients which only ful�ll minimal assumptions. To this end, we consider the
inverse problem of reconstructing a coarse model that satisfactorily reproduces
given coarse data corresponding to measurements of solutions of an elliptic PDE
for di�erent boundary conditions. The idea is to allow, but not enforce, in-
creased communication between the DOFs depending on multiple choices of `
and compare the respective results. Note that this approach was �rst presented
in [CMP19].
Besides the main intention to show the potential of quasi-local models from

a di�erent point of view, this chapter also provides an actual strategy to handle
inverse problems, where the microscopic coe�cient to be reconstructed may vary
on a very �ne scale. If only coarse data are given and no a priori knowledge
on a parametrization or the structure of the coe�cient is available, a straight-
forward approach to recover the coe�cient on the �ne scale is computationally
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4 Justi�cation of Quasi-Local Methods by Inversion

unfeasible and possibly fails to provide any meaningful information about the
underlying coe�cient.
Before we consider the actual inverse problem, it is useful to �rst understand

the forward model and introduce forward operators that can be interpreted as
the available data for the inversion procedure. This is treated in the following
section.

4.1 Microscopic forward problem and e�ective

approximation

In this section, we use the ideal setting as presented in Section 2.3.1 to derive
a discrete forward operator which is then used to formulate the inverse problem.
Therefore, the theory from the previous chapters is reused and adapted to the
inhomogeneous setting.

4.1.1 Problem setting

We reconsider the model problem (3.1) from Chapter 3 but with inhomogeneous
boundary conditions, i.e., the prototypical second-order linear elliptic di�usion
problem

− div(A∇u) = f in D,

u = u0 on ∂D,
(4.1)

where D ⊆ Rd, d ∈ {1, 2, 3}, is a bounded, convex, and polytopal Lipschitz do-
main and the admissible di�usion coe�cient A ∈ A encodes the microstructure
of the medium with minimal structural assumptions; see (3.2) for the de�nition
of A.
Since solutions of problem (4.1) do not necessarily exist in the classical sense,

we are interested in the weak solution of (4.1) in the Sobolev space V̄ := H1(D),
which is characterized by the following variational formulation. Given A ∈ A,
u0 ∈ X := H1/2(∂D), and f ∈ L2(D), we seek u ∈ V̄ such that

a(u, v) = (f, v)L2(D) for all v ∈ V := H1
0 (D),

tru = u0 on ∂D,
(4.2)

where for v, w ∈ V̄ , the bilinear form a is given by

a(v, w) =

ˆ
D

A∇v · ∇w dx

and tr : V → X is the trace operator. Note that instead of (4.1), we could as well
consider a general second-order linear PDE in divergence form with additional
lower-order terms. Such a generalization is straightforward.
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4.1 Microscopic forward problem and e�ective approximation

In practice, it is favorable to rewrite problem (4.2) as a problem with ho-
mogeneous Dirichlet boundary conditions in V . Let Eb : X → V̄ be a linear
extension operator, which also de�nes the restriction operator R : V̄ → V by
R := id − Eb tr. Then, we can decompose u = Ru + (id − R)u = Ru + Ebu0

and problem (4.2) reduces to �nding Ru ∈ V such that

a(Ru, v) = (f, v)L2(D) − a(Ebu0, v) (4.3)

for all v ∈ V . The next subsection deals with a discretization of this variational
problem in terms of an LOD approach as introduced in Chapter 2. Again, we
use the coarse parameter H for the scale on which we want to obtain a reliable
coarse approximation of (4.3). With respect to the inverse problem, H is the
scale on which the data are available.

4.1.2 E�ective model via LOD

As in Section 2.2, let TH be a mesh of quasi-uniform d-rectangles with character-
istic mesh sizeH and denote again withQ1(TH) the corresponding space of piece-
wise polynomials with coordinate degree at most one in each element. In the
present setting, we de�ne the discrete spaces V̄H := Q1(TH)∩ V̄ , VH := V̄H ∩ V ,
and XH := tr V̄H of dimensions m̄ = dim V̄H , m = dimVH , and n = dimXH ,
respectively. The choice of these FE spaces is not unique and other standard
FE spaces could be used (see, e.g., Chapter 3). As before, we require a linear
and projective quasi-interpolation operator IH : L2(D) → VH which ful�lls the
approximation and stability properties (2.12) and (2.11). Further, we de�ne as
in Chapter 2 the �ne-scale space W := ker IH |V and the correction operators

C : V → W and C` : VH →W

by (2.25) and (2.45), respectively, and recall that

a((id− C)vH , w) = 0 (4.4)

for vH ∈ VH and w ∈ W . As shown for a more general setting in Theorem 2.4.4
(see also [HP13]), we have for any vH ∈ VH and ` ∈ N that

‖∇(C − C`)vH‖L2(D) . `(d−1)/2 exp(−Cdec `) ‖∇vH‖L2(D). (4.5)

Since the forward problem merely serves as motivation, a �ne-scale discretization
of the correction operator is not considered in the present setting.
With these preliminary considerations, we can formulate an LOD method

with inhomogeneous boundary conditions and with an adapted right-hand side.
Given a discretized extension operator

Eb
H : XH → V̄H which ful�lls Eb|XH

= Eb
H
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4 Justi�cation of Quasi-Local Methods by Inversion

and the corresponding restriction operator

RH : V̄H → VH , RH := id− Eb
H tr,

a possible discretized version of (4.3) reads: �nd uH = RHuH + Eb
HuH,0 ∈ V̄H

such that

a(R`RHuH ,R`vH) = (fH , vH)L2(D) − a(Eb
HuH,0,R`vH) (4.6)

for all vH ∈ VH , where R` = id−C` as in Chapter 2. Further, fH := ΠHf is the
L2-projection of f onto V̄H and uH,0 a FE approximation of u0. In the context of
inverse problems, it is reasonable to consider that u0 is de�ned as the �rst-order
FE approximation of coarse experimental boundary data which approximate the
real data up to order H in the H1/2-norm. Thus, in the following we assume
that u0 = uH,0. For completeness, we now also de�ne the correction operators
for functions v ∈ V̄ and vH ∈ V̄H , i.e., we set Cv := CRv and C`vH := C`RHvH ,
respectively.
Note that, in contrast to the previous chapters, we are only interested in

the FE part uH in (4.6) and not in the corrected variant (id− C`)uH . This is
motivated by the fact that only coarse data without additional information on
�ne-scale corrections are available for the inverse problem.

4.1.3 Error estimates

In this subsection, we investigate the L2-error between the solutions u ∈ V̄ of
(4.3) and uH ∈ V̄H of (4.6), which is important to quantify the error between
the solution operator

LA : XH × L2(D)→ V̄ ,
(u0, f) 7→ u, where u solves (4.3),

(4.7)

and its discretized version

Leff
A,` : XH × L2(D)→ V̄H ,

(u0, f) 7→ uH , where uH solves (4.6).
(4.8)

The following theorem shows that the error between u ∈ V̄ and the FE part
uH ∈ V̄H scales optimally with H and that it is independent of the variations of
the di�usion coe�cient. The theorem adapts ideas from Chapter 2.

Theorem 4.1.1 (Error of the forward e�ective model). Let u ∈ V̄ be the solution
of (4.3) and uH ∈ V̄H the solution of (4.6) for given boundary data u0 ∈ XH ,
a right-hand side f ∈ L2(D), as well as an oversampling parameter ` ∈ N.
For g ∈ L2(D), denote with û(g) ∈ V̄ the solution of (4.3) with right-hand
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4.1 Microscopic forward problem and e�ective approximation

side g and boundary condition u0 = 0. Further, we introduce the worst-case
best-approximation error

wcba(A, TH) := sup
g∈L2(D)

inf
vH∈VH

‖Rû(g)− vH‖L2(D)

‖g‖L2(D)

.

Then it holds that

‖u− uH‖L2(D) .
(
H2 + exp(−Cdec `) + wcba(A, TH)

) (
‖f‖L2(D) + ‖u0‖X

)
.

Proof. We split the error u− uH = (u− ūH) + (ūH − ũH) + (ũH − uH) with the
solutions ūH and ũH of the auxiliary problems

a(RH ūH , (id− C)vH) = (f, vH)L2(D) − a(Eb
Hu0, (id− C)vH)

and
a(RH ũH , (id− C`)vH) = (fH , vH)L2(D) − a(Eb

Hu0, (id− C`)vH)

for all vH ∈ VH . To bound eH := uH − ũH , we observe using the orthogonality
property (4.4) that

a((id− C`)eH ,(id− C`)vH)

= a(C`RH ũH , (id− C`)vH) = a(C`RH ũH , (C − C`)vH).
(4.9)

Testing with vH = eH in (4.9) and using (4.5), (2.14), and the fact that
eH = IH(id− C`)eH , it follows that

α ‖∇(id− C`)eH‖2
L2(D) ≤ a((id− C`)eH , (id− C`)eH)

= a(C`RH ũH , (C − C`)eH)

. exp(−Cdec `) ‖∇C`RH ũH‖L2(D) ‖∇(id− C`)eH‖L2(D)

and thus

‖eH‖L2(D) . ‖∇(id− C`)eH‖L2(D) . exp(−Cdec `)
(
‖f‖L2(D) + ‖u0‖X

)
, (4.10)

where we use (2.11) and the Friedrichs inequality. As a next step, we bound the
error ēH := ũH − ūH . We note that

a(ēH , (id− C)vH) = a(RH ũH + Eb
Hu0, (C` − C)vH)

for any vH ∈ VH . With vH = ēH and similar arguments as above, we obtain

‖ēH‖L2(D) . ‖∇(id− C)ēH‖L2(D) . exp(−Cdec `)
(
‖f‖L2(D) + ‖u0‖X

)
. (4.11)

The error u− ūH can be estimated using [GP17, Prop. 1], which also holds for
inhomogeneous Dirichlet boundary conditions, i.e.,

‖u− ūH‖L2(D) .
(
H2 + wcba(A, TH)

)(
‖f‖L2(D) + ‖u0‖X

)
. (4.12)

The triangle inequality, (4.10), (4.11), and (4.12) yield the desired estimate.

65



4 Justi�cation of Quasi-Local Methods by Inversion

We emphasize that, choosing ` large enough (i.e., ` & | logH|), we have
exp(−Cdec `) . H or even exp(−Cdec `) . H2. As discussed in [GP17], the
worst-case best-approximation error is at least O(H), and it scales possibly
even better with H in certain regimes (cf. also Figure 2.4 (right)).
To prepare the setting of the inverse problem, we go back to the operators

de�ned in (4.7) and (4.8) and observe that LA (and similarly also Leff
A,`) can be

written as
LA(u0, f) = LA(u0, 0) + LA(0, f) (4.13)

with the linear operators LA(·, 0) : XH → V̄ and LA(0, ·) : L2(D) → V̄ . For
simplicity, we assume in the following that f is a �xed function. The gen-
eralization to the case where f is also part of the input data is conceptually
straightforward but slightly more involved. The decomposition (4.13) motivates
the distance function between operators de�ned by

distf (C,D) :=
(
‖C(·, 0)−D(·, 0)‖2

L(XH ;L2(D)) + ‖C(0, f)−D(0, f)‖2
L2(D)

)1/2

for all C, D : XH × L2(D)→ L2(D).

Remark 4.1.2. If we consider the case f = 0, coe�cients that only di�er by
a multiplicative constant produce the same solution operator. In view of the
inverse problem in the next section, in this case one should �x an additional
parameter, e.g., the mean value of A.

Using Theorem 4.1.1, we obtain the following result which quanti�es the error
between the two solution operators LA and Leff

A,`.

Corollary 4.1.3 (Error of the e�ective forward operator). Let ` & | logH|.
Then it holds that

distf (LA,L
eff
A,`) . H.

4.1.4 Reformulation of the e�ective model

As a next step, we discuss an alternative representation of the operator Leff
A,` us-

ing the e�ective sti�ness matrix corresponding to the discrete formulation (4.6).
Given a coe�cient A ∈ A, the corresponding LOD sti�ness matrix SH(A, `) is
de�ned by

SH(A, `)[i, j] := a(R`Λzj ,R`Λzi), i, j ∈ {1, . . . , m̄}, (4.14)

where i 7→ zi is a �xed ordering of the m̄ vertices in TH and Λz ∈ V̄H denotes the
classical nodal basis function associated with the vertex z of TH . The typical
sparsity pattern of such a matrix is depicted in Figure 4.1. Next, we intro-
duce the set of LOD sti�ness matrices with oversampling parameter ` based on
admissible coe�cients, which is given by

S(`, TH) :=
{
SH(A, `) ∈ Rm̄×m̄sym : A ∈ A

}
. (4.15)
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FE matrix LOD matrix, ` = 1

LOD matrix, ` = 2 LOD matrix, ` = 3

Figure 4.1: Sparsity patterns of a classical �rst-order FE sti�ness matrix and LOD

sti�ness matrices for di�erent values of ` on a Cartesian grid with lexico-

graphic ordering in D = (0, 1)2.

For better readability, from now on we use the notation vH (or BH) for both
the vector vH ∈ Rm̄ (or the matrix BH ∈ Rm×m̄) and the corresponding function
vH ∈ V̄H (or the mapping BH : V̄H → VH). For any matrix SH ∈ S(`, TH), we
de�ne the operator

Leff
SH

: XH × L2(D)→ V̄H ,

(u0, f) 7→ uH , where uH solves{
SH,0RHuH = RHMHfH −RHSHE

b
Hu0,

uH = u0 on ∂D

(4.16)

with the classical FE mass matrix MH , the restriction SH,0 = RHSHR
T
H of SH

to the inner vertices of TH , and fH = ΠHf . With the above de�nitions, we can
prove the following lemma.

Lemma 4.1.4 (Alternative representation of the e�ective forward operator).
Let SH(A, `) ∈ S(`, TH) be the LOD sti�ness matrix corresponding to (4.6).
Assume that Eb ful�lls C`Eb

Hv0 = C`Eb|XH
v0 = 0 for any v0 ∈ XH . Then it

holds that
Leff
SH(A,`)(u0, f) = Leff

A,`(u0, f) (4.17)
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for all u0 ∈ XH , f ∈ L2(D).

Remark 4.1.5. Possible choices for an extension operator Eb that ful�lls the
assumptions of Lemma 4.1.4 are those that extend functions in XH to functions
in V̄H that are only supported on one layer of elements away from the boundary.

Proof of Lemma 4.1.4. We write uH =
∑m̄

j=1 uj Λzj and observe that (4.6) is
equivalent to∑

j : zj /∈∂D

uj a(R`Λzj ,R`Λzi) = (fH ,Λzi)L2(D) − a(Eb
Hu0,R`Λzi) (4.18)

for all i ∈ {k : zk /∈ ∂D}. Inserting fH =
∑m̄

j=1 fj Λzi and using the fact that

a(Eb
Hu0,R`vH) = a((id− C`)Eb

Hu0,R`vH)

= a(R`Eb
Hu0,R`vH)

for any vH ∈ VH and the de�nition (4.14), we can write equation (4.18) as

SH,0(A, `)RHuH = RHMHfH −RHSH(A, `)Eb
Hu0,

which proves (4.17).

Lemma 4.1.4 and Corollary 4.1.3 show that LA(·, f) and Leff
SH(A,`)(·, f) are close

as operators from XH to V̄ if ` is chosen large enough. We use this property in
the next section to motivate the inverse problem. First, however, we give a brief
overview of other methods that provide similar e�ective models as the LOD.

4.1.5 Other quasi-local approaches

In this subsection, we quantify the quasi-locality of a method with respect to
the sparsity pattern of its sti�ness matrix that occurs in the representation of
the approach in terms of a linear system as, e.g., described in (4.16).
For the LOD, we know by the de�nition of C` that the resulting sti�ness

matrix SH ∈ S(`, TH) is included in the set

M(`, TH) :=

{
SH ∈ Rm̄×m̄sym : ∀ 1 ≤ i ≤ j ≤ m̄ :

zi /∈ N`(zj)⇒ SH [i, j] = 0

}
(4.19)

of matrices that may only have a non-zero entry at position [i, j] if the corre-
sponding vertices zi and zj belong to the `-neighborhood (see de�nition (2.13))
of each other. In other words, it holds that S(`, TH) ⊆ M(`, TH). Standard
sti�ness and mass matrices arising from classical FE methods belong to the
spaceM(0, TH) such that these methods can be referred to as local. Classical
homogenization approaches such as the MsFEM without oversampling [HW97],
the Two-Scale Finite Element Method [MS02], or the HMM [EE03,EE05] share
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4.1 Microscopic forward problem and e�ective approximation

the communication pattern of classical FE methods and therefore also lead to
sti�ness matrices in M(0, TH). Matrices arising from the MsFEM with over-
sampling are included inM(1, TH).
Concerning mathematical models that satisfactorily describe the e�ective be-

havior of physical processes on the scale of data resolution in the presence of very
general coe�cients, there are various other approaches that produce sti�ness
matrices with sparsity patterns similar to the LOD, such as the GFEM [BL11],
the ALB [GGS12], RPS [OZB14], the GMsFEM [EGH13], gamblets [Owh17],
CEM-GMsFEM [CEL18], and their variants. All these methods provably work
in the linear elliptic setting and are based on a coarse mesh with a character-
istic mesh parameter (typically the e�ective scale) or corresponding concepts
in the setting of mesh-free methods. These methods are of Galerkin-type and
thus characterized by discrete bases. To achieve optimal accuracy, a moder-
ate price in terms of an overhead in the computational complexity has to be
paid compared to a standard FE method (�xed order) on the same mesh. The
overhead is either in the number of functions per mesh entity (GFEM, GMs-
FEM), e.g., elements or vertices, or in the support of the basis functions (LOD,
RPS, gamblets, ALB). In both cases, the result is an increased communication
between the DOFs which, in turn, leads to a slightly denser sparsity pattern
of the corresponding system matrices. In other words, these matrices lie in
M(`, TH) for some (moderate) ` ∈ N. Thus, all these methods can be referred
to as quasi-local as well. It is worth noting that the set of matrices with the
considered sparsity pattern includes also matrices that occur in isogeometric
analysis [HCB05, CHB09]. Moreover, the set M(`, TH) also contains higher-
order FE matrices with polynomial degree p ∼ ` on meshes that are coarser by
roughly a factor of p and matrices from peridynamics [Sil00,Lip14,Du17] with
horizon δ ∼ H`. We emphasize that also the higher-order LOD approach of
Chapter 3 leads to matrices in the set (4.19), with an ampli�ed communication
pattern that depends on ` and p.
The theoretical analysis of the methods mentioned above indicates that reli-

able e�ective models for PDEs with general microstructures are based on a con-
trolled deviation from locality. Similar observations have been made in con-
nection with the pollution e�ect in high-frequency time-harmonic wave prop-
agation [BS97], which cannot be avoided unless the mesh size is coupled to,
e.g., the polynomial degree [MS10,MS11,MPS13] or the support of the basis
functions [Pet17] in a logarithmic way. Finally, we mention that non-locality is
also considered in classical stochastic homogenization in connection with higher-
order correctors to achieve better approximation properties; see, e.g., [DGO16].
Although the quasi-local e�ective models described above are purely discrete

and lack a PDE representation in general, they are well-understood. This is the
main motivation for the present approach of reconstructing quasi-local e�ective
models (i.e., their matrix representation) given low-resolution measurements
based on inhomogeneous boundary data in a medium with microstructures.
This is further discussed in the subsequent section.
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4.2 Inverse problem: reconstruction of the

e�ective model

4.2.1 Problem setting

Let us now assume that the di�usion coe�cient A is unknown. Since information
about the coe�cient is not available, structural assumptions such as periodicity,
local periodicity, and given parameterization by few DOFs cannot be satis�ed
a priori. In an ideal setting, information about solutions of problem (4.3) in the
form of a solution operator

L̃ := LA(·, f) : X → V̄

would be given. In practical applications, however, boundary data and informa-
tion about the corresponding solutions are only available on some coarse scale
H, possibly much larger than the microscopic scale on which the di�usion coef-
�cient and the corresponding solutions vary. In this case, a classical formulation
of the inverse problem, for a �xed right-hand side f , consists in recovering A in
(4.3) given a mapping

L̃eff := Leff
A (·, f) : XH → V̄H

which comprises coarse measurements of solutions of (4.3).
If the unknown coe�cient includes �ne-scale features, a direct approach of

recovering A by full (�ne-scale) simulations is computationally unfeasible. In-
spired by the ideas presented in Section 4.1, we present in this section an alter-
native approach to recover information about the macroscopic e�ective model
taking into account the presence of a microscopic di�usion coe�cient. Rather
than reconstructing the di�usion coe�cient itself, we tackle the reconstruction
of an e�ective sti�ness matrix that is able to reproduce the given data related to
solutions of (4.3). We recall that such an approach is reasonable since the map-
ping L̃eff can not only be characterized by the corresponding coe�cient but also
by the e�ective sti�ness matrix as described in the previous section. Therefore,
the alternative formulation of the inverse problem reads:

given L̃eff : XH → V̄H , �nd the corresponding sti�ness matrix S̃H .

Note that in the case f = 0, the classical Calderon problem [Cal80] might be
considered, where a so-called Dirichlet-to-Neumann mapping is given instead of
the operator LA. However, this problem requires information on the coe�cient
at the boundary, and the derivation of the method presented below needs to be
adjusted accordingly.
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4.2.2 The minimization problem

The inverse problem could ideally be formulated as a minimization problem for
the functional

J̃H(SH) =
1

2

(
distf (L̃

eff ,Leff
SH

)
)2

(4.20)

in the set S(`, TH) of LOD sti�ness matrices based on admissible coe�cients,
where Leff

SH
is de�ned in (4.16). However, since we are not able to characterize

the set S(`, TH) in a way that would be suitable for optimization, we instead seek
a minimizer in the linear spaceM(`, TH) ⊇ S(`, TH) of matrices with prescribed
sparsity pattern as de�ned in (4.19). That is, we enlarge the set of possible
minimizers. We emphasize that with this generalization, the sole criterion in
the inversion process is the sparsity pattern. From now on, we are searching
for e�ective models with increased communication between the DOFs, including
those mentioned in Section 4.1.5, without requiring any particular knowledge
on the LOD or other numerical homogenization methods.
The minimization problem with respect to the spaceM(`, TH) reads

�nd S̃∗H = arg min
SH∈M(`,TH)

J̃H(SH). (4.21)

Using the previously introduced matrices, the operator Leff
SH

(·, f) : XH → V̄H
can be interpreted as a matrix of size m̄× n, i.e.,

Leff
SH

=
(
I −RT

HS
−1
H,0RHSH

)
Eb
H +RT

HS
−1
H,0RHMHFH ,

with FH := [fH , fH , . . . , fH ] ∈ Rm̄×n and the identity matrix I ∈ Rm̄×m̄. The
matrix Leff

SH
comprises full information about the forward problem in the sense

that it includes the solutions of (4.16) for a complete set of basis functions of
XH . Note, however, that L

eff
SH

is not linear. That is, for a particular boundary
condition u0 ∈ Rn, we have

Leff
SH

(u0) =
(
I −RT

HS
−1
H,0RHSH

)
Eb
Hu0 +RT

HS
−1
H,0RHMHfH .

The operator L̃eff may also be interpreted as a matrix, so that the distance be-
tween the operators can be measured in general matrix norms. This is especially
useful since a splitting of the form (4.13) is generally not known for L̃eff .
Let µ := dimM(`, TH). Based on the matrix representation introduced

above, instead of (4.21) we consider a minimization problem for the functional
JH : Rµ → R de�ned by

JH(SH) :=
1

2

∥∥L̃eff
∥∥−2

Rm̄×n

∥∥L̃eff − Leff
SH

∥∥2

Rm̄×n . (4.22)

At this stage, the choice of the norm in Rm̄×n in (4.22) is arbitrary. The results
that we show in Section 4.3 were obtained using the Frobenius norm, which is
a natural candidate.
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4.2.3 Iterative minimization

To �nd a minimizer of (4.22), we can now apply standard minimization tech-
niques such as the Newton method or the gradient descent method. Here, we
adopt a Gauÿ-Newton method [NW06, Sec. 10.3] which, in our numerical com-
putations, showed faster convergence in terms of number of iterations.
In order to compute the descent direction, the most important step concerns

the computation of the gradient of JH with respect to the relevant entries
{si}µi=1 of SH (i.e., the diagonal and the non-zero entries above the diagonal,
due to symmetry). Using the chain rule, we obtain

∂

∂si
JH(SH) = −

∥∥L̃eff
∥∥−2

Rm̄×n

(
L̃eff − Leff

SH

)
:
∂Leff

SH

∂si
(4.23)

with M : M̃ := trace(MM̃T ). For the Gauÿ-Newton method only the deriva-
tives of Leff

SH
are needed, i.e.,

∂Leff
SH

∂si
= −RT

H

(
∂S−1

H,0

∂si

)
RH(SHE

b
H −MHFH)

−RT
HS
−1
H,0RH

(
∂SH
∂si

)
Eb
H

= RT
HS
−1
H,0

(
∂SH,0
∂si

)
S−1
H,0RH(SHE

b
H −MHFH)

−RT
HS
−1
H,0RH

(
∂SH
∂si

)
Eb
H .

The derivatives ∂SH

∂si
and

∂SH,0

∂si
are relatively easy to compute, as they are de�ned

as global matrices that only contain at most two non-zero entries equal to 1.
For ease of notation, we interpret Leff

SH
and SH as vectors in Rm̄n and Rm̄

2
,

respectively. The Gauÿ-Newton method to minimize the functional JH is then
de�ned by the following steps:

• Let an initial matrix S0
H ∈M(`, TH) be given.

• For k = 0, 1, . . . (until a certain stopping criterion is satis�ed), solve

Hkpk =
(
∇Leff

Sk
H

)T (
L̃eff − Leff

Sk
H

)
, (4.24)

where ∇ denotes the derivative with respect to the relevant entries of SH
and

Hk =
(
∇Leff

Sk
H

)T (
∇Leff

Sk
H

)
.

• Set Pk ∈ M(`, TH) as the matrix whose relevant entries are given by pk
and de�ne

Sk+1
H = SkH + δkPk (4.25)

72



4.3 Numerical experiments

with appropriately chosen step size δk, for example using backtracking line
search based on the Armijo condition; see, e.g., [NW06, Alg. 3.1] for the
details.

Due to the ill-posedness of the inverse problem, the matrixHk might be singular.
A possible approach to overcome this issue consists in replacing (4.24) with

(Hk + ηI) pk =
[
∇Leff

Sk
H

]T [
L̃eff − Leff

Sk
H

]
(4.26)

with a given parameter η > 0, which is typically referred to as regularization.
Another possible strategy is to add a regularization term to the functional to

be minimized, i.e., to replace (4.22) by

JH(SH) =
1

2

∥∥L̃eff
∥∥−2

Rm̄×n

∥∥L̃eff − Leff
SH

∥∥2

Rm̄×n +
γ

2

∥∥Sreg − SH
∥∥2

Rm̄×m̄ , (4.27)

where γ > 0 is a given regularization parameter and Sreg is a regularization (or
stabilization) matrix. Additionally, the computations of the gradient in (4.23)
need to be adapted accordingly. In the presence of multiple minimizers, this
regularization forces the solution to be close (depending on the parameter γ)
to the matrix Sreg. For instance, if the aim of the inverse problem is to �nd
defects in an otherwise homogeneous medium, a suitable choice for Sreg could
be a standard FE sti�ness matrix for a constant di�usion coe�cient. In our
practical computations, the regularization approach described in (4.26) is used,
which generally led to better results.
We emphasize that the presented inversion process does not need to resolve

any �ne scales in order to obtain an e�ective numerical model. Further, the
information extracted by this procedure (i.e., a sti�ness matrix S̃H) may be
used to simulate other problems subject to the same (unknown) di�usion coef-
�cient. Finally, the information gathered can also be seen as an intermediate
step towards recovering information concerning the original coe�cient itself.

4.3 Numerical experiments

In this section, we present some numerical experiments that illustrate the capa-
bility of the proposed method. The inverse problem is based on synthetic data,
i.e., the coarse measurements used to feed the inversion algorithm are obtained
from FE functions in V̄h, de�ned on a mesh ofD = (0, 1)2 with mesh size h = 2−9

that resolve the �ne-scale features of the di�usion coe�cient. Furthermore, the
data are perturbed by random noise with intensity up to 5%.

4.3.1 Example 1: full boundary data

In a �rst experiment, we assume to have full information on the operator (ma-
trix) L̃eff , i.e., we assume that measurements in D on the scale H = 2−5 for
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Figure 4.2: Di�usion coe�cient in Example 1 (left) and values of JH in the �rst 15
iterations of the inversion algorithm using sparsity patterns based on local

matrices (` = 0) and quasi-local matrices with ` ∈ {1, 2, 3} (right).

a complete basis of XH are available. The scalar coe�cient A, for which the
e�ective behavior should be recovered, is piecewise constant on a mesh Tε with
ε = 2−7 and the value on each element is independently obtained as a uniformly
distributed random number between 1 and 40, i.e., for any K ∈ Tε we have
A|K ∼ U(1, 40); see Figure 4.2 (left) for the explicit sample used here. We set
f = 1 and start the inverse iteration with the �rst-order FE sti�ness matrix
S0
H based on the constant coe�cient with value 1. The values of the functional
JH in the �rst 15 iterations of the inversion algorithm are given in Figure 4.2
(right). In particular, we compare the performance of a local approach based on
matrices with the sparsity pattern of a standard �rst-order FE method (such
as, e.g., the HMM or the Two-Scale Finite Element Method) with the proposed
quasi-local method based on matrices inM(`, TH) for ` ∈ {1, 2, 3}. One clearly
sees that the quasi-local inversion leads to better results in terms of decrease
and value of the error functional JH . In particular, with the local approach
the functional seems to reach a stagnation relatively quickly, while the results
signi�cantly improve with the quasi-local approach when increasing the value
of `.
A necessary validation step, in order to further investigate the di�erent meth-

ods, consists in solving a di�usion problem using the sti�ness matrices recon-
structed with the di�erent approaches (local and quasi-local) and comparing
the resulting numerical solutions with the FE functions from which the mea-
surements were taken to feed the inversion algorithm. The outcome of this
assessment is shown in Figure 4.3, focusing on the cross sections at x2 = 0.5
(left) and at x1 = 0.5 (right) of the numerical approximations corresponding to
the boundary condition u0(x) = sin(3π x1). Figure 4.4 depicts the same cross
sections when a random boundary condition u0 ∈ XH is considered. As before,
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Figure 4.3: Cross sections at x2 = 0.5 (left) and at x1 = 0.5 (right) of reconstructed

functions with the boundary condition u0(x) = sin(3π x1) based on local

sti�ness matrices (` = 0) and quasi-local ones with ` ∈ {1, 2, 3} for Ex-
ample 1 obtained from full boundary data. The corresponding �ne FE

function is depicted as a reference.
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Figure 4.4: Cross sections at x2 = 0.5 (left) and at x1 = 0.5 (right) of reconstructed

functions with a randomly chosen boundary condition u0 ∈ XH based on

local sti�ness matrices (` = 0) and quasi-local ones with ` ∈ {1, 2, 3} for
Example 1 obtained from full boundary data. The corresponding �ne FE

function is depicted as a reference.

75



4 Justi�cation of Quasi-Local Methods by Inversion

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

x1

0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

x1

` = 0
` = 1
` = 2
` = 3
ref sol

Figure 4.5: Cross sections at x2 = 0.5 of reconstructed functions with homoge-

neous Dirichlet boundary conditions and right-hand side g1 (left) and

g2 (right) based on local sti�ness matrices (` = 0) and quasi-local ones

with ` ∈ {1, 2, 3} for Example 1. The corresponding �ne FE functions are

given as a reference but were not part of the input data.

these results show an improved behavior if ` is increased, in particular in the
case of the highly oscillating boundary condition considered in Figure 4.4.
Besides the accuracy of the numerical approximations based on the recov-

ered sti�ness matrices, it is also important to assess the robustness of the re-
constructed e�ective model, i.e., to investigate to which extent the coarsened
information about the di�usion coe�cient encoded in the sti�ness matrix can
be used to simulate other scenarios.
For this purpose, we employ the reconstructed sti�ness matrices to simulate

a di�usion problem with two di�erent right-hand sides, i.e.,

g1(x) = 20 (1{x1<0.5} x1 + 1{x1≥0.5} (1− x1))(1{x2<0.5} x2 + 1{x2≥0.5} (1− x2))

and
g2(x) = 10 1{x1≥0.5},

and compare the numerical results with the corresponding �ne-scale solution
using the di�usion coe�cient depicted in Figure 4.2 (left). In both cases, homo-
geneous Dirichlet boundary conditions are imposed on the outer boundaries.
Representative cross sections of the numerical approximations based on the

reconstructed sti�ness matrices, compared to the corresponding �ne-scale solu-
tions, are shown in Figure 4.5. The numerical results indicate that robustness
can be assured only with the quasi-local inversion. Moreover, as in the previous
experiments, the quality of the results improves if ` is increased.
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Figure 4.6: Di�usion coe�cient in Example 2 (left) and values of JH in the �rst 15
iterations of the inversion algorithm using sparsity patterns based on local

matrices (` = 0) and quasi-local matrices with ` ∈ {1, 2, 3} (right).

4.3.2 Example 2: incomplete boundary data

Next, we consider a more realistic case where the operator L̃eff is only partially
known. In practice, this means that coarse measurements in D are available
only for k distinct boundary conditions in XH (k < dimXH). In this setting,
the aim is to �nd an e�ective model that not only �ts the given data, but that
is also able to reproduce the coarse behavior for other boundary conditions not
considered as input data.
The scalar coe�cient A whose corresponding sti�ness matrix should be re-

covered is shown in Figure 4.6 (left). We set H = 2−5, f = 1, k = 40, and
the initial matrix S0

H is de�ned as the �rst-order FE sti�ness matrix based on
a sample of an independent and uniformly distributed random coe�cient on the
coarse scale H with values between 0.1 and 10.
We adapt the randomized approach described in [OY19] in the context of

deep learning. Namely, in each iteration step, we randomly choose half of the
available data to compute the new search direction, whereas we use all available
data for the line search and for the evaluation of the functional JH . The values
of the error functional JH in the �rst 15 iterations of the inversion algorithm are
shown in Figure 4.6 (right). We observe that classical local sti�ness matrices
and even quasi-local ones with ` = 1 cannot signi�cantly improve the results
obtained with the initial guess, while quasi-local matrices with ` ≥ 2 are able
to reduce the values of the functional up to a certain degree.
As in the previous subsection, we validate the outcome of the inversion algo-

rithm by solving a di�usion problem using the reconstructed sti�ness matrices.
Then we compare the numerical results with the corresponding �ne FE solutions.
The cross sections at x2 = 0.5 and x1 = 0.5 of the numerical approximations
based on the di�erent sti�ness matrices are shown in Figure 4.7 in the case
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Figure 4.7: Cross sections at x2 = 0.5 (left) and at x1 = 0.5 (right) of reconstructed

functions with the boundary condition u0(x) = x1 x
3
2 based on local sti�-

ness matrices (` = 0) and quasi-local ones with ` ∈ {1, 2, 3} for Exam-

ple 2 obtained from incomplete boundary data and with the randomized

approach. The corresponding �ne FE function is depicted as a reference

but was not part of the input data.

with the boundary condition u0(x) = x1 x
3
2. We emphasize that, in this setting,

neither the reference FE function (black dotted line in Figure 4.7) nor a coarse
measurement from it were part of the input data. As expected from the val-
ues of JH , the reconstructions based on the matrices with ` ∈ {2, 3} are close
and better approximate the behavior of the �ne-scale solution than the matrices
with ` ∈ {0, 1}. The clear gap between ` = 1 and ` = 2 in this example may be
explained by the structure of the coe�cient. That is, a signi�cant improvement
of the results compared to the initial guess can only be achieved if the model is
able to capture the two cracks, which probably only holds true for ` ≥ 2.
For a further comparison, we also present in Figure 4.8 the same cross sections

of the numerical solutions obtained from the sti�ness matrices using a full-data
approach, i.e., when all available data (40 measurements) are used in every
step to compute the new search direction. The reconstructed matrices behave
similarly to the ones obtained with the randomized approach. However, it is
worth mentioning that the randomized strategy is generally more robust in the
case of incomplete boundary data and additionally requires less computational
e�ort.

The presented inversion results demonstrate that the reconstruction of a sti�-
ness matrix assuming a �xed local sparsity pattern of classical �rst-order �nite
elements does not allow capturing macroscopic features of solutions to a prob-
lem with underlying microscopic coe�cient, while the reconstruction based on
a quasi-local approach, especially with ` ≥ 2, is able to mimic the e�ective
behavior quite well.
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Figure 4.8: Cross sections at x2 = 0.5 (left) and at x1 = 0.5 (right) of reconstructed

functions with the boundary condition u0(x) = x1 x
3
2 based on local sti�-

ness matrices (` = 0) and quasi-local ones with ` ∈ {1, 2, 3} for Example 2

obtained from incomplete boundary data and with the full-data approach.

The corresponding �ne FE function is depicted as a reference but was not

part of the input data.

Furthermore, the quasi-local approach appears to be robust with respect to
di�erent right hand sides, a property which allows us to employ the recon-
structed e�ective model for the simulation of other scenarios, assuming that the
microscopic properties remain unchanged.
With regard to the forward setting, our experiments indicate that the use of

quasi-local approaches in the presence of general multiscale coe�cients is justi-
�ed and maybe even necessary to obtain reasonable approximations on a coarse
scale of interest. In that sense, our �ndings deviate from the numerical results
in [GGS12], which indicate that truly local numerical homogenization might
always be possible. We emphasize, however, that of course also the larger num-
ber of DOFs contributes to the better behavior of the quasi-local models in the
presented inversion procedure. That is, the results by no means depreciate local
homogenization approaches in general.
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5 Fast Time-Explicit Multiscale

Wave Propagation

In the previous chapters, we have seen how the LOD can be applied to stationary
second-order linear PDEs which include microscopic features that need to be
taken into account to obtain a su�ciently accurate approximation on some
coarse scale of interest. Further, we have seen that the quasi-local concept
of the method seems to be reasonable in the stationary setting, which becomes
evident from the results of the inverse procedure described in Chapter 4.
As a next step, we extend the class of model problems and consider non-

stationary problems, i.e., PDEs that depend not only on spatial variables but
also on a temporal one. While the microscopic information in such a setting
might depend on time as well, we restrict ourselves to the case where involved
coe�cients only depend on the spatial variables. The common approach to
handle such problems is to apply the LOD (or any other multiscale technique
for stationary equations) to the stationary part of the PDE to construct a time-
independent coarse space which includes �ne-scale information. Combining this
spatial discretization with a suitable time-stepping approach then leads to a fully
discrete method.
We emphasize that time-dependent problems allow us to exploit the full po-

tential of the LOD. This is connected to the fact that, as described above, the
technique is applied to the stationary part of the PDE and a corresponding
multiscale space is only computed once in the so-called o�ine stage. Due to the
coarse nature of such a space, the size of the respective system matrices is much
smaller compared to an approximation space on a �ner scale. This is extremely
valuable for the online stage, where only linear systems based on the smaller
matrices need to be solved in every time step without any further �ne-scale
simulations.
Note that although this general approach can be applied to any second-order

PDE with temporal and spatial variables, the error analysis generally di�ers
dependent on the PDE and the chosen time discretization. In this chapter, we
use the approach in connection with the acoustic wave equation and an explicit
time discretization scheme. The corresponding framework is introduced in the
following section.
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5.1 The heterogeneous wave equation

We consider the wave equation on a time interval [0, T ] given by

∂2
t u− div(A∇u) = f in (0, T ]×D,

u(0) = u0 in D,

∂tu(0) = v0 in D,

u|Γ = 0 in (0, T ],

∇u · ν|∂D\Γ = 0 in (0, T ],

(5.1)

where D ⊆ Rd, d ∈ {2, 3}, is a polytopal, convex, bounded Lipschitz domain
with outer normal ν and Dirichlet boundary Γ ⊆ ∂D with |Γ| > 0. Further, we
assume to have initial data u0 ∈ V = H1

Γ(D), v0 ∈ H = L2(D) (cf. Section 2.1),
and a time-independent rough coe�cient A ∈ A as de�ned in (3.2). As before,
we have in mind coe�cients that vary on some small scale ε but we do not need
restrictive structural assumptions such as periodicity or scale separation.
Before we introduce and analyze the variational form corresponding to (5.1),

we need to clarify some notation used in the context of time-dependent formu-
lations.

First, we recall that by the Friedrichs inequality ‖∇ · ‖L2(D) is a norm in
H1

Γ(D). Moreover, we introduce the notation H−1(D) := (H1
Γ(D))∗ and write

Lp(0, T ;X) for the Bochner space (see, e.g., [Eva10, Sec. 5.9.2]) with the norm

‖v‖Lp(0,T ;X) :=

(ˆ T

0

‖v‖pX dt

)1/p

, 1 ≤ p <∞,

‖v‖L∞(0,T ;X) := ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The notation
v ∈ Hk(0, T ;X), k ∈ N, is used to denote that v and its weak time derivatives
∂jt v for j ∈ {1, . . . , k} are elements of the space L2(0, T ;X). The Bochner space
of functions that are continuous in time on the interval [0, T ] is denoted with
C([0, T ];X) and equipped with the norm

‖v‖C([0,T ];X) := max
0≤t≤T

‖v‖X .

As above, we write v ∈ Ck([0, T ];X), k ∈ N, if v and ∂jt v for j ∈ {1, . . . , k} are
elements of the space C([0, T ];X).

In order to compute a numerical approximation of solutions of (5.1), we write
the problem in variational form, i.e., we seek a weak solution u ∈ L2(0, T ;H1

Γ(D))
with ∂tu ∈ L2(0, T ;L2(D)) and ∂2

t u ∈ L2(0, T ;H−1(D)) such that

〈∂2
t u, v〉H−1(D)×H1

Γ(D) + a(u, v) = (f, v)L2(D) (5.2)
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for all v ∈ H1
Γ(D) with initial conditions u(0) = u0 and ∂tu(0) = v0, where a

again denotes the bilinear form

a(v, w) =

ˆ
D

A∇v · ∇w dx

and 〈·, ·〉H−1(D)×H1
Γ(D) is the dual pairing between H−1(D) and H1

Γ(D). Note

that for any u0 ∈ H1
Γ(D), v0 ∈ L2(D), and f ∈ L2(0, T ;L2(D)), there exists

a unique weak solution u of problem (5.2). A proof of this property can be
found, e.g., in [Eva10, Thm. 3 & 4 in Sec. 7.2.2], which also holds for non-
smooth coe�cients. Restricting the solution space H1

Γ(D) in (5.2) to a FE
space Vh based on a regular and quasi-uniform mesh Th of D with mesh size h
(see Section 2.2) and applying the leapfrog scheme with step size τ in time, we
obtain the following discrete problem: given u0

h ∈ Vh and u1
h ∈ Vh, �nd {unh}Nn=0

with unh ∈ Vh such that

τ−2 (un+1
h − 2unh + un−1

h , vh)L2(D) + a(unh, vh) = (f(nτ), vh)L2(D) (5.3)

for all vh ∈ Vh and n ∈ {1, . . . , N − 1}, where N := T/τ is the number of
time steps. For simplicity, we assume that T and τ are such that T/τ ∈ N.
It is well understood that the method de�ned in (5.3) only leads to acceptable
results if the mesh size h is small enough to resolve the �ne-scale features in
space originating from the highly varying coe�cient A. In order to obtain
a su�ciently accurate approximation of the solution of (5.2), at least h < ε
should hold. Such an h, however, may be too small to allow for reasonably
fast computations. It is especially very restrictive since reducing the size of h
directly leads to larger systems of linear equations that need to be solved in
every time step. Furthermore, the fact that the above method (5.3) is explicit
in time also introduces the so-called Courant-Friedrichs-Lewy (CFL) condition
that limits the time step size τ by the mesh size h, i.e., τ . h. It is, hence, too
expensive to pose the discrete problem on meshes with small mesh sizes h that
resolve �ne-scale features.
Based on the LOD method described in the previous chapters, we introduce

a way to cope with the �ne-scale characteristics on an arbitrarily chosen coarse
scale H which reduces the size of linear systems and enables larger time steps
subject to a relaxed CFL condition τ . H. Thus, the reduced computational
complexity with respect to the spatial variable comes along with a complexity
reduction in time. We emphasize that the results of this chapter were �rst pre-
sented in [MP19]. Besides, the LOD approach was already successfully applied in
connection with electromagnetic waves [GHV18,Ver17] and time-harmonic wave
propagation to eliminate the pollution e�ect [Pet17,GP15,BGP17]. Further, it
was used in [PS17] for the wave equation with a constant coe�cient to relax the
time step restriction on adaptively re�ned meshes. For the wave equation (5.1)
with rough coe�cients, the LOD was used in combination with an implicit time
discretization (Crank-Nicolson) in [AH17]. Therein, the need for additional reg-
ularity assumptions on the initial data was discussed, which is also crucial for
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the explicit time discretization in our case. As mentioned above, there are other
possibilities to resolve the �ne-scale features. The use of the HMM for the spatial
discretization is for instance considered in [AG11,EHR11] or in [EHR12,AR14]
in the context of wave propagation over long time. However, the correspond-
ing analysis requires additional assumptions such as scale separation. Another
method for the numerical homogenization of the wave equation can be found
in [OZ08]. There, the idea is to use a harmonic coordinate transformation in
order to obtain higher regularity of the weak solution. The main drawbacks of
this approach are the necessary assumptions (so-called Cordes-type conditions)
that are hard to verify, and the approximation of the coordinate transformation
for which global �ne-scale problems need to be solved. Another approach by the
same authors is presented in [OZB14] based on RPS. The approach in [OZ17]
based on gamblets shows the possible generalization of the present approach to
a multilevel setting.
In general, any of the methods mentioned above can be used for the spatial

discretization. The advantage of the LOD is that it preserves the �nite element
structure of the problem and is thus very convenient for practical applications.
Then again, the use of an explicit time stepping scheme is motivated by its
simple nature that allows for faster computations in every time step and by the
fact that the discrete energy is conserved; cf. (5.7) below. Since solutions of the
wave equation conserve energy in the continuous setting, such a property is very
natural and desirable in the discrete setting as well.

5.2 The ideal method

In this section, we apply the ideas of Chapter 2 to the stationary part of the
wave equation, i.e., we compute correctors and a corrected coarse FE space
based on the bilinear form a. Since a is coercive and bounded in H1

Γ(D), the
results of Chapter 2 may be applied without additional assumptions. Before
writing down the ideal method where the classical LOD approach is combined
with a time-stepping scheme, we brie�y recall the main de�nitions and prove
two auxiliary results in the following subsection.

5.2.1 Numerical upscaling by LOD

We consider, as before, a family of regular decompositions {TH}H>0 of the do-
main D into quasi-uniform d-rectangles with mesh parameter H (cf. Section 2.2)
and denote with VH the corresponding conforming Q1 FE space. For a linear
and projective quasi-interpolation operator IH : L2(D)→ VH as in Section 2.2.2,
we de�ne the �ne-scale space W := ker IH |H1

Γ(D) and the correction operator

C : H1
Γ(D)→W by

a(Cv, w) = a(v, w) (5.4)
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5.2 The ideal method

for all w ∈ W . As in Chapter 2, we further de�ne the ideal multiscale space
ṼH := (id− C)VH = RVH and recall that H1

Γ(D) = ṼH ⊕W and a(ṼH ,W) = 0
by construction.
Next, we prove that an inverse inequality holds in ṼH similarly to the classical

one in the space VH .

Lemma 5.2.1 (Inverse inequality). For any ṽH ∈ ṼH , we have that

‖∇ṽH‖L2(D) ≤ C̃invH
−1‖ṽH‖L2(D). (5.5)

The constant C̃inv only depends on the constant Cinv in (2.35), the operator IH ,
and the contrast β/α, where α and β are the lower and upper bounds on A as
quanti�ed in Section 3.1.

Proof. Let ṽH ∈ ṼH . Since ṽH = (1− C)IH ṽH , we get

α ‖∇ṽH‖2
L2(D) ≤ a(ṽH , ṽH) = a(ṽH , IH ṽH) ≤ β ‖∇ṽH‖L2(D) ‖∇IH ṽH‖L2(D)

≤ β ‖∇ṽH‖L2(D) CinvCIHH
−1 ‖ṽH‖L2(D)

using (2.11) and the classical inverse inequality (2.35). Hence, (5.5) follows with
C̃inv := CinvCIHβ/α.

Besides, the new space ṼH also has the following approximation property,
which is a generalization of [PS17, Lem. 2.1] to the case of non-constant coe�-
cients reusing ideas from Theorem 2.3.1.

Lemma 5.2.2. For all w ∈ H1
Γ(D) with divA∇w ∈ L2(D), it holds that

inf
ṽH∈ṼH

‖∇(w − ṽH)‖L2(D) ≤ α−1CIHH ‖ divA∇w‖L2(D).

Proof. Let w ∈ H1
Γ(D). Further, let w̃H ∈ ṼH be the orthogonal projection with

respect to the bilinear form a of w onto ṼH , i.e.,

a(w̃H , ṽH) = a(w, ṽH)

for all ṽH ∈ ṼH . Therefore, eH = w − w̃H ∈ W and, hence,

α ‖∇eH‖2
L2(D) ≤ a(eH , eH) = a(w, eH) = (− divA∇w, eH)L2(D)

≤ ‖ divA∇w‖L2(D) ‖eH‖L2(D).

Since eH ∈ W , it holds that

‖eH‖L2(D) = ‖(id− IH)eH‖L2(D) ≤ CIHH ‖∇eH‖L2(D),

where we use the approximation property (2.14). Combining both inequalities
results in

‖∇(w − w̃H)‖L2(D) ≤ α−1CIHH ‖ divA∇w‖L2(D),

which concludes the proof.
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5 Fast Time-Explicit Multiscale Wave Propagation

5.2.2 Discretization in time

Based on the adapted discrete space ṼH and the leapfrog scheme with time step
τ as in (5.3), the proposed ideal method reads: given ũ0

H = (id− C)IHu0 and
suitable ũ1

H ∈ ṼH , �nd {ũnH}Nn=0 with ũ
n
H ∈ ṼH such that

τ−2 (ũn+1
H − 2ũnH + ũn−1

H , ṽH)L2(D) + a(ũnH , ṽH) = (f(nτ), ṽH)L2(D) (5.6)

for all ṽH ∈ ṼH and n ∈ {1, . . . , N − 1}. We emphasize that (5.6) is called
ideal method because we implicitly assume that the corrector problems (5.4)
can be computed exactly. In order to show stability and error estimates for this
scheme, standard methods [Chr09, Jol03] can be applied. First, we introduce
the discrete energy

En+1 :=
1

2

(∥∥Dτ ũ
n+1
H

∥∥2

L2(D)
+ a(ũnH , ũ

n+1
H )

)
,

where Dτ ũ
n+1
H := (ũn+1

H − ũnH)/τ denotes the discrete time derivative. Using the
test function ṽH = ũn+1

H − ũn−1
H in (5.6), we derive energy conservation in the

sense that

τ (f(nτ), Dτ ũ
n+1
H +Dτ ũ

n
H)L2(D)

= τ−2 (ũn+1
H − 2ũnH + ũn−1

H , ũn+1
H − ũn−1

H )L2(D) + a(ũnH , ũ
n+1
H − ũn−1

H )

= 2 (En+1 − En).

(5.7)

Therefore, if no external force is applied, i.e., f = 0, the discrete initial energy
E1 is conserved over time.

Lemma 5.2.3 (Stability of the ideal method). Assume that the CFL condition

1− 1

2
βC2

invC
2
IHH

−2τ 2 ≥ δ (5.8)

holds for some δ > 0. Then the ideal method (5.6) is stable, i.e., it holds that

‖Dτ ũ
n+1
H ‖L2(D) + ‖∇ũn+1

H ‖L2(D)

≤ Cstab

( n∑
k=1

τ ‖f(kτ)‖L2(D) + ‖Dτ ũ
1
H‖L2(D) + ‖∇ũ0

H‖L2(D) + ‖∇ũ1
H‖L2(D)

)
(5.9)

for all n ∈ {0, . . . , N−1}, where the constant Cstab depends on α, β, and δ only.

Proof. The proof mainly follows the ideas presented in [Chr09, Jol03], general-
ized to the case of arbitrary coe�cients. Using the inverse inequality (2.35), the
boundedness of the bilinear form a, and

a((id− C)vH , (id− C)vH) = a(vH , vH)− a(CvH , CvH) ≤ β ‖∇vH‖2
L2(D)
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for any vH ∈ VH , we have that

En+1 =
1

2

(
‖Dτ ũ

n+1
H ‖2

L2(D) + a(ũnH , ũ
n+1
H )

)
=

1

4
a(ũn+1

H , ũn+1
H ) +

1

4
a(ũnH , ũ

n
H)

− 1

4
a(ũn+1

H − ũnH , ũn+1
H − ũnH) +

1

2
‖Dτ ũ

n+1
H ‖2

L2(D)

≥ 1

4
a(ũn+1

H , ũn+1
H ) +

1

4
a(ũnH , ũ

n
H)

+
1

2

(
1− 1

2
βC2

inv
C2
IHH

−2τ 2
)
‖Dτ ũ

n+1
H ‖2

L2(D).

Therefore, the CFL condition (5.8) ensures positivity of the discrete energy since

En+1 ≥ 1

4
a(ũn+1

H , ũn+1
H ) +

1

4
a(ũnH , ũ

n
H) +

δ

2
‖Dτ ũ

n+1
H ‖2

L2(D). (5.10)

Employing (5.7) and the inequality (5.10), we get the estimate

En+1 − En =
1

2
τ (f(nτ), Dτ ũ

n+1
H +Dτ ũ

n
H)L2(D)

≤ 1

2
τ ‖f(nτ)‖L2(D)

(
‖Dτ ũ

n+1
H ‖L2(D) + ‖Dτ ũ

n
H‖L2(D)

)
≤ 1√

2δ
τ ‖f(nτ)‖L2(D)

(√
En+1 +

√
En
)
.

This yields
√
En+1 ≤

√
En +

1√
2δ
τ ‖f(nτ)‖L2(D)

and, hence, the stability estimate

√
En+1 ≤

√
E1 +

1√
2δ

n∑
k=1

τ ‖f(kτ)‖L2(D).

This implies (5.9).

Apart from the stability of ũnH , the estimate (5.9) also provides a tool for the
estimation of the error ũnH − u(tn) in the following subsection. Note that the
constant Cstab, and thus also the constant in the error bounds later on, depends
on the contrast β/α. However, this dependence seems pessimistic in many cases
of practical relevance; see, e.g., [PS16,HM17].

5.2.3 Error analysis

In this subsection, we derive an error estimate for the ideal method (5.6) pro-
vided that suitable regularity assumptions hold. The assumptions are met for
relevant classes of problems with arbitrarily rough coe�cients that are charac-
terized by the right-hand side f and the initial conditions.
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5 Fast Time-Explicit Multiscale Wave Propagation

Assumption 5.2.4 (Initial regularity). Suppose that the right-hand side f and
the initial data in problem (5.2) satisfy the conditions

(A0) f ∈ H3(0, T ;L2(D)),

(A1) ∂tu(0) = v0 ∈ H1
Γ(D),

(A2) ∂2
t u(0) = f(0) + divA∇u0 ∈ H1

Γ(D),

(A3) ∂3
t u(0) = ∂tf(0) + divA∇v0 ∈ H1

Γ(D),

(A4) ∂4
t u(0) = ∂2

t f(0) + divA∇∂2
t u(0) ∈ L2(D).

Further, assume that the corresponding norms can be bounded independently
of the �ne scale ε on which A varies, i.e., that there exists a constant Cdata

(possibly dependent on T ) such that

‖f‖H3(0,T ;L2(D)) +
3∑
j=0

‖∇∂jtu(0)‖L2(D) + ‖∂4
t u(0)‖L2(D) ≤ Cdata. (5.11)

Remark 5.2.5. The regularity assumptions in Assumption 5.2.4 on the initial
data and the right-hand side correspond to the conditions in [AH17] for the
implicit setting and are referred to as well-prepared and compatible of order 3.

Under these assumptions, we can formulate an error estimate for the ideal
method.

Theorem 5.2.6 (Error of the ideal method). Suppose that Assumption 5.2.4
holds and de�ne tn := τn for n ∈ {0, . . . , N}. Then the solutions u of (5.2) and
ũn+1
H of (5.6) satisfy the error bound∥∥∥Dτ ũ

n+1
H − u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+
∥∥∇(ũn+1

H −u(tn+1)
)∥∥

L2(D)

.T (H + τ 2)Cdata

(5.12)

for n ∈ {0, . . . , N − 1}.

Proof. Di�erentiating (5.1) with respect to time and using Assumption 5.2.4
shows that the time derivatives of u solve wave-type equations as well. As
in [Eva10, Thm. 6 in Sec. 7.2.6], we get the regularity u ∈ H4(0, T ;L2(D)) and
it follows that u ∈ C3([0, T ];L2(D)). It further holds that u ∈ H3(0, T ;H1

Γ(D))
and thus u ∈ C2([0, T ];H1

Γ(D)). These regularity properties are required in the
estimates below.
Next, we de�ne z̃H ∈ C2([0, T ]; ṼH) as the auxiliary semi-discrete solution of

(5.2) which solves

(∂2
t z̃H(t), ṽH)L2(D) + a(z̃H(t), ṽH) = (f(t), ṽH)L2(D) (5.13)
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for all ṽH ∈ ṼH and t ∈ [0, T ], with the initial conditions z̃H(0) = (id− C)IHu0

and ∂tz̃H(0) = (id−C)IHv0. Similarly to the observations in [Eva10, Sec. 7.2.2],
the well-posedness of (5.13) follows from standard theory for ordinary di�eren-
tial equations (ODEs) using the regularity assumptions on the initial data and
the right-hand side. We then split the error into

ũnH − u(tn) = en +
(
z̃H(tn)− ΠṼH

u(tn)
)
− ρ(tn) (5.14)

with the temporal discretization error en := ũnH − z̃H(tn) and the spatial best-
approximation error ρ(t) := u(t) − ΠṼH

u(t) for any t ∈ [0, T ]. Here, ΠṼH
u(t)

denotes the orthogonal projection of u(t) onto ṼH with respect to the bilinear
form a. First, we observe that en solves

τ−2 (en+1 − 2en + en−1, ṽH)L2(D) + a(en, ṽH)

=
(
∂2
t z̃H(tn)− τ−2

(
z̃H(tn+1)− 2z̃H(tn) + z̃H(tn−1)

)
, ṽH

)
L2(D)

for all ṽH ∈ ṼH . Therefore, we get with Lemma 5.2.3 that

‖Dτe
n+1‖L2(D) + ‖∇en+1‖L2(D)

≤ Cstab

(
‖Dτe

1‖L2(D) + ‖∇e1‖L2(D)

+
n∑
k=1

τ
∥∥∥∂2

t z̃H(tk)−
z̃H(tk+1)− 2z̃H(tk) + z̃H(tk−1)

τ 2

∥∥∥
L2(D)

)
.

(5.15)

Second, z̃H − ΠṼH
u solves

(∂2
t z̃H(t)− ∂2

t ΠṼH
u(t), ṽH)L2(D) + a(z̃H(t)− ΠṼH

u(t), ṽH) = (∂2
t ρ(t), ṽH)L2(D)

for all ṽH ∈ ṼH and all t ∈ [0, T ]. As in [Jol03], we thus get

‖∂tz̃H(t)− ∂tΠṼH
u(t)‖L2(D) + ‖∇

(
z̃H(t)− ΠṼH

u(t)
)
‖L2(D)

≤ Cstab

(
‖∂tz̃H(0)− ∂tΠṼH

u(0)‖L2(D) + ‖∇
(
z̃H(0)− ΠṼH

u(0)
)
‖L2(D)

+

ˆ t

0

‖∂2
t ρ(s)‖L2(D) ds

)
= Cstab

ˆ t

0

‖∂2
t ρ(s)‖L2(D) ds,

(5.16)

where we employ the equality ΠṼH
u(0) = (id − C)IHu(0) = z̃H(0) as well as

∂tΠṼH
u(0) = (id− C)IH∂tu(0) = ∂tz̃H(0), which follow from the de�nition of

ṼH . Further, there exists ξ ∈ [tn, tn+1] such that

z̃H(tn+1)− z̃H(tn)

τ
−

ΠṼH
u(tn+1)− ΠṼH

u(tn)

τ
= ∂tz̃H(ξ)− ∂tΠṼH

u(ξ). (5.17)

89



5 Fast Time-Explicit Multiscale Wave Propagation

Combining (5.14)�(5.17), we get that∥∥∥Dτ ũ
n+1
H − u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+ ‖∇
(
ũn+1
H − u(tn+1)

)
‖L2(D)

. Cstab

(
‖Dτe

1‖L2(D) + ‖∇e1‖L2(D) +
∥∥∥ρ(tn+1)− ρ(tn)

τ

∥∥∥
L2(D)

+ ‖∇ρ(tn+1)‖L2(D) +

ˆ tn+1

0

‖∂2
t ρ(s)‖L2(D) ds

+
n∑
k=1

τ
∥∥∥∂2

t z̃H(tk)−
z̃H(tk+1)− 2z̃H(tk) + z̃H(tk−1)

τ 2

∥∥∥
L2(D)

)
.

(5.18)

With a Taylor expansion and an appropriate choice of ũ1
H , we get

‖Dτe
1‖L2(D) + ‖∇e1‖L2(D) . τ 2 ‖z̃H‖C3([0,T ];H1

Γ(D))

and with Lemma 5.2.2, we have

‖∇ρ(tn+1)‖L2(D) . H ‖ divA∇u(tn+1)‖L2(D)

. H
(
‖f‖C([0,T ];L2(D)) + ‖u‖C2([0,T ];L2(D))

)
.

Further, we obtain the estimate∥∥∥ρ(tn+1)− ρ(tn)

τ

∥∥∥
L2(D)

+

ˆ tn+1

0

‖∂2
t ρ(s)‖L2(D) ds .T H ‖u‖C2([0,T ];H1(D))

employing the approximation property (2.14). Note that we use .T to indicate
an explicit dependence on T . Lastly, it holds that

n∑
k=1

τ
∥∥∥∂2

t z̃H(tk)−
z̃H(tk+1)− 2z̃H(tk) + z̃H(tk−1)

τ 2

∥∥∥
L2(D)

.T τ
2 ‖z̃H‖C4([0,T ];L2(D))

provided that zH ∈ C4([0, T ];L2(D)). To show this regularity of zH , we di�er-
entiate (5.13) with respect to time as above and de�ne suitable initial conditions

∂jt z̃H(0) = (id− C)IH∂jtu(0) ∈ ṼH , j ∈ {0, . . . , 4}.

By standard ODE theory, solutions of equations of the form (5.13) are in
C2([0, T ]; ṼH). Therefore, it follows that z̃H ∈ C4([0, T ]; ṼH). Combining the
above estimates with (5.18) and adapting the stability estimates provided in
[Eva10, Sec. 7.2.3], we deduce (5.12).

The regularity properties of the solution u that follow from Assumption 5.2.4
allow for a simpli�cation of the method de�ned in (5.6) that is discussed in the
following subsection.
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5.2.4 A simpli�ed method

To derive a variant of (5.6), we �rst observe that (5.6) can be written as an
equation for standard FE functions {unH}Nn=0 with unH ∈ VH using the explicit
characterization ũnH = (id− C)unH = RunH , i.e.,

τ−2
(
R(un+1

H − 2unH + un−1
H ),RvH

)
L2(D)

+ a
(
RunH ,RvH

)
=
(
f(nτ),RvH

)
L2(D)

for all vH ∈ VH . A slightly modi�ed method with reduced computational costs
seeks {ūnH}Nn=0 with ū

n
H ∈ VH such that

τ−2
(
ūn+1
H − 2ūnH + ūn−1

H , vH
)

+ a
(
RūnH ,RvH

)
L2(D)

=
(
f(nτ), vH

)
L2(D) (5.19)

for all vH ∈ VH and n ∈ {1, . . . , N − 1} and given suitable initial conditions.
Note that the solution of (5.19) ful�lls stability properties similar to (5.9). Anal-
ogously to (5.12), we can show that∥∥∥DτRūn+1

H − u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+
∥∥∇(Rūn+1

H −u(tn+1)
)∥∥

L2(D)

.T (H + τ 2)Cdata

for n ∈ {1, . . . , N − 1} if the regularity properties in Assumption 5.2.4 hold.
Hence, it is reasonable to use the simpli�ed method in practice; see also Sec-
tion 5.4.

Remark 5.2.7. The simpli�cation in (5.19) might raise the question whether
mass lumping is also a possible modi�cation. The numerical experiments in
Section 5.4 show that mass lumping generally works but might have an impact
on the overall convergence rate.

5.3 The practical method

The method discussed in Section 5.2 is ideal in the sense that we implicitly as-
sume that the corrector problems (5.4) can be solved exactly. In practice, those
problems are discretized and localized as explained in the following subsections.
Here, we do not replace H1

Γ(D) in the construction of Section 5.2 by a discrete
FE space Vh on some �ne mesh with parameter h as described in Section 2.4.4.
Instead, we discretize the corrector problems (5.4) before we localize them and
investigate the error introduced by each of these steps.

5.3.1 Discretization at the �ne scale

As a �rst step, the problems (5.4) are discretized using classical Q1 �nite ele-
ments on a �ne mesh. To quantify the error introduced by such a procedure, let
{ũnH}Nn=0 with ũ

n
H = (id−C)unH ∈ ṼH be the solution of problem (5.6). Further,
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de�ne for any vh ∈ Vh, the discretized correction Chvh ∈ Wh as the �nite element
solution of (5.4), i.e.,

a(Chvh, wh) = a(vh, wh) (5.20)

for all wh ∈ Wh. This discretized version of (5.4) is posed in a discrete space
Wh ⊆ W on a mesh Th with mesh size h < ε that is assumed to be small enough
to resolve variations of the coe�cient A. Note that Wh ⊆ Vh, where Vh is the
standard conforming Q1 �nite element space based on the mesh Th. Now, let
{ũnH,h}Nn=0 with ũ

n
H,h = (id−Ch)unH,h be the solution of (5.6) posed in the space

ṼH,h := (id−Ch)VH instead of ṼH with suitable initial conditions. The following
lemma quanti�es the di�erence between these two solutions.

Lemma 5.3.1 (Fine-scale discretization error). Suppose that the assumptions of
Lemma 5.2.3 and Assumption 5.2.4 hold. Then the discrete solutions ũn+1

H ∈ ṼH
and ũn+1

H,h ∈ ṼH,h satisfy the error estimate

‖Dτ ũ
n+1
H −Dτ ũ

n+1
H,h ‖L2(D) + ‖∇(ũn+1

H − ũn+1
H,h )‖L2(D)

.T

(
dṼH [Vh] +H−1(dṼH [Vh])

2
)
Cdata

for all n ∈ {0, . . . , N − 1}, where the approximation error dṼH [Vh] is de�ned by

dṼH [Vh] := sup
v∈ṼH

inf
vh∈Vh

‖∇(v − vh)‖L2(D)

‖∇v‖L2(D)

.

Proof. Observe that the error ẽn = (id− C)(unH − unH,h) solves

τ−2
(
ẽn+1 − 2ẽn + ẽn−1, (id− C)vH

)
L2(D)

+ a
(
ẽn, (id− C)vH

)
= −

(
f(nτ), (C − Ch)vH

)
L2(D)

+ τ−2
(
ũn+1
H,h − 2ũnH,h + ũn−1

H,h , (C − Ch)vH
)
L2(D)

+ τ−2
(
(C − Ch)(un+1

H,h − 2unH,h + un−1
H,h ), (id− C)vH

)
L2(D)

+ a
(
(C − Ch)unH,h, (C − Ch)vH

)
=: F n

(
(id− C)vH

)
for all vH ∈ VH . If F n|ṼH ∈ L

2(D), we can derive a bound on the error using
Lemma 5.2.3. To show this, we �rst estimate ‖∇(C − Ch)vH‖L2(D). Using the
identity Wh = Vh ∩W = (id − IH)Vh and the quasi-optimality of the solution
ChvH de�ned in (5.20), we can show that

‖∇(C − Ch)vH‖L2(D) ≤ (1 + CIH )β/α inf
vh∈Vh

‖∇(CvH − vh)‖L2(D)

. sup
v∈ṼH

inf
vh∈Vh

‖∇(v − vh)‖L2(D)

‖∇v‖L2(D)

‖∇ṽH‖L2(D)

= dṼH [Vh] ‖∇ṽH‖L2(D),

(5.21)
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5.3 The practical method

where either ṽH = (id − C)vH or ṽH = (id − Ch)vH . Using (2.14), we further
get

‖(C − Ch)vH‖L2(D) . CIHH dṼH [Vh] ‖∇ṽH‖L2(D). (5.22)

With (5.21), (5.22), and the inverse inequality (5.5), we can derive the bound

sup
ṽH∈ṼH

|F n(ṽH)|
‖ṽH‖L2(D)

.
(
‖f(nτ)‖L2(D) + τ−2 ‖ũn+1

H,h − 2ũnH,h + ũn−1
H,h ‖L2(D)

+H−1dṼH [Vh] ‖∇ũnH,h‖L2(D)

)
dṼH [Vh]

.
(
dṼH [Vh] +H−1(dṼH [Vh])

2
)
Cdata.

This implies that F n|ṼH ∈ L
2(D). Thus, using the above equations and the fact

that, for any vH , wH ∈ VH and any suitable norm ‖ · ‖,

‖(id− C)vH − (id− Ch)wH‖ ≤ ‖(id− C)(vH − wH)‖+ ‖(C − Ch)wH‖,

it follows from Lemma 5.2.3 that

‖Dτ ũ
n+1
H −Dτ ũ

n+1
H,h ‖L2(D) + ‖∇(ũn+1

H − ũn+1
H,h )‖L2(D)

.T

(
dṼH [Vh] +H−1(dṼH [Vh])

2
)
Cdata.

Note that we employ the fact that τ−2 (ũn+1
H,h − 2ũnH,h + ũn−1

H,h ) can be bounded
in the L2-norm independently of τ and H. This is due to the observation that
{Dτ ũ

n+1
H,h }

N−1
n=0 solves

τ−2
(
Dτ ũ

n+2
H,h − 2Dτ ũ

n+1
H,h +Dτ ũ

n
H,h,ṽH

)
L2(D)

+ a
(
Dτ ũ

n+1
H,h , ṽH

)
= τ−1

(
f((n+ 1)τ)− f(nτ), ṽH

)
L2(D)

for all ṽH ∈ ṼH,h. Therefore, using Lemma 5.2.3 and the regularity conditions
in Assumption 5.2.4, we can bound the L2-norm of τ−2 (ũn+1

H,h − 2ũnH,h + ũn−1
H,h ) in

terms of the initial data and the right-hand side.

5.3.2 Localized discrete corrections

As a next step, we de�ne a fully discrete solution, which is actually computable,
and quantify the error with respect to the discretized solution ũnH,h of the pre-
vious subsection. First, however, we need to introduce the localized version
C`h : Vh → Wh of the discretized correction operator Ch de�ned in (5.20). For
the de�nition of a localized correction, we refer to Section 2.4.3. With the dis-
cretized and localized correction operator C`h, we set Ṽ `

H,h := (id − C`h)VH and

de�ne the practical method as follows: given ũ`,0H,h = (id−C`h)IHu0 and suitable

ũ`,1H,h ∈ Ṽ `
H,h, �nd {ũ

`,n
H,h}Nn=0 with ũ

`,n
H,h = (id− C`h)u

`,n
H,h ∈ Ṽ `

H,h such that

τ−2
(
ũ`,n+1
H,h − 2ũ`,nH,h + ũ`,n−1

H,h , ṽH
)
L2(D)

+ a
(
ũ`,nH,h, ṽH

)
=
(
f(nτ), ṽH

)
L2(D) (5.23)
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for all ṽH ∈ Ṽ `
H,h and all n ∈ {1, . . . , N − 1}.

We emphasize that the computation of the correctors is only done once dur-
ing the o�ine stage and can be parallelized. The additional cost to solve the
corrector problems is moderate and the main advantage of the method lies in
the online stage, where smaller linear systems need to be solved and relatively
coarse time steps (subject to the CFL condition) may be used.

Lemma 5.3.2 (Localization error). Let the assumptions of Lemma 5.2.3 and
Assumption 5.2.4 hold. Then the solutions ũn+1

H,h ∈ ṼH,h and ũ
`,n+1
H,h ∈ Ṽ `

H,h satisfy

‖Dτ ũ
n+1
H,h −Dτ ũ

`,n+1
H,h ‖L2(D) + ‖∇(ũn+1

H,h − ũ
`,n+1
H,h )‖L2(D)

.T

(
`(d−1)/2 exp(−Cdec `) +H−1`(d−1) exp(−2Cdec `)

)
Cdata.

for all n ∈ {0, . . . , N − 1}.
Proof. Let ẽ`,n = (id− Ch)(unH,h − u

`,n
H,h). Similarly to the �ndings in the proof

of Lemma 5.3.1, the error ẽ`,n solves

τ−2
(
ẽ`,n+1 − 2ẽ`,n + ẽ`,n−1, (id− Ch)vH

)
L2(D)

+ a
(
ẽ`,n, (id− Ch)vH

)
= −

(
f(nτ), (Ch − C`h)vH

)
L2(D)

+ τ−2
(
ũ`,n+1
H,h − 2ũ`,nH,h + ũ`,n−1

H,h , (Ch − C`h)vH
)
L2(D)

+ τ−2
(
(Ch − C`h)(u

`,n+1
H,h − 2u`,nH,h + u`,n−1

H,h ), (id− Ch)vH
)
L2(D)

+ a
(
(Ch − C`h)u

`,n
H,h, (Ch − C

`
h)vH

)
=: F n

h

(
(id− Ch)vH

)
for all vH ∈ VH . As above, we show that F n

h |ṼH,h
∈ L2(D). From Theorem 2.4.4

with H1
0 (D) replaced by Vh, we get that

‖∇(Ch − C`h)vH‖L2(D) . `(d−1)/2 exp(−Cdec `) ‖∇vH‖L2(D)

for any vH ∈ VH and, additionally,

‖(Ch − C`h)vH‖L2(D) . `(d−1)/2 exp(−Cdec `)CIHH ‖∇vH‖L2(D),

see also [HP13], or [KY16,KPY18] for an alternative constructive proof. Similar
to the estimates in the proof of Lemma 5.3.1, we obtain

sup
ṽH∈ṼH,h

|F n
h (ṽH)|

‖ṽH‖L2(D)

.
(
‖f(nτ)‖L2(D) + τ−2 ‖ũ`,n+1

H,h − 2ũ`,nH,h + ũ`,n−1
H,h ‖L2(D)

+H−1`(d−1)/2 exp(−Cdec `) ‖∇ũ`,nH,h‖L2(D)

)
`(d−1)/2 exp(−Cdec `)

.
(
`(d−1)/2 exp(−Cdec `) +H−1`(d−1) exp(−2Cdec `)

)
Cdata,

and �nally

‖Dτ ũ
n+1
H,h −Dτ ũ

`,n+1
H,h ‖L2(D) + ‖∇(ũn+1

H,h − ũ
`,n+1
H,h )‖L2(D)

.T

(
`(d−1)/2 exp(−Cdec `) +H−1`(d−1) exp(−2Cdec `)

)
Cdata,

which concludes the proof.
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5.3.3 Error estimates

We can now formulate the following theorem using Lemma 5.3.1, Lemma 5.3.2,
and the triangle inequality.

Theorem 5.3.3 (Error of the practical method). Assume that Assumption 5.2.4
holds and τ ful�lls the CFL condition (5.8). Further, let u ∈ L2(0, T ;H1

Γ(D)) be
the solution of (5.2) and ũ`,nH,h ∈ Ṽ `

H,h the solution of the practical method (5.23)
at time step n. Then, for n ∈ {0, . . . , N − 1}, we have∥∥∥Dτ ũ

`,n+1
H,h −

u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+ ‖∇
(
ũ`,n+1
H,h − u(tn+1)

)
‖L2(D)

.T

(
H + τ 2 + dṼH [Vh] +H−1(dṼH [Vh])

2

+ `(d−1)/2 exp(−Cdec `) +H−1`(d−1) exp(−2Cdec `)
)
Cdata.

(5.24)

If ` & | logH|, (5.24) simpli�es to∥∥∥Dτ ũ
`,n+1
H,h −

u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+ ‖∇
(
ũ`,n+1
H,h − u(tn+1)

)
‖L2(D)

.T

(
H + τ 2 + dṼH [Vh] +H−1(dṼH [Vh])

2
)
Cdata.

Theorem 5.3.3 shows that in order to obtain a reasonable error of order H, the
error introduced by the discretization of the corrector problems (5.4) and thus
the approximation error dṼH [Vh] need to be of order H as well. The following
lemma quanti�es the approximation error dṼH [Vh] under additional regularity
assumptions on the coe�cient A and with full homogeneous Dirichlet boundary,
i.e., Γ = ∂D. Although the result does not hold for more general cases, it gives
an indication on how to choose h dependent on H and ε.

Lemma 5.3.4. Let Γ = ∂D and suppose that A ∈ W 1,∞(D) is a scalar coef-
�cient with oscillations on the scale ε, i.e., ‖A‖W 1,∞(D) ≤ Cε−1. Further, let
Ih : H1

0 (D)→ Vh be an operator with the approximation property

‖∇(v − Ihv)‖L2(D) ≤ CIhh ‖∇2v‖L2(D)

for any v ∈ H2(D) ∩H1
0 (D). Then it holds that

dṼH [Vh] . h(H−1 + ε−1).

Proof. For any ṽH ∈ ṼH , we have

inf
vh∈Vh

‖∇(ṽH − vh)‖L2(D) ≤ ‖∇(id− Ih)ṽH‖L2(D) ≤ CIhh ‖∇2ṽH‖L2(D)

≤ CIhh ‖∆ṽH‖L2(D) ≤ α−1CIhh ‖A∆ṽH‖L2(D)

≤ α−1CIhh
(
‖ divA∇ṽH‖L2(D)

+ ‖A‖W 1,∞(D) ‖∇ṽH‖L2(D)

)
≤ α−1CIhh

(
βCinvCIHH

−1 + Cε−1
)
‖∇ṽH‖L2(D),
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where we employ the product rule, ‖A‖W 1,∞(D) ≤ Cε−1, and

‖ divA∇ṽH‖L2(D) ≤ βCinvCIHH
−1 ‖∇ṽH‖L2(D). (5.25)

To show the last estimate, let v ∈ C∞c (D) and observe that

|(divA∇ṽH , v)L2(D)|
‖v‖L2(D)

=
|a(ṽH , v)|
‖v‖L2(D)

=
|a(ṽH , IHv)|
‖v‖L2(D)

≤
β‖∇ṽH‖L2(D) ‖∇IHv‖L2(D)

‖v‖L2(D)

≤ βCinvCIHH
−1‖∇ṽH‖L2(D),

where we employ the estimates (2.11) and (2.35). The inequality (5.25) then
follows by the density of C∞c (D) in L2(D). Therefore, dṼH [Vh] can be bounded
by

dṼH [Vh] . h(H−1 + ε−1),

which is the assertion.

Using Theorem 5.3.3 and Lemma 5.3.4, we obtain the following result.

Corollary 5.3.5. Let Assumption 5.2.4 hold and suppose that A ∈ W 1,∞(D),
Γ = ∂D, τ . H subject to the CFL condition (5.8), ` & | logH| and h . Hε.
Then, for n ∈ {0, . . . , N − 1}, we have that∥∥∥Dτ ũ

`,n+1
H,h −

u(tn+1)− u(tn)

τ

∥∥∥
L2(D)

+‖∇
(
ũ`,n+1
H,h −u(tn+1)

)
‖L2(D) .T

(
H+τ 2

)
Cdata

with the solutions u ∈ L2(0, T ;H1
0 (D)) of (5.2) and ũ`,nH,h of (5.23).

From Corollary 5.3.5, we directly get that, provided the additional regularity
assumptions hold, the error of the method in the discrete energy norm

‖v‖N,a :=

( N∑
j=1

τ ‖A1/2∇v(jτ)‖2
L2(D)

)1/2

(5.26)

scales like H+ τ 2. While orders of convergence in space and time appear imbal-
anced when the error is measured in the energy norm, quadratic convergence is
empirically observed for the discrete L2(L2)-norm de�ned by

‖v‖N,0 :=

( N∑
j=1

τ ‖v(jτ)‖2
L2(D)

)1/2

, (5.27)

see Section 5.4. In this sense, the error estimates of the explicit method are
competitive with the fully implicit Crank-Nicolson approach used in [AH17]
provided that the �ne-scale discretization errors in [AH17] can be bounded by
O((h/ε)2).

Remark 5.3.6. As presented in Chapter 3, the above LOD construction is
not limited to approximation spaces based on Q1 �nite elements. In principle,
this means that there is no restriction to combine a higher-order variant of
the method in space with any higher-order time stepping approach. As the
error analysis varies depending on the spatial and temporal discretization, these
extensions each need to be studied separately.
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5.4 Numerical experiments

Figure 5.1: Coe�cient A in Example 1 (left) and Example 2 (right).

Figure 5.2: Discrete solutions of the wave equation at �nal time T = 1 for Example 1:
�ne-scale reference solution (left) and LOD approximation on the scale

H = 2−4 with ` = 2 (right).

5.4 Numerical experiments

In this section, we present numerical experiments to illustrate the theoretical
results from the previous sections. The error of the method is measured in the
discrete energy norm and the discrete L2(L2)-norm as de�ned in (5.26) and
(5.27), respectively. We set D = (0, 1)2 and T = 1 and compute a reference
solution using standard �nite elements paired with a leapfrog scheme in time
on a mesh Th with mesh size h = 2−8, which is also the mesh parameter for
the computations of the corrector problems. The �ne time step size is chosen
small enough subject to the standard CFL condition, i.e., τfine ≤ CCFL h, where
CCFL =

√
2 β−1/2C−1

inv. This condition can be shown similarly to (5.8) but is
slightly relaxed since CIH ≥ 1 in general. Practical experiments show that
CCFL =

√
2 β−1/2 0.14 is a su�cient and rather sharp choice for the stability

of both the �ne FE solution and the LOD approximation. In the following
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Figure 5.3: Relative errors of LOD approximations for Example 1 in the discrete

energy norm (left) and the discrete L2(L2)-norm (right) with respect to

the mesh size H for ` = 2.

examples, we choose τ ≤ CCFLH such that N = T/τ ∈ N. Note that given
ũ`,0H,h ∈ Ṽ `

H,h, ũ
`,1
H,h ∈ Ṽ `

H,h is computed using the second-order Taylor expansion

(ũ`,1H,h, ṽH)L2(D) = (ũ`,0H,h + τ v0 + 1
2
τ 2 f(0), ṽH)L2(D) − 1

2
τ 2 a(ũ`,0H,h, ṽH)

for any ṽH ∈ Ṽ `
H,h, where v

0 and f(0) may be replaced by suitable approxima-
tions. This choice is crucial in order to get optimal convergence rates.

5.4.1 Example 1

For the �rst example, we take the setting from [AH17, Sec. 6.2], i.e., f = 1,
u0 = v0 = 0, Γ = ∂D, and a scalar coe�cient A as depicted in Figure 5.1 (left)
with α = 0.04, β = 1.96. A detailed formula for the coe�cient can be found
in [AH17, Sec. 6.2]. Besides, we set ` = 2 for all values of H. The remaining
discretization parameters are de�ned above. The relative errors of the practical
method in the energy norm are shown in Figure 5.3 (left). The relative errors in
the L2(L2)-norm are depicted in Figure 5.3 (right). The blue curves ( ) show the
errors of the standard method de�ned in (5.23) and the red curves ( ) display
the errors of the simpli�ed method based on (5.19) which uses the classical �nite
element mass matrix. Both curves show the expected linear convergence in the
energy norm and almost second-order convergence in L2(L2) with a commencing
stagnation for smaller values of H, which can be avoided if ` is increased in this
regime; cf. Tables 5.1 and 5.2. The fact that the curves are very close justi�es the
theoretical observation that the mass matrices may be exchanged. In addition,
the green curves ( ) display the errors if a lumped mass matrix is used. That is,
the multiscale mass matrix is replaced by a diagonal matrix which is obtained
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Figure 5.4: Relative errors of LOD approximations for Example 2 in the discrete

energy norm (left) and the discrete L2(L2)-norm (right) with respect to

the mesh size H for ` = 2.

by summing up the rows of the multiscale mass matrix. The plots indicate
a reduced convergence rate for the lumped version of the method. The reduced
rate can also be observed in Tables 5.1 and 5.2.
Finally, the reference solution and the solution obtained with the standard

method (H = 2−4, ` = 2) at �nal time T = 1 are given in Figure 5.2.

5.4.2 Example 2

In the second example, we choose f(x, t) = sin(4π x1)(1− t) and v0 = 0. Fur-
ther, we set Γ = {x ∈ ∂D : x1 = 0} and let u0 ∈ H1

Γ(D) be the solution of

a(u0, v) = (5 sin(π x1) sin(π x2), v)L2(D)

for all v ∈ H1
Γ(D). The scalar coe�cient A is shown in Figure 5.1 (right), where

α = 2.1, β = 30.1, and ε = 2−6. The other discretization parameters are chosen
as de�ned above and ` = 2. The blue curves ( ) in Figure 5.4 again show the
relative errors of the standard method (5.23) and the red curves ( ) show the
relative errors of the simpli�ed method. Both methods and even the lumped
version ( ) show a convergence rate in the discrete energy norm which is slightly
better than one. Then again, a near second-order rate in L2(L2) can be observed
for the standard method, the simpli�ed method, and also the lumped version
up to a commencing stagnation due to localization; cf. also Tables 5.3 and 5.4.
Note that we also provide a fourth error curve ( ), which shows the relative

errors of the standard method for the exact same setting but with v0 = 0
replaced by v0 = 0.2 · 1{x1 > 0.5}. One can observe a suboptimal convergence
behavior, which is possibly related to the fact that v0 /∈ H1

Γ(D) and, therefore,
the condition (A2) in Assumption 5.2.4 is not ful�lled.
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Table 5.1: Relative errors in the discrete energy norm and EOCs for Example 1 ob-

tained with the standard approach (stand), the simpli�ed one (simp), and

the lumped version (lump).

` H stand simp lump EOCstand EOCsimp EOClump

2 2−1 0.47508 0.47302 0.52580 � � �
2 2−2 0.20178 0.19994 0.23064 1.24 1.24 1.18
2 2−3 0.08560 0.08668 0.13656 1.24 1.21 0.76
2 2−4 0.03965 0.03978 0.07823 1.11 1.12 0.80
2 2−5 0.01861 0.01852 0.04247 1.09 1.10 0.88
2 2−6 0.00978 0.00993 0.02307 0.93 0.90 0.88
2 2−7 0.00579 0.00619 0.01292 0.76 0.68 0.84

4 2−1 0.47508 0.47302 0.52580 � � �
4 2−2 0.20132 0.19948 0.23026 1.24 1.25 1.19
4 2−3 0.08509 0.08617 0.13595 1.24 1.21 0.76
4 2−4 0.03930 0.03943 0.07766 1.12 1.13 0.81
4 2−5 0.01789 0.01779 0.04211 1.14 1.15 0.88
4 2−6 0.00870 0.00887 0.02272 1.04 1.00 0.89
4 2−7 0.00391 0.00447 0.01224 1.15 0.99 0.89

Table 5.2: Relative errors in the discrete L2(L2)-norm and EOCs for Example 1 ob-

tained with the standard approach (stand), the simpli�ed one (simp), and

the lumped version (lump).

` H stand simp lump EOCstand EOCsimp EOClump

2 2−1 0.22771 0.22717 0.40377 � � �
2 2−2 0.06536 0.06360 0.0967 1.80 1.83 2.06
2 2−3 0.01895 0.01979 0.0432 1.79 1.68 1.16
2 2−4 0.00551 0.00560 0.01986 1.82 1.82 1.12
2 2−5 0.00178 0.00182 0.00772 1.62 1.62 1.36
2 2−6 0.00071 0.00074 0.00291 1.29 1.29 1.41
2 2−7 0.00035 0.00035 0.00111 1.08 1.08 1.40

4 2−1 0.22771 0.22717 0.40377 � � �
4 2−2 0.06571 0.06397 0.09673 1.79 1.83 2.06
4 2−3 0.01909 0.01991 0.04310 1.78 1.68 1.16
4 2−4 0.00555 0.00564 0.01978 1.78 1.82 1.12
4 2−5 0.00170 0.00174 0.00774 1.70 1.70 1.35
4 2−6 0.00055 0.00060 0.00292 1.61 1.55 1.41
4 2−7 0.00015 0.00020 0.00110 1.84 1.61 1.41
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Table 5.3: Relative errors in the discrete energy norm and EOCs for Example 2 ob-

tained with the standard approach (stand), the simpli�ed one (simp), and

the lumped version (lump).

` H stand simp lump EOCstand EOCsimp EOClump

2 2−1 0.18571 0.19098 0.29191 � � �
2 2−2 0.10083 0.10084 0.21508 0.88 0.92 0.44
2 2−3 0.03614 0.03916 0.08837 1.48 1.36 1.28
2 2−4 0.00979 0.01235 0.04117 1.88 1.66 1.10
2 2−5 0.00591 0.00660 0.01496 0.73 0.91 1.46
2 2−6 0.00240 0.00242 0.00568 1.30 1.45 1.40
2 2−7 0.00138 0.00139 0.00214 0.80 0.80 1.41

Table 5.4: Relative errors in the discrete L2(L2)-norm and EOCs for Example 2 ob-

tained with the standard approach (stand), the simpli�ed one (simp), and

the lumped version (lump).

` H stand simp lump EOCstand EOCsimp EOClump

2 2−1 0.08162 0.08386 0.14215 � � �
2 2−2 0.06719 0.06809 0.09247 0.28 0.30 0.62
2 2−3 0.01448 0.01471 0.02357 2.21 2.21 1.97
2 2−4 0.00345 0.00356 0.00709 2.07 2.04 1.73
2 2−5 0.00225 0.00212 0.00228 0.62 0.75 1.64
2 2−6 0.00029 0.00029 0.00054 2.96 2.87 2.08
2 2−7 0.00024 0.00025 0.00024 0.24 0.24 1.17
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6 Multiscale Poroelasticity in

Heterogeneous Media

In this chapter, we deal with another time-dependent PDE, known as lin-
ear poroelasticity. This problem describes the deformation of porous media
saturated by an incompressible viscous �uid and is of great importance for
many physical applications such as reservoir engineering in the �eld of geome-
chanics [Zob10] or the modeling of the human anatomy for medical applica-
tions [MC16,CM14]. Biot [Bio41] proposed this poroelastic model that couples
a Darcy �ow with the linear elastic behavior of the porous medium. The idea is
to average the pressure and displacement across (in�nitesimal) cubic elements
such that pressure and displacement can be treated as variables on the entire
domain of interest. Furthermore, the model is assumed to be quasi-static, i.e.,
an internal equilibrium is preserved at any time. In the poroelastic setting, this
means that volumetric changes occur slowly enough for the pressure to remain
basically constant throughout an in�nitesimal element.
If the poroelastic coe�cients at hand are homogeneous, the problem can be

simulated using standard numerical methods such as the FE method, see for
instance [EM09]. However, if the medium is strongly heterogeneous, the ma-
terial parameters may oscillate on a �ne scale. As already mentioned in the
previous chapters, the classical FE method only yields acceptable results if the
�ne scale is resolved by the spatial discretization, which is unfeasible in practical
applications. To overcome this di�culty, homogenization techniques may be ap-
plied, such as those presented in Section 1.2. Concerning these methods in the
poroelastic context, the GMsFEM is, for instance, used in [BV16a,BV16b], the
CEM-GMsFEM in [FAC+19], or the LOD technique in [MP17] for the similar
problem of linear thermoelasticity. Related work in connection with the LOD
can also be found in [BP16], where porous microstructures are considered, and
in [HP16] in the context of linear elasticity. All these methods aim at perform-
ing computations on a coarse scale of interest although the coe�cients vary on
a much �ner scale. We emphasize that with respect to the physical model there
exists even a third scale, namely the in�nitesimal scale on which the averaging
of pressure and displacement is done. This scale, however, is not treated since
it is small enough and already included in the given PDE model.
In the present setting, we introduce a method that adopts ideas presented

in [MP17], where a classical LOD approach is used, which is explained below.
We modify this method based on structural properties which are obtained by
an alternative perspective on the discretized problem. This allows us to obtain
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an overall simpler approach. In particular, we are able to exploit the saddle
point structure of the problem in order to obtain fully symmetric and decou-
pled corrector problems. That is, we do not require additional corrections as
in [MP17] and our correction operators are independent of the coupling term,
although the corresponding coe�cient may vary rapidly as well. This adapted
method was �rst presented in [ACM+20].
Before getting into the details, we introduce the PDE representation of the

model and its variational formulation in the following section.

6.1 Linear poroelasticity

The problem of linear poroelasticity that we use here is posed in a bounded,
convex, and polytopal Lipschitz domain D ⊆ Rd, d ∈ {2, 3}, and was, e.g.,
discussed in [Sho00]. For the sake of simplicity, we restrict ourselves to ho-
mogeneous Dirichlet boundary conditions but emphasize that an extension to
Neumann boundary conditions is straightforward; see also the numerical exam-
ples in Section 6.3. This means that we seek the pressure p : [0, T ]×D → R
and the displacement �eld u : [0, T ] × D → Rd up to a given �nal time T > 0
such that

−∇ ·
(
σ(u)

)
+∇(αp) = 0 in (0, T ]×D,

∂t

(
α∇ · u+

1

M
p
)
−∇ ·

(κ
ν
∇p
)

= f in (0, T ]×D,
(6.1)

with the boundary and initial conditions

u = 0 on (0, T ]× ∂D,
p = 0 on (0, T ]× ∂D,

p(·, 0) = p0 in D.

(6.2)

In the given model, the primary sources of the heterogeneities in the physical
properties arise from the stress tensor σ, the permeability κ, and the Biot-Willis
�uid-solid coupling coe�cient α. Further, we denote by M the Biot modulus
and by ν the �uid viscosity which are assumed to be constant. The source term
f represents an injection or production process. In the case of a linear elastic
stress-strain constitutive relation, we have that the stress tensor and symmetric
strain gradient may be expressed as

σ(u) = 2µ ε(u) + λ (∇ · u) I, ε(u) =
1

2

(
∇u+ (∇u)T

)
,

where µ and λ are the Lamé coe�cients and I is the identity tensor. In the case
of heterogeneous media, the coe�cients µ, λ, κ, and α may be highly oscillatory.
We now turn our attention to the variational formulation of the poroelasticity

system (6.1). To this end, we de�ne the spaces for the displacement and the
pressure by

V :=
[
H1

0 (D)
]d
, Q := H1

0 (D)
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6.2 Numerical approximation

and write
HV :=

[
L2(D)

]d
, HQ := L2(D)

for the corresponding L2-spaces. To obtain a variational form, we multiply
the equations (6.1) with test functions from V and Q, respectively, and use
integration by parts as well as the boundary conditions (6.2). This leads to the
following problem: �nd u(·, t) ∈ V and p(·, t) ∈ Q such that

a(u, v)− d(v, p) = 0,

d(∂tu, q) + c(∂tp, q) + b(p, q) = (f, q)HQ ,
(6.3)

for all v ∈ V , q ∈ Q and
p(·, 0) = p0.

The involved bilinear forms a : V ×V → R, b, c : Q×Q → R, and d : V ×Q → R
are de�ned as

a(u, v) :=

ˆ
D

σ(u) : ε(v) dx, b(p, q) :=

ˆ
D

κ

ν
∇p · ∇q dx,

c(p, q) :=

ˆ
D

1

M
pq dx, d(u, q) :=

ˆ
D

α (∇ · u) q dx.

We emphasize that the bilinear forms a, b, and c are symmetric. Note that
the �rst equation in (6.3) can be used to de�ne a consistent initial condition
u0 := u(·, 0). Using Korn's inequality [Cia88, Thm. 6.3-4], we have the bounds

cσ‖v‖2
V ≤ a(v, v) ≤ Cσ‖v‖2

V (6.4)

for all v ∈ V , where cσ and Cσ are positive constants. Similarly, there are
positive constants cκ and Cκ such that

cκ‖q‖2
Q ≤ b(q, q) ≤ Cκ‖q‖2

Q (6.5)

for all q ∈ Q. We write ‖ ·‖a for the energy norm induced by the bilinear form a
and similarly ‖ · ‖b for the norm induced by b. Note that also the bilinear form
c de�nes a norm ‖ · ‖c, which is a weighted L2-norm.
We conclude this section with the remark that there exist unique solutions u

and p to (6.3), which was discussed and proven in [Sho00].

6.2 Numerical approximation

In this section, we present di�erent schemes for the discretization of system (6.3):
the classical FE approach analyzed in [EM09], the standard LOD approach
used in [MP17], and the adapted LOD method introduced in [ACM+20]. Since
the classical FE ansatz is only meaningful if oscillations are resolved by the
underlying mesh, this approach solely serves as a reference.

105



6 Multiscale Poroelasticity in Heterogeneous Media

6.2.1 Fine-scale discretization with �nite elements

As in Section 2.2, we de�ne appropriate FE spaces for the poroelasticity system
(6.3) based on a family {Th}h>0 of quasi-uniform decompositions of D. That is,
for a particular mesh parameter h, let Vh ⊆ V and Qh ⊆ Q be the correspond-
ing conforming Q1 �nite element spaces. For the temporal discretization, we
consider a uniform time step τ > 0 such that tn = τn for n ∈ {0, . . . , N} and
T = τN as in Chapter 5.
Using the notation introduced above, we discretize system (6.3) with a back-

ward Euler scheme in time and �nite elements in space, i.e., for n ∈ {1, . . . , N},
we aim to �nd unh ∈ Vh and pnh ∈ Qh such that

a(unh, vh)− d(vh, p
n
h) = 0,

d(Dτu
n
h, qh) + c(Dτp

n
h, qh) + b(pnh, qh) = (fn, qh)HQ

(6.6)

for all vh ∈ Vh and qh ∈ Qh. As before, Dτ denotes the discrete time derivative,
i.e., Dτu

n
h = (unh−un−1

h )/τ , and we set fn := f(tn). The initial condition p0
h ∈ Qh

is chosen to be a suitable approximation of p0 and u0
h is uniquely determined by

the variational problem
a(u0

h, vh) = d(vh, p
0
h)

for all vh ∈ Vh.

Lemma 6.2.1 (Well-posedness). Given initial data u0
h ∈ Vh and p0

h ∈ Qh, the
system (6.6) is well-posed, i.e., there exists a unique solution, which is bounded
in terms of the initial conditions and the source term f .

Proof. The proof is based on [EM09, Lem. 2.1]. For the bilinear form a, it holds

2 a(unh, u
n
h − un−1

h ) = a(unh, u
n
h) + a(unh − un−1

h , unh − un−1
h )− a(un−1

h , un−1
h )

≥ ‖unh‖2
a − ‖un−1

h ‖2
a.

(6.7)

A similar result can be shown for the bilinear form c. With vh = unh − un−1
h ∈ Vh

and qh = τpnh ∈ Qh as test functions in (6.6), we obtain

a(unh, u
n
h − un−1

h ) + c(pnh − pn−1
h , pnh) + τ b(pnh, p

n
h) = τ (fn, pnh)HQ (6.8)

when adding both equations. Inequality (6.7), an application of Young's in-
equality, and (6.5) then imply

‖unh‖2
a + ‖pnh‖2

c + τ‖pnh‖2
b ≤

τ

cκ
‖fn‖2

HQ + ‖un−1
h ‖2

a + ‖pn−1
h ‖2

c .

A summation over all n �nally leads to the stability estimate

‖unh‖2
a + ‖pnh‖2

c + τ

n∑
j=1

‖pjh‖
2
b ≤

τ

cκ

n∑
j=1

‖f j‖2
HQ + ‖u0

h‖2
a + ‖p0

h‖2
c .

This implies the uniqueness of the solutions unh and pnh. Existence follows from
the fact that system (6.6) is equivalent to a square system of linear equations
and, hence, uniqueness implies existence.
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6.2 Numerical approximation

For the presented �ne-scale discretization in (6.6), one can show the following
stability result, which is important for the convergence proof of the alternative
LOD method in Section 6.2.3.

Theorem 6.2.2 (cf. [MP17, Thm. 3.3]). Suppose that the right-hand side ful-
�lls f ∈ L∞(0, T ;L2(D)) ∩H1(0, T ;H−1(D)). Then, the fully discrete solution
(unh, p

n
h) of (6.6) satis�es for all n ∈ {1, . . . , N} the stability bound(

τ
n∑
j=1

‖Dτu
j
h‖

2
V

)1/2

+
(
τ

n∑
j=1

‖Dτp
j
h‖

2
HQ

)1/2

+ ‖pnh‖Q

. ‖p0
h‖Q + ‖f‖L2(0,tn;L2(D)).

Further, in the case p0
h = 0, we have that

‖Dτu
n
h‖V + ‖Dτp

n
h‖HQ +

(
τ

n∑
j=1

‖Dτp
j
h‖

2
Q

)1/2

. ‖f‖L∞(0,tn;L2(D)) + ‖∂tf‖L2(0,tn;H−1(D))

and for f = 0, it holds that

‖Dτu
n
h‖V + ‖Dτp

n
h‖HQ + t1/2n ‖Dτp

n
h‖Q . t−1/2

n ‖p0
h‖Q.

The following theorem states the expected order of convergence, which is
O(h + τ). However, the involved constant for the spatial discretization scales
with the maximal W 1,∞-norm of the coe�cients, which makes this approach
unfeasible in oscillatory media with period ε.

Theorem 6.2.3 (cf. [EM09, Thm. 3.1]). Assume that the coe�cients satisfy
µ, λ, κ, α ∈ W 1,∞(D). Further, let the exact solution (u, p) of (6.1) be suf-
�ciently smooth and (unh, p

n
h) the fully discrete solution obtained by (6.6) for

n ∈ {1, . . . , N}. Then, the error is bounded by

‖u(tn)− unh‖V + ‖p(tn)− pnh‖HQ +
(
τ

n∑
j=1

‖p(tj)− pjh‖
2
Q

)1/2

≤ Cεh+ Cτ,

where the constants comprise the norms of the right-hand side f and the solu-
tions u and p. Further, Cε crucially depends on the coe�cients, i.e.,

Cε ∼ max{‖µ‖W 1,∞(D), ‖λ‖W 1,∞(D), ‖κ‖W 1,∞(D), ‖α‖W 1,∞(D)}.

6.2.2 A classical multiscale method

Within this subsection, we review the classical LOD approach for the poroelastic
problem based on a correction which is de�ned using the stationary version
of (6.3). This method was used in [MP17] in the context of thermoelasticity
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but translates directly to the present setting. We note that this procedure of
using the stationary PDE to de�ne a multiscale space is here referred to as the
classical (or standard) approach to time-dependent multiscale problems, which
is generally used; see also Chapter 5 (based on [MP19]) and, e.g., [AH17,PS17,
MP18] in the context of the LOD.
As before, we use the method presented in Chapter 2. However, since the fully

discrete method as described in Section 2.4 is actually based on a �ne FE space,
we here directly de�ne the corresponding operators based on the FE spaces Vh
and Qh from the previous subsection. Assume now that we have a coarse mesh
TH with mesh parameter H > h that does not resolve the microscopic scale ε
and let VH ⊆ Vh and QH ⊆ Qh be the corresponding conforming Q1 spaces.
Further, we de�ne the projective quasi-interpolation operators

IuH : HV → VH and IpH : HQ → QH ,

which ful�ll the properties (2.11) and (2.14) as in Section 2.2.2. With these
operators, we de�ne the �ne-scale spaces

W u
h := ker IuH |Vh ⊆ Vh and W p

h := ker IpH |Qh
⊆ Qh,

which leads to the coupled correction Ch : Vh × Qh → W u
h × W p

h de�ned for
vh ∈ Vh and qh ∈ Qh by

a(Ch[vh, qh], [wh, rh]) = a([vh, qh], [wh, rh]) (6.9)

for all wh ∈ W u
h and rh ∈ W p

h . Here a : (V × Q)× (V × Q) → R is the bilinear
form corresponding to the stationary poroelastic system, i.e.,

a([v, q], [w, r]) := a(v, w)− d(w, q) + b(q, r).

One can show that (6.9) has a unique solution and, therefore, the conditions in
Chapter 2 hold. This follows from the coercivity of a and b as well as the fact
that we may solve the part involving the bilinear form b �rst and then use the
result for the rest of the equation. A direct consequence of this is that the second
component of Ch[vh, qh] only depends on qh while the �rst one is determined by
vh and qh.
Then again, the operator C∗h : Vh × Qh → W u

h ×W
p
h for the correction of the

test functions is given by

C∗h[vh, qh] = [Cuhvh, C
p
hqh],

where Cuh = C∗,uh : Vh → W u
h and Cph = C∗,ph : Qh → W p

h are de�ned by

a(Cuhvh, wh) = a(vh, wh), b(Cphqh, rh) = b(qh, rh) (6.10)

for all wh ∈ W u
h and rh ∈ W p

h . Thus, the operator C∗h decouples. In [MP17],
also Ch[vh, qh] is computed using the two correction operators Cuh and Cph de�ned
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in (6.10). This, however, requires an auxiliary correction Caux
h : Qh → W u

h given
by

a(Caux
h qh, wh) = −d(wh, (id− Cph)qh)

for all wh ∈ W u
h . With the additional correction, it holds that

a([Cuhvh + Caux
h qh, Cphqh], [wh, rh])

= a(Cuhvh + Caux
h qh, wh)− d(wh, Cphqh) + b(Cphqh, rh)

= a(vh, wh)− d(wh, qh) + b(qh, rh)

= a([vh, qh], [wh, rh])

for any vh ∈ Vh and qh ∈ Qh and all wh ∈ W u
h and rh ∈ W p

h . Therefore, the
correction operator Ch satis�es

Ch[vh, qh] = [Cuhvh + Caux
h qh, Cphqh].

Next, we de�ne the operators

Ru
h : VH → Vh and Rp

h : QH → Qh

de�ned by

Ru
hvH := (id− Cuh)vH and Rp

hqH := (id− Cph)qH (6.11)

for any vH ∈ VH and qH ∈ QH . Further, we de�ne the corresponding multiscale
spaces ṼH := Ru

hVH and Q̃H := Rp
hQH , where we omit the index h.

With these spaces, we can formulate the method presented in [MP17]: for
n ∈ {1, . . . , N}, �nd ūnH = ũnH+uaux,n

h with ũnH ∈ ṼH , u
aux,n
h ∈ W u

h , and p̄
n
H ∈ Q̃H

such that

a(ūnH , ṽH)− d(ṽH , p̄
n
H) = 0,

d(Dτ ū
n
H , q̃H) + c(Dτ p̄

n
H , q̃H) + b(p̄nH , q̃H) = (fn, q̃H)HQ ,

a(uaux,n
h , wh) + d(wh, p̄

n
H) = 0

(6.12)

for all ṽH ∈ ṼH , q̃H ∈ Q̃H , and wh ∈ W u
h . Note that the initial condition is

given by p̄0
H = Rp

hp
0
h. Moreover, we de�ne ū0

H = ũ0
H + uaux,0

h , where uaux,0
h ∈ W u

h

is given by the third equation of (6.12) and ũ0
H ∈ ṼH is obtained by

a(ū0
H , ṽH) = a(ũ0

H , ṽH) = d(ṽH , p̄
0
H)

for all ṽH ∈ ṼH . The system (6.12) is well-posed and the errors ‖unh− ūnH‖V and
‖pnh−p̄nH‖Q scale like H independently of ε; see [MP17, Thm. 5.2]. Together with
Theorem 6.2.3, this implies that the multiscale solution (ūnH , p̄

n
H) approximates

the exact solution (u, p) with an error of order H + τ . Moreover, one may
manipulate system (6.12) in such a way that, in practice, the additional �ne-
scale correction only needs to be computed in the o�ine stage using a set of
basis functions. This keeps the coarse structure of the system in each time step
at the expense of slightly more complicated systems (see [MP17]).
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6.2.3 An alternative multiscale method

In this subsection, we propose an alternative approach to the method in (6.12)
which does not require an additional �ne-scale correction. To achieve this, we
exploit some structural properties of the system. These become evident if we
discretize system (6.3) in time �rst, i.e., if we consider

a(un, v)− d(v, pn) = 0,

d(Dτu
n, q) + c(Dτp

n, q) + b(pn, q) = (fn, q)HQ
(6.13)

for all v ∈ V , q ∈ Q, and n ∈ {1, . . . , N}. We �rst prove that system (6.13) is
well-posed.

Lemma 6.2.4 (Well-posedness). Let n ∈ {1, . . . , N} and assume that un−1 ∈ V
and pn−1 ∈ Q are given. Then, system (6.13) is well-posed.

Proof. We introduce the bilinear form b : (V ×Q)× (V ×Q)→ R de�ned by

b([v, q], [w, r]) := a(v, w)− d(w, q) + d(v, r) + c(q, r) + τ b(q, r) (6.14)

for v, w ∈ V and q, r ∈ Q. Note that b is coercive, since

b([v, q], [v, q]) = ‖v‖2
a + ‖q‖2

c + τ ‖q‖2
b .

Furthermore, system (6.13) is equivalent to

b([un, pn], [v, q]) = τ (fn, q) + d(un−1, q) + c(pn−1, q).

Thus, the well-posedness follows from the Lax-Milgram Theorem.

We can now de�ne an alternative correction operator based on the observa-
tion that the terms involving d in system (6.13) cancel for suitable test functions
when summing both equations. Therefore, we propose to use the adapted cor-
rection operator C̃h = C̃∗h : Vh ×Qh → W u

h ×W
p
h simply de�ned by

C̃h[vh, qh] := [Cuhvh, C
p
hqh]

for vh ∈ Vh and qh ∈ Qh, with the operators Cuh , C
p
h de�ned in (6.10). We show in

the following that the corresponding multiscale method provides optimal orders
of convergence as well. Note that with the correction operator C̃h, we retain
the projections Ru

h and R
p
h as de�ned in (6.11) and the spaces ṼH = Ru

hVH and
Q̃H = Rp

hQH . Here, however, we do not require an auxiliary correction as in
Section 6.2.2.
Using the spaces de�ned above, we can formulate the alternative multiscale

method. For this, we discretize system (6.13) in space and consider the problem:
for n ∈ {1, . . . , N}, �nd ũnH ∈ ṼH and p̃nH ∈ Q̃H such that

a(ũnH , ṽH)− d(ṽH , p̃
n
H) = 0,

d(Dτ ũ
n
H , q̃H) + c(Dτ p̃

n
H , q̃H) + b(p̃nH , q̃H) = (fn, q̃H)HQ

(6.15)
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for all ṽH ∈ ṼH and q̃H ∈ Q̃H . Note that this system is again well-posed by
the arguments of Lemma 6.2.4. Given p̃0

H , we de�ne the initial condition ũ
0
H as

before by
a(ũ0

H , ṽH) = d(ṽH , p̃
0
H)

for all ṽH ∈ ṼH .
Before we further investigate the method de�ned in (6.15), we provide an

alternative characterization of the bilinear forms a and b in terms of operators.
That is, we de�ne A : Vh → Vh and B : Qh → Qh by

(Avh, wh)HV := a(vh, wh), (Bqh, rh)HQ := b(qh, rh)

for all wh ∈ Vh and rh ∈ Qh. Note that these operators are only well-de�ned on
the discrete spaces Vh. In the following two lemmas, we provide bounds for the
projections de�ned above that are useful for the proof of convergence later on.

Lemma 6.2.5. The projections Ru
h and R

p
h de�ned in (6.10) satisfy the bounds

‖(id−Ru
h)vh‖HV . H ‖(id−Ru

h)vh‖V . H ‖vh‖V ,
‖(id−Rp

h)qh‖HQ . H ‖(id−Rp
h)qh‖Q . H ‖qh‖Q

for all vh ∈ Vh and qh ∈ Qh.

Proof. The proof is based on the arguments that are used in Theorem 2.3.1 and
Theorem 3.2.6. We only show the �rst estimate since the second one follows
analogously. Let vh ∈ Vh. By (2.14) and the fact that IH(id − Ru

h)vh = 0, it
directly follows that

‖(id−Ru
h)vh‖HV . H ‖(id−Ru

h)vh‖V .

The stability estimate then follows from (id−Ru
h)vh = Cuhvh, (6.4), and (6.10).

To be more precise, it holds that

cσ ‖(id−Ru
h)vh‖2

HV ≤ a(Cuhvh, Cuhvh) = a(vh, Cuhvh) ≤ Cσ ‖vh‖V ‖Cuhvh‖V ,

which concludes the proof.

Lemma 6.2.6. The projections Ru
h and Rp

h de�ned in (6.10) are bounded in
terms of A and B by

‖(id−Ru
h)vh‖V . H ‖Avh‖HV , ‖(id−Rp

h)qh‖Q . H ‖Bqh‖HQ
for all vh ∈ Vh and qh ∈ Qh.

Proof. For vh ∈ Vh, we get

cσ ‖vh −Ru
hvh‖2

V ≤ a(vh, vh −Ru
hvh) = (Avh, vh −Ru

hvh)HV
≤ ‖Avh‖HV ‖vh −Ru

hvh‖HV .

The claim then follows directly from Lemma 6.2.5. The proof of the result
involving B follows the same lines.
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6.2.4 Convergence studies

The aim of this subsection is to prove that the solution provided by (6.15)
approximates the �ne-scale solution (unh, p

n
h) of (6.6) up to order H. In combi-

nation with Theorem 6.2.3, this shows that the multiscale solution converges to
the exact solution. More precisely, we obtain (assuming h su�ciently small) an
error estimate which states that the error is bounded by O(H+τ) independently
of ε. Note that we assume here that the corrector problems are solved on the
global domain. Since the localization of the corrections was already discussed in
detail in the previous chapters, we omit the rigorous analysis of the localization
procedure and refer to Section 2.4.3 for the details. We remark that the conver-
gence result in Theorem 6.2.7 below remains valid if the involved localization
parameter ` is chosen su�ciently large, i.e., ` & | logH|.
The main result of this chapter reads as follows.

Theorem 6.2.7 (Error of the alternative multiscale method). Assume that
f ∈ L∞(0, T ;L2(D)) ∩ H1(0, T ;H−1(D)) and consistent initial data u0

h ∈ Vh,
p0
h ∈ Qh are given as well as ũ0

H ∈ ṼH and p̃0
H := Rp

hp
0
h ∈ Q̃H . Then the error

between the multiscale solution (ũnH , p̃
n
H) of (6.15) and the �ne-scale solution

(unh, p
n
h) of (6.6) satis�es

‖unh − ũnH‖V + ‖pnh − p̃nH‖Q . H Cn
data + t−1/2

n H ‖p0
h‖Q

for n ∈ {1, . . . , N}, where Cn
data is de�ned by

Cn
data := ‖p0

h‖Q + ‖f‖L2(0,tn;L2(D)) + ‖f‖L∞(0,tn;L2(D)) + ‖∂tf‖L2(0,tn;H−1(D)).

Proof. As in the proof of convergence for the multiscale method in [MP17], we
split the errors in the displacement and pressure into two parts each, namely

ρnu := unh −Ru
hu

n
h, ηnu := Ru

hu
n
h − ũnH ,

ρnp := pnh −R
p
hp

n
h, ηnp := Rp

hp
n
h − p̃nH .

Thus, ρn∗ contains the error of the projections and η
n
∗ the di�erence between the

projection and the multiscale solution.
Step 1 (estimates of ρn∗ ): In a �rst step, we bound the projection error due

to Ru
h. For this, we apply Lemma 6.2.6 and use the �rst line of (6.6),

‖ρnu‖V = ‖(id−Ru
h)u

n
h‖V . H ‖Aunh‖HV

= H sup
vh∈Vh

|a(unh, vh)|
‖vh‖HV

= H sup
vh∈Vh

|d(vh, p
n
h)|

‖vh‖HV
. H ‖pnh‖Q,

employing integration by parts in the last line. Theorem 6.2.2 then implies that
‖ρnu‖V is bounded by

‖ρnu‖V . H
(
‖p0

h‖Q + ‖f‖L2(0,tn;L2(D))

)
. H Cn

data.
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Similarly, the projection error due to Rp
h can be bounded using the second line

of (6.6), i.e.,

‖ρnp‖Q = ‖(id−Rp
h)p

n
h‖Q . H ‖Bpnh‖HQ

= H sup
qh∈Qh

|b(pnh, qh)|
‖qh‖HQ

= H sup
qh∈Qh

|(fn, qh)− d(Dτu
n
h, qh)− c(Dτp

n
h, qh)|

‖qh‖HQ
. H

(
‖fn‖HQ + ‖Dτu

n
h‖V + ‖Dτp

n
h‖HQ

)
.

Using Theorem 6.2.2, we obtain the bounds ‖ρnp‖Q . H Cn
data if p0

h = 0 and

‖ρnp‖Q . t
−1/2
n H ‖p0

h‖Q if f = 0.
Step 2 : In order to bound the remaining errors, we consider speci�c test

functions within the systems (6.6) and (6.15). Using the de�nition of Ru
h, we

have for all ṽH ∈ ṼH ⊆ Vh that

a(ηnu , ṽH)− d(ṽH , η
n
p ) = a(Ru

hu
n
h, ṽH)− d(ṽH ,Rp

hp
n
h)

= a(unh, ṽH)− d(ṽH ,Rp
hp

n
h) = d(ṽH , ρ

n
p ).

(6.16)

Similarly, we have for all q̃H ∈ Q̃H that

d(Dτη
n
u , q̃H) + c(Dτη

n
p , q̃H) + b(ηnp , q̃H)

= d(DτRu
hu

n
h, q̃H) + c(DτRp

hp
n
h, q̃H) + b(pnh, q̃H)− (fn, q̃H)HQ

= −d(Dτρ
n
u, q̃H)− c(Dτρ

n
p , q̃H),

(6.17)

using the de�nition of Rp
h. Combining equation (6.16) at the time steps n and

(n− 1), we obtain

a(Dτη
n
u , ṽH)− d(ṽH , Dτη

n
p ) = d(ṽH , Dτρ

n
p ) (6.18)

for any ṽH ∈ ṼH . Note that these equations are also valid for n = 1 because of
the construction of u0

h and ũ0
H . To obtain bounds for ηn∗ , we consider the two

cases where either p0
h = 0 or f = 0. This is done in the next two steps. An

application of the triangle inequality then gives the stated result.
Step 3 (estimates of ηn∗ if p

0
h = 0): Note that p0

h = 0 also implies u0
h = 0. We

now insert the test function ṽH = Dτη
n
u into (6.18) and add this to equation

(6.17) with q̃H = Dτη
n
p . Together, this yields

a(Dτη
n
u , Dτη

n
u) + c(Dτη

n
p ,Dτη

n
p ) + b(ηnp , Dτη

n
p )

= d(Dτη
n
u , Dτρ

n
p )− d(Dτρ

n
u, Dτη

n
p )− c(Dτρ

n
p , Dτη

n
p )

and thus

‖Dτη
n
u‖2

a + ‖Dτη
n
p ‖2

c + b(ηnp , Dτη
n
p )

≤ Cα ‖Dτη
n
u‖V ‖Dτρ

n
p‖HQ + Cα ‖Dτρ

n
u‖V ‖Dτη

n
p ‖HQ

+ CM ‖Dτρ
n
p‖HQ ‖Dτη

n
p ‖HQ

≤ 1

2
‖Dτη

n
u‖2

a +
1

2
‖Dτη

n
p ‖2

c + C ‖Dτρ
n
p‖2
HQ + C ′ ‖Dτρ

n
u‖2
V .
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We can eliminate ‖Dτη
n
u‖a and ‖Dτη

n
p ‖c on the right-hand side and multiply

the estimate by 2τ . Then, a summation over n yields

τ

n∑
j=1

‖Dτη
j
u‖2
V + τ

n∑
j=1

‖Dτη
j
p‖2
HQ + ‖ηnp ‖2

Q

. 2τ
n∑
j=1

‖Dτρ
j
p‖2
HQ + 2τ

n∑
j=1

‖Dτρ
j
u‖2
V ,

where we use that η0
p = 0. The sum including Dτρ

j
u can be bounded using once

more Lemma 6.2.6, i.e.,

‖Dτρ
j
u‖V = ‖(id−Ru

h)Dτu
j
h‖V . H sup

vh∈Vh

|a(Dτu
j
h, vh)|

‖vh‖HV

= H sup
vh∈Vh

∣∣d(vh, Dτp
j
h)
∣∣

‖vh‖HV
. H ‖Dτp

j
h‖Q.

(6.19)

Together with Theorem 6.2.2, this leads to

τ
n∑
j=1

‖Dτρ
j
u‖2
V . τH2

n∑
j=1

‖Dτp
j
h‖

2
Q . (H Cn

data)2.

Then again, the sum including Dτρ
j
p can be bounded using

‖Dτρ
j
p‖HQ = ‖(id−Rp

h)Dτp
j
h‖HQ . H ‖Dτp

j
h‖Q,

which follows from Lemma 6.2.5 and results in

τ
n∑
j=1

‖Dτρ
j
p‖2
HQ ≤ τ

n∑
j=1

H2 ‖Dτp
j
h‖

2
Q . (H Cn

data)2.

This does not only provide the bound ‖ηnp ‖Q . H Cn
data but also

‖ηnu‖V . ‖ρnp‖HQ + ‖ηnp ‖HQ . H Cn
data,

where we employ (6.16).
Step 4 (estimates of ηn∗ if f = 0): We emphasize that by assumption also

η0
p = 0 in this case. Together with (6.16), this yields

‖η0
u‖2
V . a(η0

u, η
0
u) = d(η0

u, η
0
p) + d(η0

u, ρ
0
p) . ‖η0

u‖V ‖ρ0
p‖HQ

and, therefore,
‖η0

u‖V . ‖ρ0
p‖HQ . H ‖p0

h‖Q.

Note that it is su�cient to bound ‖ηnp ‖Q in terms of H Cn
data since by (6.16)

‖ηnu‖V . ‖ρnp‖HQ+‖ηnp ‖HQ . As in Step 3, we consider the sum of equation (6.18)
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with ṽH = Dτη
n
u and equation (6.17) with q̃H = Dτη

n
p . Multiplying the result

by 2τ , we get

2τ ‖Dτη
n
u‖2

a + 2τ ‖Dτη
n
p ‖2

c + ‖ηnp ‖2
b − ‖ηn−1

p ‖2
b . 2τ ‖Dτρ

n
p‖2
HQ + 2τ ‖Dτρ

n
u‖2
V .

Another multiplication by t2n and the estimate t2n − t2n−1 ≤ 3τtn−1 then lead to

2τt2n ‖Dτη
n
u‖2

a + 2τt2n ‖Dτη
n
p ‖2

c + t2n ‖ηnp ‖2
b − t2n−1 ‖ηn−1

p ‖2
b

. 2τt2n ‖Dτρ
n
p‖2
HQ + 2τt2n ‖Dτρ

n
u‖2
V + 3τtn−1 ‖ηn−1

p ‖2
Q.

Taking the sum, we obtain

τ
n∑
j=1

t2j ‖Dτη
j
u‖2
V + t2n ‖ηnp ‖2

Q

. τ
n∑
j=1

t2j ‖Dτη
j
u‖2

a +
n∑
j=1

(
t2j ‖ηjp‖2

b − t2j−1 ‖ηj−1
p ‖2

b

)
. τ

n∑
j=1

t2j ‖Dτρ
j
p‖2
HQ + τ

n∑
j=1

t2j ‖Dτρ
j
u‖2
V + τ

n−1∑
j=1

tj ‖ηjp‖2
Q.

(6.20)

To bound the �rst sum on the right-hand side, we apply �rst Lemma 6.2.5 and
then Theorem 6.2.2 and obtain

τ
n∑
j=1

t2j ‖Dτρ
j
p‖2
HQ . τ

n∑
j=1

t2jH
2 ‖Dτp

j
h‖

2
Q . τ

n∑
j=1

H2 ‖p0
h‖2
HQ = tnH

2 ‖p0
h‖2
Q.

For the second sum, we use the estimate ‖Dτρ
j
u‖V . H ‖Dτp

j
h‖Q from (6.19),

which is also valid for non-zero initial conditions. With Theorem 6.2.2, we
further get

τ
n∑
j=1

t2j ‖Dτρ
j
u‖2
V . τ

n∑
j=1

t2jH
2 ‖Dτp

j
h‖

2
Q . tnH

2 ‖p0
h‖2
Q.

Step 5 (estimate of the last sum in (6.20)): In order to bound the third sum
on the right-hand side of (6.20), we consider the sum of (6.16) and (6.17). For
test functions ṽH = Dτη

n
u and q̃H = ηnp , we get after multiplication with 2τtn

and an application of Young's inequality

tn
(
‖ηnu‖2

a − ‖ηn−1
u ‖2

a

)
+ tn

(
‖ηnp ‖2

c − ‖ηn−1
p ‖2

c

)
+ 2τtn ‖ηnp ‖2

b

. γτt2n ‖Dτη
n
u‖2
V + γ−1τ ‖ρnp‖2

HQ + τt2n ‖Dτρ
n
u‖2
HV

+ τt2n ‖Dτρ
n
p‖2
HQ + τ ‖ηnp ‖2

HQ
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for any γ > 0. We add τ ‖ηn−1
u ‖2

a + τ ‖ηn−1
p ‖2

c on both sides and take the sum
over n such that we obtain

tn ‖ηnu‖2
V + tn ‖ηnp ‖2

HQ +
n∑
j=1

τtj ‖ηjp‖2
Q . γ τ

n∑
j=1

t2j ‖Dτη
j
u‖2
V︸ ︷︷ ︸

a©

+
1

γ
τ

n∑
j=1

‖ρjp‖2
HQ︸ ︷︷ ︸

b©

+ τ

n∑
j=1

t2j
(
‖Dτρ

j
u‖2
HV + ‖Dτρ

j
p‖2
HQ

)
︸ ︷︷ ︸

c©

+ τ
n∑
j=1

(
‖ηjp‖2

HQ + ‖ηj−1
u ‖2

V
)

︸ ︷︷ ︸
d©

.

Note that the sum on the left-hand side is the term we aim to bound. For a suf-
�ciently small γ which only depends on the generic constant of the estimates,
we can eliminate a© with the left-hand side in (6.20). For the remaining three
parts on the right-hand side, we estimate

b© = τ
n∑
j=1

‖ρjp‖2
HQ . τ

n∑
j=1

H2 ‖pjh‖
2
Q . τ

n∑
j=1

H2 ‖p0
h‖2
Q = tnH

2 ‖p0
h‖2
Q

and, with Lemma 6.2.5 and Theorem 6.2.2,

c© . τ
n∑
j=1

H2 t2j

(
‖Dτu

j
h‖

2
V + ‖Dτp

j
h‖

2
Q

)
. τ (tn + 1)

n∑
j=1

H2 ‖p0
h‖2
Q = (t2n + tn)H2 ‖p0

h‖2
Q.

Finally, with the equations (6.16) and (6.17) as well as the test functions ṽH = ηnu
and q̃H = ηnp , one can show as in [MP17] that also d© . tnH

2 ‖p0
h‖2
Q. In

summary, this yields

‖ηnp ‖Q . (1 + t−1/2
n )H ‖p0

h‖Q,

which concludes the proof.

Theorem 6.2.7 shows together with Theorem 6.2.3 that the multiscale method
proposed in (6.15) converges linearly, i.e., the error is bounded by O(H+τ) if we
consider the L∞(0, T ;V)-norm for u and the L∞(0, T ;HQ) ∩ L2(0, T ;Q)-norm
for p. We emphasize that the involved constants are independent of derivatives
of the coe�cients µ, λ, κ, and α.

Remark 6.2.8. The approach of discarding the coupling term in the stationary
system to obtain two decoupled projection operators is also used in [FAC+19] for
the problem of linear poroelasticity with high contrast employing the multiscale
technique referred to as CEM-GMsFEM. Further, it is applied to more general
(homogeneous) elliptic-parabolic problems in the context of semi-explicit time
discretization schemes in [AMU19].
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6.3 Numerical experiments

In order to assess the method numerically, we consider numerical examples in
two and three space dimensions. We measure the error in the discrete L2(H1)-
norm

‖(v, q)‖N,1 :=

( N∑
j=1

τ
(
‖∇v(jτ)‖2

HV + ‖∇q(jτ)‖2
HQ

))1/2

,

where N = T/τ is the number of time steps. Further, we set D = (0, 1)d as the
domain and T = 1 as �nal time with time step size τ = 0.01 (and thus N = 100)
for both the two-dimensional examples and the example in three dimensions.
The reference solution (uh, ph) is computed on a regular uniform mesh Th

consisting of elements with given mesh size h. The local corrector problems
are also solved on patches with mesh size h. The parameters are chosen to be
piecewise constant on elements of Tε and the value is obtained as a uniformly
distributed random number between two given bounds, i.e., for any K ∈ Tε we
have

κ|K ∼ U(0.1, 0.3), µ|K ∼ U(40, 70),

λ|K ∼ U(30, 60), α|K ∼ U(0.5, 1)
(6.21)

and M = ν = 1, where Tε is a mesh with mesh size ε > h to guarantee that
the reference solution is reasonable. Note that we take representative global
samples for the above parameters. For the second two-dimensional example,
the coe�cients are chosen with the pattern depicted in Figure 6.1 scaled to
the respective parameter range as given in (6.21). In all numerical tests, the
localization parameter is set to ` = 2 which showed to be su�cient. Note,
however, that the choice of the localization parameter generally needs to be
increased for smaller values ofH and may be decreased for largerH as quanti�ed
in Chapter 2 and [HP13].

6.3.1 Two-dimensional examples

In all two-dimensional experiments, the �ne mesh size is set to h = 2−8, and
ε = 2−6.
For the �rst example, we set f = 1 and p0(x) = (1−x1)x1 (1−x2)x2. We pre-

scribe homogeneous Dirichlet boundary conditions for p on ∂D, homogeneous
Dirichlet boundary conditions for u on {x ∈ ∂D : x2 = 0 or x2 = 1} and homo-
geneous Neumann boundary conditions on {x ∈ ∂D : x1 = 0 or x1 = 1}. The
errors for di�erent values of H are shown in Figure 6.1 (right, ). The results
are in line with the theory and indicate a convergence rate even slightly better
than 1 with respect to the coarse mesh size H.
In the second example, we consider p0(x) =

√
1− x2, f = 0, and enforce

homogeneous Dirichlet boundary conditions for u and p on {x ∈ ∂D : x2 = 1}
and homogeneous Neumann boundary conditions on the remaining part of ∂D.
As mentioned above, all coe�cients in this example are chosen with the pattern
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Figure 6.1: Multiscale pattern (left) and relative errors of the LOD method with

respect to H in the two- and three-dimensional setting, measured in the

discrete L2(H1)-norm (right).

depicted in Figure 6.1 (left). In this example, the predicted linear convergence
can be observed, cf. Figure 6.1 (right, ).
In Figure 6.1 (right, ), we also present the results of the third example, where

p0(x) = (1− x2)x2 and f(x, t) = 3 t cos(2π x1) sin(3π x2). Further, we take the
same boundary conditions as in the previous example. On the one hand, the
errors in this example partially indicate a higher-order convergence rate. On
the other hand, the error curve slightly stagnates for smaller values of H, which
can be explained by the e�ect of the localization error.

6.3.2 Three-dimensional example

For the three-dimensional setting, we restrict ourselves to h = 2−5 and ε = 2−4

due to the high computational complexity. We choose the coe�cients as in
(6.21), set f = 0, p0(x) = (1−x1)x1 (1−x2)x2 (1−x3)x3, and prescribe homo-
geneous Dirichlet boundary conditions on {x ∈ ∂D : x3 = 1} and homogeneous
Neumann boundary conditions on the remaining part of ∂D. Further, we set
` = 2 as before. The errors for this example are plotted in Figure 6.1 (right, )
and show at least the expected linear convergence rate. Moreover, this exam-
ple indicates that the three-dimensional setting can be handled if appropriate
computing capacities are available.
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7.1 Conclusion

This thesis was concerned with the coarse-scale numerical approximation of so-
lutions of partial di�erential equations that involve one or more heterogeneous
coe�cients, possibly with oscillations on �ne scales. To avoid global computa-
tions that resolve the varying coe�cients, we employed the Localized Orthogonal
Decomposition technique to e�ciently deal with the presence of multiple scales
or even a continuum of scales without restrictive structural assumptions. We
presented the classical �rst-order approach in a relatively general setting with
a rigorous analysis of the convergence behavior and illustrative examples that
showed the practical performance of the method. Moreover, we extended the
�rst-order multiscale approach to a higher-order variant in the elliptic setting
based on the saddle point formulation of the classical method. The higher-order
method was constructed from discontinuous �nite element spaces which are fa-
vorable to extract higher-order convergence rates. In particular, the method
allowed for a thorough tracing of the mesh size, the polynomial degree, and
the localization parameter. We presented numerical experiments that indicate
an even better dependence on the involved parameters than predicted by the
theory.
The applicability of the above approach to general heterogeneous coe�cients

motivated a strategy to reconstruct the e�ective behavior of solutions to mul-
tiscale problems from given coarse measurements in connection with an inverse
di�usion problem. The idea of the approach was to use the knowledge that sys-
tem matrices corresponding to the Localized Orthogonal Decomposition tech-
nique, as well as other numerical homogenization approaches, obey a certain
quasi-local sparsity pattern. Prescribing such a pattern then allowed us to
reconstruct coarse models that recover available measurements. Since the nu-
merical results showed that the inversion procedure favors quasi-local models
with some deviation from locality, these results, in turn, emphasized the general
potential of numerical homogenization methods.
Subsequently, we applied the framework of Localized Orthogonal Decompo-

sition to two time-dependent problems. For the acoustic wave equation, we
combined the method with an explicit time discretization scheme and achieved
a complexity reduction in space and in time. That is, the construction of a mul-
tiscale space for the spatial discretization led to smaller systems to solve in every
time step and, additionally, enabled the use of larger time steps subject to a re-
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laxation of the time step restriction. We rigorously studied the convergence
behavior of the method and presented numerical illustrations that con�rmed
the theoretical �ndings.
In connection with the multiphysics problem of linear poroelasticity, we then

combined the Localized Orthogonal Decomposition method with an implicit
Euler scheme in time and presented an adapted approach which was not based on
the stationary equations as it is normally done. Instead, we exploited the saddle
point structure of the system after a temporal discretization, which motivated
a decoupling in the construction of the multiscale spaces. This construction
resulted in a simple method for which we could prove �rst-order convergence
and validate the �ndings with numerical experiments.

7.2 Outlook

The work presented in this thesis opens up many possibilities for future research.
To start with, the decay estimates for the higher-order method in Chapter 3 are
not sharp as discussed in Remark 3.3.3. Since also the numerical experiments
indicate a better scaling, a natural next step is trying to improve the estimates
in terms of a better decay rate with respect to the polynomial degree. Further,
one could aim for a modi�cation of the method to reduce the pollution in terms
of the mesh size which occurs if the localization parameter is not increased
accordingly (cf. Theorem 3.3.4). Moreover, the higher-order approach in con-
nection with time discretization schemes could be investigated for the presented
time-dependent problems.
Concerning the �ndings in Chapter 4, a natural next step would be to in-

vestigate how to extract information about the actual �ne-scale coe�cient from
the reconstructed model using, e.g., additional structural knowledge if avail-
able. Besides, an application of the approach to problems beyond the elliptic
framework could be studied.
With regard to time-dependent problems, multiscale approaches where �ne-

scale coe�cients also depend on the temporal variable mark an interesting class
of problems in connection with numerical homogenization not only in space but
also in time. Such considerations could as well be valuable in the context of
long-time wave propagation, which is an active �eld of research.
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S(`, TH) set of LOD sti�ness matrices 66
supp support of a function 21
τ time step 83
tr trace operator 62
TH regular and quasi-uniform mesh 11
V , Q (general) H1-space with (partially) prescribed

zero traces
10

V̄ (general) H1-space 10
VH , QH conforming �rst-order coarse FE space 11
V̄H �rst-order coarse FE space without boundary

conditions
63

ṼH , Q̃H ideal multiscale (test) space 15
Vh, Qh conforming �rst-order �ne FE space 27
V p
H discontinuous higher-order coarse FE space 38

Ṽ p
H ideal higher-order multiscale space 42
Vh,p′ conforming higher-order �ne FE space 50
W �ne-scale space 14
Wh, W

u
h , W

p
h discrete �ne-scale space 27

X trace space of H1(D) 62
XH trace space of V̄H 63
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Acronyms

ALB Adaptive Local Basis 4
CFL Courant-Friedrichs-Lewy 6
cG continuous Galerkin 9
cPG continuous Petrov-Galerkin 15
dG discontinuous Galerkin 35
DOF degree of freedom 3
EOC experimental order of convergence 55
FE �nite element 2
GFEM Generalized Finite Element Method 3
GMsFEM Generalized Multiscale Finite Element Method 4
HMM Heterogeneous Multiscale Method 3
LOD Localized Orthogonal Decomposition 4
MsFEM Multiscale Finite Element Method 3
ODE ordinary di�erential equation 89
PDE partial di�erential equation 1
RPS Rough Polyharmonic Splines 4
VMM Variational Multiscale Method 4
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