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Abstract

In this thesis, we consider the numerical approximation of solutions of par-
tial differential equations that exhibit some kind of multiscale features. Such
equations describe, for instance, the deformation of porous media, diffusion
processes, or wave propagation and the multiscale behavior of corresponding
solutions is typically the result of material coefficients that include variations
on some fine scale. To avoid global computations on scales that resolve the
microscopic quantities, the aim is to provide suitable approximations on some
coarse discretization level while taking into account these fine-scale characteris-
tics of underlying coefficients. To this end, we employ the framework of Localized
Orthogonal Decomposition that is able to cope with general heterogeneous coeffi-
cients without the requirement for structural assumptions such as periodicity or
an explicit characterization of a fine scale. The approach provides adapted finite
element functions with improved approximation properties based on localized
corrections of classical finite element functions. We introduce the method in an
abstract stationary setting and rigorously analyze its convergence behavior in
terms of theoretical and numerical investigations. We also present a higher-order
generalization of the approach based on non-conforming spaces and study the
interplay between the mesh parameter, the polynomial degree, and the localiza-
tion parameter. We provide convergence results with explicit dependencies on
the above-mentioned parameters and present numerical experiments. Further,
we consider an inverse problem of recovering information about an underlying
diffusion coefficient from given coarse-scale measurements. Instead of recon-
structing the actual coefficient, we follow the idea of finding a coarse model in
the spirit of general numerical homogenization methods that is able to satis-
factorily reproduce the given data. Although this is a seemingly very different
setting, the results of the inverse procedure provide a justification of general
(forward) numerical homogenization methods (as, e.g., the Localized Orthogo-
nal Decomposition) and therefore solidify the approach from a different point
of view. Beyond these stationary problems, we apply the Localized Orthogonal
Decomposition method to the wave equation and the multiphysics problem of
linear poroelasticity. We provide rigorous convergence studies and numerical
examples. The approach displays its full potential in these time-dependent set-
tings in the sense of an overall complexity reduction. In the context of the wave
equation, we focus on an explicit time stepping scheme and the effect of the
method on the time step restriction. For the poroelastic problem, we use an
implicit scheme and introduce an alternative approach that exploits the saddle
point structure which arises if the system is first discretized in time.
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1 Introduction

1.1 Motivation

Many physical processes in nature, as for example fluid flows in porous media
or general wave propagation through multi-layered soil, involve multiple scales.
Typically, one distinguishes between the microscopic scales which describe the
highly heterogeneous material properties including the possibly very complex
textures of the materials on the one hand, and a macroscopic or effective scale
on which the resulting physical phenomena can be observed on the other hand.
The presence of multiple scales is also key in the manufacturing of modern
composites where fiber-reinforced materials are produced to enhance the overall
strength of the originally homogeneous workpiece. In this context, the artificial
microstructure changes the macroscopic behavior of the material and has to be
taken into account when modeling, for instance, the deformation under loading.

From a mathematical point of view, the physical processes such as flows in
porous media or the deformation of a composite material are described by partial
differential equations (PDEs) with one or more material coefficients that encode
the physical properties. With multiple scales involved, this means that the co-
efficients and corresponding solutions of the PDE may vary on a microscopic
scale. Nevertheless, in general only effective information, i.e., the behavior of
the solutions on the macroscopic scale, is of interest for the understanding and
simulation of the respective processes. Although it might seem natural, the
straightforward approach of discarding micro-scale features of the coefficients in
numerical simulations typically fails to provoke the desired effective solution on
the macroscopic scale. Then again, resolving the microscopic coefficients would
generally be too costly and thus unfeasible for computer simulation, which calls
for an alternative strategy to overcome these problems. In particular, it is impor-
tant to diligently treat the mismatch between microscopic material properties
and the macroscopic observation scale. Corresponding techniques are commonly
referred to as homogenization. The key idea of classical homogenization is to
replace the original PDE by a homogenized or effective PDE whose solution
describes the behavior of the original solution up to variations on a microscopic
scale. Solutions of effective PDEs can then be simulated using standard numeri-
cal methods on the macroscopic scale because the microscopic scale has basically
been removed. The main drawback of classical homogenization models, however,
are structural assumptions such as a clear distinction of scales and periodicity
which are required in analytical homogenization theory on which these methods
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are based. Although many manufactured composites like fiber-reinforced ma-
terials generally provide a clear separation of the involved scales, i.e., the size
of the fibers and the size of the workpiece, and even a periodic structure, these
assumptions are not fulfilled anymore in the presence of material imperfections
or perturbations. In the above-mentioned geophysical processes such as flows
in porous media, structural assumptions such as periodicity or scale separation
are usually not fulfilled either.

In the general setting with only minimal assumptions on the microscopic
structure of involved coefficients, so-called numerical homogenization methods
provide an alternative to classical homogenization. The main idea of these
approaches is to enhance standard finite element (FE) methods by modifying
FE basis functions in a coefficient-adapted way to obtain optimal approxima-
tion spaces on the macroscopic scale of interest. These methods generally have
in common an increased computational complexity in the sense that there is
a moderate overhead in the support of the basis functions or the number of
basis functions per mesh entity. Since this overhead can typically be controlled
by the macroscopic scale of interest and retains locality in a reduced sense,
these methods are called quasi-local in the following. Some more details on
such methods and particular examples are given in the next section.

1.2 Overview of the literature

As already mentioned in the previous section, homogenization techniques can
basically be divided into two groups: numerical homogenization methods and
classical homogenization methods. The latter are based on the mathematical
theory of homogenization, i.e., various types of convergence results for sequences
of problems indexed by a fine-scale parameter ¢ which tends to zero.

A first convergence type is G-convergence introduced by Spagnolo [Spa68]| for
elliptic second-order symmetric operators. The main result is the existence of
a so-called G-limit for any sequence of bounded and uniformly elliptic operators.
This limit corresponds to the homogenized coefficient and the associated solution
captures the effective behavior of the solutions of the e-dependent problems.

To overcome the necessity of symmetric operators, Murat and Tartar [MT97a,
MT97b, Tar78| generalized the concept of G-convergence to the non-symmetric
case. This type of convergence is known as H-convergence and requires some
additional assumptions on the sequence to compensate for the lack of symmetry.
Note that there are constructive proofs to the existence result of the H -limit, also
known as method of oscillating test functions or energy method |Tar78 MT97b|
from which corresponding numerical methods can be derived.

Another kind of convergence is the so-called I'-convergence and was intro-
duced by De Giorgi [DG75, DG84]. It is characterized by the convergence of
minimizers of e-dependent functionals and thus valid in relatively general set-
tings. The relevance of I'-convergence to homogenization theory is mainly based
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on the fact that solving a linear, symmetric PDE is often closely connected to
finding the minimizer of an appropriate functional.

A less general type of convergence is the so-called two-scale convergence which
traces back to Nguetseng [Ngu89| and Allaire [All192]. It is based on the ansatz of
a two-scale periodic expansion with a slow variable (macroscopic) and a fast one
(microscopic) which is justified by a rigorous two-scale homogenization result.
For more details on the different convergence types, see also, for instance, the
overview provided in [All97].

The most popular numerical approaches to homogenization which are based
on the above-mentioned theoretical results are the Multiscale Finite Element
Method (MsFEM) by Hou and Wu [HW97|, the Two-Scale Finite Element
Method introduced by Matache and Schwab in [MS02|, and the approach of E
and Engquist [EE03,EE05] known as Heterogeneous Multiscale Method (HMM).
The MsFEM uses a set of multiscale basis functions which are constructed by
solving operator-adapted problems in each element of a coarse mesh. Further,
these functions coincide with classical FE basis functions on the boundary of
the elements. The approach of [MS02| builds a two-scale FE space based on
a coarse mesh and a local fine-scale space consisting of e-periodic functions for
each coarse degree of freedom (DOF). The very general idea of the HMM is
to approximate the homogenized coefficients from classical homogenization by
solving discrete local cell problems on small patches around quadrature points.
All these methods are powerful tools to deal with the discrepancy between mi-
crostructural quantities in PDEs and the desired effective behavior of respective
solutions. The main drawback, however, are the restrictive assumptions that
underlie the analysis of these approaches.

The aim to overcome the aforementioned structural restrictions gave rise to
many numerical homogenization methods which are designed to work in very
general settings. These methods have in common that they approximate the
effective behavior of the solution of a PDE on some coarse scale H, which is
typically the mesh size of the underlying FE grid. The involved coefficient and
the corresponding solution are assumed to have some kind of fine-scale variations
but an explicit characterization of a microscopic scale in terms of a parameter
e is generally not required. In particular, these methods aim for error estimates
which do not depend on fine-scale variations of the coefficient and especially not
on e (if available), in contrast to classical FE methods where such variations
severely impact the error estimates.

As far as elliptic problems are concerned, there are several methods which
fall into this category. Note that the ones presented here do not at all rep-
resent a complete list. One of these methods is the Generalized Finite Ele-
ment Method (GFEM) that is analyzed in [BL11| and traces back to earlier
works [BO83,BCO94|. The main idea is to decompose the domain of interest
into local (possibly overlapping) subsets and thus divide the global approxima-
tion space into local contributions in the spirit of a partition of unity approach.
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On each of the subdomains, so-called local particular solutions are computed as
well as a number of local eigenfunctions to approximate the space of harmonic
functions with respect to the given diffusion coefficient. It can be shown that
the accuracy of the local approximations depends nearly exponentially on the
number of spectral problems, which means that the number of local functions
should depend logarithmically on the mesh size H to obtain an overall first-order
accurate method.

The general question on the necessary computational overhead was discussed
in [GGS12| in the context of so-called Adaptive Local Bases (ALB). The theo-
retical results state that the overhead should be logarithmically dependent on
the mesh size H. In particular, it was shown that, in d dimensions, choosing
@ (\ log H]d“) non-polynomial local basis functions per mesh entity is enough
to retain an H'-error of order H, independently of the actual fine-scale varia-
tions of the coefficient. However, the approach is not constructive in the sense
that global fine-scale problems need to be solved in order to derive the method.
This issue was later overcome with a fully practical approach in connection with
the ALB, see [Wey16].

Malqvist and Peterseim [MP14] were the first who proved that the solution
of quasi-local problems is sufficient to obtain a quasi-optimal approximation
space. Their approach is known as Localized Orthogonal Decomposition (LOD)
and was further refined by Henning and Peterseim in [HP13|. The construction
is based on the decomposition of the solution space into a finite-dimensional
coarse approximation space and a fine-scale space in the spirit of the Variational
Multiscale Method (VMM) introduced in [HFMQ98|. The main concept of the
LOD is to choose the approximation space as the orthogonal complement of
the fine-scale space with respect to a coefficient-dependent bilinear form. The
resulting space has improved approximation properties compared to classical
finite elements with the same number of DOFs. There is even an explicit bijective
transformation between the classical FE space on some prescribed coarse scale H
and the new space. This allows one to write the basis functions of the improved
space in terms of the classical FE basis functions by subtracting the solutions of
auxiliary corrector problems. These problems may be localized to local patches
of size H|log H| without an impact on the overall convergence rate, since the
solutions of the corrector problems decay exponentially fast. As this thesis is
substantially based on the LOD, this method is explained in more detail in
Chapter 2.

Another ansatz is based on Rough Polyharmonic Splines (RPS) and is de-
scribed in [OZB14]. There, a set of generalized splines which include fine-scale
information is used to approximate the original problem. These generalized
functions, however, require the solutions of more demanding bi-harmonic cor-
rector problems.

The approach known as Generalized Multiscale Finite Element Method (GMs-
FEM) |[EGH13] is based on the ideas of the MsFEM described above and is
divided into an offfine and an online stage. In the offline stage, local snapshot



1.3 Goal and main contribution of this work

spaces consisting of local solutions are computed on coarse elements using a fine
discretization. Then, a spectral decomposition is used to reduce the dimension
of these spaces by only taking the eigenfunctions with large energy. In the on-
line stage, when specific model parameters are given, the precomputed spaces
are used to define a global multiscale space in order to solve the global problem
on the coarse scale. One extension of this approach is the so-called Constraint
Energy Minimizing GMsFEM (CEM-GMsFEM) [CEL18|, where the spectral
decomposition is used to compute new multiscale basis functions that minimize
the problem-dependent energy and, additionally, fulfill an orthogonality prop-
erty in the spirit of the LOD. The aim of this approach is to achieve decay of
the basis functions even for problems with high contrast.

In contrast to the aforementioned approaches, Owhadi [Owh15,Owh17]| stud-
ied the view on numerical homogenization from a game theoretical approach and
introduced so-called gamblets which are also based on a decomposition of the
solution space into orthogonal spaces similar to the LOD. Gamblets extend the
classical LOD not only to a multilevel setting but also allow one to go beyond
its conforming nature by writing the orthogonalization approach as constrained
minimization problem, which enables a wide range of possible constraint condi-
tions.

1.3 Goal and main contribution of this work

The overall purpose of this thesis is to show the potential of the LOD method
introduced by Malqvist and Peterseim [MP14] and consolidate the approach
from multiple perspectives. To this end, the LOD is first presented in a relatively
general framework in Chapter 2 including a systematic derivation with the aim
to obtain a first-order method that is able to cope with microscopic dependencies
without resolving the underlying scale. The method is rigorously analyzed in
the general setting, especially in terms of localization, and numerical examples
that show the potential of the method are given.

Another contribution is the extension of the original method to a higher-order
variant which enables convergence rates beyond first-order. These rates are
generally only limited by the regularity of the right-hand side of the variational
problem at hand. In this context, a rigorous analysis of the method in the
elliptic setting is presented in Chapter 3 with special focus on how the method
depends on the polynomial degree. Further, the interplay between the choice of
the polynomial degree and the oversampling parameter is studied. Besides the
theoretical investigation of this approach, also numerical studies are presented
that indicate an even better behavior of the higher-order LOD method.

The structure and ideas of the LOD are then used in Chapter 4 to justify
the general approach of using quasi-local effective models, i.e., models with
a controlled variation from locality, to overcome the issues that arise in the
presence of multiple scales as it is done for the LOD approach and in numerical
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homogenization in general. This is achieved in connection with inverse problems
where a general coarse-scale model is reconstructed from a given set of coarse
data using an iterative optimization technique. The key feature is to let the
algorithm decide whether to deviate from locality or not. It can be observed
numerically that a slightly non-local model is able to better capture macroscopic
effects. In that context, a variant of the LOD is used to motivate the inversion
algorithm in the sense that the multiscale model that is obtained with LOD
is provably a possible solution of the optimization problem. Moreover, these
findings also justify other numerical homogenization methods which are based
on some computational overhead per mesh entity, such as the ones mentioned
in Section 1.2.

Apart from the extension of the LOD to higher-order schemes and its gen-
eral justification, this thesis shall also present advantageous side benefits that
occur in connection with time-dependent problems where multiscale aspects in
the PDE are independent of time and only depend on the spatial variables. As
a model example, the acoustic wave equation is considered in Chapter 5 and the
common procedure of applying the LOD to the stationary part of the PDE is
used to derive a semi-discrete multiscale method which is then combined with
an explicit time stepping scheme. The method is theoretically examined with
particular focus on the errors introduced by discretization and localization. Fur-
ther, the time step restriction, also known as Courant-Friedrichs-Lewy (CFL)
condition, which is crucial for explicit time stepping, is investigated. The side
benefit that comes along with the method is a relaxation of this condition in the
sense that the time step only needs to be bounded in terms of the coarse mesh
parameter and is independent of any fine discretization or microstructural quan-
tity. This leads to computational savings not only in the spatial discretization
but also in the temporal one and shows the true potential of the LOD.

Another time-dependent multiscale model discussed in this work is the prob-
lem of linear heterogeneous poroelasticity, which is described by two coupled
PDEs, an elliptic and a parabolic one. Besides proving the applicability of the
LOD to more involved multiphysics problems with multiple varying microscopic
parameters, the main contribution in this part is a variation of the classical ap-
proach of applying the LOD to the stationary equation as proposed in [MP17]
for the mathematically equivalent problem of linear thermoelasticity. Instead,
the method is motivated by the time step dependent problem that arises when
first discretizing with respect to the temporal variable. Since the resulting equa-
tions have a favorable saddle point structure, the coupling terms in the PDE
can be discarded with the side benefit of decoupled corrector problems for the
two equations of the poroelastic system. These corrections are still independent
of the actual time point of the temporal discretization which leads to a simple
multiscale method based on a modification of the classical LOD approach. This
method is investigated in terms of a theoretical error analysis and numerical
studies in Chapter 6.
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Parts of this thesis have already been published or submitted to scientific
journals. The work on the reconstruction of an effective model in connection
with numerical homogenization was submitted for publication and is available
as preprint [CMP19|. The findings on the LOD for the acoustic wave equa-
tion in combination with an explicit time discretization scheme were published
in BIT Numerical Mathematics [MP19|. Finally, the content on the LOD with
respect to the problem of linear poroelasticity was published in Journal of Com-
putational Mathematics [ACM™20]. The presentation of these findings partially
follows the one in the corresponding journal or preprint versions. However, some
parts are rephrased or extended and the notation might differ in order to be in
line with the other content and the overall reading flow of this thesis.

During the work on this thesis, further research articles were written in the
larger context of this thesis [AMU19, FACT19, HMP*19]. These articles, how-
ever, are not directly taken into account in this work.

The numerical experiments presented throughout this thesis were generated
either with Python using an adaption of the software of Hellman [Hell7| or with
MATLAB based on preliminary code developed at the Chair of Computational
Mathematics at the University of Augsburg. A detailed description on the
implementation of the LOD method is provided in [EHMP19]. All computations
were performed on an HPC Infiniband cluster.

Notation. Throughout this work, we use the following notation. We write
C for any positive constant that is independent of the mesh sizes h or H, the
polynomial degree p, the time step 7, the oversampling parameter ¢, and the
microscopic scale €. Such constants are allowed to depend on the dimension d
and the domain D. Note that C' might change from line to line in the estimates.
To indicate an explicit dependence on a parameter £, we may write Ce. We
further abbreviate a« < Cb and a < Ce¢b by a S b and a S¢ b, respectively, and
use a ~ bif a < band a 2 b.






2 The Classical Localized
Orthogonal Decomposition
Method

This chapter is devoted to a review of the classical Localized Orthogonal Decom-
position (LOD) method introduced in [MP14] and further elaborated in [HP13|
for an elliptic model problem. As already mentioned in the introduction, the
objective of this technique is to provide suitable approximations of solutions
of PDEs on a coarse scale of interest. While classical FE approaches are gen-
erally well suited for the approximation of such problems, these methods fail
to satisfactorily describe the behavior of PDE solutions if the respective prob-
lems involve one or more heterogeneous coefficients which may vary on some
microscopic scale. We show throughout this chapter that the LOD approach is
able to overcome the discrepancy between microscopic information and a coarse
approximation scale and works under minimal structural assumptions. This is
achieved by the idea of decomposing a given solution space into a fine-scale
space and its coarse complement in a problem-adapted fashion. Since the com-
plementary space is well suited for computations on the coarse scale, the idea
of the method is a continuous Galerkin (¢G) approach using a localized version
of this space. It is computed based on quasi-local auxiliary problems which ex-
plains the name Localized Orthogonal Decomposition. The method is designed
to work for relatively general settings and presents, to some extend, a natural
generalization of classical homogenization approaches. That is, in certain pe-
riodic regimes with an explicit characterization of microscopic coefficients, the
(ideal) method recovers the classical homogenization limit in the elliptic setting;
see |GP17]. Note that there exist also alternative formulations of the method
as an iterative approach based on an overlapping domain decomposition. This
more abstract way of interpreting the LOD in terms of an additive Schwarz
method is, for example, investigated in [KY16, KPY18].

In the following, we formulate the classical LOD developed in [MP14,HP13| in
a relatively general framework that includes the cases of the subsequent chapters,
e.g., the stationary problem in connection with linear poroelasticity (Chapter 6).
A general setting has already been considered in [Pet16] but a complete gen-
eralized error analysis was only indicated. In this chapter, we fill this gap and
provide a rigorous derivation and analysis of the LOD approach in the general
case and identify sufficient conditions for the applicability of the method.



2 The Classical LOD

2.1 Model problem

Let d € N and D C R? be a bounded, convex, and polytopal Lipschitz do-
main. Further, let I' C 0D be the Dirichlet boundary with non-zero (d — 1)-
dimensional Hausdorff measure, i.e., |I'| > 0, and denote with H}(D) the space
of H! functions with values in R and vanishing traces on I'. If I' = 9D, we write
H}(D) := H},(D). Due to the Friedrichs inequality, also known as Poincaré-
Friedrichs inequality (see, e.g., |[Bre03]), we equip the space H{(D) with the
H'-seminorm | - |g1(py = ||V - ||2(p), which is a full norm in H{(D). For some
n € N, let

H:=[L*(D)]" and V:=H} (D)x...x H}p (D),

where I'; € 0D (with |I';|] > 0) denotes the Dirichlet boundary of the ith
component. Let V* and H* be the dual spaces of V and H, respectively, and
observe that

Vo HEH <V,
where — denotes a continuous embedding. For completeness, we also introduce
the space )

V= [H(D)]" <V
without boundary conditions. Further, define V(S) and #H(S) as the restrictions
of functions in V and H, respectively, to a subdomain S C D, i.e.,

V(S)={vlg: veV} and H(S)={v|g: veH}

In this chapter, we consider the general variational model problem of finding
the solution v € V of
a(u,v) = F(v) (2.1)

for all v € V, where F € V* is a bounded linear functional, and a: ¥V xV — R
is a bilinear form which is bounded from above by

|a(v, w)| < Blvlly [lwlly (2.2)
for all v, w € V and that fulfills the inf-sup condition

a(v, w) a(v, w)

0 < o :=inf sup = inf sup (2.3)

vevwey [Vllv lwlly  wevvev [vllv [lwlly

Here and in the following, zero is implicitly excluded in the infima and suprema.

With regard to the possible choices of the space V, we can think of (2.1) as the

variational problem corresponding to a general linear second-order PDE. Note

that we do not require symmetry of the bilinear form a. Under the above

assumptions, it follows that (2.1) has a unique solution u € ¥V which is bounded
by

-1
Jully < a7

see, e.g., [Bab71] for the details.

Ve, (2.4)

10



2.2 Finite-dimensional approximation

2.2 Finite-dimensional approximation

In this section, we are concerned with finite-dimensional approximations of prob-
lem (2.1). To this end, let {Tx}mr=o be a family of regular decompositions
(also referred to as meshes) of the domain D into d-rectangles as described
in [Cia78, Ch. 2 & 3]. That is, any (d — 1)-dimensional face of a d-rectangle (or
element) K € Ty is either a subset of the boundary 0D or a face of another
element. In particular, we pose the assumption that the domain D is such that
a decomposition into elements as described above is possible. However, we re-
mark that this condition is not necessarily required since, e.g., curved elements
(see |[CR72, Zla73|) or non-matching decompositions could be used. Further,
we assume quasi-uniformity of the family {7y }g=o in the sense that there are
constants cqu, Cqu > 0 such that for any mesh 7y with characteristic mesh
parameter H, all elements K € Ty satisfy

CquHK SHSCquHKa

where Hg is the diameter of K. The quasi-uniformity allows us to only use the
mesh parameter H > 0 in the following, instead of the specific diameters Hg of
elements K € Ty.

Let now H > 0 be fixed and denote with Vg C V the corresponding conform-
ing (); FE space, i.e.,

Vo e veV: VK €Ty : v|g is a polynomial of coordinate
e degree < 1 in every component |

Alternatively, we could as well consider decompositions of D into simplices.
In this case, Vg denotes the P, FE space of piecewise affine and continuous
functions. We note that the following construction works analogously if P,
finite elements are considered instead of ()1 elements and restrict ourselves to
decompositions Ty into d-rectangles and the corresponding spaces. Further, we
emphasize that in view of the inclusion Vi C V we also pose the assumption
that the Dirichlet boundaries T';, i € {1,...,n}, are unions of faces of elements

in Tg.

2.2.1 Classical finite element method

A straightforward approach of discretizing problem (2.1) with the classical ¢G
FE method reads as follows: find uy € Vg that solves

a(uH,vH) = .F(UH) (25)

for all vy € V. In this general setting, the well-posedness of (2.5) requires
a discrete inf-sup condition, similar to the one in (2.3), i.e.,

a
0 <ayg:= inf sup M
vreV waevy [Vally [[wa |y

(2.6)

11



2 The Classical LOD

Let us also assume that there exists a constant ag > 0 with

ap < Ii{r;foag. (2.7)

With these additional assumptions on the discrete spaces, we can show the fol-
lowing quasi-optimality result (cf. [XZ03, Thm. 2|), also known as Céa’s Lemma.

Lemma 2.2.1 (Céa’s Lemma). Suppose that the assumptions (2.2), (2.3), (2.6),
and (2.7) hold. Then the discrete solution uy of (2.5) is quasi-optimal in the
sense that

B
lu—unly < — inf flu—ovuly,
Qp v €V

where u € V is the solution of (2.1).

Proof. Let G:V — Vi be the Galerkin projection defined, for any v € V, as the
solution of

a(Gu,wy) = a(v,wy)

for all wy € Vi, which is well-posed with (2.6). Note that Gu = uy by the
Galerkin orthogonality

a(u —ug,wy) = Flwy) — Flwyg) =0
which holds for all wy € Vg. Since G is a projection, we obtain for any vy € Vg

lu —unlly = |(1d = G)ully = [[(1d — G)(u — va)lly

. (2.8)
< id = Gllepw) lu = vally = 1G]l ey lv = vally

employing that |[id — G||zwv) = |G|l zov,v) (see, e.g., [Szy06]). Here, id denotes
the identity operator. By (2.6), (2.7), and (2.2), we get that
( Cl(U, wH) B

1Gully < ap' sup 290w _ o slowa) B )
wHEVH HwHHV wHEVH HwHHV %)

Combining (2.8) and (2.9), we obtain

s
lu—unly < —[lu—valy.
Qp

Taking the infimum over all vy € Vj yields the assertion. O

Céa’s Lemma allows us to reduce the problem of writing down an error es-
timate for the c¢G solution to the problem of finding any discrete function in
Vi that is able to suitably approximate the function w. Thus, from classical
interpolation results (see, e.g., [BS08, Thm. 4.6.14]) we may obtain an error
estimate of order H if the solution u fulfills additional regularity assumptions,
which typically requires additional regularity of the right-hand side F. These
estimates are optimal in cases where the bilinear form a does not include any

12



2.2 Finite-dimensional approximation

multiscale behavior in the sense of, e.g., a dependence of a, and thus u, on
a fine-scale parameter e.

In the setting where the bilinear form a depends on such a parameter ¢ and
the function w has microscopic features on the scale €, the standard FE space
Vg is not able to provide a convenient discrete function that approximates the
solution u for € < H satisfactorily. In terms of explicit error estimates, this
means that error estimates of the form

|lu—ug|ly < CerH? (2.10)

for some s > 0 involve a multiplicative constant C, r that blows up when € tends
to zero. This especially means that H needs to resolve the microscopic scale,
i.e., H < ¢, in order to obtain a viable estimate. In practical computations, one
observes a stagnation of the error curve in the regime H 2 €, and only in the
case H < € the expected convergence rate is obtained; see also Figure 2.1 in
Section 2.5.2 for an illustration of this behavior. This observation is known as
pre-asymptotic effect and calls for a thorough treatment of the fine-scale features
of the bilinear form a. In the following section, we present the construction of
a multiscale method that is able to achieve e-independent error estimates. In
particular, the results are also valid if a characterization of the fine scale in
terms of an explicit parameter € is not available.

2.2.2 General construction by orthogonal decomposition

As already mentioned in the previous subsection, the classical ¢G solution
ug € Vi of (2.5) fails to produce an acceptable approximation of the solution
u € V of (2.1) in the V-norm if the discretization parameter H does not resolve
the microscopic scale. While a similar statement is still true if the error is mea-
sured in the weaker H-norm, there actually exist functions in Vj that are able
to satisfactorily approximate u with respect to the H-norm. One may think of
such a function as one that approximates u in a macroscopic sense, since the
effect of microscopic oscillations mainly appears in the stronger V-norm. The
first goal of the following construction is to find such a macroscopic representa-
tion in the space H, which is then further adjusted to also obtain optimal error
rates in the V-norm.

The construction is built upon a linear, local, and projective quasi-interpo-
lation operator Ly, i.e., a linear projection Zy: H — Vg which fulfills suitable
stability and approximation properties. To be more precise, we assume that for
v € H, it holds that

1 Zvlla < Czy o], (2.11)

and, for v € V and any element K € Ty,

|1 H (v = Zpv) lur) + 1 Zavllvi) < Czyllollviney, (2.12)

13



2 The Classical LOD

where N(S5), for any S C D, denotes the element patch around S defined by
N(S) = {K € Tu: KNS #0}.

For later use, we also define for ¢ € Ny the element patch of order ¢ (or (-
neighborhood) around S by

N‘(S) := N(N““(S)), ¢>1,

- 2.13
NO(S)::U{KETH:SﬂKgK}. (2:13)

Due to the locality in (2.12), a global result of the form
1 (v = Zegv) | + |1 Zrvlly < Cryllvlly (2.14)

for any v € V directly follows from summation over all elements in 7g. Note
that the constants in (2.11), (2.12), and (2.14) are not necessarily identical.
For simplicity, we use the constant C7,, whenever one of the three estimates is
employed.

The projection property of the operator Zy leads to a unique decomposition
of a function v € V into its finite element part Tyv € Vi and its fine-scale part
v — Ty, i.e., the space V can be decomposed as

V=VgoW
with the so-called fine-scale space VW defined by
W = (id — Zy)V = ker Zy]|,,.

Regarding a suitable approximation of the solution u € V of (2.1) in the space
Vg with respect to the H-norm, the finite element part Zyu € Vg seems to be
a good candidate. Indeed, with (2.11) and the projection property, it directly
follows that Zgzu is quasi-optimal with respect to the H-norm. To be more
precise, as in Lemma 2.2.1, it holds for vy € Vg that

lu = Zyully = [|(id — Zu) (v — va)lln < Crllu — vnlln

and thus

lu = Zrulln < Oz nf flu—vnlln. (2.15)
vy

f
Vu
Further, from (2.14) and (2.4) we get the error bound

lu — Zyully < Cr, H ||ully < o 'Cg, H || F|

e (2.16)

Although the existence of an appropriate macroscopic approximation in Vg
becomes evident from the above inequality, it remains unclear how to obtain

14



2.2 Finite-dimensional approximation

Zyu if the solution u is not known a priori. To overcome this issue, we first note
that for any v € V, it holds that

a(Zgu,v) = a(u,v) — a((id — Zg)u,v) = F(v) — a((id — Zy)u,v).

This especially means that Zgzu is a solution of the continuous Petrov-Galerkin
(cPG) formulation which seeks uy € Vp that solves

for all oy € Vi, where the test space is defined by
Vi={veV:YweW: a(w,v)=0}. (2.18)

This result is the basis of the original LOD and known from the Variational
Multiscale Method, see e.g. [HS07]. It even holds for more general bounded
linear projection operators Zy. The ideal test space Vi comes along with the
alternative decomposition

V=VgaW
which satisfies the orthogonality property

a(W, Vi) = 0. (2.19)

Note that, with the aforementioned assumptions, this construction does not
automatically provide the uniqueness of the ¢cPG solution @y in (2.17). In order
to obtain uniqueness, a condition of the form

dim Vi = dim Vy (2.20)

must hold. The next subsection is concerned with an explicit construction of
the test space Vg which guarantees that condition (2.20) is fulfilled.

2.2.3 Characterization of the ideal test space

In order to show that the dimensions of Vi and Vj are equal, we derive a char-
acterization of the space Vi in terms of V. In this subsection, we explicitly
construct a bijective operator R*: Vg — Vi that quantifies the connection be-
tween the two spaces. In the Petrov-Galerkin setting, such an operator is usually
referred to as the trial-to-test operator.
We start the construction by introducing a correction operator C*:V — W
defined for any v € V by
a(w,C*v) = a(w,v) (2.21)

for all w € W. Note that the well-posedness of (2.21) does not follow automat-

ically and requires the inf-sup condition

a

ayy < inf sup M = inf sup a(v, w) (2.22)
vewwew [[Vllv lwlly wewwvew [[v]lv [[w]lv
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2 The Classical LOD

with some constant ayy > 0.
The correction operator C* provides an alternative characterization of the
space Vg since the direct consequence that

a(w, (id —C*)v) =0

for all w € W is exactly the condition in the definition of the space Vi in (2.18).
This yields

Vi = (id — C")V = (id — C*)(ZyV + (id — Iy)V) = (id — C*)Vy
since (id —Zy)V = W and (id — C*)W = {0}. Thus,
R* = (id = C)|y, : Vi = Vi (2.23)

defines a bijective operator from Vg to f/H with inverse IH|‘~/H: \N/H — Vyg. Due
to this explicit characterization, we also use the alternative notation

R'Vy =Vy

in the following. This also means that given a basis 8 of Vjy, we directly get
a basis of Vi by B = R*B.

Finally, we remark that condition (2.20) and thus the well-posedness of the
cPG problem (2.17) follow from the inf-sup condition (2.22), which is required
for the above construction. That is, we ultimately need an additional inf-sup
condition to obtain existence and uniqueness of the finite-dimensional problem
(2.17), as for the classical FE approach (2.5).

2.3 Fine-scale correction of the discrete trial
space

In this section, we extend the method of the previous section in order to obtain
a good approximation of the solution u of (2.1) not only with respect to the H-
norm but also with respect to the stronger V-norm. This is achieved by adding
a specific function from the fine-scale space W to the solution uy € Vg of the
cPG problem (2.17), which is discussed in the next subsection.

2.3.1 Ideal trial space

The starting point of the approach is the observation that, due to the orthogo-
nality property (2.19), it holds for any w € W that

for all vy € R*Vy. As for the test space, the idea is thus to connect the
trial space Vg to an appropriate subspace of V with the same dimension by
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2.3 Fine-scale correction of the discrete trial space

subtracting suitable fine-scale corrections. The goal is to replace the trial space
Vi in (2.17) by a new space without losing the well-posedness of the discrete
problem. This can be achieved exploiting the property (2.24).

Similarly to (2.21), we define the correction operator C:V — W by

a(Cv,w) = a(v,w) (2.25)
for all w € W and define
R:=(1id-C)ly,: Vu = RVy (2.26)

with inverse Zp |y, : RVy — Vg. Note that the well-posedness of (2.25) follows
from the inf-sup condition (2.22). Further, observe that by (2.25) and (2.26) we
also have

RVyg={veV:YweW: a(v,w)=0}. (2.27)

The introduction of the operator R now provides an equivalent formulation of
problem (2.17) in terms of the ideal trial space RVy and the test space R*Vy:
find wgy € RVy such that

a(ty,on) = F(0n) (2.28)
for all oy € R*Vy. We call (2.28) the ideal method and refer to uy as the ideal
approzimation. A direct consequence of (2.24) is that Zytuy = uy = Zyu. The
subsequent theorem shows that the solution uy € RVy provides quasi-optimal
error estimates in the V-norm and the H-norm under additional regularity as-
sumptions on the functional F. To be more precise, we assume that

Fv) = (f,v)u (2.29)
for some function f € H, where (-, )3 denotes the scalar product in .

Theorem 2.3.1 (Error of the ideal method). Suppose that the inf-sup conditions
(2.3) and (2.22) hold, F fulfills the regularity condition (2.29), and a is bounded
according to (2.2). Then the solution u € V of (2.1) and the ideal approzimation
uy € RVy of (2.28) satisfy the error estimates

lu — aplly < oy Oz, H || fll (2.30)
and
lu =ty < ay CF, H? || fll (2.31)

independently of possible oscillations of coefficients encoded in a on some mi-
croscopic scale €.

Proof. By construction, we have that Zy (u—1ty) = 0 and thus u—ay € W. We
can even show that the error between the two functions is exactly the correction
of u, i.e.,

u—tyg=u—(id—C)Zygu =u— (id — C)u + (id — C)(id — Zy)u = Cu,

17



2 The Classical LOD

using the fact that C defines a projection onto W. From the inf-sup condition
(2.22), we further get the existence of a function w € W with ||w|]y, = 1 such
that

lu —aglly = [ICully < a5y a(Cu, w) = oy a(u, w) = ayy (f,w)n

< agy [ fllae llwllee = sy [1F 1l Nl (4 = Zi)wlla
< ayy Oz, H || Il

with the constant Cz,, from (2.14). This proves (2.30). Again exploiting the
fact that Cu € W, we directly get

lu = @nlln = [|Cully = |(id — Zu)Culls < Cr, H [|Cully

and thus
Ju— Gl < ayy CF, H? || flla-

This completes the proof. ]

Theorem 2.3.1 shows that the function @y, which is obtained as the solution
of the finite-dimensional problem (2.28), is a suitable approximation of the solu-
tion u of (2.1). However, (2.28) does not provide a practicable method because
the spaces RVy and R*Vjy are constructed by solving the infinite-dimensional
corrector problems (2.25) and (2.21). Before we address this issue in Section 2.4,
we first show in the subsequent subsection how problem (2.28) can be reinter-
preted as a variational problem in the full space )V subject to a finite number of
constraints.

2.3.2 Reformulation as saddle point problem

The following results provide a useful alternative characterization of the mul-
tiscale spaces RVy and R*Vy, which allows us to circumvent an explicit com-
putation of the fine-scale space VW. Moreover, the alternative representation
creates a basis for an extension of the method to a higher-order method as it is
introduced in Chapter 3.

Theorem 2.3.2 (Alternative characterization of R and R*). Assume that the
inf-sup condition (2.22) holds and let R and R* be the operators defined in
(2.26) and (2.23), respectively. Then, for any vy € Vi, the function Rug € V
solves the saddle point problem

Cl(RUH,U)) + (/\vH7IHw)7-L = O, (2.32)
(ZuRow, ptg)n = (vm, pm)n

for all w € V and all pg € Vy, where \,,, € Vy 1is the associated Lagrange
multiplier. Likewise, R*vy € V solves

a(w,R*vH) + (IHw,)\;‘H)H = O,

2.33
(e, THR vp )y = (um,ve)n (2.83)
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2.3 Fine-scale correction of the discrete trial space

Jor all w € V and all pg € Vg, where \;, € Vg 1is the corresponding La-
grange multiplier. Further, the solutions (Rvg, \vy,) of (2.32) and (R*vw, ;)
of (2.33) are unique.

Proof. Let vy € Vi and define vy = Rug = (id — C)vy € RVy. Further, let
Ay € Vi be the solution of the auxiliary problem

(/\UvaH)H = —O(UH,R*U}H) (234)

for all wy € V. Note that (2.34) has a unique solution by the Laz-Milgram
Theorem (see, e.g., [BS08, Thm. 2.7.7]) and the inverse inequality

lwrlly < Ci H ™ Jwp |« (2.35)

for wy € Vi (see, e.g., [Sch98, GHS05, Geo08]). Thus, using (2.21), (2.25), and
the auxiliary problem (2.34), we get

a(f)H,w) =a ﬁH,IHU}) + Cl(f)H, (ld — IH)UJ)
w) = a(vy, R* Zyw)

for any w € V. Since
IHQN}H = IH(ld - C)’UH = vy,

the pair (Rug, Ay, ) solves (2.32). From classical saddle point theory and with
the inf-sup condition (2.22), it follows that the solution of (2.32) is also unique
(see, e.g., [BBF13, Thm. 4.2.3]). Introducing A}, € Vp as the unique solution
of

(wH, )\ZH)H = —a(RwH, UH)

for all wy € Vy, it follows with the same arguments as above that (R*vg, A; )
is the unique solution of (2.33). O

As a direct consequence of Theorem 2.3.2, the spaces RVy and R*Vy may
be obtained without explicitly defining the fine-scale space V. Besides, the
reformulation also provides an alternative characterization of the solution uy of
(2.28). This result is stated as a corollary.

Corollary 2.3.3 (Equivalent saddle point formulation). Assume that (2.3),
(2.22), and (2.2) hold. Then the solution uy € V of (2.28) can be equivalently
described as the solution of the saddle point formulation

Cl(lNLH,U}) + (S\H,IHU})'H = 0,

\ (2.36)
(Zutm, pm)u =  (Zuu,pm)u

for allw €V and all pg € Vg, where Ay € Vi is a uniquely defined Lagrange
multiplier and w € V is the solution of (2.1).
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2 The Classical LOD

Remark 2.3.4. If the bilinear form a is symmetric, the saddle point problems
(2.32) and (2.33) are equivalent, i.e., it holds that R = R*. Further, one may
reformulate these problems as a constrained energy minimization problem. That
is,

Rug := argmin a(v,v) subject to Zpv=wvy (2.37)

veY

for any vy € V. The fact that energy-minimizing functions that fulfill a finite
number of constraints present suitable trial and test spaces in the context of
multiscale problems is also the basis of the technique described in [Owh15,
Owh17] based on gamblets.

2.4 Fully discrete approximation

As already mentioned in the previous sections, the ideal approximation g in
(2.28) is not a practicable discrete approximation in the sense that its com-
putation involves the solution of infinite-dimensional global problems. In this
section, we address this issue and present a strategy to derive a fully discrete
multiscale approach. The procedure consists of three main steps that are treated
in the next subsections: the splitting, localization, and discretization of the cor-
rection operators C: V — W and C*: V — W introduced in (2.25) and (2.21),
respectively. Since the strategies for C and C* follow the same arguments, we
only consider the operator C.

2.4.1 Splitting of the correction operator

The first step towards a fully discrete method consists in splitting the restricted
correction operator C|;, into its contributions of a (local) basis. Since a splitting
in terms of conforming FE basis functions leads to a pollution of the error
estimate in terms of a negative power of H (see [MP14]), we follow the approach
of [HP13] and further decompose these basis functions into its discontinuous
element-wise contributions. This alternative strategy turns out to enable much
better decay estimates.

To this end, we define for K € Ty the nodal basis of V(K) by {Ax;}/4

=1
where my is the number of vertices of the element K. We remark that any

function vy € Vg can be written as

Vg = UH(xK,j) AK,j7
>

KGTH jil

where {zx ;}7 are the vertices of K € Ty. Based on the above characteriza-
tion, we define for K’ € Ty and j € {1,..., mg} the jth basis corrector qx; € W
by

a(qr.j, w) = a(Ag;, w) (2.38)

20



2.4 Fully discrete approximation

for all w € W. At this point, we have to assume that a is even well-defined on
the restricted spaces V(S7) x V(Sz2) for subdomains Sy, So C D to justify the
right-hand side of (2.38). In that context, we also suppose that the boundedness
of a in (2.2) holds in a more local sense, i.e., we suppose that for v € V(S;) and
w € V(SQ)

la(vlg, > wlg,)] < Boc [[V][ves) lwlves) (2.39)

with S = 51N .S;. Although this additional assumption seems restrictive at first
glance, such estimates are natural in the context of variational formulations of
linear second-order PDEs, which are typically defined by integrals.

From (2.38) and the linearity of a with respect to the first argument, we now
get that

Coyg = Z ZUH($K,J')QK,J' (2.40)

KGTH j:1

for any vy € V. Note that the functions gk ; in general have global support,
even though the right-hand side of (2.38) is restricted to the element K. Thus,
the splitting of the operator C|,. in (2.40) does not lead to localized contri-
butions. However, it is very valuable for the localization procedure, which is
discussed in the subsequent subsections.

2.4.2 Decay of the basis correctors

This subsection is devoted to proving that the basis correctors ¢ ;, defined in
(2.38), decay exponentially fast away from the support of the associated element
K. This observation is the key property to deriving a fully discrete method and
allows us to localize the computation of all the correctors (see Section 2.4.3).

In the general setting of this chapter, we need to assume that the inf-sup
condition (2.22) holds in a more generalized form, i.e., we assume that there
exists a constant ayy gec > 0 such that

a(vj w) a(v, w)

Ay dec < inf  sup ——-— = inf sup

TRRTISRTRUNTEN (2.41)
VEW k WEW K¢ [v]lv llwlly WEWS je vEWS ¢ [vflv flwlly

for any K € Ty and ¢ € N, where

Wik i=={w e W : supp(w) C D\NY(K)}.

Note that here and in the following we implicitly assume that ¢ is small enough
such that the space Wy - is non-empty. We emphasize, however, that the sub-
sequent results trivially hold if £ is such that Wy, = 0.

Theorem 2.4.1 (Decay of the basis correctors). Assume that the inf-sup con-
dition (2.41) and the local boundedness condition (2.39) are fulfilled. Further,
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2 The Classical LOD

let K € Ty, g € {1,....mg}, L € N, and qx; € W be the solution of (2.38).
Then it holds that

HqK,j”V(D\Nf(K)) S exp(—Caec £) |laxjllv (2.42)
with a constant Cyec that depends on Cz,,, aw dec, and Bioc-

Proof. We abbreviate ¢ := qx; € W and A := Ag; € V(K). For fixed ¢ € N,
we choose a cutoff function n € W1>(D) with the following properties:

0<n<l1,
n =0 in N*(K),
n =1 inD\NT3K),
IVlley < CyH™
Then, by (2.41) there exists a function w € Wy, x with [Jw||y, = 1 such that
lallvipwesa oy = [1(3d = Zr)allvpweray < [[(3d = Z ) (na) ||y
< 0y gee 0((1d = Zpg) (09), w)
= Oy dee (((1d — Zi)g, w) — a((id — Zg)((1 = n)q), w))
= 0y gec (A(A, w) — a((id = Zy)((1 = n)g), w)),

where we use the fact that Zy increases the support of a function by at most
one layer of elements due to (2.12). Since supp(A) Nsupp(w) = @) and

supp((id — Zyr) (1 —n)q)) N supp(w) = NF(K) \ N*H(K),
we further get
lallvoweraiy < ) aeeBioe (34 = Za ) (1 = 0)@) llyneraropne (x))
S O‘;\},decﬁlocOIH (1 - n)QHV(N“‘l(K)\NZ(K))
S a;\},decBIOCC%HCT] lgllvners ey

employing (2.12) and the product rule. From the above computations and with
the identity

N“(K) \ NY(K) = (D \N(K)) \ (D \N"(K)),
we obtain
a3 mneracey < Cllallmwecy = C lalimwers o
and thus
C C [¢/4]
a5 mneracy < 011 gl ey < (C—Jrl> gl
With the estimate

N
<C—+1> Sexp (=3 [log (557)| (€ +4))

and a shift in ¢, this yields (2.42) with the constant Caec 1= 3 | log(c%rlﬂ. O
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2.4 Fully discrete approximation

2.4.3 Localization of the correction operator

The exponential decay of the basis correctors allows us to localize (2.38) to
patches around an element K € Ty. For j € {1,...,mg} and £ € N, we define
the localized basis corrector q%j € Wy x by

a(Qf(,jww) = a(Axj,w) (2.43)
for all w € Wy i, where the local fine-scale space W, i is given by
Wk = {weW: supp(w) C N(K)}.

Within the general setting of this chapter, we need to assume well-posedness of
(2.43), i.e., we suppose that there exists a constant ayy 1. > 0 such that

a(v, w) u(v, w)

awilee < inf  sup —F——7F— = inf sup ————
vEWy k WEWy K ||U||V ||w||V wEW, k vVEWp K ||U||V ||w||V

(2.44)

for any K € Ty and ¢ € N. In this subsection, we prove that the localized
correction operator Ct: Viy — W, defined for any vy € Vi by

Clog == Z ZUH(mK,j)qﬁ(,]ﬁ (2.45)

KETH j=1

only introduces a moderate error if the so-called localization (or oversampling)
parameter ( is chosen appropriately. As a first step, we quantify the error
introduced by replacing one basis corrector by its localized counterpart.

Lemma 2.4.2. Let K € Ty, j € {1,...,mg}, and { € N. Assume that the
inf-sup conditions (2.22), (2.41), and (2.44) as well as the local boundedness
condition (2.39) hold. Then the solutions qx; € W of (2.38) and qf; € Wik
of (2.43) satisfy

lar; — dic ;v S exp(—Caee 0) llax i llv (2.46)
with the constant Cyee from Theorem 2.4.1.

Proof. We use the short-hand notation ¢ := qx; € W, ¢* = qf(vj € Wik, and
A=Ak ; € V(K). Asin the proof of Theorem 2.4.1, we choose a cutoff function
n € Whe°(D) that fulfills

0<n<1,

n =0 in N“YK),

n =1 in D\ NT?(K),
IVl poepy < Cp H™
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2 The Classical LOD

By (2.44), we know that there exists a function w € Wy, 3 x such that

lg = ¢"Pllv < I(2d = Zu) (ng) v + [|(id = Zu) (1 = m)g) — ¢"|lv
< C.Collallvipwwey) + @ i0e a((id — Ze) (1 = 1)q) — ¢+, w)
< CF, G llallvowe iy + aoe alla = 4°) = (id = Zu) (ng), w)
< CFLCollallviowweciy) — aW,loc a((id — Zy)(nq), w)
< C3,Co llallvoyweciy) + 4 10eBC7, Co llallvoine iy
S (14 a35308)CE,, Oy exp(=Ciaee £) llall,

where we employ Theorem 2.4.1 in the last step. This proves the assertion. [

Remark 2.4.3. Although Theorem 2.4.1 and Lemma 2.4.2 only quantify the
exponential decay and the localization error, respectively, of the basis correc-
tors g, ;, the results hold analogously for any function vx € V(K) and its
corresponding correction qx given by

mE

0k =Y vk(TK,;) aK;

j=1
That is, we actually have

||QK||V(D\N4(K)) N GXP(—Odec 5) ||QK||V

2.47
< exp(—Caee £) i Bhoe s Iy (247)
and
i}i
| > vrcers) (arcs = dhey)|, S exp(—Caee 0 llaxlly
= Ty (2.48)

s eXp<_ctdec E) 0417\)15100 ||UK||V(K)
using the upper bound on ||¢k ||y which can be shown with (2.22) and (2.39).

With the above localization results, we are prepared to prove the main theo-
rem of this subsection, which quantifies the error between the restricted operator
Cly,, and its localized version C°.

Theorem 2.4.4 (Localization error). Let ¢ € N. Suppose that the inf-sup con-
ditions (2.22), (2.41), and (2.44) are satisfied and that a fulfills the boundedness
condition (2.39). Then, for any vy € Vi, the global localization error is bounded

by
1€ = Cvxlly S "2 exp(—Cec ) ||va]|v- (2.49)

Proof. Let vy € V. As before, we can write

mi
v = Y Y vn(Tr;) Ay

KETH j=1
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2.4 Fully discrete approximation

Further, we define for any K € Ty a cutoff function ng € Wh>°(D) which fulfills
0<nx <1,
nk = 0 in N“Y(K),
nk = 1 in D\ N“(K),
IV || poepy < Cp HT.

Since (C — C*"3)vy € W, there exists a function w € W with ||wl||y = 1 such
that

1€ = C* vl < asy a((C =)o, w)

= o] Z (ZUH i) (ax; — q?]a) ) (2.50)

KeTy j=1
For any K € Ty, it holds that

(ZUH xK] qu QQ—;)) )

mg

= a( Z v (i ;) (k5 — dis), (1d — Zg) (1 — mx)w) + (1d — IH)(an))

= a< Z v (7K ;) A j, (id — IH)(UKU))>

=1
my

— a( > onlrr;) did?, (1d - IH)(WK“D) :
j=1

where we use (2.38), (2.43), and the fact that (id — Zy)((1 — ng)w) € Wiis k-
Since supp((id — Zy)(nxw)) N K = (), we further get

(ZvaK] arcs — i) w)

mg

— —a( Z va(TK;) gy, (id — IH)(UK“’))
j=1
mg
= a( Z UH(I'KJ) (qu q?.?”NeJFS(K)\NZ(K)’ (1d - IH)(T]Kw)>
j=1
mE
- Cl( Z vr(TK ) QKJ|N£+3(K)\N4(K)7 (id - IH)WKU}))
j=1
mg
< BiocCL Co || Y vnlwre ) (ax s — 4i3) ’V [[wllyveraceyne o)
j=1
+ B0, Cy Doy 1 TV N
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2 The Classical LOD

We now employ the estimates (2.47) and (2.48). Altogether, this yields

my
a(ZUH(ﬂ«“K,j) (arej — 4i5); w)
j=1

mg
< exp(~Ciee ) || D vmrlscs) M|, Iwllvonesscaonic

j=1

Going back to the estimate (2.50) and using the discrete Cauchy-Schwarz in-
equality, we obtain

lC—C*)vnllv

< exp(—Clec () (H ZUH 21 M Hw”V(N”‘*(K)\N"'(K)))
KeTy
/2 1/2
S exp(—Caec £) < Z ||"UH|K||V K)) ( Z ||w||$)(N€+4(K)\NZ(K)))
KeThy KeTy

S U2 exp(=Cec ) [z lv ]l
With [|w|ly = 1 and a shift in ¢, this proves the assertion. O

Theorem 2.4.4 allows us to replace the operators R and R* by their localized
counterparts R': Vg — R Vg and R*': Vg — R**Vy defined by

R :=id—C' and R :=id-—C*"

With the localized spaces RV and R**Vy and under the assumptions of The-
orem 2.4.4, we can formulate the classical LOD method that seeks @4, € RVy
that solves

a(ily, o) = F(0m) (2.51)

for all o € R**Vy. With Theorem 2.4.4, we directly get the following result.

Theorem 2.4.5 (Error of the classical LOD method). Let ¢ € N. Suppose that
the inf-sup conditions (2.3), (2.22), (2.41), and (2.44) hold. Further, assume
that F fulfills the reqularity condition (2.29) and a the boundedness condition
(2.39). Then the solution u € V of (2.1) and the solution %y € RVy of (2.51)
satisfy the error estimate

lu = @lly S H | Fllw + 097 exp(=Cace 0) || f |- (2.52)
Moreover, if { 2 |log H|, we get

lu —aggllv < H || fll- (2.53)
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2.4 Fully discrete approximation

Proof. First, we remark that @4, fulfills a quasi-optimality result in the space
R‘Vy similar to the one presented in Lemma 2.2.1, i.e.,

o~ < . o~
Ju=hly S ot lu=dul.

Thus, we obtain

lu—aglly S nf flu—ouly S llu— (id = C*)Zuully
Vg ERVY

<l — (id = C)Zgully + [|(C* = C)Zhully
S H || £l + €9V exp(—Caee £) || 111

using Theorem 2.3.1, Theorem 2.4.4, (2.14), (2.4), and (2.29). This proves
(2.52). The estimate (2.53) follows directly with the choice ¢ 2 |log H|. O

Note that the LOD method in (2.51) is still not fully computable since the
operators C* and C** are defined by the solutions of (2.43) which are infinite-
dimensional problems. This issue is resolved in the following.

2.4.4 Discretization at the microscopic scale

In this subsection, we introduce an additional discretization at the microscopic
scale in order to obtain a computable method. There are essentially two possi-
bilities to approach this last step. The idea of the first one is to discretize the
localized basis correctors by approximating (2.43) in the discrete space V,NW, k
based on a standard finite element space Vj;, C V with suitable mesh parameter
h < H. This strategy is, for instance, used in Chapter 5 in the context of the
wave equation. On the other hand, the whole construction of this chapter can
also be done when replacing the infinite-dimensional space V with the discrete
space Vj,. That is, instead of computing Zyu in (2.17), where u € V is the solu-
tion of (2.1), we compute Zyuy, where u;, € Vj, is the classical ¢cG FE solution
that solves

a(uh, Uh) = ./T"(Uh) (254)

for all v, € Vj,. Note that if the conditions (2.6) and (2.7) hold, the problem
(2.54) is well-posed.

Replacing V by Vj, (and also R by Ry, RY by R¢, etc.) has the direct conse-
quence that the fine-scale space W}, in the decomposition

Vi =RV & Wy,

is also finite-dimensional such that the correctors in (2.43) become computable.
After localization as described above, the fully discrete LOD method reads: find
Uy, € Ry, Vi that solves

(@ p, Op) = F(Omp) (2.55)
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2 The Classical LOD

for all vy, € R;‘L’ZVH.

The bases of the spaces R} Vg and R;‘L’ZVH are obtained by solving quasi-local
corrector problems in the form of discrete versions of (2.43) on the scale h < H.
To avoid an explicit characterization, these problems are usually computed using
the saddle point structure presented in Section 2.3.2. We remark that the proofs
of Theorem 2.4.1, Lemma 2.4.2, and Theorem 2.4.4 need to be slightly adjusted
following the proofs presented in [GP15], but the overall results remain valid in
the fully discrete setting if the corresponding inf-sup conditions are satisfied.

Before we quantify the total error of the fully discrete LOD approach, we need
to estimate the error between the fine-scale ¢G solution uy, € V, of (2.54) and
the solution v € V of (2.1). Similarly as in (2.10), we assume that this error
can be bounded by

i — unlly < Coh ]|l (2.56)

with a constant C. that depends on the scale of microscopic oscillations. There-
fore, choosing h appropriately allows us to retain the convergence rate of order
H. The final result is given in the following theorem.

Theorem 2.4.6 (Error of the fully discrete LOD method). Let ¢ =2 |log H|
and suppose that the assumptions of Theorem 2.4.5 hold in the case where V is
replaced by Vi,. Further assume that (2.56) is fulfilled and h is small enough to
resolve the microscopic scale in the sense that

C.h < H. (2.57)

Then the fully discrete LOD approzimation Uy, € RyVy in (2.55) and the
solution uw € V of (2.1) satisfy the error estimate

lu— g plly < H [l

Proof. If £ = |log H|, we get from Theorem 2.4.5 in the case where V}, replaces
V that

un — W pllv S H | flln

where uj, € V}, is the solution of (2.54). With the classical FE estimate (2.56)
and the resolution condition (2.57), we further get that

lu = @l < llu = wnlly + llun = @ llv < H 11l

which completes the proof. O

We emphasize that the purpose of the resolution condition (2.57) in Theo-
rem 2.4.6 on the fine mesh size h is mainly to retain the convergence rate of order
H. Alternatively, one could take a step back from the idea of rigorously tracing
convergence rates. That is, one may prescribe some fixed tolerance and balance
H and h with the aim to obtain an overall error below the given threshold.
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2.5 Numerical experiments

2.5 Numerical experiments

In this section, we present some illustrative examples that show the practical
performance of the LOD method. We remark that although the aim of the
previous sections was to quantify the full error between the exact solution u € V
of (2.1) and the fully discrete LOD approximation @Y, € R}V of (2.55) (see
Theorem 2.4.6), in practical computations generally only the error between the
solution u, € Vj, of (2.54) and 4}, € R}Vy can be measured. Therefore, it
is always implicitly assumed that w; is a sufficiently good approximation of wu,
e.g., in the sense of a given tolerance, as discussed in Section 2.4.4.

For our numerical experiments, we consider the following model problem: let
D = (0,1)% and seek u € H}(D) that solves

/ ANVu-Vovdr = / fodz (2.58)
D D

for all v € Hj(D) and given right-hand side f, which is the variational problem
corresponding to an elliptic PDE with scalar diffusion coefficient A, that is
bounded from above and below by positive constants and varies on the scale e.
We study this problem in more detail in Chapter 3. However, we remark that
(2.58) is well-posed and, due to the coercivity of the involved bilinear form, the
inf-sup conditions in the above derivations are all satisfied automatically.

As mentioned above, for the error estimates below we compare the coarse-
scale solutions to a fine FE solution that resolves the fine-scale oscillations of
Ac. In our experiments, this reference solution is computed on a mesh with
mesh parameter h = 27%. Further, the errors are computed in the energy norm
|+ [la := |AY2V - || 12(p), Which is equivalent to the classical norm on Hg (D).

Before we present numerical examples, we first introduce an explicit quasi-
interpolation operator with the properties quantified in Section 2.2.2.

2.5.1 Choice of the quasi-interpolation operator

In this subsection, we briefly present the quasi-interpolation operator that is
used for all the experiments in this thesis. We remark that this choice is not
unique and any other operator that fulfills the required properties (2.11) and
(2.12) could be considered as well.

We set Ty := g olIl},, where 11} is the piecewise L2-projection onto Q(7Tx),
the space of possibly discontinuous functions which are polynomials of coor-
dinate degree at most one in every component when restricted to an element.
Moreover, my denotes the averaging operator that maps Q1(7xy) to Vg by as-
signing to each free vertex and each component the arithmetic mean of the
corresponding function values of the neighboring elements. Rigorously, for any
vg € Q1(Ty) and i € {1,...,n}, the ith component of 7y (vy) is characterized
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Figure 2.1: Illustration of the relative energy errors of the FEM (left) and the LOD
for ¢ = 2 (right) with respect to the mesh size H and for multiple checker-
board coefficients on the scale €.

by
(WH(UH))Z(Z) = Z (UH|K>,(Z) : card{T € 71‘H czeT}

for all vertices z of Ty with z ¢ T';.

We emphasize that this choice of Zy satisfies the stability property (2.11)
as well as (2.12) and refer to, e.g., [Osw93, Bre94, EG17| for a proof of these
conditions.

2.5.2 Comparison between finite elements and LOD

In a first experiment, we study the behavior of classical finite elements in the
presence of oscillating coefficients. For a given scale €, let A.: (0,1)* — {1,2}
be the periodic and piecewise constant checkerboard coefficient that oscillates
between 1 and 2 on the mesh 7.. Besides, we choose the right-hand side
f(x) = 1{z, > 05}, where 1g denotes the indicator function for the set S C D.

For different oscillation scales ¢, the relative energy errors of the FE method
are depicted in Figure 2.1 (left). One observes the expected first-order conver-
gence rate in terms of the mesh parameter H if the scale € is resolved. However,
in the regime H 2 e the FE solution is not able to provide an appropriate ap-
proximation of the exact solution and the error curve stagnates although the
mesh size is decreased. This is the pre-asymptotic effect mentioned in Sec-
tion 2.2.1. Our experiment indicates that a resolution condition of the form
H < e indeed should hold to observe the expected convergence rate. The ex-
periment also shows that such a bound is sharp.
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Figure 2.2: Multiscale basis functions (H = 27%) in logarithmic scale: ideal basis
function (left) and localized basis function for ¢ = 2 (right).

For the same model, the energy errors of the LOD approximations with fixed
localization parameter ¢ = 2 are given in Figure 2.1 (right). Due to the fine-
scale corrections, the LOD does not suffer from a pre-asymptotic effect and
shows the expected convergence behavior which is actually slightly better than
first-order. The experiment also shows that a condition of the form ¢ 2 |log H |
might even be too pessimistic in certain regimes where the coefficient fulfills
additional properties such as periodicity.

We emphasize that the comparison between the FE method and the LOD in
Figure 2.1 is only in terms of the convergence behavior. Of course, in terms of
computation time a FE method is always faster than a multiscale construction
as described above. The main goal of the LOD, however, is to avoid global
computations on a fine scale, which could as well be seen as a distribution of
complexity. That is, since the computations of the correctors are independent
of each other, they can be parallelized and the parallelization procedure is only
limited by the specifications of the available computer system. Nevertheless,
the method shows its full potential if multiple right-hand sides to the same
diffusion coefficient are given or if the PDE at hand is time-dependent, see also
Chapters 5 and 6.

2.5.3 Convergence studies in an unstructured setting

As a second example, we consider (2.58) with right-hand side
f(@) = (1 +sin(mz1))(1 + 2 cos(% z2))

and a scalar heterogeneous coefficient that is piecewise constant on the mesh
7. with mesh size ¢ = 277. In each element K € 7., the value of the co-
efficient is obtained from a uniform distribution with values in [0.5,10], i.e.,
Al ~ U(0.5,10). Further, we choose a nodal basis function Ay € Vi, H = 274,
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Figure 2.3: Illustration of the localization error |(C, — Cf)A1| in logarithmic scale
(left) and localization error in the relative energy norm for different basis
functions (right) on the scale H = 274

and compute its multiscale counterpart ]\1 = RpA; corresponding to the vertex
21 = (0.4375,0.5). The absolute value of A; in logarithmic scale is depicted in
Figure 2.2 (left) and illustrates the decay property of such functions; cf. also The-
orem 2.4.1. Its localized counterpart R§A;, £ = 2, is shown in Figure 2.2 (right)
and the error between these two basis functions is depicted in Figure 2.3 (left) in
logarithmic scale. These illustrations show that the localized function captures
the essential characteristics of the global function provided that ¢ is chosen ap-
propriately. This can also be observed in Figure 2.3 (right), where we present
the localization errors ||(Cp, — Cf)Ailla/||ChAi|a for different values of ¢ and the
nodal basis functions A; € Vi associated with the nodes z;, i € {1,...,4}, given
by

2 = (0.4375,0.5), 2 = (0.5625,0.5), 23 = (0.0625,0.5625), z = (0.125,0.5).

As a reference, we include the behavior of the function exp(—2¢) which confirms
the theoretical findings of an exponential decay in ¢ as quantified in Theo-
rem 2.4.4.

Finally, the total errors of LOD approximations in the relative energy norm
on different discretization scales and for different localization parameters ¢ are
depicted in Figure 2.4 (left). One can observe a convergence rate that is even
slightly better than the expected first-order rate provided that ¢ is chosen large
enough as predicted by the theory. If ¢ is not increased for smaller values of
H, the error curve stagnates since the effect of the localization dominates the
overall error. This is in line with the assertion of Theorem 2.4.5. Additionally, we
also provide L%-errors of the finite element parts of LOD solutions for different
H and ¢ in Figure 2.4 (right). Already for small ¢, we observe at least first-
order convergence which can be expected from the above theory; see, e.g., the
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Figure 2.4: Errors of the LOD approximations for different localization parameters
¢ in the relative energy norm (left) and relative L2-errors of their finite
element parts (right) with respect to the mesh size H.

ideal error estimate (2.16). The error curve even partially indicates second-
order convergence in the pre-asymptotic regime and if the scale € is resolved.
This behavior is for instance discussed in [GP17]; see also Section 4.1.3 and
Theorem 4.1.1.

Overall, the numerical experiments verify the theoretical results presented in
this chapter when applied to the elliptic setting. In particular, the examples
show that the localization procedure described above is justified and the con-
sidered localized multiscale method is first-order accurate already for moderate
choices of the localization parameter £. Moreover, the approach does not suf-
fer from pre-asymptotic effects in the presence of microscopic coefficients and
provides reasonable approximations beyond structural assumptions such as pe-
riodicity.
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3 A Higher-Order Extension of the
Localized Orthogonal
Decomposition Method

In the previous chapter, we have presented an approach based on a first-order FE
space that constructs a multiscale space that is able to cope with heterogeneous
and possibly microscopic properties of, e.g., an underlying material coefficient.
In general, one could generalize the idea and consider higher-order conforming
discrete spaces as used in the context of hp methods; we refer to, e.g., [BG96,
Sch98| for further details on hp finite elements. Although there exist quasi-
interpolation operators for such spaces that fulfill properties similar to (2.11)
and (2.12) without restrictive regularity assumptions [Mel05], a construction as
in Chapter 2 does not provide higher-order convergence rates with respect to
H for general non-smooth coefficients. Therefore, the derivation of a higher-
order multiscale method calls for an appropriate adjustment of the construction
presented in Chapter 2.

In this chapter, we consider the use of discontinuous FE spaces for a higher-
order multiscale construction. This idea traces back to [EGMP13| and [HP13].
In [HP13], local corrections of element-wise discontinuous functions were consid-
ered as described in Section 2.4.1. It turned out that a splitting of conforming
FE functions into element-wise discontinuous contributions has a favorable effect
on the localization procedure in connection with the classical (conforming) LOD
as presented in Chapter 2. Then again, a truly discontinuous approach was used
in [EGMP13] to construct a first-order discontinuous Galerkin (dG) multiscale
method for an elliptic model problem. The approach is based on the decomposi-
tion of a fine discontinuous FE space into a coarse discontinuous multiscale FE
space and the remaining (discontinuous) fine-scale space which are orthogonal
with respect to the mesh-dependent bilinear form that arises in connection with
a symmetric interior penalty approach (see, e.g., [DD76, Arn82, HSW07]).

Here, we base the method on an orthogonal decomposition of the infinite-
dimensional space V, as in Chapter 2, and build the higher-order ansatz on the
saddle point formulation described in Section 2.3.2, which allows for a general-
ization using discontinuous spaces. This approach is, for instance, also employed
in connection with gamblets [Owh15, Owh17], usually with spaces consisting of
piecewise constant functions. The aim of this chapter is to extend these ideas
to construct a higher-order variant of the LOD based on piecewise polynomials
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which allows for a thorough treatment of not only the convergence behavior
with respect to the mesh size H but also the polynomial degree p.

Since the abstract theory of Chapter 2 is not directly applicable to the higher-
order setting of this chapter, as discussed above, and the extension of the method
requires more refined arguments to successfully trace the involved parameters,
we restrict ourselves to an elliptic setting as introduced in the following section.
We emphasize that the overall construction also works for a more general set-
ting but the results presented below do not immediately follow and need to be
adjusted to the respective framework.

3.1 Elliptic model problem

In this section, we present the model problem used throughout this chapter. We
consider the variational formulation corresponding to the prototypical second-
order diffusion problem

—div(AVu) = in D,
( )=/ (3.1)

u=0 ondD,
where D C R% d € {1,2,3}, is a bounded, convex, and polytopal Lipschitz
domain and f € L?*(D). We assume the coefficient A to encode microscopic
features of the medium on some scale € and to be admissible, i.e., it belongs to
the set

Ac L®D;R™D : J30<a< B < o0 :
= Y (3.2)
V¢ eR%Y aa. x €D : alf)? < Ax)é- € < BlEJ?

with minimal assumptions. For a given coefficient A € 2, we write « for the
largest possible choice of « in the definition (3.2) and [ for the L>*-norm of A,
ie., = HA||LOO(D;ngng), although this choice of § might not be the minimal con-
stant with respect to the estimate in (3.2). We emphasize that also positive and
bounded scalar coefficients are admissible, since these coefficients may simply
be multiplied by the identity matrix.

With regard to the spaces in Chapter 2, we have V = H}(D) as well as
H = L*(D). To derive the variational formulation of (3.1), we multiply its first
line with a test function v € H}(D), integrate by parts, and obtain

/DAVU~VU dz = /vad:c (3.3)

using the boundary condition of u. The left-hand side of (3.3) motivates the
definition of the symmetric bilinear form a: H} (D) x Hj(D) — R,

a(v,w) == /DAVU -Vwdz (3.4)
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3.2 Construction of higher-order multiscale spaces

for any v, w € H}(D). Asin Chapter 2, we deduce from the Friedrichs inequality
that the H'-seminorm |-|g1(py = ||V - ||12(p) is actually a norm on Hg(D) which
is equivalent to the standard H'-norm. Using this and the fact that A € 2,
we directly get boundedness and coercivity of a, i.e., for any v, w € Hg(D), it
holds that

a(v,w) < B|Vollr2p) [[Vwl|r2(p), (3.5)

making use of the Holder inequality, and
a(v,v) = a||Volzap)- (3.6)

Note that from the definition of a in terms of an integral, we directly get that
the bilinear form « fulfills the local boundedness condition (2.39) that had to
be explicitly assumed in Chapter 2.

With the bounds (3.5) and (3.6), we get from Chapter 2 or directly with the
Lax-Milgram Theorem that there exists a unique solution v € H} (D) that solves

a(u,v) = (f,v)r2(p) (3.7)
for all v € H}(D). Further, it holds that
IVull 20y < o fll 2oy, (3.8)

see also (2.4).

3.2 Construction of higher-order multiscale
spaces

Inspired by the findings presented in Chapter 2, the multiscale approach of this
chapter, which aims at finding a discrete approximation of u in (3.7), is also
based on the idea of decomposing the space Hj(D) into a coarse FE-type space
Vi on some scale H and an infinite-dimensional fine-scale space VY. While this
decomposition was chosen in a conforming fashion in Chapter 2, i.e.,

Vg C HY)(D) and W C Hy(D),

the construction of our higher-order variant is explicitly based on non-conform-
ing spaces. However, the multiscale space Vj constructed from Vg and W should
again be a conforming space such that the final multiscale decomposition

Hg(D) = Vi ® (W N Hy(D))
consists of two conforming spaces in contrast to the decomposition

Hy(D) C Vg oW
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3 A Higher-Order Extension of the LOD

with two non-conforming spaces. The main problem with this generalization to
non-conforming spaces is the fact that many of the arguments used in Chapter 2
explicitly rely on the fact that Vi and W are subspaces of H} (D). Nevertheless,
the saddle point formulation in Section 2.3.2 presents an ideal basis for the
non-conforming construction. Before we get into the details, we introduce the
discrete framework of this chapter.

3.2.1 Discontinuous discrete spaces

Let, as in Section 2.2, {Tg}mr=o be a family of regular decompositions of the
domain D into quasi-uniform d-rectangles on the scale H and denote with V};
the space of piecewise polynomial functions with prescribed maximal coordinate
degree, i.e.,

ve L*(D): VK € Ty : v|k is a polynomial
of coordinate degree < p [
Note that we explicitly indicate the dependence on the polynomial degree p € N
because in this chapter the convergence not only with respect to the mesh pa-
rameter H is investigated but also with respect to the polynomial degree. For
any S C D, we further write V};(S) for the restriction of V}; to the subdomain
S. In particular, for any K € Ty, the restricted space VF(K) is exactly the
space of polynomials up to degree p in each coordinate direction on the element
K. For later use, we also define for k € N the broken Sobolev space H*(Tg) by

H*(Ty) == {ve L*(D): VK € Ty : v|x € H*(K)}.

with the seminorm

E ’?{k(TH) = Z |- ‘lzﬁlk(K)’
KeTy

where | - |grsy := [|[V¥ - || 12(s) denotes the H*-seminorm on S C D.

As before, the next step of the construction consists in defining a projection
operator onto the space V} that fulfills local stability and approximation prop-
erties in the sense of (2.11) and (2.12). The non-conforming nature of the space

VH, however, allows us to use a truly local projection. Here, we choose the
L*-projection 114, : L*(D) — V}; defined for any v € L*(D) by

(HZU,U)H)LQ(D) = (v,wH)LQ(D) (3.9)

for all wy € V};. The above-mentioned locality of II}, comes from the element-
wise definition of the space V}; and the possible discontinuities across element
boundaries. That is, the definition of IT}; in (3.9) is equivalent to the element-
wise characterization

((H%U)’K7Q)L2(K) = (Ua(J)Lz(K) (310)
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3.2 Construction of higher-order multiscale spaces

for all ¢ € V}(K) and K € Ty. For the sake of readability, in the following we
abbreviate IT := IT, if p and H are explicitly given and there is no possibility
of confusion.

For any K € Ty, the L?-stability of II follows directly from equation (3.10)
with the choice ¢ = (Ilv)|, and reads

Mol 2ry < [loll o) (3.11)
for all v € L?(K). Further, it holds that

H
H(id — H)’UHLQ(K) < CHE HVUHLQ(K) (312)

for all v € H'(K); see, e.g., [Sch98, HSS02, Geo03]. If v € H*(K) for k € N and
k < p+41, we even have

H(id—H)UHLz(K) < CH (I>(p, k) Hk |U|H’€(K) (313)
with a constant Cp; that does not depend on H or p and

((pF1=R)N\?
2. k) = ((p+1+k)!)

We emphasize that due to the true locality of the inequalities (3.11) and (3.12),
the results immediately generalize to unions of elements and, in particular, to
a global result on the domain D in the sense of an element-wise gradient on the
right-hand side. Based on the projection II, we define, as before, the fine-scale
space W as the kernel of TI with respect to the space HJ(D), i.e.,

(3.14)

W = (id — )Hy(D) = ker H‘H(}(D)'
At this point, we also introduce the inverse inequality for polynomials which
states that
IVall2 k) < CinyH 'p? llall 2 x) (3.15)

for K € Ty and for all polynomials ¢ € V1 (K); see, e.g., [Sch98, GHS05, Geo08].
As above, this result also holds globally, i.e.,

lalmry) < CiuH 07 Jon || 22(p)

for all vy € V. We emphasize that II: L*(D) — V} is obviously surjective
as an operator from L?(D) to the non-conforming space V};. Next, we show
that the projection operator II is also surjective when restricted to functions in
Hg (D). To prove this assertion, we need the following lemma.

Lemma 3.2.1 (Local inf-sup condition). Let K € Ty. Then the inf-sup condi-
tion

. (¢, U)L2(K)
inf sup
gevr (k) verd (k) 1l 2y VUl 220

holds with v(H,p) ~ Hp™2.

>~(H,p) >0 (3.16)
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3 A Higher-Order Extension of the LOD

Proof. Let k C K be such that the edges, faces, etc. of xk are parallel to the
ones of K. According to [Geo08, Lem. 3.7|, there exists a choice of x such that
dist(k, 0K) = Cgisc Hp~2 and

1
||Q||%2(n) > —||Q||%2(K) (3.17)
4

for all ¢ € VI(K), where dist(-,-) denotes the Hausdorft distance. Now, let
p € WH°(K) N H}(K) be a bubble function with

0<p<1,
p=1 1in kK,
Vol < C, H'p?

where C, depends on Cgist. Using (3.17) and

IV ()| 2y < Vol iy Nl 220y + Nl oo i) 1Vl 2

B (3.18)
<H 1p2(0p + Cinv) ||Q||L2(K)v
we get for any g € V}(K) that
Sup (q7 U)L2(K) > (q, pQ)LQ(K)
veri () 4l 2y [Vollzay ™ Nlallza) 1V (p@) |2k
S 1 ||Q||%2(K)
Al ) IV () ez (x)
H
= =:v(H,p) > 0.
(o5 o) v(H,p)
Taking the infimum over ¢ € V};(K), we obtain the assertion. O

Theorem 3.2.2 (Surjectivity). The restricted operator H’Hé(D) is surjective,

i.e., for any wy € V}, there exists a function w € H}(D) such that TTw = wy.
Further, among all possible candidates exists a choice of w such that

2
p
IVwllz2py S 7 lwallz2)- (3.19)

Proof. Let wy € V. We define w € Hj(D) as the solution of

a(w,v) + (Aww:V) 2y = 0, (3.20)
(wa,uH)LQ(D) = (wHa,UH)LQ(D)

for all v € H}(D) and all uy € V}. From classical saddle point theory (see,
g., [BBF13, Cor. 4.2.1]), we know that (3.20) has a unique solution if the

inf-sup condition

(UH> U)LQ(D)

inf  sup >4(H,p) >0 (3.21)

vreve very(py Ve llz2(o) [Vl z2(p)
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3.2 Construction of higher-order multiscale spaces

holds and a is coercive. To show the inf-sup condition (3.21), let vy € Vj.
From the construction in the proof of Lemma 3.2.1, we get for any K € Ty the
existence of a function vy € Hy(K) which fulfills

(v, vx) 120y 2 vl 2 (3.22)
and similarly to (3.18) also
IVorllraie) S H'0? vz )- (3.23)
Using these local contributions, the inclusion
U Hs(K) € Hy(D).
KeTy

and the estimates (3.22) and (3.23), we compute

sup (vm, U)L?(D) ZKeTH (v, UK)L?(K)
very(o) [0l IV Ol 20) ™ Yol 2oy (X e, 1V0r 1 220000)
2
Vg
>C Hp™? 2scersy 0z =CHp?>>0.

||vH||L2(D) ( ZKGTH ||UH||%2(K))

That is, the inf-sup condition (3.21) holds with J(H,p) ~ Hp~2. Thus, (3.20)
is well-posed and the stability estimates

5
[ Awgllz2(p) £ =73 lwrllz2o
IO 5(H, p)? v

and

2/81/2
[Vwllr2p) < W5 (H.p) lwa | 2(p)

hold (cf. [BBF13, Cor. 4.2.1]). Finally, we remark that the equality [Tw = wy
follows by construction. O

The construction in the proof of Theorem 3.2.2 is based on local subspaces
of H}(D) and, thus, allows us to even find a conforming preimage w € H}(D)
under IT of a function wy € V}; which is supported only in the elements where
wy is non-zero. This straightforward consequence is given in the following
corollary.

Corollary 3.2.3 (Local bubble function). Let {K;}7% C Ty be a set of ele-
ments and wy € Vi, such that

nR
Wi|pg =0, where R= UKj'
j=1
Then there exists a function w € Hg(R) with w|p, 5 = 0 such that Tw = wy

and
2

p
IVwllz2r) S 7 |wr |2 (r)- (3.24)
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3 A Higher-Order Extension of the LOD

3.2.2 Ideal trial and test space

In the spirit of Chapter 2, we can now construct an operator R: V}; — HJ (D)
that assigns to each vy € V}; a continuous function whose L%-projection is ex-
actly vy. From Theorem 3.2.2 or Corollary 3.2.3, we know that such functions
exist but, as before, we particularly want the space RV}, to have improved
approximation properties compared to a classical FE space for which error es-
timates typically depend on the scale of microscopic oscillations.

To this end, we start our construction by adopting the definition of R pre-
sented in Section 2.3.2. We remark that in the setting of this chapter, it holds
that R* = R since a is symmetric. Thus, we do not distinguish between the
two operators in the following. We define R: V5 — H}(D) for any vy € V} as
the solution of the saddle point problem

CZ(RUH,U) + ()‘vHav)LQ(D) = O,

3.25
(Rvm, prr ) 22(p) = (vm, ptH) 2 (3.25)

for all v € HY(D) and all uy € V}, where \,,, € V} is the associated Lagrange
multiplier. From the construction in the proof of Theorem 3.2.2, we know that
there exists a unique solution (Ruvgy, A, ) € H} (D) x V}; of (3.25) and that

2
p
IVRvu |20y S T v || 22Dy (3.26)

for any vy € V};. Note that due to the symmetry of a, the operator R is
equivalently defined by

Rouy = argmina(v,v) subject to Ilv = vy. (3.27)
vEH}(D)

We now set V4 := RV} C Hi(D) and observe that dim V}; = dim V}; because
R: Vi — VI is a bijection with inverse I]pp. We use VF as test and trial space

to obtain a finite-dimensional approximation of (3.7) in the next subsection.

Remark 3.2.4. In the one-dimensional setting with a constant coefficient, the
above definition of R produces the classical spline space of order p + 2. This
smoothing property is, for instance, employed in [HMP*19] in connection with
a diffuse approximation of jumping coefficients to avoid spurious oscillations.

3.2.3 The ideal method

In this subsection, we introduce and analyze an ideal method to discretize prob-
lem (3.7) with a ¢cG FE approach based on the space V# introduced in the
previous subsection: find @y € V} such that

a(tm, 0m) = (f, 1) 2(D) (3.28)
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3.2 Construction of higher-order multiscale spaces

for all o € V. As for the variational problem (3.7), we directly get the well-
posedness of (3.28) from the Lax-Milgram Theorem using the coercivity of the
bilinear form a and the conformity of V}.

Before we further analyze the method, we state the following useful result.

Lemma 3.2.5 (Equivalent formulation). Let u € Hj(D) be the solution of
(3.7). Then the solutionuy € Vi of (3.28) is equivalently defined as the function
ay € HY(D) that solves

CL(?NLH,U) + (>\Hu7HU>L2(D) = 0,

- 3.29
(Htg, prr) 2oy = (Iu, pu)r2(p) (3.29)

for all v € HY(D) and py € VY, where A\, € V) is the associated Lagrange
multiplier.

Proof. The assertion follows with similar arguments as in the proof of Theo-
rem 2.3.2. For 0y = Ruy € V}, we compute

a(Rlu,vy) = a(u, vy) — a((id — RID)u, 0g)
= (f,0n)r2(p) — a((id — RID)u, o).
Since II(id — RII)u = 0, we get with (3.25) that
a((id — RII)u, vy) = 0.
Therefore, RIIu is the (unique) solution of problem (3.28). O

The next theorem states that under additional (piecewise) regularity assump-
tions on the right-hand side f, the error between the solutions of (3.7) and
(3.28) scales optimally with respect to H and p and does not depend on the
oscillations of the coefficient.

Theorem 3.2.6 (Error of the ideal method). Assume that f € H*(Ty), k € No,
and define s := min{k,p + 1}. Further, let uw € H}(D) and uy € V}; be the
solutions of (3.7) and (3.28), respectively. Then

< 2 s)

IV (u— aH)HL?(D) ~ T HeH! |f Hs(Tw) (3.30)
and B(p.s)
_ DyS) o,
Ju— w2y S e H | flas (1), (3.31)
with the notation H(Ty) := L*(D) and | - |go(ry) = || - |l 2(p)-
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3 A Higher-Order Extension of the LOD

Proof. Using the Galerkin orthogonality, (3.12), and (3.13), for £ > 1 we obtain
al|V(uw— aH>H%2(D) <a(u—ay,u—ty) = a(u,u—ty)
= (fiu—tg)r2py = (f —f,u —Ug)r2(p)
H _
< |If = 1fll2p) Cu " IV(u = tm)| 2(p)

H .
< Cn®(p,s) H* | f|ms(z) Cn W |V (u—tg)| 20

employing that II(u — @y) = 0 by Lemma 3.2.5. Thus,
P(p, s)

IV(u = i) 2y < o™ 'Chy H* | f

Hs(Tw):

With the same arguments but without inserting I f, we get in the case £ = 0
that

5 _ H
IV = @m)llzzo) < @™ C— 1 20

This proves (3.30). To show the L2-error estimate, we use once again that
II(u — @g) = 0. Therefore, we get with (3.12) that

. H .
|u — tgllL2py < Cn " IV (u— tm)| L2y

Combining the last estimate with (3.30), we deduce (3.31). O

Remark 3.2.7. If p = 1 in the above construction, the error estimate in The-
orem 3.2.6 is comparable to the one presented in Chapter 2 in connection with
the classical conforming approach; see Theorem 2.3.1.

3.3 Derivation of a practical method

As already addressed in the previous chapter for the classical LOD, the ideal
method given in (3.28) is a finite-dimensional approximation of the solution u
of (3.7) but the construction of the space V7 involves the solution of infinite-
dimensional problems. Thus, we follow the strategy presented in Section 2.4
and adapt it to the setting of this chapter with the non-conforming spaces V};
and W in order to derive a fully practical method. First, we investigate the
decay properties of functions in ‘7[’} and especially focus on the dependence on
the polynomial degree p.

3.3.1 Decay of the basis functions

As a first step, we identify a suitable choice of a basis of \N/f} which is constructed
from a basis of V};. For any K € Ty, let

%K = {AK’]'}T:Kl with mg = (p+ 1>d
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be a basis of Vj;(K) and

%::U%K

KeTy

the corresponding (local) basis of V};. In our numerical computations, we choose
shifted Legendre polynomials on each element K, which are orthogonal with
respect to the L*-scalar product (-, -)p2(s).

Using the isomorphism R between V5 and V%, we directly get that B := RSB
is a basis of \75 In the following, we show that for any basis function A € B,
the corresponding basis function RA € B decays exponentially fast away from
the support of the function A, which is exactly one element of Ty.

Theorem 3.3.1 (Decay of the basis functions). Let ¢ € N, K € Ty, and
A € By. Further, define A ="RA € B. Then it holds that

IVA |2 oane(ey) S exp(—Cace £/p) VAl 2(p) (3.32)
with a constant Cye. that depends on Cr, «, and 3.
Proof. We choose a cutoff function n € W*°(D) with the following properties:
0<n<l,
n =0 inNY(K),
n =1 in D\ NTY(K),
IVllzoe(py < Cy H

(3.33)

Define R := N“'(K) \ N°(K). Since R is a union of elements of 7z and
II(An)|p\p = 0, we know from Corollary 3.2.3 that there exists a bubble function
b € H}(R) which fulfills IIb = II(An) and

IVblsr S 2 Al (334
We compute
o VAN s 10y < ’/[)AVA-V(An)dx’+‘/DAV/~\~V77/~\dx‘
:‘/DAVJ\-V(]\n—b)dx‘
+‘/DAVJ\-Vbd:c‘jL’/DAV[\-VnAdx‘

- ‘/AVA-Vbdx‘+(/AvA.vnAdx
R R

I

where we use the fact that, by definition (3.25), a(A,v) = 0 for v € HY(D) with
v = 0. Therefore, we get with (3.12), IIA|, = 0, (3.33), and (3.34) that

IV Al 72w (1)) < CP VAl 2,
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which leads to

VA2 pywes (7)) < Cril IVAZ2p\we iy < (Cp—l— 1) IVA[Z2p)

as in the proof of Theorem 2.4.1. We further obtain

Cp \¢
<Cp+ 1) = exp (—[log (cﬁl)w) <exp (— 55 /p).

Taking the square root, we deduce (3.32) with Cye. := % after a shift in /. [

Remark 3.3.2. Although Theorem 3.3.1 only quantifies the decay of basis
functions A € B, with the same arguments the result also holds for any function
Rq, where ¢ € V}(K) and K € Ty. That is, we have

HVRQHL2(D\NZ(K)) 5 GXp(—CdeC €/p) HVRQHLZ(D) (335)

Remark 3.3.3. The p-dependence in Theorem 3.3.1 seems pessimistic and
could possibly be improved. If, for instance, V7 is only supported on a portion
of the ring R in the proof of Theorem 3.3.1, one could expect some additional
(fractional) powers of p in the estimate (3.34) in the sense of

2 2
P % PT _sux
Vbl L2r) S EHAWHLQ(R) S TP "Nl 2r)

for some 6 > 0. However, decreasing the support of V7 has an influence on its
L*>*-bound. For that matter, one may relax the restriction in (3.33) to

V0| Loopy < Cy H 'p

without an impact on the final estimates in the proof of Theorem 3.3.1 and
possibly even further dependent on 4.

The decay property of the basis functions in 5 that is proven in Theorem 3.3.1
is the key ingredient to define a localized version of the operator R. This
localization procedure is explained and investigated in the following subsection.

3.3.2 Localized computation of the approximation space

As in Chapter 2, we base the definition of a localized operator R on truncated
versions of the basis functions in 8. Thus, for a given oversampling parameter
¢ € N and any A € B with supp(A) = K € Ty, we define A’ € H}(NY(K)) as
the unique solution of the saddle point problem

a(Af v + (N,v = 0,
( ) ) Asv)zo) (3.36)
(A a,UH)LQ(D) = (Aa MH)L?(D)
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for all v € HY(NY(K)) and pg € VL (NY(K)) with associated Lagrange multiplier
Ny € VE(NY(K)). Then for any function vy € V} which can be expanded as

mg
v =Y Y exihiy

KETH j:1

we define the corresponding function Rfvy € HY(D) by

RZ’UH = Z %CKJ [\ﬁ(,j' (337)

KETH ]:1

We set VA := RVF and remark that B¢ := RS is a basis of VF* by con-
struction. We use this space to compute an approximation of the ideal finite-
dimensional solution @y € V& of (3.28), i.e., we want to find @4 € V2* that
solves

a(tiy, on) = (f, %) 12(p) (3.38)

forall vy € Vg"f. With regard to Chapter 2, we refer to ', as the LOD solution.

As a next step, we show an error estimate for the error u — @Y.

Theorem 3.3.4 (Error of the LOD method). Let £ € N, f € H*(Ty), k € Ny,
and define s := min{k,p + 1}. Further, let u € Hy(D) be the solution of (3.7)
and @4, € VP the solution of (3.38). Then it holds that

IV (=it 20
3 3.39)
P (
Hs(Ty) T 7 (D72 oxp(—Claec £/p) 1f1lz2(p)

~

< (I)(pv S) Hs+1 |f
p

with the constant Cyee from Theorem 3.5.1.

Proof. First, we observe that %, is quasi-optimal by the Galerkin orthogonality;
see also Lemma 2.2.1. Therefore, we obtain

_ B . " B _
IV (u =)l < = inf [V (w = 0u)llezp) < = IV (0= @)|lo),

seVh’

where Nﬂ% = Rlu € V]’}’é. With the triangle inequality and the solution
uy € Vj; of (3.28), we get that

IV (u = @) r2oy < NIV (u = an)llzay + IV (@ — @)l 2o)- (3.40)

The first term can be estimated with Theorem 3.2.6, i.e.,

®(p, s)
p

Hs+1 |f

IV(u = tn)l 20y S H* (T
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For the second term, we set w := @y — u%. Further, for K € Ty we define
a cutoff function nx € Wh*°(D) with

0<nx <1,

ne = 0 in N“Y(K),
nk = 1 in D\ NYK),
IV || ooy < Cp HTE

We set Rg := NY(K) \ N*"}(K). By (3.36) and (3.37), for each K € Ty there
exists a Lagrange multiplier A% € VI (NY(K)) such that

CL(RE(HU’|K)7U) + ()\§(7/U)L2(D) = 07 (3 41)
(RZ<HU|K)MMH)L2(D) = (HU|K7MH)L2(D)
for all v € H}(N*(K)) and py € VE(NY(K)). Noting that
(1 —ng)w € HYNY(K)) and Tlw =0,
we obtain with (3.25) and (3.41)
@ |[Vwllzap) < Y al(R(Mul) = R (Iu| ), w)
KeTy
= ) —a(R'(Iuly), (1 — nx)w + nxw)
KeTy
= 3 (e (1= m)w) 2y — a(R (M), micw))
KeTi (3.42)
S 30 (Il ol
KeTh

VR Tl 2 [V 1) 2
< 7 0+ 1) IVR (Tl )l 2 V0l 2

KeTy

In the last step, we use that
H
w2y < OH? IVwl 2ry)

by the approximation result (3.12),
IV (nrew) [ 22(ry) < CoCrip™ (V]| z2(rye) + [Vl 2R,

and
N L2 Ry S H P2 (IVR (Il ) || 12 (i) -
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3.3 Derivation of a practical method

The last estimate follows from the arguments in the proof of Lemma 3.2.1. More
precisely, for any T' € Ty, there exists a bubble function pr € WH(T) N HY(T)
as in the proof of Lemma 3.2.1 such that

||)‘ ||L2 < 4()‘%'7/0T/\K)L2 (T)
= —4da(R (TTu| ), prA%) (3.43)
S H7p? VR (Tl )| 2y | Nic L2y
where we employ the estimates (3.17) and (3.18).

Using Theorem 3.3.1 and Remark 3.3.2, which both equivalently hold with R
replaced by R, we get with (3.42) and (3.35) that

IVwli2) S D (p+ 1) VR (Tl ) | 2owe-1)) VWl 2

KeTy
3
D 1/2 1/2
S 5 e(=Can /) (X IMulglo) (3 IV0lage,)
KeTy KeTy
3
P _
S Eg(d V72 exp(=Clace £/p) M| 20y |Vl 22(p)

Here, we employ the discrete Cauchy-Schwarz inequality and the stability of
(3.41), i.e
¢ p?
IVR (Ml )l 2oy S 57 IMTulgell 220y

for any K € Ty. We now go back to (3.40) and obtain

IV (u=i) | 2oy

< (I)(p78> Hs+1 |f

~Y

3
p _
Hs(Ty) T ﬁ g(d /2 eXp(_Cdec E/p) HHUHLQ(D)

~

(p,s) ., P’ -
< P o i+ 2 09 exp(=Cove ) [0

where we use the stability of II and (3.8). This completes the proof. ]

Remark 3.3.5. The additional H in the denominator of the estimate in The-
orem 3.3.4 may be explained by the fact that the localization error iy — Y is
measured in the H'-norm while ITu is measured in the L2-norm. Although this
seems suboptimal, the pollution in terms of H in the second term of (3.39) is

also observed in our numerical experiments; see Section 3.4.

We can now use Theorem 3.3.4 to quantify the choice of the oversampling
parameter ¢ with respect to the polynomial degree p and the mesh size H de-
pendent on the regularity of the right-hand side f.
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3 A Higher-Order Extension of the LOD

Corollary 3.3.6. Let f € H"(Ty), k € No, and define s := min{k,p + 1}.
Further, let u € HL(D) be the solution of (3.7), and @l € VE' the solution of
(3.38). Then, for

¢z |logH|p(s+1)+ (logp)p(s+1), (3.44)

1t holds that

H\s

(p, s +1
(p.5) e+ (5) 1l

Hs+1 |f

IV (u = @)l 2p) S

Note that if £ = 0 and p = 1, Corollary 3.3.6 provides a similar error estimate
as in the conforming case of Chapter 2 with the same scaling of /. Of course,
if we increase p, the oversampling parameter ¢ in Theorem 3.3.4 needs to grow
as well in order to maintain the high convergence rate of Theorem 3.2.6 with
respect to H and p. Nevertheless, the experiments in Section 3.4 indicate that
the p-dependence of ¢ in (3.44) might be too pessimistic and the decay property
of Theorem 3.3.1 even slightly improves for larger values of p. Before we turn
our attention to these numerical investigations of the higher-order method, we
first need to discuss the last step towards a fully practical method, i.e., the
discretization at the microscopic scale.

3.3.3 Microscopic discretization

As discussed in Section 2.4.4, the localized operator R! does not provide a fully
discrete method since the localized basis functions (3.36) are obtained by solv-
ing infinite-dimensional auxiliary problems. The easiest approach to resolve
this issue is to introduce a (conforming) fine FE space Vj,,, C Hg(D) based
on a decomposition 7, with mesh parameter h and polynomial degree p’ that
replaces the space H}(D) in the above construction. Ideally, the classical c¢G
solution in V},,y should fulfill an estimate similar to the one in Theorem 3.2.6.
Motivated by error estimates of the hp FE method (see, e.g., [BG96, Sch98|),
for f € H*(D), k € Ny, we assume that

O(p',s) o
IV(u—un)llz2py S p, (Ce ) fl g oy (3.45)

where u € Hj(D) is the solution of (3.7), s := min{k,p’ + 1}, and uj, € Vj, is
the solution of
a(un, vn) = (f,vn)r2(D) (3.46)

for all v, € V},,». Note that the right-hand side of (3.45) depends on the fine-
scale parameter e through the constant C.. This is typical for classical FE spaces
which do not take into account microscopic information.

We emphasize that on the one hand, the ideal approximation uy € f/fl char-
acterized by (3.28) fulfills the higher-order estimate quantified in Theorem 3.2.6
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3.3 Derivation of a practical method

by the (piecewise) regularity of the right-hand side f only. On the other hand,
in order to obtain a higher-order estimate of the form (3.45) for the classical FE
space Vj,,y, the regularity of f needs to hold globally. Further, one requires ad-
ditional smoothness assumptions on the domain D as well as on the coefficient
A (see, e.g., [Eval0, Thm. 5 in Sec. 6.3]) and, in particular, the microscopic
scale € needs to be resolved. Another problem that occurs when discretizing
the fine scales is the fact that the proof of the inf-sup condition in Lemma 3.2.1
is explicitly based on the space H}(D). The result does not directly follow for
subspaces of Hj(D) and a similar inf-sup condition needs to be proven for the
respective discrete space V},,» at hand.

With these problems in mind, the following lemma provides a condition on
the fine mesh parameter h for which the inf-sup condition (3.16) and thus the
surjectivity results in Theorem 3.2.2 and Corollary 3.2.3 remain valid if H}(D)
is replaced by the first-order space Vj, C Hj (D), for which we omit the subscript
1. The explicit choice of the polynomial degree p’ = 1 is motivated by the fact
that higher-order estimates for the classical conforming FE space V},,, would
require additional smoothness assumptions as mentioned above.

Lemma 3.3.7 (Discrete local inf-sup condition). Let K € Ty. Then there exists
a constant C' > 0 independent of h, H, and p such that for

h§C’Hp_2

the inf-sup condition

, U
inf sup (q h)L?(K)

> >0 (3.47)
q€VH(K) vp €ViNH (K) HQHLQ(K) HVUhHLQ(K)
holds with ~, ~ Hp™2.

Proof. As in the proof of Lemma 3.2.1, let kK C K be such that its edges, faces,
etc. are parallel to the ones of K, dist(x,0K) = Cyss Hp™2, and

1
lallZa) = Flallzze) (3.48)
for all ¢ € VE(K). Now, let p € W*°(K) N Hy (K) with

0<p<,
p=1 1ink,
IVpllee(ry < Cp H'p?,

where C, depends on Cgisr. Next, we define for any ¢ € V}(K) the function
w, € Vi, N Hy(K) as the solution of

(wtpvh)L?(K) = (q,’Uh)m(K)
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3 A Higher-Order Extension of the LOD

for all v, € Vj, N Hj(K). Note that w, is unique by the inverse inequality

IVunll 2y < Cimen B [0l 206

and the Lax-Milgram Theorem. The last auxiliary ingredient is an estimate of
the form

lallz2) S llwgll 2
which can be obtained using a projection operator Zr : L*(K) — V;, N HA(K)
which fulfills stability and approximation properties as in (2.11) and (2.14).
That is, for all v € L?(K), it holds that

IZ5 0l 2y < Coxcllvll 2y
and, for any v € Hj(K), we have
1h~ (v = T3 o) [l o) + VT 0l 2y < O IV 20y
For an explicit choice of Zf, see Section 2.5.1. With the above inequalities, we
can show that
HlallZz) < Nallize < (@ p0) 200 = (@, T8 (p9)) 2x) + (¢, (1d — i) (pg)) 2k
= (wg, Ty (pa)) rar) + (. (1d = I ) (pa)) L2(x0)
< Nwgll 2y Oz [ pallzciey + lall 2wy Coxc b [V (pa) 22 (e
< Crxc [Jwgll 2y gl z2x) + Oz (Cp + Cung) RH™'D? (a2
and thus
lallz2(x) < 8 Oz [lwgllr2(x)
provided that
C’I}f(C’p + Chy) hH 'p* <
With all the above estimates, it holds that

ool —

inf sup (¢, vn) L2(k) . (wg, Wq) £2(k)
qeVE (K) vy eViNHE (K) lqll 2y VRl 2y — aevi ) [l 2oy [[Vwgl| L2 x)

. 1 [wgll72 k)
> inf
aeVj () 8 O |[wall L2 () [[Vwgll 2

> = > 0.
o 8CIfL(Cinv,h T

For h ~ Hp~2, this is the assertion. For h < Hp~2, there exists an auxiliary
h' ~ Hp~? such that Vi C V}, and thus

. (q, Uh)m(K)
inf sup
qeVE(K) vp€VaNHE (K) HQ||L2(K) ||VUhHL2(K)

> inf sup (q, Uh/)L?(K)
T qevh (k) vy evnid (k) 19l 2 [[Vow || 2

>y~ Hp™2.
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3.3 Derivation of a practical method

This completes the proof. n

With Lemma 3.3.7, we can replace H}(D) (and the solution v € H}(D) of
(3.7)) in the construction of this chapter by a conforming @; FE space V}, (and
the classical ¢G approximation u, € V) provided that h is sufficiently small
with respect to H and p and, additionally, resolves the microscopic information
on the scale e. This is quantified with the resolution conditions

®
Con< 28 g s < Ep (3.49)

p

where the constant C, indicates the dependence on the microscopic scale € as in
(3.45). While a resolution condition on h with respect to H and p of the form
h < Hp~ for some s > 1 seems natural to resolve higher-order functions, the
left condition in (3.49) is mainly motivated by the aim to retain the convergence
properties with respect to H and p as derived in the previous subsections. In
a more practical manner, one could alternatively prescribe some certain toler-
ance and balance h, p/, H, and p such that the given tolerance is reached with
the respective approximation. We remark that a discrete inf-sup condition as
in Lemma 3.3.7 may also be obtained for a higher-order conforming FE space
and relaxes the resolution condition h < Hp~2 dependent on the choice of p'.
If additional smoothness conditions hold, the use of a higher-order space can
further provide a relaxation of the left resolution condition in (3.49) on h if p’
is suitably coupled to h and € in the spirit of [PS12, Cor. 5.3].

Although such higher-order constructions may generally be considered for
the fine discretization, we restrict ourselves to the first-order setting with p’ = 1
which only requires minimal regularity assumptions. Similar to the notation in
Section 2.4.4, we introduce the additional parameter A in the above construction
if Hj(D) is replaced by Vj, i.e., we write

Ri, RS, Vg,h, f/}_'}i instead of R, RY, VA, VPE.
Further, the solution @z ) € ‘N/ﬁi of the fully discrete LOD method is determined
by
a<a§{,h7 Oun) = (f, Omm)L2(D) (3.50)
for all vy, € f/}ji The error of the fully discrete approach is quantified in the

next theorem.

Theorem 3.3.8 (Error of the fully discrete LOD method). Assume f € H*(Ty),
k € No, and let s := min{k,p + 1}. Further, suppose that the resolution condi-
tions (3.49) hold and let u € Hy(D) be the solution of (3.7) and Y, € Vﬁ:i
the solution of (3.50). Then, with the choice

€2 |log H|p(s+1)+ (logp)p(s+1),

1t holds that

H\ s

P(p, s +1
(p. ) o (Ti)) + (;) Il z2(p)-

p

H* ([ fll 2oy + 1f

IV (u = @y )l 20y S
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3 A Higher-Order Extension of the LOD

Figure 3.1: Multiscale coefficients A; (left) and Aj (right) on the scale e = 277,

Proof. The assertion follows from a simple triangle inequality, the estimate
(3.45) with s' = 0, the resolution conditions (3.49), and Corollary 3.3.6 in
the case where HJ (D) is replaced by Vj,. To be more precise, with the solution
up, € Vj, of (3.46), we obtain

IV (u = @y )|l 220y < IV (= wn)ll 2oy + 1V (un — @) || 2(0)

®(p,s) .. +1
S Cblfliz+ 222 1 i+ (5) " 1

o(p,s) ., Hys+
< T2 (o + U o) + () 1 ooy

H\s

employing the estimates mentioned above. 0

3.4 Numerical experiments

In this section, we present some examples to verify the results of the previous
sections. As in Section 2.5, we remark that if the exact solution u € Hj(D)
of (3.7) is not explicitly given, only the errors between the discrete solutions
up, € Vj, of (3.46) and iy, € ‘N/ﬁi of (3.50) can be measured. Thus, we need to
pose the assumption that the chosen mesh parameter h is indeed small enough
as quantified in Section 3.3.3, and use uy, as the reference solution. As before,
we measure the errors in the energy norm | - ||, := [|AY2V - || 12(p).

3.4.1 Two-dimensional examples

For the experiments of this subsection, we consider the domain D = (0,1)% as
well as the two scalar diffusion coefficients A; and A, as depicted in Figure 3.1.
These coefficients are piecewise constant on a mesh 7. with mesh parameter
e = 277, In each element K € 7T, the value of A, is obtained as a uniformly
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3.4 Numerical experiments

100 E 100 E ‘ E|
_ i —1 L |
102 | & =107 E
g g
10—3 ;“ % 1073 E E
i E
1074 1074 F |
1075 E [ o | E| 1075 E . ) N ‘ El
10—15 10—1 10—05 1071.5 1071 10705
mesh size H mesh size H
Hp=1,(=2 &p=1,(=3 bp=1,{=4 ©p=2,({=3 Ap=2,(=4
-p=2,(=5 Lp=3,{=4 H-p=3,{=5 Sp=3,L=06 - order 2,3,4,5

Figure 3.2: Errors of the higher-order LOD in the relative energy norm for the first
(left) and the second model (right) with respect to H for different values
of £ and p.

distributed random number in [0.2,2]. Similarly, A, takes values in {1,5}.
Further, we take the right-hand sides

fi(z) = sin(5m x1) cos(3m x5)

and
fa(z) = (21 + sin(3m 1)) 25 cos(m x3).

For the first model, we choose the coefficient A = A; and the right-hand side
f=/f1 in (3.7) and compute the solution af,, € VI%L of (3.50) for multiple
choices of the polynomial degree p and the localization parameter ¢. The relative
energy errors of these approximations with respect to the reference solution on
the scale h = 279 are depicted in Figure 3.2 (left). Similarly, we present the
energy errors for the second model with the coefficient As and the right-hand
side fo in Figure 3.2 (right), where again h = 27°. The error curves in both
examples show a convergence rate between p + 1 and p + 2 with respect to H
for different polynomial degrees p if ¢ is chosen large enough. These results are
in line with the findings in Theorem 3.3.4 which predicts a convergence rate of
up to order p+ 2 in H dependent on the regularity of f and provided that the
second term in the estimate (3.39) is small enough. For the first model, we also
provide the relative errors in Table 3.1 as well as the respective experimental
orders of convergence (EOCs). For two mesh sizes H; > H, with corresponding
errors e; and e, the EOC is defined by EOC := log (Z—;)/log (g—;)

Apart from the observed higher-order rates for appropriate parameter regimes,
the two examples also indicate that there might be a pollution in terms of some
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Figure 3.3: Errors of the higher-order LOD in the relative energy norm for the first
(left) and second model (right) with respect to ¢ for different values of H
and p.

negative power of H as obtained from the theory. That is, instead of a stagnation
of the error curve for smaller H, the overall error grows again if ¢ is not chosen
appropriately. We further study this effect in Section 3.4.2.

For completeness, we present the errors of the LOD method also with respect
to the localization parameter ¢ in Figure 3.3. The plots show the exponential
convergence rate in £ as in the theory. The curves stagnate for larger values of
¢ where the localization error is small enough and the first term in the estimate
(3.39) dominates the overall error.

Since the previous experiments indicate that the exponential convergence in ¢
even slightly improves when p is increased, we further investigate the sharpness
of the decay estimate quantified in Theorem 3.3.1. To this end, for H = 2% we
choose an element K € Ty in the middle of the domain and compute the relative
energy error between the ideal multiscale basis functions Ag; := RpAx ; and its
localized versions Aﬁw := RS A ; for different values of £ and j € {1,... ,mg}.
For the first model, Figure 3.4 (left) shows the decay of the localization error
for different basis functions with respect to £. To be more precise, for each p,
we show the localization error corresponding to the highest-order basis function
Ak ; (with maximal polynomial degree p in both components). The results
seem to contradict the scaling in p as predicted by Theorem 3.3.1. Instead, the
rate even slightly improves when the polynomial degree p is increased, which is
possibly due to the fact that the decay estimates are not sharp as explained in
Remark 3.3.3. In Figure 3.4 (right), we show the localization error for different
¢ and p corresponding to the respective lowest-order basis function, i.e., the one
whose L?-projection onto V4 (K) is constant. Again, the curves show an error
reduction when p is increased which is slightly amplified by ¢. That is, these
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Figure 3.4: Localization errors of the higher-order LOD basis functions on the scale
H = 27% for the first model with respect to £ (left) and p (right) in the
relative energy norm.

results also indicate a better scaling in p than quantified in Theorem 3.3.1. The
commencing stagnation of the errors in Figure 3.4 (right) for larger p is probably
related to the fact that h = 279 is not fine enough to handle higher polynomial
degrees. This issue is addressed in the following.

3.4.2 One-dimensional considerations

The aim of this subsection is to provide a study of the higher-order method in
one spatial dimension. The motivation of this is the fact that the resolution
conditions derived above require h to be much smaller than H subject to the
choice of p. In this regard, the setting of this subsection allows us to compute
LOD solutions with higher polynomial degree p and smaller H.

We consider a coefficient A which is piecewise constant on the scale € = 2712
with element-wise randomly chosen values in [0.5,10]. Further, we set

f(z) = sin(bm ).

With respect to the mesh size H, the errors of the higher-order LOD compared
to a fine-scale solution on the scale h = 2716 are depicted in Figure 3.5. The
plot seems to confirm the higher-order decay as quantified in Theorem 3.3.4
as well as the presence of a polluting term proportional to H~!. The errors
presented in Figure 3.6 with respect to p indicate that the dependence on p of
the second term in (3.39) is probably too pessimistic and that there might even
be some positive scaling with respect to p which is amplified by increasing values
of . Lastly, we mention that the exponential convergence rate with respect to
p as quantified in Corollary 3.3.6 is observed in Figure 3.6 provided that ¢ is
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Figure 3.5: Relative errors of the higher-order LOD in one dimension in the energy
norm with respect to H for different values of p and /.
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3.4 Numerical experiments

chosen large enough. If the localization parameter is too small, the error curve
stagnates.

The numerical experiments of this section overall confirm the theoretical re-
sults for the higher-order construction considered in this chapter. The only
deviation is in the scaling with respect to the polynomial degree p which seems
to be better than predicted by the theory. That is, the result presented in
Theorem 3.3.1 is most likely not sharp with respect to p and can possibly be
improved. An enhanced estimate would also directly relax the condition on ¢
which is quantified in (3.44).

Note that although the approach numerically and theoretically shows a pol-
lution of the total error for small mesh sizes H, this issue can be compensated
for by a correct scaling of /. Nevertheless, the method shows its best potential
for relatively coarse mesh sizes which, combined with higher-order polynomials,
already provide very good approximations. Moreover, the locality of the higher-
order construction in principle allows us to even choose different polynomial
degrees on the respective coarse elements.
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3 A Higher-Order Extension of the LOD

Table 3.1: Relative errors and EOCs of the higher-order LOD for the first two-
dimensional model in the energy norm for different values of the mesh
size H, the polynomial degree p, and the localization parameter /.

14 H P = 1 P = 2 P = 3 EOszl EOCp:2 EOCp:?,
1 271 097207 0.48187 0.25088 - - -

1 272 0.21859 0.07310 0.09682 2.15 2.72 1.37
1 277 0.20948 0.20747 0.19511 0.06 -1.51 -1.01
1 27% 0.50299 0.45793 0.51348  -1.26 -1.14 -1.40
1 275 0.82963 0.82471 0.85400  -0.72 -0.85 -0.73
1 27% 0.95424 0.96866 0.98334  -0.20 -0.23 -0.20
2 271 0.97207 0.48187 0.25088 - - -

2 272 021018 0.07184 0.01204 2.21 2.75 4.38
2 277 0.06752 0.03169 0.02515 1.64 1.18 -1.06
2 27% 0.06258 0.05128 0.03704 0.11 -0.69 -0.56
2 27° 020347 0.14435 0.14524  -1.70 -1.49 -1.97
2 270 047862 0.50940 0.66576  -1.23 -1.82 -2.20
3 271 0.97207 0.48187 0.25088 - - -
3 272 0.20940 0.07370 0.01037 2.21 2.71 4.60
3 277 0.03759 0.00726 0.00260 2.48 3.34 2.00
3 27% 0.02069 0.00950 0.00571 0.86 -0.39 -1.14
3 27° 0.02416 0.01306 0.01103  -0.22 -0.46 -0.95
3 27% 0.08455 0.08169 0.12815 -1.81 -2.65 -3.54
4 271 0.97207 0.48187 0.25088 - - -
4 272 0.20940 0.07370 0.01037 2.21 2.71 4.60
4 27% 0.03891 0.00480 0.00045 2.43 3.94 4.52
4 27* 0.00826 0.00117 0.00055 2.24 2.04 -0.27
4 27° 0.00380 0.00160 0.00102 1.12 -0.45 -0.90
4 275 0.01251 0.01081 0.01765  -1.72 -2.76 -4.11
5 271 0.97207 0.48187 0.25088 - - -

5 272 0.20940 0.07370 0.01037 2.21 2.71 4.60
5 273 0.03888 0.00473 0.00041 2.43 3.96 4.67
5 2% 0.00648 0.00029 0.00005 2.59 4.03 3.08
5 27° 0.00145 0.00025 0.00014 2.16 0.20 -1.49
5 27% 0.00174 0.00139 0.00233  -0.26 -2.47 -4.11
6 27! 0.97207 0.48187 0.25088 - - -
6 272 0.20940 0.07370 0.01037 2.21 2.71 4.60
6 273 0.03884 0.00474 0.00041 2.43 3.96 4.65
6 2% 0.00638 0.00026 0.00002 2.61 4.21 4.52
6 27° 0.00100 0.00004 0.00002 2.68 2.59 0.06
6 2% 0.00024 0.00018 0.00031 2.08 -2.09 -4.16
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4 Justification of Quasi-Local
Numerical Homogenization
Methods by Inversion

In this chapter, we consider the numerical homogenization technique described
in the previous chapters from a different perspective. So far, we have considered
an LOD approach on some coarse scale H that is able to cope with general
microscopic quantities encoded in, e.g., a diffusion coefficient corresponding to
a second-order elliptic PDE. This includes the case of variations on some known
fine scale ¢ < H. The approach is quasi-local in the sense that communication
among the degrees of freedom (DOFs), which can be associated with the vertices
in the underlying mesh, includes not only communication between neighboring
DOFs but also between those that are within ¢ layers of elements for some
oversampling parameter £. This is due to the fact that the basis functions of the
constructed multiscale space are supported on some subdomain consisting of ¢
layers of elements. The previous chapters have shown that the choice of ¢ with
respect to H (and possibly the polynomial degree p) is crucial to avoid reduced
orders of convergence. Further, the fact that the deviation from true locality,
i.e., only neighbor-to-neighbor communication, is to some extent controlled by
the parameter H (and conceivably p) marks the difference between the described
quasi-local approach and a fully non-local one.

This chapter aims at illustrating the advantage of quasi-local approaches (such
as the LOD) compared to truly local ones to deal with general microscopic co-
efficients which only fulfill minimal assumptions. To this end, we consider the
inverse problem of reconstructing a coarse model that satisfactorily reproduces
given coarse data corresponding to measurements of solutions of an elliptic PDE
for different boundary conditions. The idea is to allow, but not enforce, in-
creased communication between the DOFs depending on multiple choices of ¢
and compare the respective results. Note that this approach was first presented
in [CMP19].

Besides the main intention to show the potential of quasi-local models from
a different point of view, this chapter also provides an actual strategy to handle
inverse problems, where the microscopic coefficient to be reconstructed may vary
on a very fine scale. If only coarse data are given and no a priori knowledge
on a parametrization or the structure of the coefficient is available, a straight-
forward approach to recover the coefficient on the fine scale is computationally
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4 Justification of Quasi-Local Methods by Inversion

unfeasible and possibly fails to provide any meaningful information about the
underlying coefficient.

Before we consider the actual inverse problem, it is useful to first understand
the forward model and introduce forward operators that can be interpreted as
the available data for the inversion procedure. This is treated in the following
section.

4.1 Microscopic forward problem and effective
approximation

In this section, we use the ideal setting as presented in Section 2.3.1 to derive
a discrete forward operator which is then used to formulate the inverse problem.
Therefore, the theory from the previous chapters is reused and adapted to the
inhomogeneous setting.

4.1.1 Problem setting

We reconsider the model problem (3.1) from Chapter 3 but with inhomogeneous
boundary conditions, i.e., the prototypical second-order linear elliptic diffusion
problem

—div(AVu) = f in D,

4.1
u=1uy onadD, (4.1)

where D C R?, d € {1,2,3}, is a bounded, convex, and polytopal Lipschitz do-
main and the admissible diffusion coefficient A € A encodes the microstructure
of the medium with minimal structural assumptions; see (3.2) for the definition
of 2.

Since solutions of problem (4.1) do not necessarily exist in the classical sense,
we are interested in the weak solution of (4.1) in the Sobolev space V := H'(D),
which is characterized by the following variational formulation. Given A € 2,
ug € X := HY%(9D), and f € L*(D), we seek u € V such that

a(u,v) = (f,v)r2py forallv eV := Hj(D),

4.2
tru = ug on 0D, (4.2)

where for v, w € V, the bilinear form a is given by
a(v,w) = / AVv - Vwdz
D

and tr: ¥V — X is the trace operator. Note that instead of (4.1), we could as well
consider a general second-order linear PDE in divergence form with additional
lower-order terms. Such a generalization is straightforward.
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4.1 Microscopic forward problem and effective approximation

In practice, it is favorable to rewrite problem (4.2) as a problem with ho-
mogeneous Dirichlet boundary conditions in V. Let E’: X — V be a linear
extension operator, which also defines the restriction operator R: V — V by
R := id — E’tr. Then, we can decompose u = Ru + (id — R)u = Ru + E°uq
and problem (4.2) reduces to finding Ru € V such that

a(Ru,v) = (f,v)r2(p) — a(E up, v) (4.3)

for all v € V. The next subsection deals with a discretization of this variational
problem in terms of an LOD approach as introduced in Chapter 2. Again, we
use the coarse parameter H for the scale on which we want to obtain a reliable
coarse approximation of (4.3). With respect to the inverse problem, H is the
scale on which the data are available.

4.1.2 Effective model via LOD

As in Section 2.2, let Ty be a mesh of quasi-uniform d-rectangles with character-
istic mesh size H and denote again with Q)1(7x) the corresponding space of piece-
wise polynomials with coordinate degree at most one in each element. In the
present setting, we define the discrete spaces Vi := Q1(Tg) NV, Vi :== Vg NV,
and Xy = tr Vy of dimensions m = dim Vi, m = dim Vy, and n = dim Xy,
respectively. The choice of these FE spaces is not unique and other standard
FE spaces could be used (see, e.g., Chapter 3). As before, we require a linear
and projective quasi-interpolation operator Zg: L?(D) — Vg which fulfills the
approximation and stability properties (2.12) and (2.11). Further, we define as
in Chapter 2 the fine-scale space W := ker Ty |,, and the correction operators

C:V—>W and C:Vyg—W
by (2.25) and (2.45), respectively, and recall that
a((id — C)vg,w) =0 (4.4)

for vy € Vi and w € W. As shown for a more general setting in Theorem 2.4.4
(see also [HP13]), we have for any vy € Vi and £ € N that

HV(C — CK)UHHLQ(D) ,S E(dfl)/z eXp(—CdeC f) HV?)HHLQ(D). (45)

Since the forward problem merely serves as motivation, a fine-scale discretization
of the correction operator is not considered in the present setting.

With these preliminary considerations, we can formulate an LOD method
with inhomogeneous boundary conditions and with an adapted right-hand side.
Given a discretized extension operator

Ey: Xg — Vi which fulfills  E°|, = E}

63



4 Justification of Quasi-Local Methods by Inversion

and the corresponding restriction operator
Ry ‘_/H — VH, Ry :=id — El;{ tr,

a possible discretized version of (4.3) reads: find ug = Ryuy + E%ugo € Vg
such that

a(RZRHuH, ’R,KUH) = (fH, UH)LQ(D) — a(E%uH@, RKUH) (46)

for all vy € Vi, where R = id —C’ as in Chapter 2. Further, fy := Il f is the
L*%projection of f onto Vi and ug o a FE approximation of ug. In the context of
inverse problems, it is reasonable to consider that wug is defined as the first-order
FE approximation of coarse experimental boundary data which approximate the
real data up to order H in the H'/?-norm. Thus, in the following we assume
that up = up. For completeness, we now also define the correction operators
for functions v € V and vy € Vy, i.e., we set Cv := CRv and C'vy = C*Ryvy,
respectively.

Note that, in contrast to the previous chapters, we are only interested in
the FE part ug in (4.6) and not in the corrected variant (id — C*)uy. This is
motivated by the fact that only coarse data without additional information on
fine-scale corrections are available for the inverse problem.

4.1.3 Error estimates

In this subsection, we investigate the L?-error between the solutions u € V of
(4.3) and ug € Vi of (4.6), which is important to quantify the error between
the solution operator

La: Xy x L*(D) =V,

4.7
(uo, f) — u, where u solves (4.3), (47)

and its discretized version

£, X x L*(D) — Vg,

(4.8)
(uwo, f) = wugy, where uy solves (4.6).

The following theorem shows that the error between u € V and the FE part
ug € Vg scales optimally with H and that it is independent of the variations of
the diffusion coefficient. The theorem adapts ideas from Chapter 2.

Theorem 4.1.1 (Error of the forward effective model). Letu € V be the solution
of (4.3) and uy € Vi the solution of (4.6) for given boundary data uy € Xy,
a right-hand side f € L*(D), as well as an oversampling parameter { € N.
For g € L*(D), denote with u(g) € V the solution of (4.3) with right-hand
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4.1 Microscopic forward problem and effective approximation

stde g and boundary condition ug = 0. Further, we introduce the worst-case
best-approzimation error

Ru(g) — v
9eL?(D) vu €V 91l z2(p)

Then it holds that
Hu — UHHLQ(D) g (H2 + exp(—C’dec 6) + cha(A, TH)) (HfHLQ(D) =+ HUOHX)

Proof. We split the error u —ug = (u —upy) + (g — Uy) + (4 — ug) with the
solutions uy and uy of the auxiliary problems

a(Rptg, (id — C)vy) = (f,va)r2(p) — a(Eyuo, (id — C)vg)

and

CL(RHQNLH, (ld - CZ)’UH) = (fH, UH)L2(D) — G(E?{UO, (1d - CZ)UH)
for all vy € V. To bound ey := uyg — uy, we observe using the orthogonality
property (4.4) that

a((id — CK)GH,(id — CE)UH)

I4 ~ . 14 14 ~ 14 (4'9)
= CL(C RHuH, (ld —C )UH) = CL(C RHUH, (C —-C )UH)

Testing with vy = eg in (4.9) and using (4.5), (2.14), and the fact that
ey = Zy(id — CYey, it follows that
a|[V(id = Cenllizp) < al(id — Cen, (id — C)en)
= a(CfRHﬁH, (C — Cg)eH)
§ exp(—C’deC £) HVCZRH’&HHLQ(D) ||V(1d — CE)(BHHLQ(D)
and thus
lea 2y S IV(Ed = COenllr2 ) S exp(—Cace O) (1 f |2y + lluollx), (4.10)

where we use (2.11) and the Friedrichs inequality. As a next step, we bound the
error ey = Uy — uy. We note that

a(éy, (id — C)vy) = a(Ryty + Ebug, (C° — C)uy)
for any vy € Vy. With vy = ey and similar arguments as above, we obtain
lenllzzpy S IV (id = C)énll 2y S exp(—Caee O) (I1f 20y + luollx).  (4.11)

The error u — @y can be estimated using [GP17, Prop. 1|, which also holds for
inhomogeneous Dirichlet boundary conditions, i.e.,

o — ey S (H? + weba(A, 7)) (If |20y + luolle). (4.12)

The triangle inequality, (4.10), (4.11), and (4.12) yield the desired estimate. [
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4 Justification of Quasi-Local Methods by Inversion

We emphasize that, choosing ¢ large enough (i.e., ¢ 2 |log H|), we have
exp(—Cqec £) < H or even exp(—Caecf) S H?. As discussed in [GP17], the
worst-case best-approximation error is at least O(H), and it scales possibly
even better with H in certain regimes (cf. also Figure 2.4 (right)).

To prepare the setting of the inverse problem, we go back to the operators
defined in (4.7) and (4.8) and observe that £4 (and similarly also £',) can be
written as

Laluo, f) = La(uo, 0) + £4(0, f) (4.13)

with the linear operators £4(-,0): Xy — V and £4(0,-): L*(D) — V. For
simplicity, we assume in the following that f is a fixed function. The gen-
eralization to the case where f is also part of the input data is conceptually
straightforward but slightly more involved. The decomposition (4.13) motivates
the distance function between operators defined by

. 1/2
dlStf(Q; 9) = <||Q:(7 O) - ®(7 O)H%(XH,LQ(D)) + ||Q:(07 f) - 9(07 f)”%Q(D))
for all €, D: Xu x L2(D) — L2(D).

Remark 4.1.2. If we consider the case f = 0, coefficients that only differ by
a multiplicative constant produce the same solution operator. In view of the
inverse problem in the next section, in this case one should fix an additional
parameter, e.g., the mean value of A.

Using Theorem 4.1.1, we obtain the following result which quantifies the error
between the two solution operators £4 and Q‘j‘ﬁf@.

Corollary 4.1.3 (Error of the effective forward operator). Let ¢ 2 |log H|.
Then it holds that
dist; (L4, £54,) < H.

4.1.4 Reformulation of the effective model

As a next step, we discuss an alternative representation of the operator 2?& us-
ing the effective stiffness matrix corresponding to the discrete formulation (4.6).
Given a coefficient A € 2, the corresponding LOD stiffness matrix Sy (A, ¢) is
defined by

Su(A, 0, j] == a(R'A,,, R*A,,), 1,5 €{l,...,m}, (4.14)

where i — z; is a fixed ordering of the m vertices in Tz and A, € Vj denotes the
classical nodal basis function associated with the vertex z of 7Ty. The typical
sparsity pattern of such a matrix is depicted in Figure 4.1. Next, we intro-
duce the set of LOD stiffness matrices with oversampling parameter ¢ based on
admissible coefficients, which is given by

S0, Ty) = {Su(A,0) e RLX™ : AeA}. (4.15)

sym
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Figure 4.1: Sparsity patterns of a classical first-order FE stiffness matrix and LOD
stiffness matrices for different values of £ on a Cartesian grid with lexico-
graphic ordering in D = (0,1)2.

For better readability, from now on we use the notation vy (or By) for both
the vector vy € R™ (or the matrix By € R™*™) and the corresponding function
vy € Vg (or the mapping By: Vg — V). For any matrix Sy € S(¢, Ty), we
define the operator
eff . 2 { /
(uo, f) — wupy, where ug solves
{SH,ORHUH = RyMpy fu — RHSHE%UOa

ug = ug on 0D

(4.16)

with the classical FE mass matrix My, the restriction Sy = RySuRE of Sy
to the inner vertices of Ty, and fg = Iy f. With the above definitions, we can
prove the following lemma.

Lemma 4.1.4 (Alternative representation of the effective forward operator).
Let Sy(A,0) € S(¢,Ty) be the LOD stiffness matriz corresponding to (4.6).
Assume that E* fulfills C'Ejvg = C'E’|y vo = 0 for any vy € Xpg. Then it
holds that

ng;(A,é)<u07 f) = 2?4%(“07 ) (4.17)
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4 Justification of Quasi-Local Methods by Inversion

for all ug € Xy, f € L*(D).

Remark 4.1.5. Possible choices for an extension operator E® that fulfills the
assumptions of Lemma 4.1.4 are those that extend functions in Xy to functions
in Vy that are only supported on one layer of elements away from the boundary.

Proof of Lemma 4.1.4. We write ug = >

i—1uj A, and observe that (4.6) is
equivalent to

Z Uj G(ReAzj,ReAzi) = (ny Azi)LQ(D) — CL(E?JUO, RKAZJ (418)

Jj:zj¢0D
for all i € {k : zp ¢ OD}. Inserting fy = Zj”:l fj A, and using the fact that

a(EYug, R'vy) = a((id — CY) EYug, Rvy)
= a(R'E%uo, Rfvy)

for any vy € Vi and the definition (4.14), we can write equation (4.18) as
SH7()(A, E)RHUH = RHMHfH — RHSH(A, E)E?{UQ,
which proves (4.17). O

Lemma 4.1.4 and Corollary 4.1.3 show that £4(-, f) and ngf{(A@(-? f) are close

as operators from Xy to V if £ is chosen large enough. We use this property in
the next section to motivate the inverse problem. First, however, we give a brief
overview of other methods that provide similar effective models as the LOD.

4.1.5 Other quasi-local approaches

In this subsection, we quantify the quasi-locality of a method with respect to
the sparsity pattern of its stiffness matrix that occurs in the representation of
the approach in terms of a linear system as, e.g., described in (4.16).

For the LOD, we know by the definition of C* that the resulting stiffness
matrix Sy € S(¢, Ty) is included in the set

Sy eR™™ . Y1 <i<j<m:
" =r=J= } (4.19)

M(g, TH) = { :; NZ(Z]‘) = SH[Z,]] =0

of matrices that may only have a non-zero entry at position [i, j| if the corre-
sponding vertices z; and z; belong to the ¢-neighborhood (see definition (2.13))
of each other. In other words, it holds that S(¢,Ty) € M(¢, Ty). Standard
stiffness and mass matrices arising from classical FE methods belong to the
space M(0, Tg) such that these methods can be referred to as local. Classical
homogenization approaches such as the MsFEM without oversampling [HW97],
the Two-Scale Finite Element Method [MS02]|, or the HMM [EE03, EE05] share
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4.1 Microscopic forward problem and effective approximation

the communication pattern of classical FE methods and therefore also lead to
stiffness matrices in M(0, Ty). Matrices arising from the MsFEM with over-
sampling are included in M(1, Ty).

Concerning mathematical models that satisfactorily describe the effective be-
havior of physical processes on the scale of data resolution in the presence of very
general coefficients, there are various other approaches that produce stiffness
matrices with sparsity patterns similar to the LOD, such as the GFEM [BL11],
the ALB [GGS12|, RPS [OZB14|, the GMsFEM [EGH13|, gamblets [Owh17],
CEM-GMsFEM [CEL18|, and their variants. All these methods provably work
in the linear elliptic setting and are based on a coarse mesh with a character-
istic mesh parameter (typically the effective scale) or corresponding concepts
in the setting of mesh-free methods. These methods are of Galerkin-type and
thus characterized by discrete bases. To achieve optimal accuracy, a moder-
ate price in terms of an overhead in the computational complexity has to be
paid compared to a standard FE method (fixed order) on the same mesh. The
overhead is either in the number of functions per mesh entity (GFEM, GMs-
FEM), e.g., elements or vertices, or in the support of the basis functions (LOD,
RPS, gamblets, ALB). In both cases, the result is an increased communication
between the DOFs which, in turn, leads to a slightly denser sparsity pattern
of the corresponding system matrices. In other words, these matrices lie in
M, Ty) for some (moderate) ¢ € N. Thus, all these methods can be referred
to as quasi-local as well. It is worth noting that the set of matrices with the
considered sparsity pattern includes also matrices that occur in isogeometric
analysis [HCB05, CHB09]. Moreover, the set M (¢, Ty) also contains higher-
order FE matrices with polynomial degree p ~ ¢ on meshes that are coarser by
roughly a factor of p and matrices from peridynamics [Sil00, Lip14, Dul7| with
horizon 6 ~ H/{. We emphasize that also the higher-order LOD approach of
Chapter 3 leads to matrices in the set (4.19), with an amplified communication
pattern that depends on ¢ and p.

The theoretical analysis of the methods mentioned above indicates that reli-
able effective models for PDEs with general microstructures are based on a con-
trolled deviation from locality. Similar observations have been made in con-
nection with the pollution effect in high-frequency time-harmonic wave prop-
agation [BS97], which cannot be avoided unless the mesh size is coupled to,
e.g., the polynomial degree [MS10, MS11, MPS13| or the support of the basis
functions [Pet17] in a logarithmic way. Finally, we mention that non-locality is
also considered in classical stochastic homogenization in connection with higher-
order correctors to achieve better approximation properties; see, e.g., [DGO16].

Although the quasi-local effective models described above are purely discrete
and lack a PDE representation in general, they are well-understood. This is the
main motivation for the present approach of reconstructing quasi-local effective
models (i.e., their matrix representation) given low-resolution measurements
based on inhomogeneous boundary data in a medium with microstructures.
This is further discussed in the subsequent section.
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4 Justification of Quasi-Local Methods by Inversion

4.2 Inverse problem: reconstruction of the
effective model

4.2.1 Problem setting

Let us now assume that the diffusion coefficient A is unknown. Since information
about the coefficient is not available, structural assumptions such as periodicity,
local periodicity, and given parameterization by few DOFs cannot be satisfied
a priori. In an ideal setting, information about solutions of problem (4.3) in the
form of a solution operator

=840, f): X =V

would be given. In practical applications, however, boundary data and informa-
tion about the corresponding solutions are only available on some coarse scale
H, possibly much larger than the microscopic scale on which the diffusion coef-
ficient and the corresponding solutions vary. In this case, a classical formulation
of the inverse problem, for a fixed right-hand side f, consists in recovering A in
(4.3) given a mapping

L= g0, f): Xy = Vi

which comprises coarse measurements of solutions of (4.3).

If the unknown coefficient includes fine-scale features, a direct approach of
recovering A by full (fine-scale) simulations is computationally unfeasible. In-
spired by the ideas presented in Section 4.1, we present in this section an alter-
native approach to recover information about the macroscopic effective model
taking into account the presence of a microscopic diffusion coefficient. Rather
than reconstructing the diffusion coefficient itself, we tackle the reconstruction
of an effective stiffness matrix that is able to reproduce the given data related to
solutions of (4.3). We recall that such an approach is reasonable since the map-
ping £ can not only be characterized by the corresponding coefficient but also
by the effective stiffness matrix as described in the previous section. Therefore,
the alternative formulation of the inverse problem reads:

given geff. Xy — Vg, find the corresponding stiffness matrix §H

Note that in the case f = 0, the classical Calderon problem [Cal80] might be
considered, where a so-called Dirichlet-to-Neumann mapping is given instead of
the operator £,4. However, this problem requires information on the coefficient
at the boundary, and the derivation of the method presented below needs to be
adjusted accordingly.
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4.2 Inverse problem: reconstruction of the effective model

4.2.2 The minimization problem

The inverse problem could ideally be formulated as a minimization problem for
the functional

1 . 2
Tu(Su) = 3 (dist (& sgff{)) (4.20)

in the set S(¢, Ty) of LOD stiffness matrices based on admissible coefficients,
where £¢! is defined in (4.16). However, since we are not able to characterize
the set S(¢, Ty ) in a way that would be suitable for optimization, we instead seek
a minimizer in the linear space M (¢, Ty) O S(¢, Ty) of matrices with prescribed
sparsity pattern as defined in (4.19). That is, we enlarge the set of possible
minimizers. We emphasize that with this generalization, the sole criterion in
the inversion process is the sparsity pattern. From now on, we are searching
for effective models with increased communication between the DOFs, including
those mentioned in Section 4.1.5, without requiring any particular knowledge
on the LOD or other numerical homogenization methods.
The minimization problem with respect to the space M (¢, Ty) reads

find Sj; = argmin Jyu(Sy). (4.21)
SreM(,TH)

Using the previously introduced matrices, the operator £%fg(~, f): Xg — Vy
can be interpreted as a matrix of size m x n, i.e.,

L4 = (I = RySy RuSu) By + RSy RuMp Fy,

with Fy = [fu, fu,---, fa] € R™™ and the identity matrix I € R™*™, The
matrix £J comprises full information about the forward problem in the sense
that it includes the solutions of (4.16) for a complete set of basis functions of
Xpg. Note, however, that ngfz is not linear. That is, for a particular boundary
condition uy € R™, we have

Sgi (uo) = (I — Rﬁsﬁ}oRHSH) Elug + RES;I}ORHMHfH~

The operator £¢f may also be interpreted as a matrix, so that the distance be-
tween the operators can be measured in general matrix norms. This is especially
useful since a splitting of the form (4.13) is generally not known for £°.

Let p := dim M(¢,Ty). Based on the matrix representation introduced
above, instead of (4.21) we consider a minimization problem for the functional
Ju: R* — R defined by

jeef e |12 . (4.22)

1 Qeff || —2
jH(SH) = §H£ ||Rﬁ7,><n
At this stage, the choice of the norm in R™*" in (4.22) is arbitrary. The results

that we show in Section 4.3 were obtained using the Frobenius norm, which is
a natural candidate.
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4.2.3 Iterative minimization

To find a minimizer of (4.22), we can now apply standard minimization tech-
niques such as the Newton method or the gradient descent method. Here, we
adopt a Gauf-Newton method [NW06, Sec. 10.3] which, in our numerical com-
putations, showed faster convergence in terms of number of iterations.

In order to compute the descent direction, the most important step concerns
the computation of the gradient of Jy with respect to the relevant entries
{s;:}\_, of Sy (i.e., the diagonal and the non-zero entries above the diagonal,
due to symmetry). Using the chain rule, we obtain

oLyl

—jH(SH __“SEH“Rmxn(Seﬁ ngff): 0s;

(4.23)

with M : M := trace(MMT). For the Gauk-Newton method only the deriva-
tives of £§flf{ are needed, i.e.,

ogg, _ AT <8SHO

B, 3s, ) Ry (SyE — MyFy)

o (98
~ RESi R ( & ) B,

85
:RESH}O( 850) SuhRu(SyEYl — MyFy)

83
— RSy Ry ( asf) EY.

The derivatives %SH and & 5% are relatively easy to compute, as they are defined
as global matrices that only contain at most two non-zero entries equal to 1.

For ease of notation, we interpret £ ¢, and Sy as vectors in R™ and R™ ,
respectively. The Gaufs-Newton method to minimize the functional Jp is then
defined by the following steps:

e Let an initial matrix S% € M(¢, Ty) be given.

e For k=0,1,... (until a certain stopping criterion is satisfied), solve

Hypy, = (V22 )T (& -2, (4.24)

where V denotes the derivative with respect to the relevant entries of Sy
and

o= (ve) (V).

e Set P, € M({,Ty) as the matrix whose relevant entries are given by py
and define
Setl = Sk + 6. P, (4.25)
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with appropriately chosen step size J, for example using backtracking line
search based on the Armijo condition; see, e.g., INW06, Alg. 3.1] for the
details.

Due to the ill-posedness of the inverse problem, the matrix Hj might be singular.
A possible approach to overcome this issue consists in replacing (4.24) with

(Hy+ 1) pe = [V | ! iy (4.26)

with a given parameter 1 > 0, which is typically referred to as regularization.
Another possible strategy is to add a regularization term to the functional to
be minimized, i.e., to replace (4.22) by

Tia(S) = 512 s [ = 25 [ + s = Sl (420
where 7 > 0 is a given regularization parameter and S, is a regularization (or
stabilization) matrix. Additionally, the computations of the gradient in (4.23)
need to be adapted accordingly. In the presence of multiple minimizers, this
regularization forces the solution to be close (depending on the parameter ~)
to the matrix Se. For instance, if the aim of the inverse problem is to find
defects in an otherwise homogeneous medium, a suitable choice for S, could
be a standard FE stiffness matrix for a constant diffusion coefficient. In our
practical computations, the regularization approach described in (4.26) is used,
which generally led to better results.

We emphasize that the presented inversion process does not need to resolve
any fine scales in order to obtain an effective numerical model. Further, the
information extracted by this procedure (i.e., a stiffness matrix SH) may be
used to simulate other problems subject to the same (unknown) diffusion coef-
ficient. Finally, the information gathered can also be seen as an intermediate
step towards recovering information concerning the original coefficient itself.

4.3 Numerical experiments

In this section, we present some numerical experiments that illustrate the capa-
bility of the proposed method. The inverse problem is based on synthetic data,
i.e., the coarse measurements used to feed the inversion algorithm are obtained
from FE functions in V},, defined on a mesh of D = (0, 1)? with mesh size h = 27°
that resolve the fine-scale features of the diffusion coefficient. Furthermore, the
data are perturbed by random noise with intensity up to 5%.

4.3.1 Example 1: full boundary data

In a first experiment, we assume to have full information on the operator (ma-
trix) £°F i.e., we assume that measurements in D on the scale H = 2% for
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Figure 4.2: Diffusion coefficient in Example 1 (left) and values of Jp in the first 15
iterations of the inversion algorithm using sparsity patterns based on local
matrices (¢ = 0) and quasi-local matrices with ¢ € {1,2,3} (right).

a complete basis of Xy are available. The scalar coefficient A, for which the
effective behavior should be recovered, is piecewise constant on a mesh 7, with
€ = 277 and the value on each element is independently obtained as a uniformly
distributed random number between 1 and 40, i.e., for any K € 7. we have
Al ~ U(1,40); see Figure 4.2 (left) for the explicit sample used here. We set
f = 1 and start the inverse iteration with the first-order FE stiffness matrix
SY based on the constant coefficient with value 1. The values of the functional
Ju in the first 15 iterations of the inversion algorithm are given in Figure 4.2
(right). In particular, we compare the performance of a local approach based on
matrices with the sparsity pattern of a standard first-order FE method (such
as, e.g., the HMM or the Two-Scale Finite Element Method) with the proposed
quasi-local method based on matrices in M(¢, Ty ) for £ € {1,2,3}. One clearly
sees that the quasi-local inversion leads to better results in terms of decrease
and value of the error functional Jy. In particular, with the local approach
the functional seems to reach a stagnation relatively quickly, while the results
significantly improve with the quasi-local approach when increasing the value
of ¢.

A necessary validation step, in order to further investigate the different meth-
ods, consists in solving a diffusion problem using the stiffness matrices recon-
structed with the different approaches (local and quasi-local) and comparing
the resulting numerical solutions with the FE functions from which the mea-
surements were taken to feed the inversion algorithm. The outcome of this
assessment is shown in Figure 4.3, focusing on the cross sections at xo = 0.5
(left) and at x; = 0.5 (right) of the numerical approximations corresponding to
the boundary condition ug(x) = sin(37 ). Figure 4.4 depicts the same cross
sections when a random boundary condition uy € Xy is considered. As before,
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Figure 4.3: Cross sections at xo = 0.5 (left) and at x; = 0.5 (right) of reconstructed
functions with the boundary condition ug(x) = sin(37 1) based on local
stiffness matrices (¢ = 0) and quasi-local ones with ¢ € {1,2,3} for Ex-
ample 1 obtained from full boundary data. The corresponding fine FE
function is depicted as a reference.
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Figure 4.4: Cross sections at x2 = 0.5 (left) and at 1 = 0.5 (right) of reconstructed
functions with a randomly chosen boundary condition ug € X based on
local stiffness matrices (¢ = 0) and quasi-local ones with ¢ € {1,2,3} for
Example 1 obtained from full boundary data. The corresponding fine FE
function is depicted as a reference.
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Figure 4.5: Cross sections at x9 = 0.5 of reconstructed functions with homoge-

neous Dirichlet boundary conditions and right-hand side g1 (left) and
g2 (right) based on local stiffness matrices (¢ = 0) and quasi-local ones
with ¢ € {1,2,3} for Example 1. The corresponding fine FE functions are
given as a reference but were not part of the input data.

these results show an improved behavior if ¢ is increased, in particular in the
case of the highly oscillating boundary condition considered in Figure 4.4.

Besides the accuracy of the numerical approximations based on the recov-
ered stiffness matrices, it is also important to assess the robustness of the re-
constructed effective model, i.e., to investigate to which extent the coarsened
information about the diffusion coefficient encoded in the stiffness matrix can
be used to simulate other scenarios.

For this purpose, we employ the reconstructed stiffness matrices to simulate
a diffusion problem with two different right-hand sides, i.e.,

(51 (l') =20 (1{x1<0.5} 1+ 1{x120.5} (1 - 331))(1{x2<0.5} Ty + 1{x220.5} (1 - 332))

and
g2(x) = 10144, 505y,

and compare the numerical results with the corresponding fine-scale solution
using the diffusion coefficient depicted in Figure 4.2 (left). In both cases, homo-
geneous Dirichlet boundary conditions are imposed on the outer boundaries.

Representative cross sections of the numerical approximations based on the
reconstructed stiffness matrices, compared to the corresponding fine-scale solu-
tions, are shown in Figure 4.5. The numerical results indicate that robustness
can be assured only with the quasi-local inversion. Moreover, as in the previous
experiments, the quality of the results improves if £ is increased.
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Figure 4.6: Diffusion coefficient in Example 2 (left) and values of Jp in the first 15
iterations of the inversion algorithm using sparsity patterns based on local
matrices (¢ = 0) and quasi-local matrices with ¢ € {1,2,3} (right).

4.3.2 Example 2: incomplete boundary data

Next, we consider a more realistic case where the operator £ is only partially
known. In practice, this means that coarse measurements in D are available
only for k distinct boundary conditions in Xy (k < dim Xg). In this setting,
the aim is to find an effective model that not only fits the given data, but that
is also able to reproduce the coarse behavior for other boundary conditions not
considered as input data.

The scalar coefficient A whose corresponding stiffness matrix should be re-
covered is shown in Figure 4.6 (left). We set H = 27° f = 1, k = 40, and
the initial matrix SY is defined as the first-order FE stiffness matrix based on
a sample of an independent and uniformly distributed random coefficient on the
coarse scale H with values between 0.1 and 10.

We adapt the randomized approach described in [OY19| in the context of
deep learning. Namely, in each iteration step, we randomly choose half of the
available data to compute the new search direction, whereas we use all available
data for the line search and for the evaluation of the functional Jx. The values
of the error functional Jy in the first 15 iterations of the inversion algorithm are
shown in Figure 4.6 (right). We observe that classical local stiffness matrices
and even quasi-local ones with ¢ = 1 cannot significantly improve the results
obtained with the initial guess, while quasi-local matrices with ¢ > 2 are able
to reduce the values of the functional up to a certain degree.

As in the previous subsection, we validate the outcome of the inversion algo-
rithm by solving a diffusion problem using the reconstructed stiffness matrices.
Then we compare the numerical results with the corresponding fine FE solutions.
The cross sections at o = 0.5 and x; = 0.5 of the numerical approximations
based on the different stiffness matrices are shown in Figure 4.7 in the case
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Figure 4.7: Cross sections at xo = 0.5 (left) and at z1 = 0.5 (right) of reconstructed
functions with the boundary condition ug(z) = =1 23 based on local stiff-
ness matrices (¢ = 0) and quasi-local ones with ¢ € {1,2,3} for Exam-
ple 2 obtained from incomplete boundary data and with the randomized
approach. The corresponding fine FE function is depicted as a reference
but was not part of the input data.

with the boundary condition ug(z) = z; x3. We emphasize that, in this setting,
neither the reference FE function (black dotted line in Figure 4.7) nor a coarse
measurement from it were part of the input data. As expected from the val-
ues of Jy, the reconstructions based on the matrices with ¢ € {2,3} are close
and better approximate the behavior of the fine-scale solution than the matrices
with ¢ € {0,1}. The clear gap between ¢ = 1 and ¢ = 2 in this example may be
explained by the structure of the coefficient. That is, a significant improvement
of the results compared to the initial guess can only be achieved if the model is
able to capture the two cracks, which probably only holds true for ¢ > 2.

For a further comparison, we also present in Figure 4.8 the same cross sections
of the numerical solutions obtained from the stiffness matrices using a full-data
approach, i.e., when all available data (40 measurements) are used in every
step to compute the new search direction. The reconstructed matrices behave
similarly to the ones obtained with the randomized approach. However, it is
worth mentioning that the randomized strategy is generally more robust in the
case of incomplete boundary data and additionally requires less computational
effort.

The presented inversion results demonstrate that the reconstruction of a stiff-
ness matrix assuming a fixed local sparsity pattern of classical first-order finite
elements does not allow capturing macroscopic features of solutions to a prob-
lem with underlying microscopic coefficient, while the reconstruction based on
a quasi-local approach, especially with ¢ > 2, is able to mimic the effective
behavior quite well.
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Figure 4.8: Cross sections at xo = 0.5 (left) and at x; = 0.5 (right) of reconstructed
functions with the boundary condition ug(x) = 1 ¥3 based on local stiff-
ness matrices (¢ = 0) and quasi-local ones with £ € {1,2, 3} for Example 2
obtained from incomplete boundary data and with the full-data approach.
The corresponding fine FE function is depicted as a reference but was not
part of the input data.

Furthermore, the quasi-local approach appears to be robust with respect to
different right hand sides, a property which allows us to employ the recon-
structed effective model for the simulation of other scenarios, assuming that the
microscopic properties remain unchanged.

With regard to the forward setting, our experiments indicate that the use of
quasi-local approaches in the presence of general multiscale coefficients is justi-
fied and maybe even necessary to obtain reasonable approximations on a coarse
scale of interest. In that sense, our findings deviate from the numerical results
in |[GGS12|, which indicate that truly local numerical homogenization might
always be possible. We emphasize, however, that of course also the larger num-
ber of DOFs contributes to the better behavior of the quasi-local models in the
presented inversion procedure. That is, the results by no means depreciate local
homogenization approaches in general.
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5 Fast Time-Explicit Multiscale
Wave Propagation

In the previous chapters, we have seen how the LOD can be applied to stationary
second-order linear PDEs which include microscopic features that need to be
taken into account to obtain a sufficiently accurate approximation on some
coarse scale of interest. Further, we have seen that the quasi-local concept
of the method seems to be reasonable in the stationary setting, which becomes
evident from the results of the inverse procedure described in Chapter 4.

As a next step, we extend the class of model problems and consider non-
stationary problems, i.e., PDEs that depend not only on spatial variables but
also on a temporal one. While the microscopic information in such a setting
might depend on time as well, we restrict ourselves to the case where involved
coefficients only depend on the spatial variables. The common approach to
handle such problems is to apply the LOD (or any other multiscale technique
for stationary equations) to the stationary part of the PDE to construct a time-
independent coarse space which includes fine-scale information. Combining this
spatial discretization with a suitable time-stepping approach then leads to a fully
discrete method.

We emphasize that time-dependent problems allow us to exploit the full po-
tential of the LOD. This is connected to the fact that, as described above, the
technique is applied to the stationary part of the PDE and a corresponding
multiscale space is only computed once in the so-called offline stage. Due to the
coarse nature of such a space, the size of the respective system matrices is much
smaller compared to an approximation space on a finer scale. This is extremely
valuable for the online stage, where only linear systems based on the smaller
matrices need to be solved in every time step without any further fine-scale
simulations.

Note that although this general approach can be applied to any second-order
PDE with temporal and spatial variables, the error analysis generally differs
dependent on the PDE and the chosen time discretization. In this chapter, we
use the approach in connection with the acoustic wave equation and an explicit
time discretization scheme. The corresponding framework is introduced in the
following section.
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5 Fast Time-Explicit Multiscale Wave Propagation

5.1 The heterogeneous wave equation

We consider the wave equation on a time interval [0, 7] given by

Otu — div(AVu) = f in (0,T] x D,
u(0) = u" in D,
Ou(0) = v" in D, (5.1)
ulp=0 in (0,77,
V- vlppp =0 in (0,77,

where D C R?, d € {2,3}, is a polytopal, convex, bounded Lipschitz domain
with outer normal v and Dirichlet boundary I' C 9D with |I'| > 0. Further, we
assume to have initial data u® € V = HL(D), v° € H = L*(D) (cf. Section 2.1),
and a time-independent rough coefficient A € A as defined in (3.2). As before,
we have in mind coefficients that vary on some small scale € but we do not need
restrictive structural assumptions such as periodicity or scale separation.

Before we introduce and analyze the variational form corresponding to (5.1),
we need to clarify some notation used in the context of time-dependent formu-
lations.

First, we recall that by the Friedrichs mequahty IV - [l (n) is a norm in
HF(D). Moreover, we introduce the notation H=*(D) := (H{:(D))* and write
LP(0,T; X) for the Bochner space (see, e.g., [Eval0, Sec. 5.9.2]) with the norm

T 1/p
ol :=( / \|v!l§<dt) Cl<peoo
0

[V]] o< 0,7:) = esssup [|v]|x,
0<t<T

where X is a Banach space equipped with the norm || - ||x. The notation
v € H¥0,T; X), k € N, is used to denote that v and its weak time derivatives
dv for j € {1,...,k} are elements of the space L?(0,T; X). The Bochner space
of functions that are continuous in time on the interval [0,7] is denoted with
C(]0,T]; X) and equipped with the norm

lollcqorx) = max [lvlix-

As above, we write v € C*([0,T]; X), k € N, if v and &/v for j € {1,...,k} are
elements of the space C([0,T]; X).

In order to compute a numerical approximation of solutions of (5.1), we write
the problem in variational form, i.e., we seek a weak solution v € L*(0,T; H-(D))
with dyu € L*(0,T; L*(D)) and 0?u € L*(0,T; H~(D)) such that

(02, U>H—1(D)XH11(D) + a(u,v) = (f,v)2(p) (5.2)
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5.1 The heterogeneous wave equation

for all v € HL(D) with initial conditions ©(0) = u" and du(0) = v°, where a
again denotes the bilinear form

a(v,w) = / AVv - Vwdx
D

and (-, ) -1 (pyxmi(p) is the dual pairing between H~'(D) and H}(D). Note
that for any «° € HL(D), v* € L*(D), and f € L*(0,T; L*(D)), there exists
a unique weak solution u of problem (5.2). A proof of this property can be
found, e.g., in [Eval0, Thm. 3 & 4 in Sec. 7.2.2|, which also holds for non-
smooth coefficients. Restricting the solution space H{(D) in (5.2) to a FE
space V}, based on a regular and quasi-uniform mesh 7, of D with mesh size h
(see Section 2.2) and applying the leapfrog scheme with step size 7 in time, we
obtain the following discrete problem: given u) € Vj, and uj € Vj, find {u}}Y,
with u € Vj, such that

T2 (Ut = 2uf 4w o) 2oy + alul, vp) = (f(nT), v8) 12(p) (5.3)
for all v, € Vj, and n € {1,...,N — 1}, where N := T'/7 is the number of
time steps. For simplicity, we assume that 7" and 7 are such that 7//7 € N.
It is well understood that the method defined in (5.3) only leads to acceptable
results if the mesh size h is small enough to resolve the fine-scale features in
space originating from the highly varying coefficient A. In order to obtain
a sufficiently accurate approximation of the solution of (5.2), at least h < €
should hold. Such an A, however, may be too small to allow for reasonably
fast computations. It is especially very restrictive since reducing the size of h
directly leads to larger systems of linear equations that need to be solved in
every time step. Furthermore, the fact that the above method (5.3) is explicit
in time also introduces the so-called Courant-Friedrichs-Lewy (CFL) condition
that limits the time step size 7 by the mesh size h, i.e., 7 < h. It is, hence, too
expensive to pose the discrete problem on meshes with small mesh sizes h that
resolve fine-scale features.

Based on the LOD method described in the previous chapters, we introduce
a way to cope with the fine-scale characteristics on an arbitrarily chosen coarse
scale H which reduces the size of linear systems and enables larger time steps
subject to a relaxed CFL condition 7 < H. Thus, the reduced computational
complexity with respect to the spatial variable comes along with a complexity
reduction in time. We emphasize that the results of this chapter were first pre-
sented in [MP19]. Besides, the LOD approach was already successfully applied in
connection with electromagnetic waves [GHV18,Ver17| and time-harmonic wave
propagation to eliminate the pollution effect [Pet17, GP15, BGP17|. Further, it
was used in [PS17] for the wave equation with a constant coefficient to relax the
time step restriction on adaptively refined meshes. For the wave equation (5.1)
with rough coefficients, the LOD was used in combination with an implicit time
discretization (Crank-Nicolson) in [AH17|. Therein, the need for additional reg-
ularity assumptions on the initial data was discussed, which is also crucial for
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5 Fast Time-Explicit Multiscale Wave Propagation

the explicit time discretization in our case. As mentioned above, there are other
possibilities to resolve the fine-scale features. The use of the HMM for the spatial
discretization is for instance considered in [AG11,EHRI11| or in [EHR12, AR14]
in the context of wave propagation over long time. However, the correspond-
ing analysis requires additional assumptions such as scale separation. Another
method for the numerical homogenization of the wave equation can be found
in [OZ08]. There, the idea is to use a harmonic coordinate transformation in
order to obtain higher regularity of the weak solution. The main drawbacks of
this approach are the necessary assumptions (so-called Cordes-type conditions)
that are hard to verify, and the approximation of the coordinate transformation
for which global fine-scale problems need to be solved. Another approach by the
same authors is presented in [OZB14| based on RPS. The approach in [OZ17]
based on gamblets shows the possible generalization of the present approach to
a multilevel setting.

In general, any of the methods mentioned above can be used for the spatial
discretization. The advantage of the LOD is that it preserves the finite element
structure of the problem and is thus very convenient for practical applications.
Then again, the use of an explicit time stepping scheme is motivated by its
simple nature that allows for faster computations in every time step and by the
fact that the discrete energy is conserved; cf. (5.7) below. Since solutions of the
wave equation conserve energy in the continuous setting, such a property is very
natural and desirable in the discrete setting as well.

5.2 The 1deal method

In this section, we apply the ideas of Chapter 2 to the stationary part of the
wave equation, i.e., we compute correctors and a corrected coarse FE space
based on the bilinear form a. Since a is coercive and bounded in HL(D), the
results of Chapter 2 may be applied without additional assumptions. Before
writing down the ideal method where the classical LOD approach is combined
with a time-stepping scheme, we briefly recall the main definitions and prove
two auxiliary results in the following subsection.

5.2.1 Numerical upscaling by LOD

We consider, as before, a family of regular decompositions {7y} g~o of the do-
main D into quasi-uniform d-rectangles with mesh parameter H (cf. Section 2.2)
and denote with V the corresponding conforming ); FE space. For a linear
and projective quasi-interpolation operator Z : L?(D) — Vj as in Section 2.2.2,
we define the fine-scale space W := kerIH\H%(D) and the correction operator
C: H:(D) — W by

a(Cv,w) = a(v,w) (5.4)
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for all w € W. As in Chapter 2, we further define the ideal multiscale space
Vi := (id — C)Vy = RVy and recall that HL(D) = Vg ® W and a(Vy, W) =0
by construction.

Next, we prove that an inverse inequality holds in Vi similarly to the classical
one in the space Vy.

Lemma 5.2.1 (Inverse inequality). For any oy € Vi, we have that
IVOr| 20y < Cine H 00| 22(0)- (5.5)

The constant C’inv only depends on the constant C,, in (2.35), the operator Ty,
and the contrast B/a, where o and [ are the lower and upper bounds on A as
quantified in Section 5.1.

Proof. Let oy € Viy. Since oy = (1 —-C)Zyovy, we get
al|Voulzap) < altn, on) = a(n, Iutn) < B |Voullzo) IV Zutulr2o)
< BIVoullrzp) CiCry H " |0m | 120y

using (2.11) and the classical inverse inequality (2.35). Hence, (5.5) follows with
C(imv = CinVCIHB/Oé- ]

Besides, the new space Vp also has the following approximation property,
which is a generalization of [PS17, Lem. 2.1] to the case of non-constant coeffi-
cients reusing ideas from Theorem 2.3.1.

Lemma 5.2.2. For all w € H}(D) with div AVw € L*(D), it holds that

inf ||V(w - ﬁH)HL?(D) S a_lCIHH || diVAV’lU||L2(D).

DgEVYH

Proof. Let w € HE(D). Further, let Wy € Vi be the orthogonal projection with
respect to the bilinear form a of w onto Vy, i.e.,

a(Wy,vg) = a(w, vy)
for all vy € f/H Therefore, ey = w — wy € VW and, hence,
a ||V6H||2L2(D) < alew,en) = a(w,eg) = (—div AVw, eg) 2(p)
< || div AVw||r2(py ||er || L2(p)-
Since ey € W, it holds that

leullzepy = 1(id — Zr)en |20y < Oz, H | Ver| 2(py,

where we use the approximation property (2.14). Combining both inequalities
results in
||V(w — wH)HL?(D) S a‘lOIHH || diVAV’LU||L2(D),

which concludes the proof. O]
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5.2.2 Discretization in time

Based on the adapted discrete space Vi and the leapfrog scheme with time step
T as in (5. 3) the proposed ideal method reads: given 1% = (id — C)Zgzu® and
suitable @}, € Vi, find {@}N_, with @}, € Vi such that

T (aT = 2ul 4+ W O ey + aldly, on) = (f(nT), Om) r2(p) (5.6)

for all o € Vi and n € {1,...,N — 1}. We emphasize that (5.6) is called
ideal method because we implicitly assume that the corrector problems (5.4)
can be computed exactly. In order to show stability and error estimates for this
scheme, standard methods [Chr09, Jol03] can be applied. First, we introduce
the discrete energy

gntl . = (HD ~n+1HL2 X a(uH7unH+1))’

where D, i}t = (@4 — %) /7 denotes the discrete time derivative. Using the

test functlon oy = Wyt — @yt in (5.6), we derive energy conservation in the
sense that
7 (f(n7), Dy + Drtigy) r(n)
=7" (u"H+1 2y, + ay L ugt — ay ey + al@, wyt —ay ) (5.7)
-9 (8n+1 gn)

Therefore, if no external force is applied, i.e., f = 0, the discrete initial energy
&' is conserved over time.

Lemma 5.2.3 (Stability of the ideal method). Assume that the CFL condition

502 C; H?T>6 (5.8)

holds for some 6 > 0. Then the ideal method (5.6) is stable, i.e., it holds that

1Dt |2y + IV | z2o)

n

< G (30 71K 2y + 1Dl 2oy + 98l 220y + |V a2
k=1

(5.9)
for alln € {0,..., N —1}, where the constant Cyap, depends on o, B, and & only.

Proof. The proof mainly follows the ideas presented in [Chr09, Jol03], general-
ized to the case of arbitrary coefficients. Using the inverse inequality (2.35), the
boundedness of the bilinear form a, and

a((id — C)vy, (id — C)vy) = a(vy,vy) — a(Cvy, Coy) < B ||VUHH%2(D)
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for any vy € Vg, we have that

£l = (HD g Lo ) + aliy, @)

. 1 . .
a(ay™ aftt) + 1 a(tyy, )

— ol iy )+ 5 D
1
a(aﬁl,az“)qawz,am

1
+§ (1——502 C3,H*7%)||D, ”+1||L2

mv

Therefore, the CFL condition (5.8) ensures positivity of the discrete energy since

1 1
£ > Lali W) + 1ol W) + 0 1D gy (5.10)

Employing (5.7) and the inequality (5.10), we get the estimate

1
gt —gn = 5 7 (f(n7), D, + Doa}y) 2oy

1 ~Nn
< §T||f(”7)||L2(D (1D a3 | 2oy + || Drti | r2())

1
< —— 71l f(n)]|;2 VEtTL 1 V/En).
< 75 1f ()| L2y ( )
This yields

1
VE < VE + o ) o

and, hence, the stability estimate
VEMT S VE 4 —ZT £ (k) 2c0)

This implies (5.9). O

Apart from the stability of @}, the estimate (5.9) also provides a tool for the
estimation of the error @} — wu(t,) in the following subsection. Note that the
constant Cy,p, and thus also the constant in the error bounds later on, depends
on the contrast §/a. However, this dependence seems pessimistic in many cases
of practical relevance; see, e.g., [PS16, HM17].

5.2.3 Error analysis

In this subsection, we derive an error estimate for the ideal method (5.6) pro-
vided that suitable regularity assumptions hold. The assumptions are met for
relevant classes of problems with arbitrarily rough coefficients that are charac-
terized by the right-hand side f and the initial conditions.
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Assumption 5.2.4 (Initial regularity). Suppose that the right-hand side f and
the initial data in problem (5.2) satisfy the conditions

Further, assume that the corresponding norms can be bounded independently
of the fine scale € on which A varies, i.e., that there exists a constant Cqa.
(possibly dependent on T') such that

3
s o:22oy + D 1V u(0) || 2oy + 10/1(0) || 220y < Caata- (5.11)
=0

Remark 5.2.5. The regularity assumptions in Assumption 5.2.4 on the initial
data and the right-hand side correspond to the conditions in [AH17| for the
implicit setting and are referred to as well-prepared and compatible of order 3.

Under these assumptions, we can formulate an error estimate for the ideal
method.

Theorem 5.2.6 (Error of the ideal method). Suppose that Assumption 5.2.4
holds and define t,, := 1n forn € {0,..., N}. Then the solutions u of (5.2) and
iyt of (5.6) satisfy the error bound

u(tni) = u(tn)

~n+1
o

(D) +[|V (@5 —ultni)) HL2(D)
S,T (H + 7—2) Cdata

L2

(5.12)

forne{0,...,N —1}.

Proof. Differentiating (5.1) with respect to time and using Assumption 5.2.4
shows that the time derivatives of u solve wave-type equations as well. As
in [Eval0, Thm. 6 in Sec. 7.2.6], we get the regularity « € H*(0,T; L?*(D)) and
it follows that u € C*([0,T]; L*(D)). It further holds that u € H*(0,T; H-(D))
and thus u € C*([0,T]; H-(D)). These regularity properties are required in the
estimates below.

Next, we define Z € C?([0,T]; Vi) as the auxiliary semi-discrete solution of
(5.2) which solves

(87522]-1@), QN)H)LQ(D) -+ (Z(gH(t), TNJH) = (f(t), 77H)L2(D) (513)
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5.2 The ideal method

for all 9 € Vi and t € [0, T, with the initial conditions Z5(0) = (id — C)Zyu®
and 9;Z;7(0) = (1d—C)Zy1°. Similarly to the observations in [Eval0, Sec. 7.2.2],
the well-posedness of (5.13) follows from standard theory for ordinary differen-
tial equations (ODEs) using the regularity assumptions on the initial data and
the right-hand side. We then split the error into

W — u(ty) = € + (Zu(tn) — My, u(tn)) — p(tn) (5.14)

with the temporal discretization error e" := @}, — Zy(t,) and the spatial best-
approximation error p(t) := u(t) — Iy, u(t) for any t € [0,T]. Here, Iy u(t)
denotes the orthogonal projection of u(t) onto Vi with respect to the bilinear
form a. First, we observe that e” solves

72 (" — 2" 4 e, Um)r2(py + ale”, Vg )

= (ang(tn) — 7'_2 (2H<tn+1) — 22H(tn) + 2H(tn_1)>’vH)L2(D)
for all oy € Vi. Therefore, we get with Lemma 5.2.3 that

D" 2oy + Ve 22y
< cstab(uDTeluLz(D + 1€ llzxo)

+Z‘

Second, zy — Iy, u solves

(5.15)
 Za(tier) — 22 (t) + Za (L)

L2(D))'

(0FZu(t) — Oy, u(t), 0u)r2(p) + a(Zu(t) — g, u(t), o) = (97 p(t), V) 12(p)
for all oy € Vi and all t € [0,T]. As in [Jol03], we thus get

1025 () — Oy, w(t)| 2oy + IV (Zu(t) — T, u(t)) | 220y
< Cstab<\|8t2H(0) — 900y, u(0)|| 2oy + IV (Z(0) — T, u(0)) || 22y

t
5.16
+ [ 100l ) (>:16)
t
e / 1020(5) |20 ds,
0

where we employ the equality Iy, u(0) = (id — C)Zru(0) = 25 (0) as well as
Ol u(0) = (id — C)Zydyu(0) = 0;21(0), which follow from the definition of
Vi. Further, there exists £ € [tn, tni1] such that

Z(tars) = Zu(t,) My ultng) =y, ult)
T T

— 9zu(€) — Oy, u(S). (5.17)
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5 Fast Time-Explicit Multiscale Wave Propagation

Combining (5.14)-(5.17), we get that

HD o U(tni1) — u(tn)
T

) H IV (ag™ = ulter)) 2oy

S Cetab (HDrelHL?(D) + Hvell‘LQ(D) + H +1> ( )
T L2?(D)

nt1 (5.18)
19t 20 + / 1620(5)]| 2 s
0

n Z ’  Zu(terr) = 2Zu (k) + Zu(ti-1) LQ(D)>_

-2
With a Taylor expansion and an appropriate choice of ik, we get

I1D-e |20y + Ve | 2py) S 72 1zl s o, 20
and with Lemma 5.2.2, we have

HV,O(th)HL? o) S H | div AVu(t n+1)HL2
S H (I flleqoryzzmy) + HUHO?([O,TLL?(D»)-

Further, we obtain the estimate

H ptnt1) — p(tn)

tn+1
2
L2(D) +/0 19; 'O(S)HL2(D) ds Sr H HUHC2([0,T];H1(D))

employing the approximation property (2.14). Note that we use <r to indicate
an explicit dependence on T'. Lastly, it holds that

Sr 7 |Zullca o2 o)

zn:T 250 () — i (ter1) — 220 (t) + §H<tk1)‘

o1 L*(D)

provided that zg € C*([0,T]; L?(D)). To show this regularity of zg, we differ-
entiate (5.13) with respect to time as above and define suitable initial conditions

By standard ODE theory, solutions of equations of the form (5.13) are in
C2([0,T]; Vig). Therefore, it follows that Zy € C*([0,T]; Vy). Combining the
above estimates with (5.18) and adapting the stability estimates provided in
[Eval0, Sec. 7.2.3], we deduce (5.12). O

The regularity properties of the solution u that follow from Assumption 5.2.4
allow for a simplification of the method defined in (5.6) that is discussed in the
following subsection.
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5.3 The practical method

5.2.4 A simplified method

To derive a variant of (5.6), we first observe that (5.6) can be written as an
equation for standard FE functions {u?,}"_, with % € Vj using the explicit
characterization u%, = (id — C)u}; = Ru}, i.e.,

772 (R(u?{“ — 2uly + ), RUH)LQ(D) + a(Ru}L{, RUH) = (f(m'), RUH)LQ(D)

for all vy € V. A slightly modified method with reduced computational costs
seeks {u% N with @?, € Vi such that

T2 (utt = 2uly o) + a(RﬂT}{,RUH)LQ(D) = (f(n7), UH)LQ(D) (5.19)

for all vy € Vi and n € {1,...,N — 1} and given suitable initial conditions.
Note that the solution of (5.19) fulfills stability properties similar to (5.9). Anal-
ogously to (5.12), we can show that

u(tnir) = ultn)

—n+1
HDTRuH -

+ ||V (Ruf™ —ultni)) HL2(D)

ST (H + 7—2) Cdata

L?(D)

for n € {1,..., N — 1} if the regularity properties in Assumption 5.2.4 hold.
Hence, it is reasonable to use the simplified method in practice; see also Sec-
tion 5.4.

Remark 5.2.7. The simplification in (5.19) might raise the question whether
mass lumping is also a possible modification. The numerical experiments in
Section 5.4 show that mass lumping generally works but might have an impact
on the overall convergence rate.

5.3 The practical method

The method discussed in Section 5.2 is ideal in the sense that we implicitly as-
sume that the corrector problems (5.4) can be solved exactly. In practice, those
problems are discretized and localized as explained in the following subsections.
Here, we do not replace H}(D) in the construction of Section 5.2 by a discrete
FE space V}, on some fine mesh with parameter h as described in Section 2.4.4.
Instead, we discretize the corrector problems (5.4) before we localize them and
investigate the error introduced by each of these steps.

5.3.1 Discretization at the fine scale

As a first step, the problems (5.4) are discretized using classical Q) finite ele-
ments on a fine mesh. To quantify the error introduced by such a procedure, let
{ag }N_, with @, = (id — C)u?;, € Vi be the solution of problem (5.6). Further,
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5 Fast Time-Explicit Multiscale Wave Propagation

define for any v, € V},, the discretized correction Cpv, € W), as the finite element
solution of (5.4), i.e

a(Crop, wp) = a(vp, wy) (5.20)
for all wy, € Wj. This discretized version of (5.4) is posed in a discrete space
Wy, € W on a mesh T, with mesh size h < € that is assumed to be small enough
to resolve variations of the coefficient A. Note that W), C V}, where V), is the
standard conforming (), finite element space based on the mesh 7;,. Now, let
{af , }no with @y, = (id — Cp)u}, be the solution of (5.6) posed in the space
f/Hyh := (1d—Cp,)Vy instead of Vi with suitable initial conditions. The following
lemma quantifies the difference between these two solutions.

Lemma 5.3.1 (Fine-scale discretization error). Suppose that the assumptions of
Lemma 5.2.3 and Assumption 5.2.4 hold. Then the discrete solutions @'} e Vy
and 1/“rl € VHh satisfy the error estimate

I Dty — Dty | 2oy + IV (@™ — @) |2 o)
Sr (dg, Vil + H™H(dy, [Va])?) Caata

for alln € {0,..., N — 1}, where the approzimation error dy. [V3] is defined by

IV (v = on)ll2(p)

do V3| := sup inf
VH{ h] p ||VU||L2(D)

’UE‘N/H v EVR

Proof. Observe that the error " = (id — C)(u} — ufy,,) solves

72 (~”+1 26" +&" 1 (id — C)UH) ()+a( (id—C)UH)
= —(f(”T) (C—Ch>UH) L2(D)

+T_ (UT;I+13 — 2uHh +1~LTIilhl, (C - Ch)UH)LQ(D)

T2 ((C — Ch)(u?fhl — 2ulry, + u’}fhl), (id — C)UH)LQ(D)
+ CL((C — Ch)uH’h, (C — Ch)’UH) =: Fn<(id — C)UH)
for all vy € Vi If F*|; € L*(D), we can derive a bound on the error using
Lemma 5.2.3. To show thls we first estimate [|V(C — Cy)vg||2(p)- Using the

identity W), =V, N W = (id — Ty )V;, and the quasi-optimality of the solution
Crvg defined in (5.20), we can show that

IV = Cu)vrllapy < (L+Cr,)B/e inf [V(Con —vn)|2p)

V(v —
< sup inf V(0 = oa)llz2n)
’UGVHU}LEVh ||V/UHL2(D)
= dy, [Vil [IVOm| 22 ()

HV5H|’L2(D) (5-21)
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5.3 The practical method

where either oy = (id — C)vy or oy = (id — Cp)vy. Using (2.14), we further
get
1€ = Ch)vullrzpy S Oz H dy, [Va] (VO L2(0).- (5.22)

With (5.21), (5.22), and the inverse inequality (5.5), we can derive the bound

Fn 17H — ~n ~n ~N—
sup |F"@n)| < (Hf(m)HLQ(D) + 72 aly — 2af, + 4 e
smevy 10 2(D)

+ H g, Vi) IVl 220 ) i, [VA]
< (dy, Vil + H ' (dy, [Vi))?) Caata-

This implies that F"|;;, € L*(D). Thus, using the above equations and the fact
that, for any vy, wy € Vi and any suitable norm || - ||,

[(id = C)vg — (id — Ch)wr| < [[(id — C)(va — wm)|| + [[(C — Ch)wr|,
it follows from Lemma 5.2.3 that

| Dyt — Dragty | 2oy + IV (@™ — a2 o)
So (dy, [Vl + HH(dy, [Vi])?) Caata-

Note that we employ the fact that 72 (ay, — 2a}, + af;,) can be bounded
in the L% norm independently of 7 and H. This is due to the observation that
{D,a}! 12 solves

72 (Druhy — 2Dy + Detly p,0n) oy + (Dl 0)
-1

=7 (f((n+1)7) = f(n7), 1) oy,

for all vy € ‘N/Hﬁh. Therefore, using Lemma 5.2.3 and the regularity conditions
in Assumption 5.2.4, we can bound the L*-norm of 7~ (u’}_;rhl 2y, + ﬁz_hl) in

terms of the initial data and the right-hand side. O

5.3.2 Localized discrete corrections

As a next step, we define a fully discrete solution, which is actually computable,
and quantify the error with respect to the discretized solution u% , of the pre-
vious subsection. First, however, we need to introduce the localized version
Ci: Vi, — W,, of the discretized correction operator Cj, defined in (5.20). For
the definition of a localized correction, we refer to Section 2.4.3. With the dis-
cretized and localized correction operator Cy, we set f/f[h := (id — C})Vy and
define the practical method as follows: given ﬁffh = (id — C})Zxu® and suitable

agh € Vi, find {U o With uHh = (id — Cg)uHh € Vi, such that

2 (b~ 2t ’&fq"h L0 oy + a(@y)y,, o) = (f(n7), i) papy (5:23)
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5 Fast Time-Explicit Multiscale Wave Propagation

for all oy € V), and alln € {1,...,N — 1},

We emphasize that the computation of the correctors is only done once dur-
ing the offline stage and can be parallelized. The additional cost to solve the
corrector problems is moderate and the main advantage of the method lies in
the online stage, where smaller linear systems need to be solved and relatively
coarse time steps (subject to the CFL condition) may be used.

Lemma 5.3.2 (Localization error). Let the assumptzons of Lemma 5.2.3 and
Assumption 5.2.4 hold. Then the solutions u uHh € Vi and uZ m e VHh satisfy

~n 4n n ~fn
| D~ H+hl DT“H,;IHLQ(D) + ||v(uH+hl — Ug, :l)HL?(D)
S (02 exp(—Cgec €) + HH™Y exp(—2C4ec £)) Cuata-
for alln € {0,...,N —1}.

Proof. Let é"" = (id — Cp)(ufy), — uHh) Similarly to the findings in the proof
of Lemma 5.3.1, the error é“"

- (ee,n+1 —ogtn 4 ghn=1 (1 — Ch)UH)L2(D) + a(é&"7 (id — Ch)UH)
— —($(7), (Cr — o)y
72 (g = 205, g (Ch = Ch)om) pa )
72 ((Cn = Ch) (g ' — 2ufgy, + gy ), (id = Cu)um) o )
a((Cp — Ch)UHm (Ch — Ch)vm) =t FP((id — Ch)vn)
for all vy € Vig. As above, we show that Fj'ly, € L*(D). From Theorem 2.4.4
with H}(D) replaced by V;,, we get that

IV(Ch — Ch)vm |12y S €792 exp(—Clee 0) | Vou || 2(p)
for any vy € Vi and, additionally,
1(Ch — Chvallr2(py S €97V exp(—Caec £)Cry H | Vor || 12(p)

see also [HP13], or [KY16,KPY18| for an alternative constructive proof. Similar
to the estimates in the proof of Lemma 5.3.1, we obtain

(v
wp 1 (n)]
ﬁHEVH’h ‘|UH‘|L2(D)
S (I Doy + 772 ™ = 2% + 5 o)
+ H—lg(d—l)/? eXp(_C’dec E) ||Va§-[nh||L2(D)> E(d_l)/2 exp(_cdec 6)
S (0D exp(—Clee €) + H Y exp(—2 Cee £)) Caatas
and finally
Dt = Dty | ooy + IV (a5 — @ )z
S (092 exp(—Chec €) + HH9™Y exp(—2 Cgee £)) Caatas
which concludes the proof. O]

solves
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5.3 The practical method

5.3.3 Error estimates

We can now formulate the following theorem using Lemma 5.3.1, Lemma 5.3.2,
and the triangle inequality.

Theorem 5.3.3 (Error of the practical method). Assume that Assumption 5.2.4
holds and T fulfills the CFL condition (5.8). Further, let u € L*(0,T; H:(D)) be
the solution of (5.2) and ﬂfg"h € f/ﬁ,’h the solution of the practical method (5.23)
at time step n. Then, forn € {0,..., N — 1}, we have

~In u(tn 1) - U’(tn) ~0n
i - MM -l

Sr (H+7%+dp, [Vi] + H™ (de [Va])?
002 oxp(—Cee £) + H @Y exp(—2 Cyee £)) Caata:

(5.24)

If ¢ Z |log H|, (5.24) simplifies to

i ultasn) = ult)
|-t = S

. + IV (@5 = wltni)) l2o)
< (H + 724 dVH [Vi] + H ' (dy, [Vi])?) Caata-

Theorem 5.3.3 shows that in order to obtain a reasonable error of order H, the
error introduced by the discretization of the corrector problems (5.4) and thus
the approximation error dy; [V,] need to be of order H as well. The following
lemma quantifies the approximation error dy, [V;] under additional regularity
assumptions on the coefficient A and with full homogeneous Dirichlet boundary,
i.e., I' = 0D. Although the result does not hold for more general cases, it gives
an indication on how to choose h dependent on H and e.

Lemma 5.3.4. Let I' = 0D and suppose that A € WH>(D) is a scalar coef-
ficient with oscillations on the scale €, i.e., |A|lwreopy < Ce™'. Further, let
I,: HY(D) — Vj, be an operator with the approzimation property

IV (v = Zyo) |20y < Oz, b [IV20]| 12y
for any v € H*(D) N HY(D). Then it holds that
dy, [Va] S h(H™' +¢e).
Proof. For any oy € Vi, we have
inf [[V(0n —vn)llezp) < [[V(id = Zn)0nl 20y < Cz,h IV?0x | 22Dy
Vh h
< CI}h’”AUHHLQ < [0} 1CI;hHAAUHHL2(D
<a'Cph (H dlvAVvHHLz(D)
+ | Allwr (o) IV 0r |l 22() )
< a 'Cph (BCiumCryH 4+ Ce) | Vor| 12(p)

95



5 Fast Time-Explicit Multiscale Wave Propagation

where we employ the product rule, ||Ally1.e(py < Ce™!, and
| div AVOy||r2py < BCiunCr, H ' [V Om|| 12(p).- (5.25)
To show the last estimate, let v € C2°(D) and observe that
|(div AV O, v)r2(p)| _ a(On, )| _ |a(0n, Zuv)| < BIVUn| 2p) [VIavl 12(p)
1] z2(p) 1] z2(p) [vll2y
< BCinCry H |V Ou | 12(p).

where we employ the estimates (2.11) and (2.35). The inequality (5.25) then
follows by the density of C2°(D) in L*(D). Therefore, dy, [Vj] can be bounded
by

HUHLQ(D)

dyp, [Va] ShH T+ 1),
which is the assertion. O

Using Theorem 5.3.3 and Lemma 5.3.4, we obtain the following result.

Corollary 5.3.5. Let Assumption 5.2.4 hold and suppose that A € W1*°(D),
I'=0D, 7 < H subject to the CFL condition (5.8), ¢ 2 |log H| and h < He.
Then, forn € {0,..., N — 1}, we have that

||V( = u(tnn)) 2oy Sr (H+7) Cta

~In n+1) u(tn)
|prart - =2

L2
with the solutions u € L*(0,T; H&( )) of (5.2) and &fq”h of (5.23).

From Corollary 5.3.5, we directly get that, provided the additional regularity
assumptions hold, the error of the method in the discrete energy norm

N 1/2
oo = 3071472707 ) (5.26)
j=1
scales like H 4 72. While orders of convergence in space and time appear imbal-

anced when the error is measured in the energy norm, quadratic convergence is
empirically observed for the discrete L?(L?)-norm defined by

N 1/2

oo = (07 106 o)) (5.27)

j=1

see Section 5.4. In this sense, the error estimates of the explicit method are
competitive with the fully implicit Crank-Nicolson approach used in [AH17|
provided that the fine-scale discretization errors in [AH17] can be bounded by
O((h/e)?).
Remark 5.3.6. As presented in Chapter 3, the above LOD construction is
not limited to approximation spaces based on (); finite elements. In principle,
this means that there is no restriction to combine a higher-order variant of
the method in space with any higher-order time stepping approach. As the
error analysis varies depending on the spatial and temporal discretization, these
extensions each need to be studied separately.
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Figure 5.1: Coefficient A in Example 1 (left) and Example 2 (right).
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Figure 5.2: Discrete solutions of the wave equation at final time 7' = 1 for Example 1:
fine-scale reference solution (left) and LOD approximation on the scale
H =27 with £ = 2 (right).

wu

5.4 Numerical experiments

In this section, we present numerical experiments to illustrate the theoretical
results from the previous sections. The error of the method is measured in the
discrete energy norm and the discrete L?(L?)-norm as defined in (5.26) and
(5.27), respectively. We set D = (0,1)? and T = 1 and compute a reference
solution using standard finite elements paired with a leapfrog scheme in time
on a mesh 7, with mesh size h = 278, which is also the mesh parameter for
the computations of the corrector problems. The fine time step size is chosen
small enough subject to the standard CFL condition, i.e., e < Corr h, Where
Cerr, = V2B7Y2C, L. This condition can be shown similarly to (5.8) but is
slightly relaxed since C'z,, > 1 in general. Practical experiments show that
CorL = V257Y20.14 is a sufficient and rather sharp choice for the stability
of both the fine FE solution and the LOD approximation. In the following
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Figure 5.3: Relative errors of LOD approximations for Example 1 in the discrete
energy norm (left) and the discrete L?(L?)-norm (right) with respect to
the mesh size H for ¢ = 2.

examples we choose 7 < Ccrr H such that N = T/7 € N. Note that given
i H S VH b uH n € VH » 1s computed using the second-order Taylor expansion

(ag{h,aH)Lz(D) (uHh+m + 172 £(0), ) 12Dy — 172a(ug°h,f;H)

for any vy € me, where v? and f(0) may be replaced by suitable approxima-
tions. This choice is crucial in order to get optimal convergence rates.

5.4.1 Example 1

For the first example, we take the setting from [AH17, Sec. 6.2], i.e., f = 1,
u’ =% =0, T = 9D, and a scalar coefficient A as depicted in Figure 5.1 (left)
with o = 0.04, § = 1.96. A detailed formula for the coefficient can be found
in |[AH17, Sec. 6.2]. Besides, we set £ = 2 for all values of H. The remaining
discretization parameters are defined above. The relative errors of the practical
method in the energy norm are shown in Figure 5.3 (left). The relative errors in
the L?(L?)-norm are depicted in Figure 5.3 (right). The blue curves () show the
errors of the standard method defined in (5.23) and the red curves (O) display
the errors of the simplified method based on (5.19) which uses the classical finite
element mass matrix. Both curves show the expected linear convergence in the
energy norm and almost second-order convergence in L?(L?) with a commencing
stagnation for smaller values of H, which can be avoided if ¢ is increased in this
regime; cf. Tables 5.1 and 5.2. The fact that the curves are very close justifies the
theoretical observation that the mass matrices may be exchanged. In addition,
the green curves (A) display the errors if a lumped mass matriz is used. That is,
the multiscale mass matrix is replaced by a diagonal matrix which is obtained
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Figure 5.4: Relative errors of LOD approximations for Example 2 in the discrete
energy norm (left) and the discrete L?(L?)-norm (right) with respect to
the mesh size H for ¢ = 2.

by summing up the rows of the multiscale mass matrix. The plots indicate
a reduced convergence rate for the lumped version of the method. The reduced
rate can also be observed in Tables 5.1 and 5.2.

Finally, the reference solution and the solution obtained with the standard
method (H = 27%, ¢ = 2) at final time T = 1 are given in Figure 5.2.

5.4.2 Example 2

In the second example, we choose f(x,t) =sin(4mz1)(1 —t) and v° = 0. Fur-
ther, we set I' = {zx € 9D: x; = 0} and let uy € HL(D) be the solution of

a(u’,v) = (5sin(m z1) sin(m 22), v) r2(p)

for all v € HL(D). The scalar coefficient A is shown in Figure 5.1 (right), where
a =21, =301, and € = 275 The other discretization parameters are chosen
as defined above and ¢ = 2. The blue curves (O) in Figure 5.4 again show the
relative errors of the standard method (5.23) and the red curves (O) show the
relative errors of the simplified method. Both methods and even the lumped
version (A) show a convergence rate in the discrete energy norm which is slightly
better than one. Then again, a near second-order rate in L?(L?) can be observed
for the standard method, the simplified method, and also the lumped version
up to a commencing stagnation due to localization; cf. also Tables 5.3 and 5.4.

Note that we also provide a fourth error curve (9), which shows the relative
errors of the standard method for the exact same setting but with v = 0
replaced by v =0.2- 1¢:,505. One can observe a suboptimal convergence
behavior, which is possibly related to the fact that v* ¢ HL(D) and, therefore,
the condition (A2) in Assumption 5.2.4 is not fulfilled.
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5 Fast Time-Explicit Multiscale Wave Propagation

Table 5.1: Relative errors in the discrete energy norm and EOCs for Example 1 ob-
tained with the standard approach (stand), the simplified one (simp), and
the lumped version (lump).

¢ H stand simp lump  EOCgand EOCgimp EOCiump
2 271 047508 0.47302 0.52580 - - -
2 272 0.20178 0.19994 0.23064 1.24 1.24 1.18
2 273 0.08560 0.08668 0.13656 1.24 1.21 0.76
2 274 0.03965 0.03978 0.07823 1.11 1.12 0.80
2 27° 0.01861 0.01852 0.04247 1.09 1.10 0.88
2 275 0.00978 0.00993 0.02307 0.93 0.90 0.88
2 277 0.00579 0.00619 0.01292 0.76 0.68 0.84
4 271 047508 0.47302 0.52580 - - -
4 272 0.20132 0.19948 0.23026 1.24 1.25 1.19
4 273 0.08509 0.08617 0.13595 1.24 1.21 0.76
4 27*% 0.03930 0.03943 0.07766 1.12 1.13 0.81
4 27° 0.01789 0.01779 0.04211 1.14 1.15 0.88
4 275 0.00870 0.00887 0.02272 1.04 1.00 0.89
4 277 0.00391 0.00447 0.01224 1.15 0.99 0.89

Table 5.2: Relative errors in the discrete L?(L?)-norm and EOCs for Example 1 ob-
tained with the standard approach (stand), the simplified one (simp), and
the lumped version (lump).

¢ H stand simp lump  EOCgana EOCgimp EOCiump
2 271 0.22771 0.22717 0.40377 - - -
2 272 0.06536 0.06360 0.0967 1.80 1.83 2.06
2 273 0.01895 0.01979 0.0432 1.79 1.68 1.16
2 274 0.00551 0.00560 0.01986 1.82 1.82 1.12
2 27° 0.00178 0.00182 0.00772 1.62 1.62 1.36
2 276 0.00071 0.00074 0.00291 1.29 1.29 1.41
2 277 0.00035 0.00035 0.00111 1.08 1.08 1.40
4 271 022771 0.22717 0.40377 - - -
4 272 0.06571 0.06397 0.09673 1.79 1.83 2.06
4 273 0.01909 0.01991 0.04310 1.78 1.68 1.16
4 27% 0.00555 0.00564 0.01978 1.78 1.82 1.12
4 27° 0.00170 0.00174 0.00774 1.70 1.70 1.35
4 276 0.00055 0.00060 0.00292 1.61 1.55 1.41
4 277 0.00015 0.00020 0.00110 1.84 1.61 1.41
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5.4 Numerical experiments

Table 5.3: Relative errors in the discrete energy norm and EOCs for Example 2 ob-
tained with the standard approach (stand), the simplified one (simp), and
the lumped version (lump).

¢ H stand simp lump  EOCgand EOCgimp EOCiump
2 271 0.18571 0.19098 0.29191 - - -

2 272 0.10083 0.10084 0.21508 0.88 0.92 0.44

2 273 0.03614 0.03916 0.08837 1.48 1.36 1.28

2 27 0.00979 0.01235 0.04117 1.88 1.66 1.10

2 275 0.00591 0.00660 0.01496 0.73 0.91 1.46

2 276 0.00240 0.00242 0.00568 1.30 1.45 1.40

2 277 0.00138 0.00139 0.00214 0.80 0.80 1.41

Table 5.4: Relative errors in the discrete L?(L?)-norm and EOCs for Example 2 ob-
tained with the standard approach (stand), the simplified one (simp), and
the lumped version (lump).

¢ H stand simp lump  EOCgand EOCgmp EOCiump
2 271 0.08162 0.08386 0.14215 - - -

2 272 0.06719 0.06809 0.09247 0.28 0.30 0.62

2 273 0.01448 0.01471 0.02357 2.21 2.21 1.97

2 274 0.00345 0.00356 0.00709 2.07 2.04 1.73

2 275 0.00225 0.00212 0.00228 0.62 0.75 1.64

2 275 0.00029 0.00029 0.00054 2.96 2.87 2.08

2 277 0.00024 0.00025 0.00024 0.24 0.24 1.17

101






6 Multiscale Poroelasticity in
Heterogeneous Media

In this chapter, we deal with another time-dependent PDE, known as lin-
ear poroelasticity. This problem describes the deformation of porous media
saturated by an incompressible viscous fluid and is of great importance for
many physical applications such as reservoir engineering in the field of geome-
chanics [Zobl10] or the modeling of the human anatomy for medical applica-
tions [MC16, CM14]. Biot [Bio41] proposed this poroelastic model that couples
a Darcy flow with the linear elastic behavior of the porous medium. The idea is
to average the pressure and displacement across (infinitesimal) cubic elements
such that pressure and displacement can be treated as variables on the entire
domain of interest. Furthermore, the model is assumed to be quasi-static, i.e.,
an internal equilibrium is preserved at any time. In the poroelastic setting, this
means that volumetric changes occur slowly enough for the pressure to remain
basically constant throughout an infinitesimal element.

If the poroelastic coefficients at hand are homogeneous, the problem can be
simulated using standard numerical methods such as the FE method, see for
instance [EMO09]. However, if the medium is strongly heterogeneous, the ma-
terial parameters may oscillate on a fine scale. As already mentioned in the
previous chapters, the classical FE method only yields acceptable results if the
fine scale is resolved by the spatial discretization, which is unfeasible in practical
applications. To overcome this difficulty, homogenization techniques may be ap-
plied, such as those presented in Section 1.2. Concerning these methods in the
poroelastic context, the GMsFEM is, for instance, used in [BV16a,BV16b]|, the
CEM-GMSsFEM in [FACT19], or the LOD technique in [MP17] for the similar
problem of linear thermoelasticity. Related work in connection with the LOD
can also be found in [BP16], where porous microstructures are considered, and
in [HP16| in the context of linear elasticity. All these methods aim at perform-
ing computations on a coarse scale of interest although the coefficients vary on
a much finer scale. We emphasize that with respect to the physical model there
exists even a third scale, namely the infinitesimal scale on which the averaging
of pressure and displacement is done. This scale, however, is not treated since
it is small enough and already included in the given PDE model.

In the present setting, we introduce a method that adopts ideas presented
in [MP17], where a classical LOD approach is used, which is explained below.
We modify this method based on structural properties which are obtained by
an alternative perspective on the discretized problem. This allows us to obtain
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6 Multiscale Poroelasticity in Heterogeneous Media

an overall simpler approach. In particular, we are able to exploit the saddle
point structure of the problem in order to obtain fully symmetric and decou-
pled corrector problems. That is, we do not require additional corrections as
in [MP17] and our correction operators are independent of the coupling term,
although the corresponding coefficient may vary rapidly as well. This adapted
method was first presented in [ACM™*20].

Before getting into the details, we introduce the PDE representation of the
model and its variational formulation in the following section.

6.1 Linear poroelasticity

The problem of linear poroelasticity that we use here is posed in a bounded,
convex, and polytopal Lipschitz domain D C R?, d € {2,3}, and was, e.g.,
discussed in [Sho00]. For the sake of simplicity, we restrict ourselves to ho-
mogeneous Dirichlet boundary conditions but emphasize that an extension to
Neumann boundary conditions is straightforward; see also the numerical exam-
ples in Section 6.3. This means that we seek the pressure p: [0,7] x D — R
and the displacement field u: [0,T] x D — R% up to a given final time T > 0
such that
—~V - (o(u)) + V(ap) = 0 in (0,7] x D,
(6.1)
M
with the boundary and initial conditions

u =0 on(0,7]x 0D,
p =0 on (0,7] x0D, (6.2)
p(-,0) = p” in D,

at<ozv-u—|—ip>—v-(§Vp> — f in(0,7] x D,

In the given model, the primary sources of the heterogeneities in the physical
properties arise from the stress tensor o, the permeability , and the Biot- Willis
fluid-solid coupling coefficient «. Further, we denote by M the Biot modulus
and by v the fluid viscosity which are assumed to be constant. The source term
f represents an injection or production process. In the case of a linear elastic
stress-strain constitutive relation, we have that the stress tensor and symmetric
strain gradient may be expressed as

o(w) = 2e(w) £ AV -w) I, e(u) = %(w (V)T

where 1 and A are the Lamé coefficients and [ is the identity tensor. In the case
of heterogeneous media, the coefficients u, A, k, and o may be highly oscillatory.

We now turn our attention to the variational formulation of the poroelasticity
system (6.1). To this end, we define the spaces for the displacement and the
pressure by

Vi=[Hy(D)]",  Q:=HND)
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6.2 Numerical approximation

and write

My = [L*(D)],  Ho:=L*D)

for the corresponding L2-spaces. To obtain a variational form, we multiply
the equations (6.1) with test functions from V and Q, respectively, and use
integration by parts as well as the boundary conditions (6.2). This leads to the
following problem: find wu(-,t) € V and p(-,t) € Q such that

a(u,v) —d(v,p) = 0,

d(Oru, q) + c(Op,q) + b(p,q) = (f. Do (6.3)

forallv eV, g€ Q and
p(70) :po'

The involved bilinear forms a: VXV - R, b,c: @ x Q - R, and d: V x Q - R
are defined as

alu, v) ::/Da(u):e(v)dx, b(p, q) ::/Dng-qux,
c(p, q) :—/D%pq x, d(u, q) :—/Da(VU)qu-

We emphasize that the bilinear forms a, b, and ¢ are symmetric. Note that
the first equation in (6.3) can be used to define a consistent initial condition
u® :=u(-,0). Using Korn's inequality [Cia88, Thm. 6.3-4], we have the bounds

collvlly < a(v,v) < Collvlly (6.4)

for all v € V, where ¢, and C, are positive constants. Similarly, there are
positive constants ¢, and C, such that

CHHQHQQ <b(q,q) < CHHQHQQ (6.5)

for all ¢ € Q. We write || - ||, for the energy norm induced by the bilinear form a
and similarly || - ||, for the norm induced by b. Note that also the bilinear form
c defines a norm || - ||, which is a weighted L?*-norm.

We conclude this section with the remark that there exist unique solutions
and p to (6.3), which was discussed and proven in [Sho00].

6.2 Numerical approximation

In this section, we present different schemes for the discretization of system (6.3):
the classical FE approach analyzed in [EMO09|, the standard LOD approach
used in [MP17], and the adapted LOD method introduced in [ACM™20]. Since
the classical FE ansatz is only meaningful if oscillations are resolved by the
underlying mesh, this approach solely serves as a reference.
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6 Multiscale Poroelasticity in Heterogeneous Media

6.2.1 Fine-scale discretization with finite elements

As in Section 2.2, we define appropriate FE spaces for the poroelasticity system
(6.3) based on a family {75 }r~0 of quasi-uniform decompositions of D. That is,
for a particular mesh parameter h, let V;, C V and @, C Q be the correspond-
ing conforming (); finite element spaces. For the temporal discretization, we
consider a uniform time step 7 > 0 such that ¢, = 7n for n € {0,..., N} and
T = 7N as in Chapter 5.

Using the notation introduced above, we discretize system (6.3) with a back-
ward Euler scheme in time and finite elements in space, i.e., forn € {1,..., N},
we aim to find uj € Vj, and p} € @}, such that

CL(U;& Uh) - d(U}“p;D - 07
d(D-uy, qn) + c(Depy,qn) + 0@, an) = (f", n) 1o
for all v, € Vj, and ¢, € Q. As before, D, denotes the discrete time derivative,
ie., Dol = (up—u ') /7, and we set f := f(t,). The initial condition p? € Q
is chosen to be a suitable approximation of p° and ) is uniquely determined by
the variational problem

(6.6)

a(up, vn) = d(vp, py)
for all v, € V.
Lemma 6.2.1 (Well-posedness). Given initial data u) € Vi, and pf) € Qy, the
system (6.6) is well-posed, i.e., there exists a unique solution, which is bounded
in terms of the initial conditions and the source term f.
Proof. The proof is based on [EM09, Lem. 2.1|. For the bilinear form a, it holds
2a(u, uf — ) = afu, uf) + a(uf — up g — ap ) — aup g )
> [luplla = lup 2

(6.7)

A similar result can be shown for the bilinear form c. With v, = u} — uz_l eV
and g, = TP} € @y, as test functions in (6.6), we obtain

aluy, up —up™") +e(pn —pp ' ph) + 70k pR) = 7 (", Ph)ue (6-8)
when adding both equations. Inequality (6.7), an application of Young’s in-
equality, and (6.5) then imply

T _ —
leille + ekl + Tliphlly < — [l + ™ lla + Ik IIE:
K

A summation over all n finally leads to the stability estimate

n n
lurll2 + llppllz + 7> llphlls < - S 1 g + lupll2 + 11512
j=1 F =1

This implies the uniqueness of the solutions uj and pj. Existence follows from
the fact that system (6.6) is equivalent to a square system of linear equations
and, hence, uniqueness implies existence. O
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6.2 Numerical approximation

For the presented fine-scale discretization in (6.6), one can show the following
stability result, which is important for the convergence proof of the alternative
LOD method in Section 6.2.3.

Theorem 6.2.2 (cf. [MP17, Thm. 3.3]). Suppose that the right-hand side ful-
fills f € L>(0,T; L*(D)) N HY(0,T; HY(D)). Then, the fully discrete solution
(up,pp) of (6.6) satisfies for allm € {1,..., N} the stability bound

n _ 1/2 n . 1/2
(P> 2) "+ (DDAl )+ llpilo
j=1 j=1

S Ipille + 11l z2.tmiL20y)-

Further, in the case p) =0, we have that

n ) 1/2
1D |y + | Depf g + (r > HDTpiHQg)
i=1

Sz, n;z20)) + 10cf |22 (0,001 1 (D))
and for f =0, it holds that

1Druplly + 1D laeg + 62 I1D:pr Nl S t2 2 1Wh o

The following theorem states the expected order of convergence, which is
O(h + 7). However, the involved constant for the spatial discretization scales
with the maximal W%*-norm of the coefficients, which makes this approach
unfeasible in oscillatory media with period e.

Theorem 6.2.3 (cf. [EM09, Thm. 3.1|). Assume that the coefficients satisfy
Ak, € WHe(D).  Further, let the exact solution (u,p) of (6.1) be suf-

ficiently smooth and (u},py) the fully discrete solution obtained by (6.6) for
ne€{l,...,N}. Then, the error is bounded by

n 4 1/2
lu(ta) = i llv + Ip(t) = Bhlleo + (7 3 Ip(ts) = pllI3) < G+ C,
j=1

where the constants comprise the norms of the right-hand side f and the solu-
tions uw and p. Further, C, crucially depends on the coefficients, i.e.,

Ce ~ max{]|plwroe ), [Alwroeys [Ellwree oy lallwremn)}-

6.2.2 A classical multiscale method

Within this subsection, we review the classical LOD approach for the poroelastic
problem based on a correction which is defined using the stationary version
of (6.3). This method was used in [MP17] in the context of thermoelasticity

107



6 Multiscale Poroelasticity in Heterogeneous Media

but translates directly to the present setting. We note that this procedure of
using the stationary PDE to define a multiscale space is here referred to as the
classical (or standard) approach to time-dependent multiscale problems, which
is generally used; see also Chapter 5 (based on [MP19|) and, e.g., [AH17,PS17,
MP18]| in the context of the LOD.

As before, we use the method presented in Chapter 2. However, since the fully
discrete method as described in Section 2.4 is actually based on a fine FE space,
we here directly define the corresponding operators based on the FE spaces V},
and @}, from the previous subsection. Assume now that we have a coarse mesh
Ty with mesh parameter H > h that does not resolve the microscopic scale €
and let Vg C Vj, and Qg C @Qp be the corresponding conforming (), spaces.
Further, we define the projective quasi-interpolation operators

I}_LliH];—)VH and IZZHQ%QH7

which fulfill the properties (2.11) and (2.14) as in Section 2.2.2. With these
operators, we define the fine-scale spaces

Wy i=kerZIyl, CV, and Wy i=kerZy|, C Qn,

which leads to the coupled correction Cp: Vi, X Qn — W x WP defined for
v, € Vj, and g, € @, by

a(Crlvn, qnl, [wn, 1)) = al[vn, qnl, [wh, 7)) (6.9)

for all wy, € W}* and r, € W}. Here a: (V x Q) x (V x Q) — R is the bilinear
form corresponding to the stationary poroelastic system, i.e.,

a([v, gl [w,r]) := a(v, w) — d(w, ¢) + b(g, 7).

One can show that (6.9) has a unique solution and, therefore, the conditions in
Chapter 2 hold. This follows from the coercivity of a and b as well as the fact
that we may solve the part involving the bilinear form b first and then use the
result for the rest of the equation. A direct consequence of this is that the second
component of Cy[vn, ¢z] only depends on g, while the first one is determined by
v, and qp.

Then again, the operator C;: Vj, x Qn, — W x W} for the correction of the
test functions is given by

C;;[Uhth] = [Cﬁvmcﬁ%},
where C} = C": V, = W and C} = C;*: Q, — W} are defined by
a(Cyup, wy) = a(vp, wy), b(Cran,rn) = b(gn, 1) (6.10)

for all w, € Wi and r, € Wy. Thus, the operator C; decouples. In [MP17],
also Cp,[vp, gn] is computed using the two correction operators C;" and C}, defined
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6.2 Numerical approximation

n (6.10). This, however, requires an auxiliary correction Ci": Qp, — W} given
by

a(Cy™qn, wn) = —d(wp, (id — C})qn)
for all w;, € Wi, With the additional correction, it holds that

a([Chon + C™qn, Cran), [wh, m4])
= a(Cpvp, + C;qn, wy,) — d(wp, Cran) + b(Chan, 1)
= a(vn, wn) — d(wp, qn) + b(gn, 1)
= a([vn, qn], [wn, 7))

for any v, € V), and ¢, € Q) and all w, € W}* and r, € W}. Therefore, the
correction operator Cj satisfies

Chlvn, gn) = [Chon + Ci™qn, Cpan)-
Next, we define the operators
Ry: Vg —V, and RY:Quw— Qn
defined by
wog = (1d—=C)vy  and  RYqm = (id - C})qu (6.11)

for any vy € Vi and gy € Qg. Further, we define the corresponding multiscale
spaces Vi = RiVy and Qu = Ry Qu, where we omit the index h.

With these spaces, we can formulate the method presented in [MP17]: for
ne{l,... N}, find @} = @ +ul™" with @ € Vi, ui™" € W, and p; € Qp
such that

a(ﬂ’ﬁv@H)—d(ﬁH,ﬁ%) = 0,
a(uiuxna n) + d(wh,ﬁ%) =0

for all 17H S VHa o € QH, and wy, € W}'. Note that the initial condition is
given by p}; = Rip). Moreover, we define uH = g + ud™° where w2 € W}

is given by the third equation of (6.12) and @}, € Vj is obtained by
a(ugy, on) = a(ty, on) = d(0n, )

for all 7 € Viy. The system (6.12) is well-posed and the errors ||uf — @% ||y and
|\pi — DY || o scale like H independently of €; see [MP17, Thm. 5.2|. Together with
Theorem 6.2.3, this implies that the multiscale solution (u%,, p};) approximates
the exact solution (u,p) with an error of order H + 7. Moreover, one may
manipulate system (6.12) in such a way that, in practice, the additional fine-
scale correction only needs to be computed in the offline stage using a set of
basis functions. This keeps the coarse structure of the system in each time step
at the expense of slightly more complicated systems (see [MP17]).
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6.2.3 An alternative multiscale method

In this subsection, we propose an alternative approach to the method in (6.12)
which does not require an additional fine-scale correction. To achieve this, we
exploit some structural properties of the system. These become evident if we
discretize system (6.3) in time first, i.e., if we consider

a(u",v) —d(v,p") = 0,
d(D-u",q) + c(D-p",q) +0(p",q) = (f" uq

forallv e V, g€ Q,and n € {1,..., N}. We first prove that system (6.13) is
well-posed.

(6.13)

Lemma 6.2.4 (Well-posedness). Let n € {1,..., N} and assume that u"~' € V
and p"~' € Q are given. Then, system (6.13) is well-posed.

Proof. We introduce the bilinear form b: (V x Q) x (V x Q) — R defined by
b([v, ], [w,r]) := av, w) — d(w, q) + d(v,7) + c(q,7) + Tb(q,7)  (6.14)
for v, w € V and ¢, r € Q. Note that b is coercive, since

b([v, ql [v, a]) = l[vllz + llgllz + 7 llall5-

Furthermore, system (6.13) is equivalent to

b([u",p"], [v,q]) =7 (f",q) + d(u" ", q) + c(p" ", q).
Thus, the well-posedness follows from the Lax-Milgram Theorem. O

We can now define an alternative correction operator based on the observa-
tion that the terms involving d in system (6.13) cancel for suitable test functions
when summing both equations. Therefore, we propose to use the adapted cor-
rection operator C;, = C~,’; Vi X Qp — W x W} simply defined by

Chlvn, qn) = [Civn, CLan]

for vy, € Vj, and ¢, € Qp, with the operators C;', Cr, defined in (6.10). We show in
the following that the corresponding multiscale method provides optimal orders
of convergence as well. Note that with the correction operator Cj,, we retain
the projections RY and RY as defined in (6.11) and the spaces Vi; = REVy and
Qu = R;Qp. Here, however, we do not require an auxiliary correction as in
Section 6.2.2.

Using the spaces defined above, we can formulate the alternative multiscale
method. For this, we discretize system (6.13) in space and consider the problem:
forn e {1,...,N}, find @, € Vi and p}; € Qp such that

a(ﬂz,ﬁH) - d(@H7Z§TIEI) = 07

o o nr o 6.15
A(Dsits, @) + e(DsBly @) + ) = (Frig )
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for all oy € Vg and Gy € QH Note that this system is again well-posed by

the arguments of Lemma 6.2.4. Given p%;, we define the initial condition 4% as

before by

a(uyy,vn) = d(On, py)

for all vy € VH

Before we further investigate the method defined in (6.15), we provide an

alternative characterization of the bilinear forms a and b in terms of operators.
That is, we define A: Vj, =V}, and B: Q;, — @}, by

(Avp, wp)p,, = a(vh, wh), (Ban, 1) = b(qn, 1)

for all wy, € V}, and r, € Q. Note that these operators are only well-defined on
the discrete spaces V. In the following two lemmas, we provide bounds for the
projections defined above that are useful for the proof of convergence later on.

Lemma 6.2.5. The projections R} and RY defined in (6.10) satisfy the bounds
1(id = Rpp)onlla, S H [[(1d = Ry)onlly S H lvnlly,
I(id = Ry)anllne S HII(1d = Ry)anlle S H llanlle

for all v, € V}, and q, € Q.

Proof. The proof is based on the arguments that are used in Theorem 2.3.1 and
Theorem 3.2.6. We only show the first estimate since the second one follows
analogously. Let v, € Vj,. By (2.14) and the fact that Zy(id — R})v, = 0, it
directly follows that

1(1d = Rp)vallwy S H I(1d = Ry)oallv-

The stability estimate then follows from (id — R} )v, = Cjup, (6.4), and (6.10).
To be more precise, it holds that

¢o I(1d = Ri)unllF,, < a(Ciivn, Ciion) = a(vn, Civn) < Co llunlly ICHuA v,
which concludes the proof. O

Lemma 6.2.6. The projections R} and R} defined in (6.10) are bounded in
terms of A and B by

I(id = Ry)onlly S H [[Avallae,, — (3d = Ry)anlle S H [1Banllng
for all vy, € Vi, and q, € Q.
Proof. For v, € Vj,, we get

¢o lun — Ryonllyy < alvn, v — Riwn) = (Auvw, vn — Rjvn)a,
< [JAvplay, lon — Ryvnlla,-

The claim then follows directly from Lemma 6.2.5. The proof of the result
involving B follows the same lines. O
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6.2.4 Convergence studies

The aim of this subsection is to prove that the solution provided by (6.15)
approximates the fine-scale solution (uj,p}) of (6.6) up to order H. In combi-
nation with Theorem 6.2.3, this shows that the multiscale solution converges to
the exact solution. More precisely, we obtain (assuming h sufficiently small) an
error estimate which states that the error is bounded by O(H +7) independently
of e. Note that we assume here that the corrector problems are solved on the
global domain. Since the localization of the corrections was already discussed in
detail in the previous chapters, we omit the rigorous analysis of the localization
procedure and refer to Section 2.4.3 for the details. We remark that the conver-
gence result in Theorem 6.2.7 below remains valid if the involved localization
parameter ¢ is chosen sufficiently large, i.e., £ 2 |log H|.
The main result of this chapter reads as follows.

Theorem 6.2.7 (Error of the alternative multiscale method). Assume that
f € L>~(0,T;L*(D)) n H(0,T; H (D)) and consistent initial data ul) € Vj,
P) € Qp are given as well as 1% € Vi and pY = RYpY € Qu. Then the error
between the multiscale solution (W}, pY) of (6.15) and the fine-scale solution
(uy,pp) of (6.6) satisfies

luyy — a@gglly + llph — Bl S H Ciaea + 2> H |3l

forn e {l,...,N}, where C,.. is defined by

n .

e = Dbl + | fllz2,tmiz20y) + 1|l 2o 0,tm522(0)) + 10ef | L2(0,030-1 (D)) -

Proof. As in the proof of convergence for the multiscale method in [MP17], we
split the errors in the displacement and pressure into two parts each, namely

o= uf — Ry, W= R — i,
pp = Ph — Ry, My = Ruph — Pir-

Thus, p! contains the error of the projections and 77 the difference between the

projection and the multiscale solution.

Step 1 (estimates of p): In a first step, we bound the projection error due
to R} For this, we apply Lemma 6.2.6 and use the first line of (6.6),

loully = [I(1d = Ry)ublly < H [l Aug ||,

n d T
i R (o p7)

S H lpylle;
vp €V th”?'lv vp €V HDhHHv

employing integration by parts in the last line. Theorem 6.2.2 then implies that
|px|ly is bounded by

%Il < H (llphllo + £ llz20402201)) S H Ciga-
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6.2 Numerical approximation

Similarly, the projection error due to R}, can be bounded using the second line
of (6.6), i.e.,

lpplle = [I(id = Ry)phlle S H [1Bp e
b Vel

B ]
qhEQR ||Qh||HQ

—H sup |(fn’ Qh) _ d(DTUT]}m Qh) B C(DTpZ7 Qh)|
an€Qn ”qh”HQ

S H (1" 1mg + IDruglly + | Drphlleg) -

Using Theorem 6.2.2, we obtain the bounds ||p}llo < H Ch,, if pp = 0 and

n ~1/2 .
loplle S ta'H 1Yl if £ = 0.

Step 2: In order to bound the remaining errors, we consider specific test
functions within the systems (6.6) and (6.15). Using the definition of R}, we
have for all vy € Vg C V}, that

a(ny, o) — d(vg,n,) = a(Ryuy, 0r) — d(0m, Rypy)

= a(uy, V) — d(Vm, Ryph) = d(Vm, p)y)-

(6.16)

Similarly, we have for all g € Qp that
d(Drny, qm) + c(Deny, qm) + b(ny s Gur)
= d(D,Ryuy,, ) + (D Rypy, qu) + b(py, qu) — (f",dg)ne  (6.17)
= —d(D-py,qu) — c(D-py, dn),
using the definition of R}. Combining equation (6.16) at the time steps n and
(n — 1), we obtain

a(D-ny, ) — d(0m, D-ny) = d(0w, D-p})) (6.18)

for any vy € VH Note that these equations are also valid for n = 1 because of
the construction of w9 and a%. To obtain bounds for 1", we consider the two
cases where either p) = 0 or f = 0. This is done in the next two steps. An
application of the triangle inequality then gives the stated result.

Step 3 (estimates of 5™ if p) = 0): Note that pY) = 0 also implies u) = 0. We
now insert the test function oy = D,n} into (6.18) and add this to equation
(6.17) with Gz = D,n. Together, this yields

a(D-ny, Dyyy) + e(Drny, Denyy) + b1y, Deny)
= d(DTTIZa DTﬂZ) - d(DTpZ, DTU;L) - C(DTpZa Drng)
and thus
1D 17 + 1D |12 + by, Drny)
< Ca | Dol 1D llig + Ca D202l I Dsm
+ Cm D25 300 1D 120

n 1 n 7 n
< SID-LG + 5 1D 112 + C NI D=ph g + € ID-3 13-

N | —
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6 Multiscale Poroelasticity in Heterogeneous Media

We can eliminate ||D,n}|, and ||D.n}[|. on the right-hand side and multiply
the estimate by 27. Then, a summation over n yields

Y Dl + 7 1Dl + Iy 113
j=1 j=1
S21) Dol +27 ) ID-A,
j=1 j=1

where we use that 772 = 0. The sum including D, p/. can be bounded using once
more Lemma 6.2.6, i.e.,

. . “ . a DTuj,Uh
1D-py|lv = [[(id = Ryy) Druy|lv S H sup la(Drup, vn)|
VR EVR thHHV

< H||ID:pj -

d( D ])‘ (6.19)
= H sup —} Un P

vp €V thHHV
Together with Theorem 6.2.2; this leads to
7Y D5 S TH? Y ID:ppl S (H Gl
i=1 J=1

Then again, the sum including DTp{) can be bounded using

1D:p)ll320 = II(id = RY) Drpjllre < H || D2l o,
which follows from Lemma 6.2.5 and results in
Y D5, < 7Y H? | Dophlly S (H Chyi,)
j=1 j=1

This does not only provide the bound |n}|o S H Cf,, but also

Il S llopllae + I lIre S H Clagas

where we employ (6.16).
Step 4 (estimates of n if f = 0): We emphasize that by assumption also
7y = 0 in this case. Together with (6.16), this yields

N3 < aml,my) = d(ng,mg) + d(n, p3) < nellv 120l

and, therefore,
[nallv S llPpllee < H lIpillo-
n

Note that it is sufficient to bound [[n}]/g in terms of H Cg,, since by (6.16)
a1y S 1oy llae +1mp llg- As in Step 3, we consider the sum of equation (6.18)
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6.2 Numerical approximation
with o = D;ny; and equation (6.17) with ¢y = D.n;. Multiplying the result
by 27, we get

27| Dy 5 + 27 (1D7np 12 + mplls = iy =I5 S 27 |1 Drppllaeg + 27 1 Drpy -
Another multiplication by ¢2 and the estimate t2 — 2, < 37t,_; then lead to
27ty (| Dol + 2760 |1 Do 12+t ol — £y Iy~ Il
< 21t | D-py 15 + 2785 | Dopyllss + 37t [y 15
Taking the sum, we obtain

Y DI+ 2 gl
j=1

ST NP+ (Bl - 2o E) (620
j=1 j=1

n n n—1
ST BID AN, + 7S EIDANE TSt
J=1 j=1

j=1

To bound the first sum on the right-hand side, we apply first Lemma 6.2.5 and
then Theorem 6.2.2 and obtain

TY D £ 7Y GH DG S 7Y HE bl =t P15
j=1

J=1 J=1

For the second sum, we use the estimate ||D.pl|ly < H || D,pl|lo from (6.19),
which is also valid for non-zero initial conditions. With Theorem 6.2.2, we
further get

TS D3 S TS EH Dol S taH )13
j=1 j=1

Step & (estimate of the last sum in (6.20)): In order to bound the third sum
on the right-hand side of (6.20), we consider the sum of (6.16) and (6.17). For
test functions vy = D,n! and ¢y = n,, we get after multiplication with 27t,
and an application of Young’s inequality

t (IIulla = I~ 12) +tn (g e = iy~ l12) + 27t Inp 15
STt 1Dl + 7 7 oIl + 70 1 D23,
+ 7ty [1Drpp g + 7y g
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2 112 on both sides and take the sum

for any v > 0. We add 7||n/'~
over n such that we obtain

+ 7 [y~

n n - . L ; 1 - .
o 115 + ta 5 50 + D i e S v7 D 6 1Dl i DN TA
j=1 j=1 j=1
® ®

+ 7Y 6 (1Dephle, +1IDolg) +7 D (Il + I I) -
j=1 j=1

© @
Note that the sum on the left-hand side is the term we aim to bound. For a suf-
ficiently small v which only depends on the generic constant of the estimates,
we can eliminate & with the left-hand side in (6.20). For the remaining three
parts on the right-hand side, we estimate

N

®=7) lols, STY_H*Imla S 7Y H? Inhlla =t H Iph1S

and, with Lemma 6.2.5 and Theorem 6.2.2,
© s 73 H2E (1D I} + ID-p}13)
j=1

ST+ 1)) HIPNS = (5 + ta) H? 93115
j=1

Finally, with the equations (6.16) and (6.17) as well as the test functions oy = 1!
and g = 77, one can show as in [MP17] that also @ < t,H*||pjll5- In
summary, this yields

Inplle S (1+6."2) H [phl o,
which concludes the proof. O

Theorem 6.2.7 shows together with Theorem 6.2.3 that the multiscale method
proposed in (6.15) converges linearly, i.e., the error is bounded by O(H +7) if we
consider the L>(0,T;V)-norm for u and the L>(0,7;Ho) N L*(0,T;Q)-norm
for p. We emphasize that the involved constants are independent of derivatives
of the coefficients u, A, x, and a.

Remark 6.2.8. The approach of discarding the coupling term in the stationary
system to obtain two decoupled projection operators is also used in [FAC*19] for
the problem of linear poroelasticity with high contrast employing the multiscale
technique referred to as CEM-GMsFEM. Further, it is applied to more general
(homogeneous) elliptic-parabolic problems in the context of semi-explicit time
discretization schemes in [AMU19].
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6.3 Numerical experiments

6.3 Numerical experiments

In order to assess the method numerically, we consider numerical examples in
two and three space dimensions. We measure the error in the discrete L*(H?')-
norm

N 1/2

o)l = (S0 (IVeGnIE, + Vel ) )
j=1

where N = T'/7 is the number of time steps. Further, we set D = (0,1)? as the
domain and 7' = 1 as final time with time step size 7 = 0.01 (and thus N = 100)

for both the two-dimensional examples and the example in three dimensions.
The reference solution (up,pp) is computed on a regular uniform mesh 7y,
consisting of elements with given mesh size h. The local corrector problems
are also solved on patches with mesh size h. The parameters are chosen to be
piecewise constant on elements of 7. and the value is obtained as a uniformly
distributed random number between two given bounds, i.e., for any K € 7, we

have

klx ~U(0.1,0.3), pulx ~ U(40,70),

Mg ~ U(30,60), alg ~ U(0.5,1)

and M = v = 1, where 7, is a mesh with mesh size ¢ > h to guarantee that
the reference solution is reasonable. Note that we take representative global
samples for the above parameters. For the second two-dimensional example,
the coefficients are chosen with the pattern depicted in Figure 6.1 scaled to
the respective parameter range as given in (6.21). In all numerical tests, the
localization parameter is set to ¢ = 2 which showed to be sufficient. Note,
however, that the choice of the localization parameter generally needs to be
increased for smaller values of H and may be decreased for larger H as quantified
in Chapter 2 and [HP13|.

(6.21)

6.3.1 Two-dimensional examples

In all two-dimensional experiments, the fine mesh size is set to h = 278, and
e=275

For the first example, we set f = 1 and p°(x) = (1—x1) 21 (1 —x9) 75. We pre-
scribe homogeneous Dirichlet boundary conditions for p on 9D, homogeneous
Dirichlet boundary conditions for v on {z € dD: x5 = 0 or 9 = 1} and homo-
geneous Neumann boundary conditions on {x € 9D: x; = 0 or ;1 = 1}. The
errors for different values of H are shown in Figure 6.1 (right, O0). The results
are in line with the theory and indicate a convergence rate even slightly better
than 1 with respect to the coarse mesh size H.

In the second example, we consider p°(xz) = /1 —xy, f = 0, and enforce
homogeneous Dirichlet boundary conditions for v and p on {z € 0D: o = 1}
and homogeneous Neumann boundary conditions on the remaining part of 0D.
As mentioned above, all coefficients in this example are chosen with the pattern
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Figure 6.1: Multiscale pattern (left) and relative errors of the LOD method with
respect to H in the two- and three-dimensional setting, measured in the
discrete L2(H')-norm (right).

depicted in Figure 6.1 (left). In this example, the predicted linear convergence
can be observed, cf. Figure 6.1 (right, O).

In Figure 6.1 (right, A), we also present the results of the third example, where
pY(z) = (1 — z9) x5 and f(z,t) = 3t cos(2m x1) sin(37 z2). Further, we take the
same boundary conditions as in the previous example. On the one hand, the
errors in this example partially indicate a higher-order convergence rate. On
the other hand, the error curve slightly stagnates for smaller values of H, which
can be explained by the effect of the localization error.

6.3.2 Three-dimensional example

For the three-dimensional setting, we restrict ourselves to h = 275 and € = 274
due to the high computational complexity. We choose the coefficients as in
(6.21), set f =0, p°(z) = (1 —x1) 21 (1 — ) 22 (1 — x3) x3, and prescribe homo-
geneous Dirichlet boundary conditions on {x € dD: x3 = 1} and homogeneous
Neumann boundary conditions on the remaining part of 0D. Further, we set
¢ = 2 as before. The errors for this example are plotted in Figure 6.1 (right, ©)
and show at least the expected linear convergence rate. Moreover, this exam-
ple indicates that the three-dimensional setting can be handled if appropriate
computing capacities are available.
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7.1 Conclusion

This thesis was concerned with the coarse-scale numerical approximation of so-
lutions of partial differential equations that involve one or more heterogeneous
coefficients, possibly with oscillations on fine scales. To avoid global computa-
tions that resolve the varying coefficients, we employed the Localized Orthogonal
Decomposition technique to efficiently deal with the presence of multiple scales
or even a continuum of scales without restrictive structural assumptions. We
presented the classical first-order approach in a relatively general setting with
a rigorous analysis of the convergence behavior and illustrative examples that
showed the practical performance of the method. Moreover, we extended the
first-order multiscale approach to a higher-order variant in the elliptic setting
based on the saddle point formulation of the classical method. The higher-order
method was constructed from discontinuous finite element spaces which are fa-
vorable to extract higher-order convergence rates. In particular, the method
allowed for a thorough tracing of the mesh size, the polynomial degree, and
the localization parameter. We presented numerical experiments that indicate
an even better dependence on the involved parameters than predicted by the
theory.

The applicability of the above approach to general heterogeneous coefficients
motivated a strategy to reconstruct the effective behavior of solutions to mul-
tiscale problems from given coarse measurements in connection with an inverse
diffusion problem. The idea of the approach was to use the knowledge that sys-
tem matrices corresponding to the Localized Orthogonal Decomposition tech-
nique, as well as other numerical homogenization approaches, obey a certain
quasi-local sparsity pattern. Prescribing such a pattern then allowed us to
reconstruct coarse models that recover available measurements. Since the nu-
merical results showed that the inversion procedure favors quasi-local models
with some deviation from locality, these results, in turn, emphasized the general
potential of numerical homogenization methods.

Subsequently, we applied the framework of Localized Orthogonal Decompo-
sition to two time-dependent problems. For the acoustic wave equation, we
combined the method with an explicit time discretization scheme and achieved
a complexity reduction in space and in time. That is, the construction of a mul-
tiscale space for the spatial discretization led to smaller systems to solve in every
time step and, additionally, enabled the use of larger time steps subject to a re-
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laxation of the time step restriction. We rigorously studied the convergence
behavior of the method and presented numerical illustrations that confirmed
the theoretical findings.

In connection with the multiphysics problem of linear poroelasticity, we then
combined the Localized Orthogonal Decomposition method with an implicit
Euler scheme in time and presented an adapted approach which was not based on
the stationary equations as it is normally done. Instead, we exploited the saddle
point structure of the system after a temporal discretization, which motivated
a decoupling in the construction of the multiscale spaces. This construction
resulted in a simple method for which we could prove first-order convergence
and validate the findings with numerical experiments.

7.2 Outlook

The work presented in this thesis opens up many possibilities for future research.
To start with, the decay estimates for the higher-order method in Chapter 3 are
not sharp as discussed in Remark 3.3.3. Since also the numerical experiments
indicate a better scaling, a natural next step is trying to improve the estimates
in terms of a better decay rate with respect to the polynomial degree. Further,
one could aim for a modification of the method to reduce the pollution in terms
of the mesh size which occurs if the localization parameter is not increased
accordingly (cf. Theorem 3.3.4). Moreover, the higher-order approach in con-
nection with time discretization schemes could be investigated for the presented
time-dependent problems.

Concerning the findings in Chapter 4, a natural next step would be to in-
vestigate how to extract information about the actual fine-scale coefficient from
the reconstructed model using, e.g., additional structural knowledge if avail-
able. Besides, an application of the approach to problems beyond the elliptic
framework could be studied.

With regard to time-dependent problems, multiscale approaches where fine-
scale coefficients also depend on the temporal variable mark an interesting class
of problems in connection with numerical homogenization not only in space but
also in time. Such considerations could as well be valuable in the context of
long-time wave propagation, which is an active field of research.
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