
Generic analysis support for
understanding, evaluating and

comparing enterprise architecture
models

Melanie Langermeier

Dissertation
for the degree of

Doctor of Natural Sciences (Dr. rer. nat.)

University of Augsburg

Department of Computer Science
Software Methodologies for Distributed Systems

April 2019

Generic analysis support for understanding, evaluating and comparing enter-
prise architecture models

Supervisor: Prof. Dr. Bernhard Bauer, Department of Computer Science,
University of Augsburg, Germany

Advisors: Prof. Dr. Alexander Knapp, Department of Computer Science,
University of Augsburg, Germany

Prof. Dr. Bernd Heinrich, Faculty of Business, Economics and
Management Information Systems, University of Regensburg, Germany

Defense 24.Juli 2019

Copyright c© Melanie Langermeier, Augsburg, Juni 2020

Abstract

Enterprise Architecture Management (EAM) is one mean to deal with the increasing com-
plexity of today’s IT landscapes. Architectural models are used within EAM to describe
the business processes, the used applications, the required infrastructure as well as the
dependencies between them. The creation of those models is expensive, since the whole
organization and therewith a large amount of data has to be considered. It is important
to make use of these models and reuse them for planning purposes and decision making.
The models are a solid foundation for various kinds of analyses that support the under-
standing, evaluation and comparisons of them. Analyses can approximate the effects of
the retirement of an application or of a server failure. It is also possible to quantify the
models using metrics like the IT coverage of business processes or the workload of a server.
The generation of views sets the focus on a specific aspect of the model. An example is the
limitation to the processes and applications of a specific organization unit. Architectural
models can also be used for planning purposes. The development of a target architecture
is supported by identifying weak points and evaluating planning scenarios.
Current approaches for EAM analysis are typically isolated ones, addressing only a limited
subset of the different analysis goals. An integrated approach that covers the different
information demands of the stakeholders is missing. Additionally, the analysis approaches
are highly dependent on the utilized meta model. This is a serious problem since the EAM
domain is characterized by a large variety of frameworks and meta models.
In this thesis, we propose a generic framework that supports the different analysis activi-
ties during EAM. We develop the required techniques for the specification and execution
of analyses, independently from the utilized meta model. An analysis language is im-
plemented for the definition and customization of the analyses according to the current
needs of the stakeholder. Thereby, we focus on reuse and a generic definition. We utilize
a generic representation format to be able to abstract from the great variety of used meta
models in the EAM domain. The execution of the analyses is done with Semantic Web
Technologies and data-flow based model analysis.
The framework is applied for the identification of weak points as well as the evaluation
of planning scenarios regarding consistency of changes and goal fulfillment. Two methods
are developed for these tasks, as well as respective analysis support is identified and
implemented. These are, for example, a change impact analysis, specific metrics or the
scoping of the architectural model according to different aspects.
Finally, the coverage of the framework regarding existing EA analysis approaches is deter-
mined with a scenario-based evaluation. The applicability and relevance of the language
and of the proposed methods is proved within three large case studies.

iii

Zusammenfassung

Unternehmensarchitekturmanagement (EAM) ist eine Möglichkeit, die steigende Komple-
xität in heutigen IT Landschaften zu bewältigen. Dabei werden Architekturmodelle einge-
setzt, um die Geschäftsprozesse, die verwendeten Anwendungen, die benötigte Infrastruk-
tur sowie deren Beziehungen zu beschreiben. Die Erstellung dieser Modelle ist aufwändig,
da das gesamte Unternehmen und damit eine große Datenmenge zu berücksichtigen ist.
Umso wichtiger ist es, diese Modelle aktiv zu verwenden und zu Planungszwecken sowie
zur Entscheidungsunterstützung einzusetzen. Sie ermöglichen verschiedenste Analysen, die
das Verständnis der Architektur verbessern, die Architektur bewerten oder vergleichen.
Analysen können beispielsweise die Auswirkungen eines Serverausfalls oder der Abschal-
tung einer Anwendung bestimmen. Es ist auch möglich das Modell unter Verwendung
von Kennzahlen zu quantifizieren. Die Generierung von Sichten auf ein Architekturmodell
ermöglicht das Fokussieren auf einen bestimmten Aspekt. Ein Beispiel hierfür ist das Ein-
grenzen des Modells auf die entsprechenden Geschäftsprozesse und Anwendungen einer
bestimmten Organisationseinheit des Unternehmens.
Aktuelle Ansätze zur Analyse von Unternehmensarchitekturmodellen stehen typischer-
weise für sich alleine und erfüllen nur eines der vielen Analyse-Ziele. Ein integrierter An-
satz, der die unterschiedlichen Informationsbedarfe der Stakeholder berücksichtigt, exis-
tiert nicht. Zusätzlich sind die bestehenden Ansätze abhängig von dem verwendeten Me-
tamodell. Da die EAM Domäne von einer Vielzahl von Frameworks und Metamodellen
geprägt ist, erschwert dies die Entwicklung eines universell einsetzbaren Ansatzes.
In dieser Arbeit stellen wir ein allgemein einsetzbares Framework zur Unterstützung der
verschiedenen Analyseaktivitäten im EAM vor. Wir entwickeln geeignete Techniken zur
Spezifikation und Ausführung der Analysen, unabhängig vom verwendeten Metamodell.
Zur Definition und Anpassung der Analysen an die konkreten Bedürfnisse der Stakeholder
wird eine Analysesprache entwickelt. Im Vordergrund stehen dabei Wiederverwendung und
eine generische Definition der Analysen. Durch den Einsatz eines generischen Metamodells
als Grundlage, sind wir in der Lage von der Vielfalt an Metamodellen zu abstrahieren. Die
Analysen werden mit Hilfe der Semantic Web Technologien sowie einer Datenfluss-basieren
Modellanalyse ausgewertet.
Das Framework wird zur Identifizierung von Schwachstellen sowie zur Bewertung von
Planungsszenarien, hinsichtlich der Konsistenz der Änderungen und der Zielerreichung,
eingesetzt. Hierfür werden zwei entsprechende Methoden entwickelt, der Analysebedarf
identifiziert und mit Hilfe des Frameworks umgesetzt.
Die Abdeckung des Frameworks hinsichtlich der existierenden EAM Analysen wird mit ei-
ner Szenarien-basierten Evaluation bestimmt. Die Anwendbarkeit und Relevanz der Spra-
che sowie der vorgestellten Methoden wird in drei verschiedenen größeren Fallstudien ge-
zeigt.

v

Acknowledgments

During the last years I spent on research and writing the thesis I received great support
from several people.
First of all I want to thank my supervisor Prof. Dr. Bernhard Bauer. I am very grateful
for the time he spent with discussions about my research as well as his guidance during
writing this thesis. I also want to thank Prof. Dr. Alexander Knapp and Prof. Dr. Bernd
Heinrich to be the further advisors of my thesis.
In addition I want to thank my colleagues at my research group Software Methodologies for
Distributed Systems. I received valuable feedback at the workshops and the great working
atmosphere supports the development of the thesis concepts. In specific, the successful
cooperation with Christian Saad within several projects in the last years provided valuable
results for my thesis. Also the research results gained together with my master and
bachelor students improved the outcome of this thesis.
Finally, the industry partners within the different projects of the last years enabled a deep
insights in current problems as well as the currently available solutions to deal with them. I
am very thankful for this opportunity as well as the availability of case study data, which
increases the quality of this thesis significantly. In specific I want to mention Andreas
Ditze from the MID GmbH for making their modeling tool available for my research.
At least I want to thank my family and friends for the encouragement during the last
years. Especially their support within the last month of writing was very helpful for me to
concentrate on the thesis. I would like to thank Stephan for the time spent with discussions
about my thesis. And my mother Brigitte and my sister Mareike for their tireless support
in looking after my son. I also want to thank my father for his support during thesis
writing as well as with the papers in the last years.
Finally, I want to thank my husband Dirk for his support in every aspect. He and my
child Fabian were the best distraction from my thesis work and allowed me to clear my
mind.

vii

Contents

I Introduction and Basics 1

1 Introduction 3
1.1 Problem and Challenges . 4

1.1.1 Capture the architecture model . 5
1.1.2 Understand the architecture model 6
1.1.3 Assess the architecture model . 7

1.2 Objectives, Approach and Contributions . 9
1.2.1 Generic representation . 9
1.2.2 Generic architecture analysis framework 9
1.2.3 Employ framework for architecture assessment 10
1.2.4 Evaluate the methods and the framework 11

1.3 Research Methodology . 13
1.4 Publications . 15
1.5 Outline of this Thesis . 19

2 Foundations 21
2.1 Enterprise Architecture . 22

2.1.1 Processes and frameworks . 23
2.1.2 EA documentation . 26
2.1.3 EA analysis . 31
2.1.4 EA planning and decisions making 37

2.2 Data-flow Analysis . 41
2.2.1 Application: Reachability analysis 42
2.2.2 Application: Flow path analysis . 44

2.3 Semantic Web Technologies . 45

II Performing Architecture Analysis 49

3 Capture the Enterprise Architecture Model 51
3.1 Requirements . 52
3.2 Generic Meta Model . 54

3.2.1 GMM meta model . 56
3.2.2 GMM model . 58

3.3 Example Application . 61
3.4 Converting Architectural Data to the GMM 62
3.5 Related Work . 64
3.6 Conclusion . 66

ix

Contents

4 Enterprise Architecture Analysis Definition 67
4.1 EA Analysis Approaches . 68
4.2 Language Overview . 72

4.2.1 Arla Core . 75
4.2.2 Arla Template . 75
4.2.3 Arla Specific . 77

4.3 Analysis Classes within the Language . 79
4.3.1 Scope analysis . 79
4.3.2 Impact analysis . 82
4.3.3 Path analysis . 85
4.3.4 Metrics . 87
4.3.5 Performance analysis . 89
4.3.6 Gap analysis . 91
4.3.7 Adapted analysis . 93
4.3.8 Custom analysis . 93
4.3.9 Composed analysis . 94

4.4 Conclusion and Related Work . 96

5 Architecture Analysis Framework 99
5.1 Design Goals . 100
5.2 Overview . 102
5.3 Model Storage . 103

5.3.1 Data representation within the triple store 103
5.3.2 Accessing the data for analysis purposes 107

5.4 Analysis Definition . 109
5.4.1 Analysis definition support . 109
5.4.2 Utilization of templates . 110

5.5 Analysis Execution . 113
5.5.1 Execution approach . 113
5.5.2 Result model . 115
5.5.3 Execution of scope analysis . 116
5.5.4 Execution of impact analysis . 124
5.5.5 Execution of path analysis . 130
5.5.6 Execution of metrics . 136
5.5.7 Execution of performance analysis 138
5.5.8 Execution of gap analysis . 142
5.5.9 Execution of adapted analysis . 144
5.5.10 Execution of custom analysis . 144
5.5.11 Execution of composed analysis . 145

5.6 Related Work . 149
5.7 Conclusion . 151

III Use Cases 153

6 Identification of Weak Points 155
6.1 Overview of the Approach . 156
6.2 Model Quality Metrics . 158

x

Contents

6.3 Analysis Specific Model Assessment . 161
6.3.1 Identification of analysis requirements 161
6.3.2 Validation of analysis requirements 162

6.4 Assessment of Microservice Characteristics 166
6.4.1 Characteristics of microservice architectures 166
6.4.2 Challenges within microservice architectures 167
6.4.3 Evaluation criteria: Principles and metrics 169
6.4.4 Implementation with the A2F . 171

6.5 Related Work . 176
6.6 Conclusion . 177

7 Evaluation of Planning Scenarios 179
7.1 Method Blocks for EA Planning . 180
7.2 Evaluation Process for Planning Scenarios 182

7.2.1 Determine relevant domain architecture 184
7.2.2 Integrate scenario into the domain architecture 185
7.2.3 Evaluate the target architecture . 187

7.3 Tool Support . 189
7.3.1 Templates for determining the domain architecture 189
7.3.2 Templates for scenario integration 190
7.3.3 Templates for target architecture evaluation 192

7.4 Related Work . 194
7.5 Conclusion . 195

IV Case Studies and Conclusions 197

8 Evaluation 199
8.1 Implementation . 200

8.1.1 Integration into a modeling tool . 200
8.1.2 Integration into AutoAnalyze . 205
8.1.3 EA model adapter . 207

8.2 Coverage of EA Analysis Approaches . 209
8.3 Scenario-based Evaluation . 213

8.3.1 Scenario 1: Change impact analysis 213
8.3.2 Scenario 2: Risk and security analysis 215
8.3.3 Scenario 3: Analysis of dependencies 216
8.3.4 Scenario 4: Analysis of conformity 217
8.3.5 Scenario 5: Structural analysis . 218
8.3.6 Scenario 6: Data accuracy analysis 219
8.3.7 Scenario 7: Social network analysis 220
8.3.8 Scenario 8: Performance and workload analysis 221
8.3.9 Scenario 9: Business process support analysis 221
8.3.10 Scenario 10: Wiki-based analysis . 222
8.3.11 Scenario 11: Analysis of dependencies 223
8.3.12 Scenario 12: Availability weak point analysis 224

8.4 Case Studies . 225
8.4.1 Case study 1: EA planning . 225
8.4.2 Case study 2: Weak points regarding microservice characteristics . . 228

xi

Contents

8.4.3 Case study 3: Weak points of a backend service landscape 230
8.5 Discussion . 234

9 Conclusion 239
9.1 Summary . 240
9.2 Future Work . 244

V Annex 247

Bibliography 249

Glossary 263

List of Figures 265

List of Tables 269

Listings 271

A Appendix A 275
A.1 Full EA model for the RentalCar company 276
A.2 SPARQL queries for gap analysis . 277

xii

Part I

Introduction and Basics

1

1
Introduction

3

Chapter 1. Introduction

1.1 Problem and Challenges

Today’s information technology (IT) landscapes in organizations are typically the product
of evolved structures [AKRS08], extended with additional parts through merger and acqui-
sitions. Since IT was not always seen as critical factor, its management and alignment were
partially unattended. This faces organizations with the problem of a high complexity and
heterogeneity regarding their IT landscapes. One of our case studies, the backend system
of a large customer service application, comprises over 450 services with about 650 usage
dependencies. The services work together to provide customer functionality within over
140 application scenarios. Thereby, about 20 different communication technologies are
used, and the services are subject to different security requirements regarding data trans-
fer, encryption and authentication. The operator of the backend systems has a limited
overview of the dependencies between the services and fulfilling the overall goal to obtain
a stable and performant system is critical. Exemplary challenges that occur during system
operation are the failure of a system, performance problems and also architecture planning
is hard. Within a survey 76% of the CIOs (Chief Information Officer) mention complexity
as one factor that affects the provisioning of a stable IT system. The related costs to solve
the performance problems are on average $ 2.5 million per organization [Dyn19b]. The
challenges IT departments have to address let them struggle with the implementation of
new business demands. Nevertheless, digital transformation forces organizations to adapt
their business models and restructure their IT infrastructure in order to stay competitive.
Microservices are a promising architectural style to create scalable, reliable and flexible IT
systems [HS17]. A shortcoming of this technology is the increasing complexity, since one
monolith is replaced with hundreds of independent services that communicate via message
massing [DGL+17,GCF+17].
Enterprise Architecture Management (EAM) has been proposed as a way to manage large
IT landscapes and the organizational changes with their inherent complexity. It pro-
vides means to capture the essential business and IT elements as well as the dependen-
cies between them. This provides a clear understanding of the structure and enables an
organization-wide optimization of the architecture [Lan12]. Therewith, EAM addresses
the challenges of Business-IT Alignment and the development of new businesses models.
An optimal alignment of business and IT is crucial for the success of any organization.
And while analyzing the dependencies from business down to the IT infrastructure, EAM
reduces the risks during enterprise transformations [NFT+17]. To support the different
arising requirements from the stakeholders, an integrated set of methods is required for
the documentation and analysis of the Enterprise Architecture (EA) [Lan12].
One reason for pitfalls of EAM projects are outdated and unused EA models [AKRS08].
An EA model is the central element within EAM, and used to capture the business, ap-
plication and infrastructure elements of an organization. The models are the foundation
for the subsequent activities including EA analyses. These analyses increase the under-
standing of the architecture and provide aggregated information to the management, e.g.
through a dashboard. Through an evaluation of the current and target architecture as
well as potential change scenarios, they support decision-making and architecture evolu-
tion [SK11].
A preliminary for performing analyses is that the relevant data about the enterprise archi-
tecture has to be captured within a model. Only then, an in-depth understanding of the
architecture can be provided using different analysis approaches. These approaches enable

4

1.1. Problem and Challenges

Figure 1.1: Analyses as foundation for decision-making.

the assessment of the architecture to identify weak points or to evaluate different planning
scenarios regarding their strategy conformance. Figure 1.1 illustrates the dependencies
between these three steps required for decision-making. In the following, the challenges of
each step are described in detail.

1.1.1 Capture the architecture model

A major pitfall for current EA initiatives are outdated and unused models [AKRS08]. The
low quality of the provided information within the EA models makes it difficult to generate
benefit from them. Reports which include retired applications or outdated information
cannot be used as foundation for decision-making. This leads to the point that the EA
models are not used during planning tasks. Additionally, EA models are mostly created
manually which requires much effort in terms of cost and time [RHF+13]. Thus, EA
models currently deal with a low cost-benefit ratio that hampers the acceptance of the EA
initiative and demotivates employees to maintain the architecture model. Considering the
concerns from the different stakeholders would increase the cost-benefit ratio and enhance
the acceptance of the EA initiative [AKRS08].

Challenge 1: Unexploited existing models

The first challenge addressed in this thesis is to make use of the established EA
models in order to answer the different concerns of the stakeholders. To increase
the benefit of the models, they have to be used for decision-making and
planning purposes. Fulfilling the information demands of the stakeholders
increases the acceptance of EAM and the responsible stakeholders are more
likely to maintain the models. Thus, the quality and the completeness of the
models can be increased. It is important that any approach should consider the
high number of existing models and information for further processing.

5

Chapter 1. Introduction

The concepts used to describe an EA model are defined within an EA meta model
[BBJ+11]. There is no consensus about the concepts described within an EA model, thus
there exist a plethora of different EA meta models and no standard [BBJ+11,JNL07]. Sev-
eral EA frameworks propose elements and layers to describe an enterprise architecture.
These are well-known generic frameworks like Zachman [Zac87] and The Open Group
Architecture Framework (TOGAF) [The18]. There exist also domain specific frameworks
like the Department of Defense Architecture Framework (DoDAF) [Dep10] for the military
domain or the Federal Enterprise Architecture Framework (FEAF) [Exe12] for US federal
agencies and other governmental agencies. The frameworks differ widely regarding their
concepts but also their coverage [BBJ+11]. In current practice they are often only used as
starting point and further adapted to the individual needs of the organization according
to the specific stakeholder needs [BBJ+11,AKRS08]. It is obvious that this variety can
easily lead to problems, when applying techniques that aim to capture the information
from enterprise models. Existing analysis and modeling approaches also rely on a specific
meta model [KA09], an adaption of them to a specific EA model requires high effort.

Challenge 2: Different meta models

The second challenge is to provide analysis techniques with a widespread use,
since the EA domain is characterized by a large variety of meta models. The
overarching commonalities of the different meta models should be utilized to
provide a solid foundation for further processing. It is important that such an
approach also retains the specifics of each meta model, while decreasing the
adaption effort to a minimum. Additionally, such a foundation should provide
enough structure to enable stakeholder-specific analyses of the model.

1.1.2 Understand the architecture model

The decision-making process within EAM is supported with EA analyses [JLNS07a]. The
results, for example metrics or views, are important to understand the architecture and
its weak points. The analysis activities during EAM are unforeseeable, since they are
not known in detail at the beginning [NSV15]. Changing business or IT requirements as
well as strategic changes trigger changes in the analysis necessities. For example, a new
strategy will lead to new goals for business as well as IT. Goals are often monitored using
Key Performance Indicators (KPIs), thus, changing the goals requires an adaption of the
KPIs. Additionally, generated analysis results provide new information which influences
the future proceeding. For example, if a severe impact is calculated for a technology
change, the architect wants to analyze the impact in detail.
Visualization and analysis of EA models cannot be done manually [Lan12]. To master the
complexity of EA models an automated analysis of them is required. Additionally, they
have to serve a large diversity of different requirements. The various different stakeholders
like business architects, IT architects, enterprise architects but also management roles
like Chief Executive Officer (CEO) and Chief Technology Officer (CTO), have different
requirements when assessing the EA model. To ensure a high acceptance of the EAM
initiative all different information demands have to be considered. CEOs and CTOs are
more interested in quantitative measures to determine the current goal fulfillment and in
high-level overviews. Business and IT architects have a high interest in detailed context
views of their responsible business process or IT system to understand the dependencies.

6

1.1. Problem and Challenges

Challenge 3: Varying and changing analysis needs

Challenge three demands for an automated and flexible analysis approach that
is able to deal with the various different requirements of the stakeholders as well
as with the high amount of different EA meta models. It is important that the
stakeholder itself can make adaptions and configure the analysis according to
his current needs in an easy way.

EA models are typically very large and complex models and created by using different,
often disconnected modeling languages [NSV15]. Current trends like microservices increase
their complexity and enhance the need for proper analysis support. In related work a
plethora of different EA analysis approaches can be found. The approaches fulfill various
different goals and use a wide selection of techniques to reach them [RLB17]. Each analysis
approach typically serves a specific use case and incorporates a specific implementation.
Its adaption to other use cases or its use within different EA models is a complex task and
makes reuse difficult.
Current approaches that try to cover different analysis types are rare. The majority of
the approaches are isolated ones that cannot be related to each other. A uniform interface
to the different EA analyses is missing. Only a few approaches (e.g. [KA09]) deal with
the indirect relationships in EA models. [SKR13a] addresses EA analysis using ontologies.
Several approaches utilize probabilistic techniques (e.g. [NSJ+08, FFJ09]). But none of
these approaches is able to cover the various different goals that are addressed by EA
analyses. Within current approaches only little attention is spent to recursive analysis
definitions, cyclic dependencies as well as incomplete models.

Challenge 4: Different analysis approaches

Challenge four describes the necessity to integrate different analysis approaches
into one unified approach [NSV14,BMS09,JNL07]. Such an integrated analysis
support has to include comparisons of different architecture states or scenarios,
impact analyses of changes or failures and also the quantitative assessment of
the model [Lan12]. This enables the combination of different approaches in
order to receive more expressive analyses, as proposed by [NSV15]. Such a
unified approach eases the development of a common analysis catalog as
proposed by [LJW+16].

1.1.3 Assess the architecture model

A major use case for EA models is their utilization for planning and optimizing of the IT
landscape and its business support. Through merger and acquisitions and the long-term
growing IT landscapes, today’s enterprise architectures are characterized by redundant
IT support and a large heterogeneity. The overall goal is to retrieve a redundancy free,
homogeneous, integrated and consistent architecture [Nie06]. Therefore, weak points have
to be identified to determine optimization potentials and planning scenarios. Thereby, a
major problem is the large amount of information provided by the EA models [ACS15].
Only a subset of this information is required for answering the current questions. It is
important to identify the relevant subset, i.e. part of the architecture, and provide them,
enhanced with further information from analyses, to the architects.

7

Chapter 1. Introduction

While implementing a desired target architecture, organizations are faced with new busi-
ness and technology demands [The18]. Demands can be driven by new technologies and
trends, the need for cost reduction or the integration of standards. A current example
is microservice architectures which require new built, deployment and monitoring proce-
dures.
Sources for business-driven demands are for example new business developments, new
innovations and strategy changes. Additionally, the execution of legal regulations like Basel
IV for the financial sector or merger and acquisitions lead to changes in the architecture.
Such changes do not necessarily conform to the architectural strategy, i.e. the specified
principles and goals. The resulting phenomena of a moving target is known problem within
EA planning [Nie06,AGSW09]. Planning scenarios have to be integrated within the current
EA strategy, i.e. to plan and execute them in an EA compliant way [Nie06,FB08,ASML12].
Scientific approaches to evaluate the fitness of those scenarios have several weak points
[ACS15]. They are not widely adopted in current practice, often because of insufficient
data quality but also because practical approaches, especially for comparisons, are missing
[NFT+17]. Only if a scenario follows the defined strategy, the benefits from the EA
initiative and the desired target architecture will be reached.

Challenge 5: Stakeholder-specific views and evaluations

Challenge five addresses the importance of providing the relevant information
for the different arising questions from the stakeholders [ACS15]. Due to the
importance and complexity of the IT landscapes a systematic approach is
required to identify weak points and to evaluate planning scenarios. Adequate
evaluation possibilities are required to decide about the fitness and conformance
of a planning scenario regarding the current strategy [ACS15]. For an effective
use of the available resources, the identification of weak points using quality
attributes of the architecture like heterogeneity, goal fulfillment or
non-redundancy is important.

8

1.2. Objectives, Approach and Contributions

1.2 Objectives, Approach and Contributions

In the following we present the four major objectives we want to address within this thesis.
The objectives are defined in response to the presented problems and challenges in the
previous section.

1.2.1 Generic representation

Creating an EA model requires much effort. Thus, it is important to use the already
captured information for planning purposes and decision-making (challenge 1). Within
challenge 2 we examined the large variety of EA meta models that are used in current
practice. To address both challenges, we define the following first research objective.

Objective 1 Enable a generic representation of the various different EA meta models
that enables later analysis execution. Additionally, provide support for the integration of
models from different information sources.

Approach For the creation of such a generic representation we will, in a first step, ex-
amine existing EA frameworks and meta description languages to extract commonalities
between them. Additionally, we identify requirements that should be met for later analysis
execution. Based on this information a generic representation is developed.

Contribution As result we provide the Generic Meta Model (GMM) which can be used
for the representation of EA models, independently from the utilized meta model or tool.
The GMM provides enough structure to be used within later analyses. Additionally, the
developed import concept enables a fast integration of existing sources into the GMM.

1.2.2 Generic architecture analysis framework

Understanding the enterprise architecture is essential for an effective decision-making. EA
analyses are an important mean to evaluate the architecture and provide the stakeholder
with the relevant information. It is essential to consider the large variety of different EA
meta models (challenge 2) in order to provide a solution that can be generally applied.
Challenge 3 describes the large variety of requirements of the stakeholders as well as their
variation over time. This requires a customization of the analyses to be able to fulfill
the changing needs of the stakeholders. There exist several analysis approaches for EA
that support different goals and provide different types of information. A major challenge
is their integration into a single analysis framework. This would enable more powerful
analyses and the user will be able to fulfill his information demands. These issues lead us
to the second research objective:

Objective 2 Provide a generic architecture analysis framework that is independent from
the utilized EA meta model. The framework should provide a unified interface to different
analysis approaches addressing different goals and enable customization of the analyses by
the user.

9

Chapter 1. Introduction

Approach To fulfill this objective, we first analyze current EA literature and identify the
different analysis types. The different types are categorized according to their functional
and technical dimensions and typical characteristics for each dimension are derived. Based
on these results, we develop an EA analysis definition language. The language allows the
architect to define and customize analyses, while abstracting from the technical details.
Examples for supported analyses are the determination of performance indicators or views.
To execute the specified analysis definitions, an executor transforms them into processable
rules. In order to support a broad spectrum of EA analyses a combination of SPARQL
(short for SPARQL Protocol And RDF Query Language), a query language for RDF data,
and a data-flow based approach is used for the execution. For data representation and
as foundation for the analysis definition language, the generic meta model (objective 1) is
utilized to enable the generic application of the framework.

Contribution The design artifacts for this objective are a declarative EA analysis defini-
tion language for the specification and customization of analyses and an analysis framework
that enables the execution of those analysis definitions. The analysis language also sup-
ports the definition of generic analysis templates to support reuse. The overall definition
and execution of the analyses is independent from the used tool and meta model in a
specific scenario.

1.2.3 Employ framework for architecture assessment

For proper decision-making support it is essential to provide the required information
within an architecture assessment as described in challenge 5. Otherwise the stakeholder
will be flooded with information and it is hard for him to extract the important one.
We will assess this issue of providing the relevant information within two use cases. The
first one addresses the evaluation of the conformance of planning scenarios to the current
goals and strategy during EA planning. The second one deals with the identification of
weak points in the architecture in order to support its optimization. The third research
objective regarding the architecture assessment comprises:

Objective 3 Provide a method and the required analysis templates to validate the con-
formance of planning scenarios. Moreover, provide a method and analysis templates for
the identification of weak points within an enterprise architecture.

Approach For the development of the methods we first analyze current literature about
EA planning and weak points and extract the common method blocks for the respective
assessment. Based on these results we identify automation potential within the blocks
and develop a (semi-) automated analysis approach. The required analysis templates are
defined using the previously mentioned analysis framework. It provides the possibilities
to perform different kinds of adaptable analyses as well as it is independent from the EA
meta model used in an organization.

Contribution As contribution two practicable methods for architecture assessment are
developed. A method supporting the evaluation of conformance of planning scenarios
with the current strategy and a method for the identification of weak points within an

10

1.2. Objectives, Approach and Contributions

architecture. The analysis support for these methods is provided with flexible analysis
templates that enable their reuse and adaption to existing EA approaches.

1.2.4 Evaluate the methods and the framework

To verify the goal achievement an evaluation of the created artifacts is required. Thereby,
it is important to ensure the applicability and usefulness of the proposed contributions.
This is addressed within the forth objective:

Objective 4 Provide a scenario-based evaluation of the analysis language and execution
framework and apply the developed methods within several case studies.

Approach The analysis language and the execution framework are evaluated towards its
desired characteristics of being an integrated, applicable and generic approach towards EA
analysis. Therefore, its completeness regarding supported analysis types is discussed. The
generic applicability and the coverage are evaluated through a scenario-based implemen-
tation of different analyses using three different EA models. The applicability is shown
through the implementation of the two proposed methods using this framework and their
application in three additional case studies. This application is used to show the flexibil-
ity and adaptability of the approach as well as the usefulness of the provided results for
decision-making.

Contribution As outcome the practicability of the proposed methods for architecture as-
sessment and the configurability of the provided analysis execution framework is shown in
different use cases. Regarding the analysis framework its generic applicability is proved.
Therefore, several analysis scenarios are defined and implemented with the framework.
Finally, the fulfillment of the design goals for the analysis framework are discussed.

Figure 1.2 provides a summary of the objectives of this thesis and their addressed chal-
lenges as described in this section.

11

Chapter 1. Introduction

Figure 1.2: Objectives of this thesis with their addressed challenges.

12

1.3. Research Methodology

1.3 Research Methodology

The artifacts of this thesis, described in the contributions of the previous section, are
developed according to the design science research framework proposed by [HMPR04].
Figure 1.3 summarizes the application of this framework to our research goals.

Figure 1.3: Research framework for this thesis according to [HMPR04].

Today’s organizations are faced with the problems of high complexity and heterogeneity
when regarding the IT landscapes. Trends like microservices and digital transformation
foster the need for an effective management of the IT support to ensure their competitive-
ness. Enterprise architecture models and respective analyses are established to support
decision-making in this context [JLNS07a]. Comprehensive analysis support is relevant
in order to understand the organizational and IT structures. Therefore, the available
information in the established EA models is processed to effectively support the various
different stakeholders with their information demands. Several authors state the need
for an integrated approach towards EA analysis [NSV14,BMS09, JNL07] and to address
the missing applicability of existing planning approaches [NFT+17]. The plethora of dif-
ferent frameworks for enterprise architecture shows the necessity for providing a generic
applicable method.
Rigor is achieved through an extensive review of existing methods for Enterprise Architec-
ture Management including planning methods. Additionally, the existing instantiations
of architecture analysis approaches for EAM are considered, for the later development of
the proposed artifacts. The utilized methodologies data-flow analysis and semantic web
are well-proven techniques for analysis execution.
Artifact construction and evaluation is done in an iterative process to make use of the
feedback and insights provided during evaluation. Therewith the quality of the final
artifacts can be improved and ensured. The major artifacts are an instantiation of the
framework for analysis definition and execution, the meta model for generic representation
of EA models and finally the two developed methods for architecture assessment. One
for the identification of weak points and one for evaluating the conformance of planning
scenarios.
For evaluation purposes the framework is implemented and applied within the two pro-
posed methods. Therefore, different case studies are used to show the relevance of the
proposed methods for decision-making and the generic applicability of the implemented

13

Chapter 1. Introduction

framework. Additionally, a scenario-based evaluation is employed to ensure the quality
of the artifacts and a comparison with current approaches from the literature is used to
show its coverage.
The results of our research are presented within technology-oriented as well as business-
oriented workshops and conferences to enable further research and extend the knowledge
base.

14

1.4. Publications

1.4 Publications

Parts of this thesis were previously published in several publications:

1. Langermeier M., Bauer B. [LB18a]: A model-based method for the evaluation of
project proposal compliance within EA planning. In: 2018 IEEE 22nd International
Enterprise Distributed Object Computing Workshop.

In this paper the authors propose a tool-supported method for EA planning to eval-
uate the project compliance based on established models. The developed method
addresses objective 3 of this thesis. Thereby, different analyses are used to sup-
port the architect during project planning. Foundation of the method is the generic
analysis architecture execution environment proposed in [LB17] that provides the
required flexibility to adapt to different needs and meta models. The author of this
thesis is the main contributor to the developed method. The results of this work
are presented in chapter 6 and the presented case study is used for evaluation in
chapter 8.

2. Engel T., Langermeier M., Bauer B., Hofmann A. [ELBH18] Evaluation of Microser-
vice Architectures: A Metric and Tool-Based Approach. In: CAiSE 2018: Informa-
tion Systems in the Big Data Era, LNBIP 317, Springer.

In this work the authors propose an evaluation approach for microservice architec-
tures based on identified architecture principles from research and practice. These
are for example the small size of the services, domain-driven design or loose coupling.
Based on a study showing the challenges in current microservice architectures, prin-
ciples and metrics for the evaluation of the architecture design are derived. The
metrics are used within the weak point identification in chapter 7. The required
architecture data is captured with reverse engineering approaches from traces of
communication data. The case study from this paper is used for evaluation in chap-
ter 8. The paper presents the results of a master thesis the author of this thesis
supervised.

3. Langermeier M., Bauer B. [LB18b]: Evaluating Project Compliance during EA Plan-
ning: A model-based semi-automatic method for Enterprise Architecture Planning.
In: 40th International Conference on Software Engineering Companion (ICSE ’18
Companion). ACM.

This paper provides a short version of the results presented in [LB18a], where the
authors propose a model-based and tool-supported method for EA planning and in
specific for the evaluation of project compliance.

4. Langermeier M., Bauer B. [LB17] Generic EA Analysis Framework for the defini-
tion and automatic execution of analyses. In: Proceedings of the 19th International
Conference on Enterprise Information Systems (ICEIS 2017).

In this work the authors develop a language for the definition of EA analyses as
well as an execution environment for their evaluation. Therefore, existing EA ap-
proaches within literature are studied and a common interface to analysis activities
is established by providing a domain-specific language. To cope with the high variety
of meta models in the EA domain, the framework enables a meta model independent

15

Chapter 1. Introduction

access to analysis activities. The major part of this framework was developed by the
author of this thesis. The proposed framework is described in detail in chapter 5,
the developed analysis language in chapter 4.

5. Rauscher J., Langermeier M., Bauer B. [RLB17]: Classification and Definition of
an Enterprise Architecture Analyses Language. In: Business Modeling and Software
Design, 6th Int. Symposium, BMSD 2016, LNBIP 275, Springer.

In this work the authors examine the different EA analysis approaches according
to their characteristics and requirements. For that purpose, they design a generic
analysis language which can be used for their description. In order to manage the
numerous approaches from literature they develop a categorization. The categories
are created based on the goals, constructs and kind of results. They propose a two-
dimensional classification into functional and technical categories. The goal is to
provide a common description for EA analyses for an easy access to their goals and
execution requirements. The paper is an extended version of [RLB16]. The author
of this thesis was the supervisor of the corresponding master thesis for this paper.
The results of this work are used to ensure the completeness of the proposed analysis
framework during evaluation (chapter 8).

6. Rauscher J., Langermeier M., Bauer B. [RLB16]: Characteristics of Enterprise Ar-
chitecture Analyses In: Proceedings of the Sixth International Symposium on Busi-
ness Modeling and Software Design (BMSD 2016).

This paper is the short version of [RLB17], where the authors analyzed current
literature about EA analyses and propose a two-dimensional classification approach
for them.

7. Osenberg M., Langermeier M., Bauer B. [OLB15]: Using Semantic Web Technologies
for Enterprise Architecture Analysis In: ESWC 2015: The Semantic Web. Latest
Advances and New Domains, LNCS 9088, Springer.

In this paper the authors propose the use of semantic web technologies in order
to represent the EA and perform analyses. They present an approach how to trans-
form an existing EA model into an ontology. Using this knowledge base, simple
questions can be answered with the query language SPARQL. The major benefits of
semantic web technologies can be found when defining and applying more complex
analyses. Change impact analysis is important to estimate the effects and costs of a
change to an EA model element. To show the benefits of semantic web technologies
for EA, we implemented an approach to change impact analysis and executed it
within a case study. This paper presents the results of a master thesis the author of
this thesis supervised. The results provided in this paper are used during the devel-
opment of the generic meta model for EA and the model storage strategy (chapter 3
and section 5.3).

8. Langermeier M., Saad C., Bauer B. [LSB14a] Adaptive approach for impact analysis
in enterprise architectures. In: Business Modeling and Software Design, LNBIP 220,
Springer.

In this paper the authors propose a generic, context-sensitive approach to the im-
plementation of impact analysis. Impact analysis determines the effects of changes

16

1.4. Publications

or failures on other architectural elements. The proposed method relies on the tech-
nique of data-flow analysis to propagate the effects through the model. Since the
analysis specification only relies on a set of relationship classes, it can be easily
adapted to the needs of organization-specific EA meta models by providing custom
mappings for the respective types. The author of this thesis developed the classifi-
cation concept for the relationships and the functional logic of the required change
propagation rules. The classification concept is integrated in the generic meta model
approach of this thesis presented in chapter 3 and the impact analysis as part of the
analysis framework is described in section 4.3 and 5.5.

9. Langermeier M., Saad C., Bauer B. [LSB14b]: Context-Sensitive Impact Analysis for
Enterprise Architecture Management. In: Proceedings of the Fourth International
Symposium on Business Modeling and Software Design (BMSD 2014).

This paper provides a short version of the results presented in [LSB14a]. and presents
a context-sensitive approach for the implementation of impact analyses.

10. Langermeier M., Saad C., Bauer B. [LSB14c]: A unified framework for Enterprise
Architecture analysis. In: 18th IEEE International Enterprise Distributed Object
Computing Conference Workshops.

In this paper the authors propose a meta model independent framework for the
analysis of architecture models. Based on a generic representation of architectural
data, they employ a data-flow based analysis approach to enable a context-sensitive
evaluation of organization specific measures. The generic applicability of this frame-
work is demonstrated through a re-implementation of three different analyses ap-
proaches from related work. The author of this paper developed the transformation
concept for EA models into the internal representation and the specification of the
rules for re-implementation of existing analysis approaches. An extended version of
the proposed concept in this work is presented as generic meta model in chapter 3.
The analysis techniques used for analysis execution is integrated into the analysis
framework in chapter 5.

11. Lautenbacher F., Diefenthaler D., Langermeier M., Mykhashchuk M., Bauer B.
[LDL+13] Planning Support for Enterprise Changes. In: The Practice of Enter-
prise Modeling, LNBIP 165, Springer.

In this work the authors want to improve the current manual creation of the trans-
formation paths in enterprise architecture planning by providing possible and sound
sequences of actions as part of a road map from the current to a desired target
architecture. Therefore, they present a solution that supports the enterprise archi-
tect with proposals for a transformation path from the current to the target state
considering also dependencies during the enterprise transformation. This includes
an identification of successor relationships between different architectural states and
if necessary the architecture can be divided into smaller segments. The author of
this thesis participated especially in the segmentation analysis and the identification
of successor relationships. Both results are used for the provisioning of different
analysis types within the analysis framework in chapter 5.

12. ChenW., Hess C., Langermeier M., Stülpnagel J., Diefenthaler P. [CHL+13]: Seman-
tic Enterprise Architecture Management In: Proceedings of the 15th International

17

Chapter 1. Introduction

Conference on Enterprise Information Systems (ICEIS 2013).

The authors propose in this paper the use of semantic technologies for integrating
heterogeneous EAM relevant information sources. They define a process for build-
ing an EA repository that uses linked data within an enterprise. Thereby, existing
enterprise data sets are exposed as ontologies and linked into the enterprise archi-
tecture. The approach is demonstrated by linking EA documentation (according to
TOGAF), business process models (in BPMN) and aspects on services (according
to the SOA ontology) with each other. The author of this thesis participated in
developing the ontologies and the mapping method. Experiences from this work
influenced the approach for integrating and representing the architectural models
within this thesis, presented mainly in chapter 3.

18

1.5. Outline of this Thesis

1.5 Outline of this Thesis

The structure of this thesis is summarized in figure 1.4.

Figure 1.4: Outline of this thesis.

Chapter 1 This thesis started with a description of the problems within the enterprise
architecture domain and the current challenges while addressing them. In the following
the three research objectives of this thesis were presented together with the approach and
main contributions to address them.

Chapter 2 In the next chapter the foundations for the subsequent work are introduced.
This encompasses the domain of Enterprise Architectures with its processes, analyses
and planning methods as well as the basics of data-flow-based analysis and semantic web
technologies.

Chapter 3 In chapter 3 one part of the main contribution addressing objective 1 is
described. We introduce the generic approach for representing Enterprise Architecture
models and propose techniques to capture the required data for its construction.

Chapter 4 This chapter focuses on the different analysis approaches used for an EA
assessment. To provide a universal interface to the analysis activities a domain specific
language is developed. This language enables the definition of the analyses from a func-
tional perspective. The description of the supported analyses is illustrated with a running
example.

19

Chapter 1. Introduction

Chapter 5 In chapter 5 the architecture analysis framework for performing EA analyses
is proposed. It builds upon the results of chapter 3 (generic meta model) and chapter 4
(analysis definition language). The execution strategies for the different analyses are
described as well as details for model storage and analysis definition.

Chapter 6 In chapter 6 the method for the identification of weak points is presented.
The method encompasses the activities that have to be done and describes how they can
be supported by the analysis execution environment presented in chapter 5.

Chapter 7 This chapter describes a practicable approach for EA planning, in specific
for evaluating the conformance of planning scenarios with the current strategy. Based on
common method blocks within current EA planning approaches, tool support is developed
by utilizing the proposed analysis framework.

Chapter 8 Chapter 8 comprises the implementation of the analysis framework and the
evaluation of the contributions from the previous chapters. The analysis framework with
the analysis language is evaluated within different scenarios. The two proposed meth-
ods, weak point identification and EA planning, are applied within different case studies.
Finally, a discussion of the results is given.

Chapter 9 A summary of this thesis is provided in chapter 9. This includes a short
description of the main contributions of this thesis and concludes with an outlook for
future work.

20

2
Foundations

21

Chapter 2. Foundations

2.1 Enterprise Architecture

According to the ISO/IEC/IEEE 42010:2011 the term architecture is defined as the

“fundamental concepts or properties of a system in its environment embodied in
its elements, relationships, and in the principles of its design and
evolution” [ISO11b].

The term enterprise can be understood as collection of organizations that have common
goals [The18,Lan12]. Examples of an enterprise are a whole corporation or only a part of
it, a government agency or department but also partnerships or alliances that are work-
ing together [The18]. Just like buildings every enterprise has an inherent architecture.
This enterprise architecture covers the business and operating model, the organizational
structure, business processes, data, applications and the IT infrastructure of the organi-
zation as well as the design rules for their future development. [ASML12,Lan12,WF06].
Enterprise Architecture (EA) is an approach for managing and planning the information
systems of an enterprise. Tools and methods are provided to support decision-making in
this context [JJ05].
The EA provides a multi-layer representation of the organization [WF06]. The different
layers depend on each other according to the align-enable principle (see figure 2.1). The

Figure 2.1: Core layers of an enterprise architecture according to [The17].

lower layers enable the functions of the higher ones, whereas the higher ones coordinate the
lower ones [Krc05]. There is no common agreement on a specific set of layers [ASML12].
ArchiMate [The17], a modeling language for enterprise architectures proposed by The
Open Group, distinguishes three core layers: the business layer, the application layer and
the technology layer. In the business layers the processes, services and products that are
realized within and provided by the organization are described. The application layer
describes the application components and services that are required for the provisioning
of the business elements. Finally, the technology layer focuses on the hard- and soft-
ware components required for processing and for communication between the application
components. Additional layers can be used to describe the strategy, physical objects or
implementation and migration planning [The17].
In [WF06] the authors identify essential elements of an EA from a business-related per-
spective. They conclude with five layers: Business and also strategy elements are described
in a business and process architecture. The information systems and respective software

22

2.1. Enterprise Architecture

artifacts are described in the integration and software architecture. Finally, the technology
architecture describes the computing and communication hardware as well as networks.
The enterprise architecture contains only the aggregated artifacts of each layer, e.g. the
application systems itself. The details, for example a component diagram describing the
software architecture of this system, can be found in specialized architectures for each layer.
Only the top-level abstraction is used within in the enterprise architecture. [WF06]
In addition, Enterprise Architecture Management (EAM) describes the respective man-
agement discipline which

“maintains and uses a coherent set of guidelines, architecture principles and
governance regimes that provide direction for and practical help with the design
and development of an enterprise’s architecture in order to achieve its vision
and strategy” [ASML12].

Therefore, the discipline uses the documented models of the current and target architecture
and supports their future development, their realization and the operation of the business
and IT [ASML12,Han13]. Thus, EAM is a mean for incorporating changes throughout
the whole organization as well as for driving optimizations of the architecture, especially
the alignment of business and IT.
With EAM a redundancy free, homogeneous, integrated and consistent architecture should
be developed. This architecture conforms to the enterprise’s strategy and goals [Nie06].
Despite improving the quality of the organizational structures and Business-IT-Alignment,
EAM provides several benefits: It provides a common knowledge base which is used to
improve decision-making [LJJ+06]. It enables enterprises to respond quickly to new de-
mands [LJJ+06] and it reduces the risk and complexity within projects [FB08].
In the following processes and frameworks are presented and the three main activities
document, analyze and plan are considered in detail.

2.1.1 Processes and frameworks

There are several publications from science and practice that describe processes or frame-
works for EAM. An architecture framework describes “conventions, principles and prac-
tices for the description of architectures” [ISO11b]. A framework is always developed for
a specific domain or community. Examples for well-known frameworks are the Zachmann
Framework [Zac87] and TOGAF [The18]. Additionally, there exists framework for the mil-
itary domain like the Department of Defense Architecture Framework (DoDAF) [Dep10],
the Ministry of Defense Architectural Framework (MODAF) [Min12] and the NATO Ar-
chitecture Framework (NAF) [Arc18]. These three frameworks rely on each other and
have very similar concepts [Obj13]. The described concepts are not only applicable for
the military domain but also in the business and public service domain [Obj13]. Ad-
ditionally, the Federal Enterprise Architecture Framework (FEAF) is a framework spe-
cific for governmental organizations [Exe12]. Further propositions for frameworks from
the industry are the Quasar framework [EHH+08] or the Integrated Architecture Frame-
work (IAF) [vWWH+11].
The Zachmann Framework provides a 6x6-cell matrix that enables the representation of
an architecture from various different views. The proposed layers differ between the Ex-
ecutive Perspective, the Business Management Perspective, the Architect Perspective, the

23

Chapter 2. Foundations

Engineer Perspective, the Technician Perspective and the Enterprise Perspective. Addi-
tionally, for each layer six different dimensions further distinguish between the What, How,
Where, Who, When and Why. The Zachmann Framework provides no details for the im-
plementation process or suggests specific modeling approaches or tools. The concepts of
the Zachman Framework are also used in frameworks like FEAF, DoDAF and The Open
Group Architecture Framework (TOGAF). [Zac87,Zac08]
TOGAF (The Open Group Architecture Framework) is an industry standard provided
by The Open Group [The18]. The framework is the most known one [The19]. Within
the standard the Architecture Development Method (ADM) is proposed. Additionally,
guidelines and techniques for its application and an Architecture Content Framework,
describing a meta model and the relevant artifacts, are presented. Two further parts of
the standard deal with tools to categorize and store the results of the architecture activity
and they discuss the relevant organizational structure, processes and skills in order to
establish and operate an architecture initiative.

Figure 2.2: Method for the enterprise architecture development (TOGAF ADM) [The18].

The TOGAF ADM provides an iterative process for the definition and realization of an en-
terprise architecture, aligned with the principles and goals of the enterprise. The process
is comprised of nine phases and the ongoing Requirements Management activity. Sec-

24

2.1. Enterprise Architecture

Table 2.1: Phases within the iterative process of the TOGAF ADM [The18].

Phase Description
Phase A: Architecture Vision Identification of Stakeholders and requirements,

definition of the scope, development of a vision
Phase B: Business Architecture Development of baseline and target business archi-

tecture description, identify gaps and impacts
Phase C: Information Systems

Architecture
Development of baseline and target data and appli-
cation architecture description, identify gaps and
impacts

Phase D: Technology Architec-
ture

Development of the baseline and target technology
architecture, identify gaps and impacts

Phase E: Opportunities and Definition of the architecture road map and transi-
Solutions tion architectures

Phase F: Migration Planning Creation of an implementation and migration plan
with project and portfolio breakdown

Phase G: Implementation Gov-
ernance

Ensure conformance of projects with the target ar-
chitecture

Phase H: Architecture Change
Management

Monitoring and managing of change requests and
risk management

tion 2.1.1 provides an overview of the phases as well as the detailed steps for phase D,
Technology Architecture. For each phase the standard specifies the objectives, inputs and
relevant steps to create the desired outputs. Beforehand in the Preliminary Phase the
Architecture Capability within the organization is established. This includes for example
the definition of the team and the specification of governance structures and architecture
principles. The following phases A-H are described in table 2.1.
The outputs of Phase C and D are developed according to the Business Architecture and
Architecture Vision defined in the earlier phases. Thus, the alignment of business and
IT can be ensured. In parallel to all phases the Requirement Management takes place.
Thereby, the requirements are captured, monitored and prioritized. This activity ensures
that the relevant requirement specifications are available in the steps.
According to [ASML12] the EAM process integrates three different but interrelated cy-
cles. The Strategic planning cycle starts with an analysis of the current situation and
its documentation and concludes with a road map and project portfolio to develop the
target architecture. Initiating a project, triggers the Project life cycle that deals with the
set-up, design, implementation and roll-out of a concrete project. Finally, in the Opera-
tion and monitoring cycle the EA is monitored and changes are collected, assessed and
implemented. During monitoring, essential information for the architecture evaluation is
collected and provides feedback for the strategic planning.
[Nie06] summarizes the main activities for development and use of EA with the steps
document, analyze, plan, act and check (see figure 2.3). Within the document phase the
current state of the EA is captured and the respective model is created. In the phase
analyze, analyses are used to determine weaknesses of the current EA model and to create
visualizations. Within the planning step, scenarios are developed that represent possible
target architectures. These scenarios are further evaluated in terms of risks, costs and
their impact on the IT goals. Act comprises the implementation of the developed plan in

25

Chapter 2. Foundations

2.9 Enterprise Architecture in an IT Management Framework

41

Klaus D. Niemann, From Enterprise Architecture to IT Governance, ISBN 3-528-05856-0

All Rights reserved. Friedr. Vieweg & Sohn Verlag / GWV Fachverlage GmbH, 2005

EA gives the IT management processes the necessary orientation.
It helps to determine position, course and reliable course de-
tours. In the following chapters we will take a look at the proc-
esses involved in the development and use of EA. Figure 2-13
below offers an overview of these processes:

Document! Analyze! Plan! Act! Check!

Develop
Scenarios
Develop
Scenarios

Evaluate
Scenarios
Evaluate
Scenarios

Analyze
Gaps
Analyze
Gaps

Develop
Plan
Develop
Plan

Define
Model
Define
Model

Implement
Model
Implement
Model

Populate
Model
Populate
Model

Analyze
Model
Analyze
Model

Visualize
Model
Visualize
Model

Develop
Reference
Architecture

Develop
Reference
Architecture

Check
Architectural
Drafts

Check
Architectural
Drafts

Implement
Architectural
Drafts

Implement
Architectural
Drafts

Define
KPIs
Define
KPIs

Evaluate
KPIs
Evaluate
KPIs

Figure 2-13: EA Development

Figure 2.3: EA development processes according to [Nie06].

the previous step. The ongoing check activity ensures the progress of the evolution using
performance indicators and Key Performance Indicators (KPIs).
In the following three chapters, the steps document, analyze and plan of the EAM cycle
proposed by [Nie06] are considered in detail.

2.1.2 EA documentation

The aggregated structures of the organizations are captured in EA models and used for
documentation, analysis and planning [AGSW09]. The term enterprise architecture de-
scribes the actual architecture of the real-world enterprise, the enterprise architecture
model describes its documentation in terms of plans or models [ASML12]. The mod-
els are used to document the organization, its components and the relationship between
those. Thus, they provide a mean to capture and understand the complex dependencies
between the business and the supporting IT infrastructure [Lan12]. During EA documen-
tation the current EA model is created (also named as-is model). This modeling task
is preliminary for all ongoing activities especially for describing and understanding the
EA [KAV05]. Models are also used to capture a desired target state of the EA (also
named to-be model) [ASML12,AKRS08].
To manage the complexity of the typically very large EA models, views are established.
A view describes the architecture (or a part of it) according to the concerns of a specific
stakeholder [ISO11b]. Views for an EA can be layer-specific but also covering several
layers [WF06]. ArchiMate proposes several viewpoints for typical stakeholder concerns.
For example, the process architect is interested in the dependencies between business pro-
cesses as well as their consistency, completeness and the responsibilities. The Business
Process Cooperation Viewpoint serves these requirements, while focusing on the business
processes, their required application systems, their provided services and involved actors.
In contrast the Application Structure Viewpoint provides relevant information to the ap-
plication architects regarding the applications with their sub components, their interfaces
as well as communication and data dependencies. [The13]. The relevant concepts within
this viewpoint are shown in figure 2.4.
Despite viewpoints, the concept of domain architectures is used within EA in order pro-
vide an architecture artifact with limited scope [BvSF+10]. Domain architectures can be
created for major business processes, information systems or functional areas of an orga-
nization [Pul06, PH05]. In [BvSF+10] domain architectures act on an intermediate level
between enterprise architectures and solution architectures. They provide a reduced scope
and thus enable a stakeholder specific depiction of the architecture.

26

2.1. Enterprise Architecture

Figure 2.4: Application Structure Viewpoint [The13].

According to [BvSF+10] a domain is defined as an area that is of specific interest for a
stakeholder in terms of relevance and/or ownership. It is important that all aspects that
are required for the work of this stakeholder are captured by the domain. Domain ar-
chitectures are not necessarily disjunct from each other. Viewpoints as proposed above
can be used as foundation for the creation of domain architectures [BvSF+10]. For exam-
ple, an application owner is only interested in the structure of his application component.
Whereas the viewpoint presents all applications with their structure, within the domain
architecture the scope of the viewpoint is set according to the specific application of the
owner.
Enterprise architecture models can be informally described with text documents or draw-
ings, often created with Microsoft Visio or Power Point, but also simply drawn on paper
[ASML12]. These approaches cannot ensure the consistency between the elements [BW05].
Tabular representations are also used to store the EA information, often realized with Mi-
crosoft Excel, but are also still limited regarding view generation and analysis functionality.
Specialized EA tools utilize a repository to store the EA artifacts to ensure the consis-
tency [ASML12, BW05]. Additionally, they provide functionality to create reports and
visualizations.
There are several relevant sources to create an enterprise architecture model. An im-
portant source is the implicit knowledge of the employees e.g. architects and project
managers [RHF+13]. This knowledge can be captured with interviews, questionnaires
or workshops and the identified data has to be captured manually. Most of the EA
tools provide interfaces to import data from other applications via Structured Query Lan-
guage (SQL) loaders or Comma-separated Values (CSV) importers. Relevant applications
are configuration management databases, process management tools and project manage-
ment tools [RHF+13]. Finally, relevant information can be retrieved from existing Excel
files or databases.
The creation of an EA model is a very time and cost consuming task [HBLE14,KAV05,
RHF+13]. And once the model is created, the actuality of the data is a major problem,
organizations are faced with [RHF+13]. Recent approaches address this challenge while
integrating monitoring data [FAB+11], data from network scanners [HBLE14] or data
provided by an enterprise service bus [BHS+12] within the model.

Meta models for documentation

An EAmodel is documented using an organization specific set of concepts and relationships
between those. The modeling concepts that are used to describe the models are defined in
a meta model [KW07]. It is important to develop the meta model for an EA according to
the needs of the stakeholders [KW07]. Current literature provides several different meta
models for enterprise architectures (e.g. [The18,Dep10]). Additionally, the tools for EAM

27

Chapter 2. Foundations

often propose their own meta model (for example iteraplan [ite19] or leanIX [Lea19]).
There exists no common standard and typically an organization chooses an existing one
as starting point. The meta model has then to be adapted to the special needs of the
organization [AKRS08].
In [AKRS08,KW07] a stakeholder-oriented method for meta model development is pro-
posed. Based on identified requirements, several meta model fragments are developed and
finally integrated into one meta model. A similar approach is proposed in [BEL+07]. The
authors propose several patterns that represent model fragments. Each pattern addresses
a specific concern. The final meta model can be created through selecting and composing
the relevant patterns for the current challenges.
ArchiMate is a well-known modeling language for enterprise architectures published by
The Open Group [The17]. The proposed meta-model of ArchiMate utilizes the concept

Figure 2.5: Full framework of ArchiMate [The17].

of service-orientation to represent the dependencies between the business, application and
technology layer. Despite providing meta models for the different layers and specifying
the interrelations between the layers, ArchiMate also proposes several viewpoints serving
the different stakeholder needs. Figure 2.5 shows the full framework of ArchiMate. The
framework describes the proposed layers in the language as well as the different aspects
addressed within the layers.
The core of the framework includes the layers business, application and technology. The
business layer describes the business services offered to the customers and their realization
by actors according to specified business processes. The application layer describes the
application services supporting the business processes as well as the applications realiz-
ing them. Finally, the technology layer describes technology services (e.g. services for
storage and communication) required by the applications but also the required computer,
computer hardware and software systems. The core framework can be further extended
to enable modeling of strategical elements, physical elements and implementation and
migration concepts.
The detailed meta model of the application layer is shown in figure 2.6. It contains ele-

28

2.1. Enterprise Architecture

ments like services, interfaces an application provides and the respective function, process
or interaction a service implements. Additionally, the data objects used within the pro-
visioning of the functionality can be described. Events and collaborations are used to
model behavioral dependencies between applications, services and functions. Elements of
the business layer make use of the described applications. Business functions and services
can be realized by application services. Additionally, the elements of the application layer
have realization and use dependencies to the elements of the technology layer.

Figure 2.6: Meta model of the application layer of ArchiMate [The17].

Despite the layers ArchiMate distinguishes between four aspects. The Active Structure
Aspects represent structural elements such as business actors and applications components
(presented on the right side of the figures 2.5 and 2.6). Behavioral elements like processes,
functions and services are represented within the Behavior Aspect (in the middle of the
figures). And elements like data or information objects belong the Passive Structure Aspect
(on the left side). These three core aspects can be extended with a Motivation Aspect.

Common concepts for EA

ArchiMate, and also other publications, identify common concepts or foundation concepts
for enterprise architecture. The top-level hierarchy used by ArchiMate relies on a Model
that consists of Concepts. These concepts can either be an element or a relationship. Ele-
ments are the fundamental components within ArchiMate. They are “used to define and
describe the constituent parts of Enterprise Architectures and their unique set of char-
acteristics” [The17]. Elements can be further distinguished between: Behavior elements,
structure elements, motivation elements and composition elements. Behavior elements are
used to describe the internal and external behavior as well as events. Structure elements
include the active as well as the passive structure elements.
Additionally, ArchiMate differentiates between four different types of relationships within
its hierarchy. The following list provides the types with the assigned relationships:

structural realization, assignment, aggregation, composition
dependency influence, access, serving
dynamic trigger, flow
other specialization, association

Despite the element and relationship hierarchies, ArchiMate also defines a generic meta

29

Chapter 2. Foundations

model (see figure 2.7). Within the meta model the main relationships that exist between
the behavior and the structure element are depicted. Additionally, every element can
have composition, aggregation, and specialization relationships to elements of the same
type. [The17]

Figure 2.7: Generic meta model provided by ArchiMate [The17].

The DoDAF Meta Model [Dep10] is built according the International Defence Enterprise
Architecture Specification (IDEAS) Foundation. Within the IDEAS Foundation top level
elements and common patterns for relationships are defined. They are used to formalize
the conceptual model which is created on a high level and in non-technical manner. Figure
2.8 presents an overview of the top level of the IDEAS Foundation. Top level elements are:
Thing, individual, type and tuple. A thing is equivalent to the object in object-oriented
models. The element type is used to provide another installation level for example to
model several installed instances of an application system. Common patterns for data
constructs that represent relationships are: Composition (whole-part), Super/sub-type,
type-instance, before/after and overlap. The first three ones are used to describe relations
according to object-oriented models. Before/after is used for time related dependencies.
Overlap is used for the exchange of things or for things that occur at overlapping times
or places. [Dep10]

Figure 2.8: Elements and data constructs of the IDEAS Foundation [Dep10].

30

2.1. Enterprise Architecture

Finally, the Generalised Enterprise Reference Architecture and Methodology (GERAM)
[IFI99] is a meta framework that describes general requirements for frameworks and tools
used to maintain and design enterprises, i.e. enterprise engineering. Therefore, the frame-
work describes components that are required in all types on enterprises. Enterprise Engi-
neering tools implement an enterprise engineering methodology and an enterprise modeling
language. These tools together with partial enterprise models are used to create enterprise
models. The models represent the design of the organization and are used for analysis and
to support the business operation. The generic concepts used within these components
are human oriented ones, process-oriented ones and technology-oriented ones.

2.1.3 EA analysis

EA models are used within a plethora of different application scenarios. Among those are
IT business alignment, project portfolio planning, business process optimization, sourcing
decision and IT service management. To utilize the EA models in these contexts, the
contained data has to be queried, summarized and interpreted with suitable analysis tech-
niques [BFKW06]. For example, during project portfolio planning, analyses support the
decision about approval or rejection of a project proposal. They are used to predict the ef-
fects of a decision and evaluate the quality of the future architecture or system [JJSU07].
Another application scenario for analysis techniques is the provisioning of a dashboard
with performance indicators to support management decisions [FHK09].
Enterprise architecture models support the architecture process only in a visual and quali-
tative way [FFJ09]. Analysis techniques provide means to quantify models, predict future
behavior and compare different alternatives. They make use of the contained information
in order to support the different scenarios. Reconsidering the EA cycle of [Nie06] with the
phases document, analyze, plan, act and control, they are an essential part in the overall
EAM process.
As discussed in [LB17] EA analyses increase the understanding of the architecture and
provide aggregated information to the management. Through an evaluation of the current
and target architecture as well as potential change scenarios, they support decision-making
and architecture evolution [SK11]. To cover the various application fields a plethora
of different EA analysis approaches can be found in literature. The approaches fulfill
various different goals and use a wide selection of techniques to reach them [RLB17]. For
the implementation of the different analysis approaches different techniques are used in
current research and practice. Existing approaches rely for example on techniques like the
Extensible Markup Language (XML) [dBBG+05] or utilize probabilistic techniques like
extended influence diagrams [JLNS07a], Bayesian networks [JJSU07] or a probabilistic
extension of the Object Constraint Language (OCL) [NBE14]. In [SKR13b] SPARQL was
proposed for analyzing an enterprise architecture.
Despite the analysis approaches within literature current EA tools provide analysis sup-
port. The analysis support is limited regarding the supported meta models and the tech-
nical analysis capabilities [NSV15]. In contrast to our understanding tool vendors often
call customization functions for visualizations also an analysis. For example, the tool
LeanIX enables interactive analysis which means activating and deactivating filter func-
tions within visualizations [Lea19]. The majority of the tools provide support for metrics.
This is realized by predefined ones, their creation with a user interface and a few tools
also provide a domain specific language for the custom creation of them [HRSM13]. Ad-

31

Chapter 2. Foundations

ditionally, EA tools provide interfaces to integrate custom analyses or directly query the
data in the storage, for example with an SQL interface (e.g. Alfabet [Sof19b]).
Currently, EA tools provide two major approaches to EA analysis: Either they are shipped
with a predefined and static meta model (e.g. iteraplan [ite19], leanIX [Lea19]). Upon
their meta model these tools typically provide several analysis techniques out of the box.
In the other case the meta model of the tool can be customized to the organization needs
(e.g. Alfabet [Sof19b]). In this case the analysis functions of a tool typically have also be
adapted which is associated with a high effort.
In the following, the existing analysis approaches within literature are presented along five
different analysis categories which address different aspects of an enterprise architecture
respectively of the architecture process. Figure 2.9 provides an overview of the aspects
and the analysis categories.

Figure 2.9: Analysis categories in the context of enterprise architectures.

According to [Nie06] the goals, principles and finally projects are defined within strategic
planning. As foundation, the information provided by architecture evaluations is used.
These analysis approaches address quality attributes of the architecture and identify
strength and weaknesses. Typical analysis approaches are an analysis of the costs and
benefits [Nie06], the performance [JI09], the interoperability [UFBJ10] or the modifia-
bility [LJE10]. Additionally, this category encompasses conformance analysis to existing
strategies and goals, typically realized with metrics.
Based on the results of the evaluation of the current architecture within strategic planning,
new demands are identified. The effects of those are determined with impact analyses. If
finally, a desired target architecture is created, the differences between the current and the
target architecture are determined with a gap analysis. The target architecture itself is also
evaluated with respect to the current strategy. Within the subsequent operational planning
the proposed changes are implemented within the organization. A special category of
analysis are approaches is dependency analysis. They focus on the direct and indirect
relationships between the architecture elements within the layers and above them.

2.1.3.1 Dependency Analysis

A dependency analysis focuses on the relationships between the high-level business ele-
ments and the corresponding applications and infrastructure elements [FFJ09]. Thereby,

32

2.1. Enterprise Architecture

especially the indirect relationships between these elements are of interest. The informa-
tion about them is also relevant within other analyses.
In [KA09] the authors propose a generic approach for a flexible dependency analysis.
Thereby, they address current weaknesses regarding the flexibility of existing methods,
relying on static meta model structures. Among current approaches there exists no stan-
dard evaluation and an adaption of the existing ones requires high effort. [KA09] propose
a formal solution for flexible and generic dependency analysis. They define a formalism
for a two-dimensional dependency analysis, through determining the transitive closure of
the set of relations. Thereby, reflexive relation types are not considered. The derivation
of composed relationships for reflexive dependencies is defined according to the seman-
tic of the relationship. The authors describe two different semantics (direct dependency
and indirect dependency) as well as a generic approach, using an expansion function for
hierarchical refinement relationships. Finally, they describe a formalism for aggregating
relationships to reduce the complexity of the models [KA09].
In [Saa10] the author proposes a dependency analysis approach considering time con-
straints (org. "zeitbezogene Abhängingkeitsanalyse"). Thereby, he considers the life time,
the status (current or proposed) as well as the different life cycle phases with their dura-
tion. The respective time of modeling is considered using a time stamp. He also introduces
the concept of projects to summarize change activities [Saa10]. But the author provides
no execution or implementation details.

2.1.3.2 Impact Analysis

The category of impact analysis summarizes the approaches that predict the behavior
or effects of changes applied within the architecture model. If a change is made to the
model, this typically affects other elements. Even a small change in one element can
cause a ripple-effect, thus affecting other parts which are not obvious [Boh02]. Thereby,
[Boh02] differentiates direct and indirect impacts: A direct impact (or first level impact)
occurs, if the affected objects is directly connected. This can be determined via the
connectivity graph using a dependency matrix. An indirect impact (n-level impact) is
characterized by a set of relations, representing an acyclic graph, to the affected element.
This impact can be determined using a reachability graph. Such a reachability graph
indicates potential impacts and typically over-estimates the impact of a change (problem
of false-positives). Using a constraint mechanism this effect can be reduced. Structural or
semantic information can be used for it [Boh02].
Briand et al. [BLO03] propose a methodology and tool to perform impact analysis in
design documents to detect side effects of changes in Unified Modeling Language (UML)
models. Since the result set of UML model elements of such an impact analysis is often
very large, a way to prioritize the set is necessary. Therefore, the authors propose the
use of a coupling measure and predictive statistical model. The impact analysis itself is
performed using OCL rules.
Aryani et al. [APH10] propose an approach for change propagation analysis on the soft-
ware domain level. Their prediction is based on a conceptual coupling measurement for
software components. This measurement is dependent from the function of a user interface
components as well as the data this function uses. Using this information, a dependency
matrix between the user interface components and the respective data is established.
[dBBG+05], [KRRR08] and [vKG03] propose approaches for change impact analysis based

33

Chapter 2. Foundations

on the different types of relationships and rules for change propagation. In [dBBG+05] a
change is removing, extending or modifying an existing architectural element. The impact
on another element in the case of a change is dependent on the semantics of the relations
between them. The authors define heuristic rules to determine the impact of change for
the most important relationships in ArchiMate models, i.e. access, assign, use, realize and
trigger. The effect of the change should then be propagated along the graph edges.
Kumar et al. [KRRR08] define general relationships between the elements of an EA to be
able to propagate information along them. The element types they consider are business
goals, process transactions, service components and infrastructure components and the
relationships are runs on, provides, executes and delivers. Using rules, they define how
attributes of entities are dependent of each other, e.g. a running service reduces the avail-
ability of the infrastructure component. If changes occur the attributes are recalculated.
For executing the propagation no implementation is described.
In [vKG03] the authors differentiate between three types of relationships to define the
traces for later impact analysis: representation, refinement and dependency relationships.
To determine the change impact, they utilize a (semi-)automatic analysis of the trace
according to three different impact categories. The primary, secondary and tertiary impact
category define the impact dependent on the element type and relationship type.
[HNF+09] and [TNJH07] propose Bayesian Belief Networks (BBN) to model causal depen-
dencies and calculate the failure impact respectively change impact within the model. The
failure impact analysis [HNF+09] calculates a ranking of architectural components with
respect to the criticality for a business process. This approach focuses on the availability
of the components and not changes. [TNJH07] propose predictive reasoning, diagnostic
reasoning and a combination of both to perform a change impact analysis between archi-
tecture elements and decisions. Based on a probability at each root node and a conditional
probability table at each non-root node the BBN algorithms calculate the posterior prob-
abilities of the non-root nodes.

2.1.3.3 Gap analysis

Gap analysis is used to compare two different states of an architecture with each other
[The18,Han13]. Thereby, elements that are removed, forgotten or new can be identified.
Within TOGAF the gap analysis is performed based on matrices, where on one axis the
current elements and on the other one the target ones are shown. The cells are then filled
out manually, if the elements are available in both or not [The18].
In [DB13] semantic web technologies are proposed to perform the gap analysis. With this
technique the set of elements only in the current architecture and those only in the target
architecture are determined. The successor relationships between information systems are
identified using the business support information.
Within their method for planning enterprise transformation [AG10a] propose a transfor-
mation model to store the information about the relationships, predecessor and successor,
between elements of the current and the target architecture. The elements that are in the
focus of the transformation project are determined using graph comparison. As a result
of this comparisons six different relationships types are identified between current and
target. This could be a 1:1 correspondence but it is also possible that an element has no
or more than one successor and vice versa for predecessors.

34

2.1. Enterprise Architecture

2.1.3.4 Architecture evaluation

The category of architecture evaluation summarizes approaches to assess quality attributes
of the architecture or the architecture elements. Typical examples are the analyses pro-
posed in [Nie06]: Coverage analysis, analysis of the interfaces, heterogeneity analysis, as
well as analysis of complexity, conformity, costs and benefits.
Iacob and Jonkers provide in [JI09] a detailed description for a performance analysis on EA
models created with ArchiMate. Based on the average number of uses, the service times,
the capacity and the arrival frequency several measures are calculated. The calculation
relies first on a top-down workload calculation, followed by a bottom-up calculation of the
performance. Performance measures are the processing and response time of services and
the utilization of resources. If information about costs are provided, a cost calculation
can be performed too. Beforehand the given model has to be transformed in a normalized
model in order to ensure the applicability of the algorithms.
In order to quantify and evaluate the current or target architecture, KPIs can be used as
measurement indicator [HRSM13]. Matthes et al. [MMSS11] defined 52 KPIs to measure
EA management goals, based on a literature study. For each KPI a description, the nec-
essary part of the information model, the addressed organizational goals and a calculation
rule is given. For some KPIs also best practices for the measurement frequency, target or
planned values and the KPI owner and consumer are given. An example is the Applica-
tion continuity plan availability KPI. This KPI can be used to measure the goals Improve
capability provision and Increase disaster tolerance. The KPI is defined as the number
of critical applications where tested IT continuity plan is available divided by the total
number of critical applications.
At the Royal Institute of Technology (KTH) several approaches for EA analysis are devel-
oped that can be categorized into architecture evaluation. They define EA analysis as the
"application of property assessment criteria on enterprise architecture models" [JLNS07a].
Within their approaches they provided several theories for quality attributes of EA mod-
els like information security, system quality or maintainability. While utilizing different
probabilistic techniques they enable the assessment of these quality attributes.
In [JJ05,JNL07] they propose Architecture Theory Diagrams to decompose system prop-
erties like enterprise information security or modifiability into sub-properties with defi-
nitional relations. These more concrete sub-properties are used to quantify the abstract
quality attribute through a weighted aggregation of the single scores. Therewith they
provide a quantified method for the assessment of these properties.
In [JJSU07, LJ08, NSJ+08] an approach for EA analysis with Bayesian networks is pro-
posed. Bayesian networks enable the definition of causal relations between nodes and un-
certainties. Using conditional probability distributions, the dependencies between nodes
can be specified. Figure 2.10 shows how the property availability of application can be
defined with a Bayesian network. The network denotes that it is dependent from avail-
ability of server and availability of operating system. In order to adapt this technique to
EA, the EA meta model has to be extended with the relevant attributes and attribute
relationships (abstract model). The dependencies between the attributes are expressed
with conditional probability table (CPT) (see figure 2.11). It is also possible to consider
the correctness of the relationships between elements, the value of attributes and the ex-
istence of the element. During the analysis the unassigned values in the concrete model
are calculated according to the attribute relationships.

35

Chapter 2. Foundations

section 4 the original ArchiMate modeling language is
presented. Section 5 proceeds to detail the extensions
and adaptations of ArchiMate to make it suitable to the
system property analyses mentioned above and Section
6 describes a case study in which the extended
ArchiMate metamodel is applied for analyzing the two
SOA platforms. Section 7 concludes the paper.

2. Abstract and concrete models

An abstract model is an EA metamodel containing

entities and entity relations, augmented with attributes
and attribute causal relations in representing the nodes
and relations of a Bayesian network [6][7]. With
“metamodel” we mean a class of models belonging to
the M1 level of OMG’s four-layered architecture [5].

Entities are fundamental parts found in most
metamodels. Entities represent the objects of interest
when modeling, e.g. application, services, persons, or
processes. Entities in abstract models are similar to
classes found in UML [5].

 Entity relations connect two entities, e.g. “Interface
is provided by Application” or “Person is a resource of
a Process”. Entity relations also state the multiplicity
of the relationship between the entities, e.g. that one
person can be the resource of zero or more processes.

Attributes of an abstract model represent variables
related to the entities. UML also have attributes related
to entities, but the attributes in abstract models differ
from the attributes in UML. In abstract models,
attributes and attribute relations represent the nodes
and relations of a Bayesian network, see below. A
richer account of abstract and concrete models is found
in Johnson et al. [6].

2.1. Bayesian networks

Friedman et al. [8] describes a Bayesian network,
B=(G, P), as a representation of a joint probability
distribution, where G=(V, E) is a directed acyclic graph
consisting of vertices, V, and edges, E. The vertices
denote a domain of random variables X1,…, .Xn, also
called chance nodes. In the context of abstract models,
each chance node corresponds to an attribute. Each
chance node, Xi, may assume a value xi from the finite
domain Val(Xi). The edges denote causal dependencies
between the nodes, i.e. the causal relations between the
nodes. The second component, P, of the network B,
describes a conditional probability distribution for each
chance node, P(Xi), given its parents Pa(Xi) in G. It is
possible to write the joint probability distribution of the
domain X1,…, Xn using the chain rule of probability, in
the product form

() ()()∏
=

=
n

i
iin XPaXPXXP

1
1 |,..., .

In order to specify the joint distribution, the
respective conditional probabilities that appear in the
product form must be defined. The second component
P describes distributions for each possible value xi of
Xi, and pa(Xi) of Pa(Xi), where pa(Xi) is the set of
values of Pa(xi). These conditional probabilities are
represented in matrices, here forth called Conditional
Probability Matrices (CPMs). Using a Bayesian
network, it is possible to answer questions such as
what is the probability of variable X being in state x1
given that Y = y2 and Z = z1.

In the general case, the relations between variables
described by the conditionally probability matrices can
be arbitrarily complicated conditional probabilities.

Figure 1: A Bayesian Network, an abstract model
and a concrete model for availability analysis.

The models described further ahead in this paper
use the simple AND relation. The CPM for the AND
relation used in the availability example of Figure 1 is
shown in Table 1.

Table 1: A conditional probability matrix
showing the AND relation used in Figure 2.

Availability of O/S Up Down
Availability of HW Up Down Up Down

Availability
of App.

Up 1 0 0 0
Down 0 1 1 1

The real world rarely allows itself to be described

by AND relations and to be able to represent
uncertainty we insert probabilistic data as prior
evidences in chance nodes with no parents and as new
attributes in other chance nodes. We are thus able to
say that there is a 95% chance that a system, for
instance, is in the state ‘Up’ and 5% chance that it is in
the state ‘Down’.

More comprehensive treatments on Bayesian
networks can be found in e.g. Neapolitan [9], Jensen
[10], Shachter [11] and Pearl [12].

15151515

Figure 2.10: Approach for EA analysis with Bayesian networks [NSJ+08].

section 4 the original ArchiMate modeling language is
presented. Section 5 proceeds to detail the extensions
and adaptations of ArchiMate to make it suitable to the
system property analyses mentioned above and Section
6 describes a case study in which the extended
ArchiMate metamodel is applied for analyzing the two
SOA platforms. Section 7 concludes the paper.

2. Abstract and concrete models

An abstract model is an EA metamodel containing

entities and entity relations, augmented with attributes
and attribute causal relations in representing the nodes
and relations of a Bayesian network [6][7]. With
“metamodel” we mean a class of models belonging to
the M1 level of OMG’s four-layered architecture [5].

Entities are fundamental parts found in most
metamodels. Entities represent the objects of interest
when modeling, e.g. application, services, persons, or
processes. Entities in abstract models are similar to
classes found in UML [5].

 Entity relations connect two entities, e.g. “Interface
is provided by Application” or “Person is a resource of
a Process”. Entity relations also state the multiplicity
of the relationship between the entities, e.g. that one
person can be the resource of zero or more processes.

Attributes of an abstract model represent variables
related to the entities. UML also have attributes related
to entities, but the attributes in abstract models differ
from the attributes in UML. In abstract models,
attributes and attribute relations represent the nodes
and relations of a Bayesian network, see below. A
richer account of abstract and concrete models is found
in Johnson et al. [6].

2.1. Bayesian networks

Friedman et al. [8] describes a Bayesian network,
B=(G, P), as a representation of a joint probability
distribution, where G=(V, E) is a directed acyclic graph
consisting of vertices, V, and edges, E. The vertices
denote a domain of random variables X1,…, .Xn, also
called chance nodes. In the context of abstract models,
each chance node corresponds to an attribute. Each
chance node, Xi, may assume a value xi from the finite
domain Val(Xi). The edges denote causal dependencies
between the nodes, i.e. the causal relations between the
nodes. The second component, P, of the network B,
describes a conditional probability distribution for each
chance node, P(Xi), given its parents Pa(Xi) in G. It is
possible to write the joint probability distribution of the
domain X1,…, Xn using the chain rule of probability, in
the product form

() ()()∏
=

=
n

i
iin XPaXPXXP

1
1 |,..., .

In order to specify the joint distribution, the
respective conditional probabilities that appear in the
product form must be defined. The second component
P describes distributions for each possible value xi of
Xi, and pa(Xi) of Pa(Xi), where pa(Xi) is the set of
values of Pa(xi). These conditional probabilities are
represented in matrices, here forth called Conditional
Probability Matrices (CPMs). Using a Bayesian
network, it is possible to answer questions such as
what is the probability of variable X being in state x1
given that Y = y2 and Z = z1.

In the general case, the relations between variables
described by the conditionally probability matrices can
be arbitrarily complicated conditional probabilities.

Figure 1: A Bayesian Network, an abstract model
and a concrete model for availability analysis.

The models described further ahead in this paper
use the simple AND relation. The CPM for the AND
relation used in the availability example of Figure 1 is
shown in Table 1.

Table 1: A conditional probability matrix
showing the AND relation used in Figure 2.

Availability of O/S Up Down
Availability of HW Up Down Up Down

Availability
of App.

Up 1 0 0 0
Down 0 1 1 1

The real world rarely allows itself to be described

by AND relations and to be able to represent
uncertainty we insert probabilistic data as prior
evidences in chance nodes with no parents and as new
attributes in other chance nodes. We are thus able to
say that there is a 95% chance that a system, for
instance, is in the state ‘Up’ and 5% chance that it is in
the state ‘Down’.

More comprehensive treatments on Bayesian
networks can be found in e.g. Neapolitan [9], Jensen
[10], Shachter [11] and Pearl [12].

15151515

Figure 2.11: Conditional probability matric [NSJ+08].

In [LJ08, EFJ+09] the authors use this approach to develop a model for maintainability
analysis in order to prioritize and decide for change projects. In [NSJ+08] the Bayesian
analysis approach is used for estimating availability, accuracy, confidentially and integrity
of two SOA platforms.
In [JLNS07a] the authors propose Extended Influence Diagrams (EID) to calculate the
utility of different scenarios and support rational decision-making. Since influence dia-
grams extend Bayesian networks with decision and utility nodes, it is also possible to
represent goals and decision alternatives. Decision nodes are used to represent the choice
between different scenarios, the utility node represents the target of the EA analysis.
While using the probabilistic inference mechanism of Bayesian networks, they enable the
assessment of quality attributes of the EA model and support decision-making between
different scenarios. In [NJN07,JLNS07b] this technique is used to assess information sys-
tem quality based on the ISO 9126. According to this, technical quality is defined through
the functionality, the reliability, the usability, the efficiency and the maintainability. Each
of these properties is further refined using extended influence diagrams in order to enable
a quantification. For example, one factor for maintainability is the system architecture
quality. The definition of this property is shown in figure 2.12. Each variable in this
diagram like size and age of the system has to be modeled as an attribute in the EA
model. The execution of the analysis is performed with the Bayesian network analysis
tool GeNIe.
[BUF+11] propose a tool for EA analysis with Probabilistic Relational Models (PRM), a
technique related to Bayesian networks. The attributes within the model can be described
with a probability distribution using the PRM formalism. This distribution is then used to
infer the unknown values. The proposed tool supports the theory modeling for the quality
attribute to be analyzed and the application of this theory on a concrete EA model. The
EA analysis process is similar to the one proposed in [JJSU07]: First the PRM is defined,

36

2.1. Enterprise Architecture

Figure 4: An Extended influence diagram capturing a theory for maintainability analysis [22].

3.2.2 Security

Information Security is here defined in accordance
with Stonebrunner’s view [36] to be a measure of the
security with respect to threats to the confidentiality,
integrity, availability, accountability and assurance of
an enterprise’s stored information. This is also the
main source for generation of the extended influence
diagram, for security.

Additionally, the ISO/IEC 17799 standard [37]
provided some supplementary measures. The
categorization of security services is an adapted
version of [38], where security services are grouped
into three major categories; preventive, detective and
responsive. Apart from that, some security services
classified as “supporting” by Stonebrunner [36] were
added, and a section on network security, dealing for
instance with the quality of firewalls as inserted. Figure
5 presents the extended influence diagram displaying
technical mechanisms, which if employed correctly can
counter information security threats.

The rightmost branch of the extended influence
diagram of Figure 5 contains metrics dealing with
system architecture. The use of security services may
be of little use if the overall security architecture is sub
par. If, for instance, the system does not clearly
distinguish between users involved in distinctly
separate work processes with different access rights,
the confidentiality of information can be compromised.

Interconnections with other information systems
through Local Area Networks and the internet provide
opportunities for unauthorized users to access
information they are not privy to. A remedy for this

might be the use of firewalls or a strict
compartmentalization of the intranet to limit the
amount of exposed information.

Supporting security services are the foundation on
which the other services rest. Some examples are the
protection of communications through encryption, as
well as security management services to allow security
administrators to monitor system behavior.

Preventive security services prevent security
breaches. Examples are identity management services
that authenticate and authorize users according to their
privileges. Preventive security services also mitigate
security threats such as viruses, trojans and spy-ware
by the use of malicious and mobile code detection
software.

Detective security services are used to determine
whether the protected information has been tampered
with in any way. An auditing service provides
functionality to go through registries such as log files
to spot hostile intrusion. Intrusion detection services
use statistical signatures of intruders to tell if a user
attempting to use the system is hostile or not.

Finally, responsive security services can be used to
mitigate an intrusion post factum. An example is
intrusion containment services that may isolate for
instance an infected laptop that was connected to the
system.

Unfortunately space limitations force us to limit our
account of the remaining system quality influence
diagrams. See [29] for a more detailed description.

Figure 2.12: Extended influence diagram representing the theory for maintainability anal-
ysis [NJN07].

then evidence for the elements is collected and the PRM is instantiated and finally the
analysis is executed to calculate the values of the quality attributes. PRMs are also used in
[BFH+09] and [LJE10] to formalize the model and calculate the conditional probability of
model element for a specific concern. [BFH+09] use the approach for quantitative analysis
in combination with the information patterns from [BEL+07]. Therefore, they extend the
information models with quality attributes and dependencies between these attributes.
In [LJE10] PRMs are applied for enterprise systems modifi-ability analysis, i.e. assessing
the cost of making changes to enterprise-wide systems. A major weakness of this approach
is the missing query possibility for structural information, thus reasoning within PRMs is
limited to object attributes.
To overcome this weakness [UFBJ10,NBE14] propose probabilistic OCL (p-OCL) for EA
analysis. p-OCL is an extension of OCL to deal with uncertainty of objects, relations and
attributes in the EA models and consider this information within the analyses. p-OCL
supports stochastic attributes and the definition of uncertainty regarding the existence
of objects and relationships. The probabilistic aspects of p-OCL are implemented in a
Monte Carlo fashion: For every iteration the stochastic variables as well as the existence
attributes are randomly instantiated according to their distribution. Each p-OCL state-
ment is transformed into an OCL statement. The OCL statements are then evaluated and
the result is a weighted mean of all iterations. [UFBJ10] apply p-OCL for interoperability
analysis. Thereby, they model the theory behind interoperability with PRM, extended
with p-OCL statements. In [NBE14] four formerly developed meta models for analysis
approaches are integrated in order enable re-use and trade-off analysis. The meta models
for assessing application usage, service availability, service response time and accuracy
were re-implemented with p-OCL.

2.1.4 EA planning and decisions making

As discussed in [LB18a] the discipline of Enterprise Architecture Planning (EAP) deals in
specific with the development and implementation of the target architectures [AGSW09].

37

Chapter 2. Foundations

Transformation planning from the current to the target architecture has to be done in
alignment with the strategy of the organization [NFT+17]. While implementing the de-
sired target architecture, organizations are faced with new demands [The18]. Follow-
ing [ASML12] a project can be initiated during strategic planning in order to realize the
desired target architecture or be a demand driven project. It is important that those
demand-driven projects are realized with respect to the EA strategy. Demands can be
driven by new technologies and trends, the need for cost reduction or the integration of
standards. A current example is microservice architectures. Sources for business-driven
demands are business developments, new innovations and strategy changes. Additionally,
ensuring the compliance to legal regulations like Basel III for the financial sector or Merger
& Acquisitions lead to changes in the architecture. Such changes do not necessarily con-
form to the architectural strategy, i.e. the specified principles and goals. The resulting
phenomena of a moving target is known challenge within EA planning [Nie06,AGSW09].
It is important to integrate the EA strategy within the projects, i.e. plan and execute
them in an EA compliant way [Nie06, FB08, ASML12]. Only if the projects follow the
defined strategy, the benefits from the EA initiative and the desired target architecture
will be reached.
The frameworks and processes for EAM are aware of this topic. According to [ASML12]
necessary change projects have to be evaluated in order to decide about their implemen-
tation. It is important that these projects are realized with respect to the EA stan-
dards and principles as well as the desired target architecture. To ensure EA compliant
projects [ASML12] proposes approval gates during the project to verify the chosen deci-
sions. EA reviews verify the created specifications, design documents or prototype whether
they adhere to the EA standards and principle and are aligned with the current and target
EA.
Within the TOGAF ADM the first phases deal with the definition of the current and target
architecture as well as a respective road map. Used concepts thereby are a gap analysis
and the resolving of impacts. In the following phases the realization of the specified target
architecture is in the focus (phases E, F, G). Finally, phase H addresses Architecture
Change Management. This phase includes an analysis of the performance and gaps as
well as to ensure that change requests conform with the EA governance and framework.
Additionally, there exist more detailed and specific approaches that address EAP. Figure
2.13 summarizes the main steps of them.

Figure 2.13: Selected planning processes in literature (extended table from [AGSW09]).

One of the first approaches for EAP is the ’Wedding Cake Model’ from Spewak and Hill
[SH93,ST06]. The current architecture is analyzed according to the values and principles,
for example with the use of metrics. Based on these results, the blueprint data, application

38

2.1. Enterprise Architecture

and technology architecture are developed. The results of a gap analysis between the
current and the target architecture are used to develop an implementation and migration
plan.
Within the planning step of the EA development process in [Nie06], the road map from
the current architecture to the desired target is defined. Development planning is required
in order to integrate new projects with the optimization of the existing application land-
scape. The proposed process for this step according to [Nie06] is shown in figure 2.13.
The first step is the development of different scenarios for the target application environ-
ment. Thereby, so called "what-if" analyses support the architect. Each of the scenarios
is evaluated with respect to the enterprise and IT goals, the costs and the risk. Also, the
gaps between the current and the developed scenario are analyzed. Based on the analy-
sis results the scenario is developed into a target architecture and the required steps to
implement them are defined.
In [PH05,Pul06] the authors propose a process model for the management of architectural
decisions in EA planning. Thereby, they differentiate between four architectural layers
(i.e. business, information, application and infrastructure) and three decision-making
levels (enterprise, domain and system level). The authors propose a spiral model for
decision-making, where decisions are refined top-down, considering the EA layers and
the decision-making levels. A concrete EA project is performed in three steps: In the
Working Phase the EA planning and development takes place i.e. the required changes
in the different architectural dimensions are defined. In the Ending Phase alternative
architectures and solutions are designed and evaluated. Finally, a development road map
is created as well as long- and short-term targets.
The EAP process from Aier et al. [AGSW09] starts with definition of the vision and the
creation of the as is-architectural model. In the following, (multi-step) target alternatives
are modeled, analyzed and evaluated. Finally, the transformation from the current to the
target is planned and implemented.
In [AS11] the authors performed a comparison of EA planning approaches in practice
and literature and concluded with a set of common activities during EA planning. The
proposed process differentiates the three main steps Strategic EA Planning, Operational
EA Planning and Implementation. Similar to the results of [PH05, Pul06] the authors
identified three different levels for the activities: The Enterprise Level (mostly strategic
planning), the Domain Level (mostly operational planning) and the Project Level (mostly
implementation). The definition of requirements for the identified actions as well as the
modeling of different target variants in the operational step is performed on domain level.
Since the changes do not affect the entire EA the concrete planning can be performed
using domain architectures. The established target models are finally integrated in the
enterprise model to get a consistent blueprint [AS11]. Evaluation takes place on domain
level as well as on the consolidated enterprise level.
Additionally, to EAM methods and EAP processes [NFT+17] and [AG10b] identified sev-
eral requirements for EAP processes that are also considered while identifying the method
blocks. Nowakowski et al. [NFT+17] provide a review of current literature about EAP
as well as results of practitioner interviews. Based on them, they extract several require-
ments for EA planning. They include the ability to analyze and compare the current as
well as the target architecture (including qualitative and quantitative metrics), the sup-
port for different planning scenarios and transformation paths as well as the availability
of up-to-date data. In order to set-up a transformation path, it is necessary to create a

39

Chapter 2. Foundations

transformation model and to derive transformation projects from the target architecture.
Gap analysis is proposed to compare the current and target model. They also point out
the relevance of individual life-cycles, the ability to react to unplanned changes as well as
the importance of tool support. In comparison with the practitioner interviews [NFT+17]
found out that EA planning is primarily carried out by visual comparison of specific mod-
els, while the methods proposed by literature are not considered in practice. They propose
the development of simpler and more practical approaches especially for the comparison
of scenarios.
Aier et al. [AG10b] also work out several requirements for EAP. Among those are the
development and evaluation alternatives and the consideration of successor relationships
and life cycles in the target models. It must be possible to derive project activities from
the developed target model. Overall mean of EAP is the provisioning of information to
support change projects. Thereby, the different requirements from the stakeholders have
to be considered.
Finally, Foorthuis et al. [FB08] differentiate in their work about EA project compliance
between three different layers: Enterprise Architecture (EA), Domain Architecture (DA)
and Project Architecture (PA). EAs describe the current and target architecture at the
highest level, whereas DAs focus on one specific group of products, services or functions.
The focus of PA is the relevant artifacts for one project and describes specific solutions.
In [FHBB12] the authors propose an EA compliance model including a compliance testing
process. In the center are so called prescriptions which can be principles, models or policy
statements. Prescriptions provide norms that have to be applied. Within four different
compliance checks the prescriptions are verified. The checks include a correctness check,
a justification check, a consistency check and a completeness check. Thereby, the authors
propose to start with compliance testing in the early phases and thus to avoid validation
of the prescriptions at project level. The full automation of the testing processes is not
realistic according to the authors but they propose tool support where it’s feasible e.g.
operationalizing norms and compliance checks [FB08,FHBB12].

40

2.2. Data-flow Analysis

2.2 Data-flow Analysis

As discussed in [LSB14a], Data-flow Analysis (DFA) is a technique based on the principle of
information propagation. This principle enables the declarative and recursive specification
of analyses. DFA is suitable for static model validation, information extraction, validating
modeling guidelines, calculations metrics and supporting model transformations as well as
refinements. In [Saa14] several templates for generic analyses are proposed:
• Analysis of reachability and liveness
• Analysis of successors and predecessors
• Determination of strongly connected components
• Flow path analysis
• Analysis of the availability of resources
• Analysis of type information regarding a generalization hierarchy
• Test for cycles
• Context sensitive analysis, e.g. determine predecessors regarding a containment
relationship

The technique originates from the area of compiler construction [Kil73]. When translating
the source code of a program into machine code, DFA is used to statically derive optimiza-
tions based on the structural composition of the program instructions. By examining each
basic block in its overall context, it is possible to derive information that holds true for
each possible execution of a program. Examples are the calculation of reaching definitions
and variable liveness.
For this purpose, a program is usually represented as a control-flow graph. Nodes represent
the basic blocks and the edges represent the flow of control. Subsequently, a set of data-flow
equations is computed at each node. Within the equations, the results at the immediate
predecessor and successor nodes are combined with a confluence operator (set union or
intersection). Additionally, the values are modified in order to capture the effects of the
instructions made within the basic block of the node. Thus, the provided output relies
on the basic block instructions and, recursively, on the results of all predecessor nodes.
Consequently, the results are propagated along the edges of the control-flow graph allowing
for a context-sensitive evaluation of each equation. Since the presence of loops leads to
an infinite number of execution paths (and consequently cyclic DFA equation systems),
fixed-point evaluation semantics are employed to approximate the runtime behavior of
programs.
In [SB13,Saa14] this analysis technique is adapted to the modeling domain, resulting in a
“generic ’programming language’ for context-sensitive model analysis”. The approach de-
fines a declarative specification language that allows the annotation of data-flow attributes
at meta model classes. These attributes can subsequently be instantiated and evaluated
for arbitrary models to enable a static approximation of their dynamic behavior. The
dependencies between the attributes are implicitly defined within the flow equations. The
respective dependency graph for the attributes is constructed on-the-fly during the evalu-
ation. The utilized fix-point computation supports the evaluation of transitive and cyclic
declarations.
The attribution consists of a declarative part and the implementation of the actual rules.
Therein, the DFA equations (also called propagation rules) are assigned to meta model el-

41

Chapter 2. Foundations

ements. This can be either done in a textual file or using Java Annotations for propagation
rules implemented within Java code. It is possible to extend existing modeling languages
with attributes and the respective propagation rules. This enables the application of data-
flow analysis without a modification of the modeling language. The propagation rules can
be specified with arbitrary languages and are evaluated using a DFA solver. Currently sup-
ported are a textual definition in combination with Java or their specification with OCL.
The demand-driven and iterative algorithm of the solver supports the dynamic discovery
of the attribute dependencies as well as utilizes fix point computation. [SB13,Saa14]
A reference implementation of this approach exists in the form of the Model Analysis
Framework (MAF) [SB11] which has been successfully employed to specify and carry
out analyses in different domains [Saa14]. The framework utilizes the Eclipse Modeling
Framework (EMF) [Ecl18a] for model representation. Within the business process mod-
eling domain, it could be shown that the approach performs well for large models. The
analysis results are provided immediately and enable the application of the framework in
everyday usage scenarios. Additionally, the approach was applied in the context of model-
based development of embedded systems, specifically AUTOSAR (short for AUTomotive
Open System ARchitecture) models [KMKB14]. Here, it was used to validate and provide
a semi-automatic refinement of automotive software design. The analysis performs well for
medium sized models. Within a further project, it was shown that this analysis technique
is also suitable for very large system models [Saa14].
Aside from scalability, this technique provides several advantages: Since information can
be propagated along model edges, each model element can be evaluated in its overall
context. Thus, eliminating the need for static navigational expressions as common in
languages such as OCL. The annotation mechanism for the specification of the DFA
propagation rules enables the generic applicability without changes to the original model-
ing language. These are important benefits in the EAM domain, where both the structure
of meta models and models is highly dynamic. Secondly, data-flow analysis provides
inherent support for the implementation of recursive specifications which iteratively prop-
agate information through a model. Finally, the usage of fixed-point semantics allows the
implementation of a correct handling of cyclic paths.

2.2.1 Application: Reachability analysis

As presented in [LSB14a] we illustrate the application of data-flow analysis with the eval-
uation of a reachability attribute. The assessment of an enterprise architecture is highly
dependent on the computation of reachable elements. According to [Boh02], dependability
refers to directly connected elements while reachability additionally regards transitive con-
nections. Consequently, we can directly implement the following definition: An element
is reachable if at least one predecessor element is reachable. In this context, a predecessor
is defined as the source element of an incoming edge.
A simple meta model for control-flow graphs that specifies the class node along with two
specializations startnode and endnode as well as a class edge is presented in figure 2.14. A
Data-flow Analysis can easily determine whether a node is reachable from the startnode.
For this purpose, we assign a data-flow attribute is_reachable of type Boolean to the node
class (and thereby implicitly to its sub-classes). The annotation of the propagation rules to
the nodes is illustrated in figure 2.14 through the notes. The instantiation of this analysis
for a specific model attaches an instance of the is_reachable attribute to each node. The

42

2.2. Data-flow Analysis

Figure 2.14: Control-flow graph metamodel with annotated analysis [SB13].

DFA solver is then responsible for determining the dependencies between the attribute
instances and executing the data-flow rules in a valid order. The full attribution is shown
in the following listing:

1 attribution reachability
2 attribute assignment is_reachable : Boolean initWith false;

3 extend node with
4 occurenceOf is_reachable calculateWith
5 " return self. incoming . source . is_reachable () -> includes (true)";
6 extend startnode with

7 occurenceOf is_reachable calculateWith true;

Listing 2.1: DFA propagation rules for reachability analysis [LSB14c].

As described above, an element e2 is reachable from another element e1, if there exists
a path between e1 and e2. The reachability status is computed by a data-flow attribute
is_reachable of type Boolean which is initialized with the value false (line 2). Lines 3 - 5
attach this attribute to all instances of the node class. To determine the reachability status
of a node, the data-flow rule in line 5 accesses the is_reachable values computed at the
respective node’s predecessors, thereby directly implementing the recursive specification.
Finally, for the startnodes, the rule is overwritten (lines 6 - 7). Startnodes are by definition,
always reachable.
During instantiation, an attribute instance is attached to each node (see figure 2.15). The
attribute is_reachable is assigned to all nodes, but dependent on the node type (startnode
or node), different occurrences are used. The occurrences represent the data-flow equations
for the respective subtype.

inherit_attributes_check

inheritanceCheck

eclass_inheritanceCheck

self

self
false

true

EClass
inheritanceCheck

eclass_inheritanceCheck

Figure 2.15: Control-flow model with attribute instances [Saa14].

43

Chapter 2. Foundations

2.2.2 Application: Flow path analysis

Another important application of DFA in the EA context is the flow path analysis. Instead
of determining reachability, this analysis computes a list of nodes for each start node. Each
list depicts one path within the control-flow graph from the startnode to a target node.
The propagation rules presented in listing 2.2 extend the meta model in figure 2.14 with
a flowPaths attribute. This attribute provides a set of paths, represented as lists of
elements. For the startnode the set contains one path, consisting only of the elements
itself (line 4).

1 attribution flowpaths
2 attribute assignemnt flowPaths : Set(List(Elements)) initWith {}

3 extend startnode with
4 occurenceOf flowPaths calculateWith " return Set{List{self }}";

5 extend node with
6 occurenceOf flowPaths calculateWith
7 "var result : Set(List(Element)) := Set {}
8 self. incoming -> forEach (edge) {
9 edge. source . flowPaths () -> forEach (path){

10 if(not path -> contains (self)) then
11 result : = result -> add(List{path} -> append (edge) -> append (self));
12 endif ;
13 }
14 }
15 return result ;"

Listing 2.2: DFA propagation rules for flow path analysis [Saa14].

For all other nodes the attribute flowPaths is computed according to the rule in lines 7 -
15. First the result value is initialized with an empty set. Then for all incoming edges the
current status of the source elements is processed (lines 8 - 9). For each path within the
retrieved status which does not contain the current element (line 10), the path is extended
with the incoming edge and source element and added to the result set (line 11). After the
DFA solver finishes the evaluation of this attribute, for each node the set of paths from
the startnode is provided.

44

2.3. Semantic Web Technologies

2.3 Semantic Web Technologies

The term semantic web describes the vision of a web of linked data [W3C15]. Thereby,
technologies like the Resource Descripion Framework (RDF) [SR14], the SPARQL Pro-
tocol And RDF Query Language (SPARQL) [W3C13] and the Web Ontology Language
(OWL) [HKP+12] are used to provide vocabularies and data stores as well as to infer from
the data. These standards, developed by the World Wide Web Consortium (W3C), en-
able the creation of information systems comprising semantic interoperability [SBLH06].
Thereby, ontologies are used for the representation of knowledge. Ontologies represent the
knowledge about relationships between different kinds of objects [Stu11].
A vocabulary or ontology is used to define the concepts and relationships required for the
description of a specific domain. Thereby, the term ontology often refers to more complex
and formal descriptions. The classifications, constraints and rules that can be provided
within an ontology, support the integration of heterogeneous data and are the foundation
for inference techniques. Inferencing describes the reasoning over data according to the
specified rules. Therewith, new relationships can be derived and inconsistencies in the
available data are detected. [W3C15]
Despite the original idea of semantic web as a “Web of actionable information — informa-
tion derived from data through a semantic theory for interpreting the symbols”, [SBLH06]
the need for sharing semantics about data has emerged in further application scenarios.
Well-known application scenarios for semantic web technologies are clinical research, life
sciences as well as data integration in enterprises [W3C15,Stu11,SBLH06].
A major benefit of semantic web technologies is the integration of heterogeneous data.
Inferencing enables the derivation of indirect dependencies and ensures the consistency of
the model. Thus, the quality of the integrated data can be improved. With the expressive
query language SPARQL, the stored data can be accessed in an efficient way.

Resource Description Framework RDF

The Resource Descripion Framework (RDF) [SR14, CWL14] provides the basis for the
representation and linking of data. The principles of RDF are a triple-based represen-
tation of data as well as the usage of Universal Resource Identifiers (URIs) to identify
resources [SBLH06]. A URI is used to identify the resources, i.e. anything that needs to
be referenced. RDF provides a language in order to represent information about these
resources in a machine interpretable way. It enables the specification of simple statements
declaring properties and property values of the resources [SR14].
The triples of this graph-based data model consist of a subject, a predicate and an object.
Objects of a statement can be resources but also literals. Literals are used to represent
string values, numbers or dates. For example, the following statement describes that the
resource BookingCar has a criticality of 7 :

<http://example#BookingCar> <http://eam/criticality> 7.

An RDF graph is defined as a set of those triples. It can be visualized as a graph. Thereby,
nodes denote the subject and object of a triple, arcs denote the predicate [CWL14]. Fig-
ure 2.16 presents an RDF graph describing the two individuals Reservation by phone, a
business service, and Booking a car, a business process. The type of the two individuals

45

Chapter 2. Foundations

can be defined with the rdf:type predicate from the RDF built-in vocabulary. Addition-
ally, the graph specifies that the process realizes the specified business service and has
a criticality ranking of 7.

http://example#ReservationPhone

http://eam/BusinessService Reservation by phone

Booking a carhttp://eam/BusinessProcess

http://example#BookingCar

7

rdf:type http://eam/name

http://eam/realizes

http://eam/namerdf:type

http://eam/criticality

Figure 2.16: RDF graph describing a realization relationship between two elements.

Several RDF graphs can be collected within an RDF dataset. Each graph is called a named
graph. A named graph is a pair of an International Resource Identifier (IRI) or blank node
representing the graph name and an RDF graph. Graph names have to be unique within
an RDF dataset [CWL14].

Triple Store

RDF data is stored within triple stores [SBLH06]. These repositories are used to persist
and query the triples of an RDF graph. Jena TDB [Fou18] is a triple store for RDF data
with the focus on reasoning and querying over the data [SBLH06]. Further triple stores
focus on storing large data sets (e.g. 3store [HGR13] or RDF Knowledge Graph from
Oracle [Ora19]).

RDF Schema

Resource Descripion Framework Schema (RDFS) [BG14] enables the specification of a
vocabulary for RDF data. It can be understood as a semantic extension of RDF which
provides a minimal ontology representation language. RDFS is widely adopted within
the research community [SBLH06]. With RDFS groups of related resources and the rela-
tionships between them can be described. The utilized concepts of classes and properties
are similar to the object-oriented data structures. In contrast to object-oriented schemas,
where a class is defined according to the properties an instance has, RDFS "describes prop-
erties in terms of the classes of resource to which they apply" [BG14]. This is realized with
the concepts of domain and range, defining the source and target elements of a property.
An advantage of this principle is the expandability of the description.

46

2.3. Semantic Web Technologies

The following listing presents the used vocabulary within the RDF graph in figure 2.16
using turtle syntax. After the prefix statements in lines 1-4, the two utilized classes
are defined. In lines 5-6 the class BusinessService and in the following lines 7-8 the
BusinessProcess class. According to the property-centric approach of RDFS no further
properties are declared here. The respective properties realizes and criticality are
defined in the following (lines 9-12 and 13-16). The domain and range value draw the
dependency to the respective classes. More specifically the range of the criticality property
is the datatype xsd:integer, denoting that a number value is expected as object.

1 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
3 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
4 @prefix eam: <http :// eam/> .

5 eam: BusinessService
6 rdf:type rdfs:Class .

7 eam: BusinessProcess
8 rdf:type rdfs:Class .

9 eam: realizes
10 rdf:type rdf: Property .
11 rdfs: domain eam: BusinessProcess .
12 rdfs:range eam: BusinessService .

13 eam: criticality
14 rdf:type rdf: Property .
15 rdfs: domain eam: BusinessProcess .
16 rdfs:range xsd: integer .

Listing 2.3: RDF Schema describing the EAM vocabulary using turtle syntax.

SPARQL

To query and manipulate the stored RDF data, W3C proposed the standardized language
SPARQL [W3C13]. SPARQL is a recursive acronym for SPARQL Protocol And RDF
Query Language. Listing 2.4 shows an example SPARQL query in order to retrieve all
elements, i.e. their URIs, with a criticality more than 3.

1 PREFIX eam: <http :// eam/>

2 SELECT ? element
3 WHERE {
4 ? element eam: criticality ? criticalityValue .
5 FILTER (? criticalityValue > 3)
6 }

Listing 2.4: Example SPARQL query.

The WHERE part of the query is built using so-called basic graph patterns. These patterns
are similar to RDF triples, but allow the usage of variables. A query can be composed of
several basic graph patterns. If there is a match of the specified graph patterns within the
RDF graph, the data is added to results. For SELECT queries, the data is bound to the
defined variables. ASK queries evaluate to true or false, depending on the fulfillment of the
specified patterns. A CONSTRUCT query returns a new RDF graph which is built according
to the patterns specified in the WHERE clause. Despite the simple graph patterns, SPARQL
queries support group graph patterns and optional patterns. Additionally, operators like
filter, union and minus can be used to restrict the results of the patterns. Also, aggregation
mechanisms, property paths and nested queries are supported. Named graphs can directly

47

Chapter 2. Foundations

be addressed within SPARQL queries and allow the restriction of the evaluation of a graph
pattern within a specific named graph.

Semantic web and EAM

Within [CHL+13] the use of semantic web technologies is proposed for EAM. This technol-
ogy stack addresses the challenge of managing the heterogeneity of different data sources
integrated within EAM. Thereby, the different data set are formalized in a first step and
in the following are linked to each other. The integrated data model can then be used for
further analysis and processing.
[OLB15, SKR13a, SKR13b] propose semantic web technologies for the representation of
an EA model and present analyses to be performed on this model. The authors showed
that this technology stack enables a fast implementation of several existing EA analyses.
Implemented analyses include a change impact analysis, a landscape mapping analysis
deriving indirect relationships and KPI calculation.
Additionally, there exist several tools leveraging semantic web technologies for EAM. This
is Essential [Car16], TopBraid [Top] and the Living EAM Platform [Sof19a]. The three
tools utilize the flexibility of semantic web technologies to provide tailored solutions as
well as enable the integration of existing data sources.

48

Part II

Performing Architecture Analysis

49

3
Capture the Enterprise Architecture Model

In this chapter a modeling approach for enterprise architecture models is presented. Based
on the requirements identified within current literature a generic representation schema
for those models is developed. The model is extend with further concepts to enable the
later execution of analyses. The application of the meta model is finally illustrated with
a small model part.
The sections in this chapter present research results already published in [LSB14a] and
[OLB15].

51

Chapter 3. Capture the Enterprise Architecture Model

3.1 Requirements

As discussed in [LSB14a], to derive meaningful information from a model, an analysis
must incorporate knowledge about the semantics of the language constructs. In general,
the structure of any modeling language has a significant impact on the way analyses are
implemented and executed. This can be a problem in areas such as enterprise architecture
modeling, where a large number of competing standards and practices exist [BBJ+11,
JNL07]. To circumvent this, we propose requirements for a generic meta model which acts
as a universal representation format for EA models, and provides a common foundation
for analysis specifications.
Analyses heavily rely on semantic information, since the evaluation of a model element
usually depends on its meta model type. The generic meta model therefore not only has
to encode the actual model data but also the related meta information, i.e. the classes
and associations of the respective meta model. Between both artifacts proper instanceOf
relationships have to be established. As a consequence, each instance of the generic meta
model conforms to a representation of the EA model as well as the EA language itself. This
approach has two benefits: On the one hand, the established EA meta models includes
only those concepts that are actually used in the EA model. On the other hand, it enables
the definition of any analysis over the EA, without adapting the EA meta model. All
required adaptions can be covered through an adequate analysis specification.
Main focus of analyses are the dependencies between elements. They are for example
used to extract views or aggregate costs. For proper analysis support the model and meta
model information should be provided in a way that enables the navigation within the
model. Additionally, it is necessary to access properties of the elements like costs, but also
properties of the dependencies like the frequency of usage. The type of the properties, for
example currency, date or number, has to be declared too.
Beside the requirements to enable analysis execution, the generic meta model must be
able to represent the typical characteristics of EA models. An EA model can be seen as a
set of things or elements that have specific relationships to each other [BBJ+11,Dep10] .
Accordingly, [BBJ+11] proposes the primitives classes, properties and binary associations
for an EA information model. Properties can be specified for classes and associations. Ad-
ditionally, the authors argue for a datatype concept respectively enumerations for further
information about the properties.
To ease the specification of generic analyses the meta model should provide additional
structure for typical relationship and concept types within EA models. It is important
that only the most common concepts are explicitly represented. A large and complex
model structure, where only a small amount of the available concepts is used, should be
avoided. The meta model should be designed as simple as possible, to enable a broad
support of existing approaches. Examples for important and commonly used relationships
are ones that indicate composite structures like wholePart [Dep10], hierarchies [BBJ+11]
or composition [The17]. Relating to the overall align-enable principle of an EA, rela-
tionships that determine a usage or a provisioning of some functionality should also be
determinable within the generic meta model.
An often-occurred characteristic within EA models is the multiple use of relationship types
in different context’s (e.g. [The17]). Thereby, a used by dependency is utilized to represent
that a business process utilizes an IT service. The same relationship type use is also applied
to represent a communication between an application system and infrastructure services

52

3.1. Requirements

(see figure 3.2 for illustration). Although the use semantic is similar in both cases, they
may be treated differently during analysis execution. Therefore, the generic meta model
should be able to differentiate between those two relationships. The information that they
belong to the same type should be kept.
The frameworks and meta models for EA typically use layers for further structuring.
Layers can also be used to provide some kind of packaging mechanisms as demanded
by [BBJ+11]. Finally, an important concept used within EA models is typeInstance
[BBJ+11,Dep10]. It is used to define the relation between an application system and its
concrete instances. Typically, large companies have several instances of an application.
Each instance may serve a different market or organization unit. The meta model should
provide respective concepts to be able to consider this type of relationships inherently.

Table 3.1: Requirements for a generic meta model for the representation of EA models.

Analysis requirements EA information requirements
R1 Represent actual model data R7 Represent Elements
R2 Represent meta information R8 Represent relations between ele-

ments
R3 Depict instance relations R9 Properties for elements and rela-

tions
R4 Provide structure for navigation

within the model
R10 Multiple use of edge types

R5 Provide access to properties of the
elements

R11 Structuring mechanisms

R6 Type information for properties R12 Multi-level modeling

Table 3.1 summarizes the requirements we described above. On the left-hand side, the
necessary requirements to enable analysis execution are summarized. On the right-hand
side, requirements addressing the depicted information within the meta model are speci-
fied. A generic meta model, fulfilling these requirements, would provide a solid foundation
for analysis execution and enables the representation of EA models utilizing different meta
models. To keep the meta model as lightweight as possible, we do not want to provide a
full modeling language including model constraints. The only purpose of the generic meta
model is to provide a representation of EA information for analysis execution.

53

Chapter 3. Capture the Enterprise Architecture Model

3.2 Generic Meta Model

The provided Generic Meta Model (GMM) is a universal applicable meta model used for
storing the EA information and used for the definition and execution of analysis specifi-
cations. For its specification we use the following formalization based on [KA09].
We formalize an EA meta model as tuple:

MM = (ET,RT, PT, L,R,M,D) (3.1)

such that
ET is a set element types
RT is a set of relation types
PT is a set of property types
L is a set of layers
R ⊆ ET ×RT × ET is the set of relations that exist two element types.
M : ET → L is a function that returns the layer of an element type.
D : PT → ET ∪RT is a function that returns the type a property type belongs to.

An EA model is described as tuple:

A = (E,P,R′, I, EA,RA,MM) (3.2)

such that
E is a set of architectural elements, being an instance of an element type
P is a set of properties having a concrete value
R′ ⊆ E ×RT × E is a set of relations that exist between two elements
I : E → ET is a function that returns the element type of an element
EA : P → PT × E is a function that returns a pair of the property type and the

element a property is assigned to
RA : P → PT ×R is a function that returns a pair of the property type and the

relation a property is assigned to

For a model A to be a correct instance of a meta model MM the following conditions
have to be fulfilled:

∀e1, e2 ∈ E, rt ∈ RT : (e1, rt, e2) ∈ R′ =⇒ (I(e1), rt, I(e2)) ∈ R (3.3)
∀p ∈ P, pt ∈ PT, e ∈ E : EA(p) = (pt, e) =⇒ D(pt) = I(e) (3.4)
∀p ∈ P, pt ∈ PT, e1, e2 ∈ E, rt ∈ RT : RA(p) = (pt, (e1, rt, e2)) =⇒ D(pt) = rt

(3.5)

Condition 3.3 ensures that for each relation r′ ∈ R′ between two elements a corresponding
meta relation r ∈ R exists. The r′ must conform to r in terms of the relation type rt ∈ RT
and the assigned element types Ie(e1), Ie(e2) ∈ ET of the elements. To ensure the validity
of the properties of an element, the conditions 3.4 and 3.5 are defined. They state that
for each property p ∈ P the specified property type pt ∈ PT must have an assignment to
the respective element type (condition 3.4) or relation type (condition 3.5).

54

3.2. Generic Meta Model

The idea for the GMM is to represent the EA model and its meta information as a stereo-
typed graph. Thereby, both, the model and the meta model information, are represented
in one model. Apart from abstracting from the particular structure of an input model,
this approach has the benefit of combining meta model and model data in a single rep-
resentation. This enables a dynamic creation of the meta model, representing the actual
structure of the model.
A condensed version of the GMM specification is depicted in figure 3.1. The relevant
elements can be described as follows: The root element GmmModelContainer contains a
GmmMetaModel, a GmmModel, each of which acts as a container for the elements of the
respective artifact type. Within the GMM additional types are defined to assign common
properties like Universally Unique Identifier (UUID) and the name.

Figure 3.1: Overview of the Generic Meta Model GMM.

Within the GmmMetaModel the element types ET, layers L and relation types RT are
defined. These are MetaModelNode, MetaModelEdge and ModelLayers. Each element
type of the respective EA model is translated into a MetaModelNode, each relation type
to a MetaModelEdge.
The GmmModel serves as container for the elements E and relations R. Element instances
from the EAmodel are converted into ModelNode and relations between them into ModelEdge.
The ModelNodes as well as the ModelEdges are connected to their respective meta model
elements. For this purpose, each node, edge and also property type defined in the
EAMetaModel specializes the abstract MetaModelStereotype class. On the other hand,
each instance of a node, edge or property in the EAModel is a StereotypedElement which

55

Chapter 3. Capture the Enterprise Architecture Model

references a stereotype from EAMetaModel.
The details of the GmmMetaModel and GmmModel including the structure for properties
and stereotyping are described in the following two subsections. For illustration purposes
we introduce the enterprise architecture of a fictitious car rental company, CarRental, as
running example. The part of this model, relevant for booking a car, is shown in figure
3.2. The full EA model is provided in the appendix in figure A.1. The model corresponds
to the provided demo EA model shipped with the modeling tool [MID19].

Figure 3.2: Part of the enterprise architecture of the CarRental company.

Within this architecture part, the IT support for the business service Reservation by Phone
is depicted. The realizing business process utilizes two IT services provide the required
information. One is implemented by the Car Management application, providing relevant
data about the available cars. The other one is implemented by the Reservation System
which manages the already transacted reservations. The application systems itself utilize
additional infrastructure services provided by a defined system software, running on a
specific device. The used elements are arranged and colorized according to the business
layer, the application layer and the infrastructure layer (from top to bottom).

3.2.1 GMM meta model

The detailed structure of the GMM Meta Model is provided in figure 3.3. A GmmMetaModel
consists of a set of MetaModelNodes, a set of MetaModelEdges and a set of ModelLayers.
In order to map the structure of an existing EA meta model to the GMM format, the
defined element types in ET have to be translated to MetaModelNodes while their as-
sociated properties pt ∈ PT with Dpt(pt) = et become MetaModelProperties. The
properties relation captures the assignment of pt to et from the function D. For each
MetaModelProperty also its type is stored. Examples for types are date, number or string.
According to the function M each MetaModelNode has a connection the ModelLayer it

56

3.2. Generic Meta Model

belongs to.

Figure 3.3: Details of the GMM meta model package.

Relation types are depicted with two concepts: MetaModelEdge and MetaModelEdge-
Connection. This distinction is motivated by the fact that the specifications of various
EA standards use the same relation type between different source and target types. The
interpretation of them within an analysis may differ in some cases. Additionally, this may
conflict with restrictions imposed by the current state of modeling technology. In the UML
for example, it is not possible for a class to declare two incoming or outgoing associations
with the same name. This usually requires to implement workarounds such as assigning
a unique numeric index to each association. The downside to this approach is the loss
of semantic information as associations of the same type but with different indices are
treated as separate entities by modeling tools. The definition of a MetaModelEdge type
that can be shared by multiple MetaModelEdgeConnections solves this problem. The
MetaModelEdgeConnection defines the source and target meta model node of a relation
type according to the set R. The MetaModelEdge aggregates different relation types with
the same name, for example used by relations. Also, the property types pt ∈ PT of a
relation type are specified at the MetaModelEdge level.
To represent the instantiation of model elements with meta model elements, the Meta-
ModelNode, the MetaModelEdgeConnection and the MetaModelProperty inherit from the
supertype MetaModelStereotype.
A simplified textual representation of the meta model from the example in figure 3.2 is
shown in the following. The syntax follows the representation of EMF models within the
EMF editor. Properties of the elements as well as their UUID are omitted due to visibility
reasons. MetaModelLayers, MetaModelNodes and MetaModelEdges are demonstrated only

57

Chapter 3. Capture the Enterprise Architecture Model

with their names. The MetaModelEdge connection is depicted using the assigned source
and target node and an arrow indicating the direction.

1 GmmMetaModel metaModel :
2 - layers = {business , application , infrastructure }
3 - nodes = { business service , business process , application service , application

component , infrastructure service , system software , device }
4 - edges = {
5 realization :
6 - connections = {
7 [business process -> business service],
8 [application component -> application service],
9 [system software -> infrastructure service]

10 }
11 used by:
12 - connections = {
13 [application service -> business process],
14 [infrastructure service -> application component]
15 }
16 assignment :
17 - connections = {
18 [device -> system software],
19 [node -> systemsoftware]
20 }
21 }

Listing 3.1: Meta model for the RentalCar example.

First in line 2, the three layers are defined, followed by the meta model nodes representing
the element types used within the example. Finally, in line 4 the specification of the
edges begins. The MetaModelEdge realization is used within three different contexts in
the EA model. This is represented with the three different MetaModelEdgeConnections.
The first one describes the realization between business processes and business services,
the second one between application component and application service and the last one
between system software and infrastructure service. The definitions of the relation types
used by and assignment are done accordingly.

3.2.2 GMM model

As mentioned above, the GmmModel is used to specify the instances of the type declarations
in the GmmMetaModel. Figure 3.4 provides an overview of the proposed structure.
For each element e ∈ E a ModelNode along with the respective ModelProperties p ∈ P
with EAp(p) = (pt, e). Each property possesses a value field that accommodates the
property’s data. The given property type pt within the function D′ is represented with
the stereotype association to the respective property type pt ∈ PT in the meta model.
The element type et of the element e provided by the function Ie is also depicted with a
stereotype association between e and et.
The relations (e1, e2, rt) ∈ R′ between the elements are defined with the concept Model-
Edge. For each ModelEdge the respective source and target element e1 and e2 is defined.
The utilized relation type rt is specified using a stereotype association to the relation
type rt ∈ RT from the meta model. Additionally, ModelProperties describing properties
of the model edges are specified in the same manner as for model nodes.
To enable the associations to meta model elements, all three types, the ModelNode, the
ModelEdge and the ModelProperty inherit from the supertype StereotypedElement.
Each StereotypedElement has a property MetaModelStereotype which provides the in-

58

3.2. Generic Meta Model

Figure 3.4: Details of the GMM model package.

stantiated meta model element. This instantiation mechanisms ensures that the proposed
conditions at the beginning of section 3.2 are held.

Relationship categorization

At this point the GMM enables the generic representation of arbitrary EA models. The
ModelEdges with their source and target specification provide a navigation structure be-
tween the ModelNodes. The stereotype mechanism extends model elements with their
respective element types, relations types and property types. However, the GMM does
not provide any EA specific information, as demanded within the requirements R6 and
R12, at this point.
Therefore, we employ a class categorization approach similar to [vKG03]. The authors
propose three general types of relationships for their semiautomatic impact analysis on
traces. Since the proposed classes (representation, refinement and dependency) are not
sufficient for EA models, we analyzed current literature for common respectively foun-
dational concepts used within the EA domain. This includes the ArchiMate Generic
Model (ArchiMate GM) [The17], the DoDAF Meta Model (DM2) conceptual data model
of DoDAF [Dep10] and the requirements for an EA meta model proposed in [BBJ+11].
Overall, we were able to identify seven classes of relevant EA relationship types: Located at
denotes the allocation to some location or organization unit. Any kind of providing func-
tionality, information or behavior is captured with the type provide, while the consumed
by class denotes the consumption of those elements. Structural dependent on relationships
define the structure or organization of entities within a single layer. The behavioral depen-
dent on class summarizes relationships which declare dependencies between the behavior of
elements in a single layer which are neither of the type provide nor consume. The instance
of class is used to support multi-level modeling within the EA. Finally, the generalization
relationship provides a category for relationships depicting inheritance hierarchies.
Table 3.2 lists all categories along with corresponding examples from the ArchiMate GM,

59

Chapter 3. Capture the Enterprise Architecture Model

Table 3.2: Categorization of EA relationship types.

relationship class ArchiMate GM [The17] DoDAF DM2 [Dep10] Req. [BBJ+11]
located at assigned to is-at
provide realizes, accesses produces, realized-by

performed-by
consumed by used by, accessed by consumed by
structural aggregated by, whole-part hierarchies
dependent on composed by
behavioral triggered by, before-after
dependent on flow from
instance of type-instance type-item
generalization specialization super-sub-type generalization

the DoDAF DM2 conceptual data model and requirements identified in [BBJ+11]. Note
that the mapping in table 3.2 is a suggestion based on our interpretation and can be
adapted if an organization assigns different semantics to these relations.
Within the GMM these seven types are modeled as sub types of the generic ModelEdge.
According to a given mapping table, the relations of an EA model are instantiated with one
of these types. If no mapping is provided, ModelEdge is used as default type. The relation
categorization enables more expressiveness during analysis specification, while keeping
independent from the utilized EA meta model. Since the categorization is optional, the
universality of the proposed GMM remains.

Element categorization

We propose a similar categorization approach for the elements of an EA model. Thereby,
we utilize the general concepts proposed within the meta framework GERAM [IFI99] which
are human-oriented concepts, process-oriented concepts and technology-oriented concepts.
In addition, we further distinguish the technology-oriented concepts and propose the two
categories Application and Infrastructure Component instead. Human-oriented concepts
are represented through the category Human and process-oriented concepts through the
category Process. Element types representing humans or the role of humans, processes,
applications and infrastructure components can be found in most of the EA frameworks
(e.g. [The17], [The18], [WF06], [Dep10]). The proposed element categories represent the
key concepts used within the core layers, business, application and technology, defined in
ArchiMate [The17].

60

3.3. Example Application

3.3 Example Application

To illustrate the use of the GMM we select the two model elements Reservation by phone
and Booking a car with their realization relationship from the example provided in figure
3.2. The representation of this relation and the two elements using the GMM is illustrated
in figure 3.5. The left-hand side shows the type definitions within the GmmMetaModel,
while the right-hand side contains the model data.

Figure 3.5: Example for the instantiation of the generic meta model.

For the two elements a respective ModelNode is created. Thereby, for the business process
Booking a car the specialization Process is used. For a business service like Reservation
by phone no specialization is provided within the GMM and the generic ModelNode is used.
The types of the two elements, i.e. BusinessProcess and BusinessService, are modeled as
MetaModelNode. With the stereotype relationship their instantiation according to the
function Ie is provided.
For the business process Booking a car the mission criticality is provided as a Property of
the element. The stereotype relation depicts the respective meta model element, i.e. the
MetaModelProperty. The MetaModelProperty provides the name (mission criticality)
and the type (integer) of the property
The concrete relationship Booking-realizes-reservation is represented within the GMM as
ModelEdge. Thereby, the specialization provide is used, since it covers the semantics
of the realization class. The relation type is depicted with a MetaModelEdgeConnection
which belongs to the MetaModelEdge realization. The MetaModelEdgeConnection specifies
the source and the target meta model nodes of this specific relation type. Source is in this
case the business process and target the business service. A stereotype association defines
the type usage between the specific model edge and the edge connection.

61

Chapter 3. Capture the Enterprise Architecture Model

3.4 Converting Architectural Data to the GMM

In the previous sections we presented the GMM as a representation format for enterprise
architecture models. The data used to create such a model can be extracted from different
sources. Main source is the utilized EA tool within an organization. These tools provide
detailed data about business, application and infrastructure elements on an enterprise
level. Interfaces enable the export of the manually captured data which enables their fur-
ther processing. If the EA maturity is still low, the relevant EA data is typically provided
within Excel or CSV files. Additionally, more detailed information can be extracted from
Configuration Management Databases for the infrastructure layer or Application Perfor-
mance Monitoring (APM) tools for the application layer. Due to the universality of the
GMM, it is possible to represent all these different sources.
The proposed conversion procedure is depicted in figure 3.6. In order to map a data source
to the GMM, a corresponding adapter has to be created once. This adapter captures the
exported data from the source and converts it into the GMM representation. Thereby, an
optional mapping of the element and relation types to the different element and relation
classes can be performed. The assignment of classes to types has to be done manually
in advance and is then provided during the actual transformation. Once the adapter and
the mapping are defined the architectural data can be converted, no further adaption is
required by the user.

Figure 3.6: Translating an EA model into the GMM.

Within this thesis, we provide predefined adapters for the EA modeling tool Innovator
[MID19], the EA modeling Tool Archi [Bea19] and for CSV files. To ensure the up-
to-dateness and to provide more details within the application layer, we also consider
communication data provided by logs or monitoring tools. This enables the creation of
an architectural model, representing the actual behavior of the system. We do not have
to estimate performance measurements like the number of messages or the message size.
Sources for communication data are the used middleware, APM tools or log data.
APM tools like Dynatrace [Dyn19a] or Instana [Ins19] monitor the registered application
servers and provide performance measurements for the applications including incoming
and outgoing connections. The captured data can be exported and converted into the
GMM, as it is done for EA tools. If such a tool is not available, existing log messages can
be used to reconstruct the communication dependencies between the applications. The log
data provides information about the source and target of a communication dependency as
well as its duration and data volume.
Middleware software like a message queue or an enterprise service bus also provide inter-
faces to access communication data and thus to extract dependencies between application
systems. Within this thesis we provide solutions to extract the data from the message
queue solution RabbitMQ [Piv07] and the enterprise service bus Orchestra [sof18].
These possibilities of capturing the communication data typically result in a flat map of
application systems and their communication dependencies. This model is enriched with

62

3.4. Converting Architectural Data to the GMM

actual performance data regarding response times and data volumes. After establishing
the architectural model, a review has to ensure the quality of the model. The recovered
architectural model contains only those services that send or receive a message during
the considered time span. Further logical aggregation or assignment to business functions
have to be done manually. As alternative, merging these data with data from EA tools
provides a holistic and up-to-date model.
When implementing a dynamic approach for data retrieval, it is important to set an
adequate time span for data retrieval, since only the communicating services are captured.
Additionally, the data retrieval procedure must be performed in a way that it has no
significant impact on the productive system. Especially the performance must be ensured,
when integrating such an approach. To deal with the heterogeneity in current application
landscapes, the data retrieval must also be independent from the used technologies and
programming languages. Additionally, the necessary extensions have to be performed
without changing the source code. The last point is important to ensure the practicability
and acceptance.

63

Chapter 3. Capture the Enterprise Architecture Model

3.5 Related Work

As described in section 2.1.2 there exist several proposals for EA meta models in cur-
rent literature but no standard. Organizations often use the proposed meta models only
as starting point and adapt them to their individual needs [AKRS08]. This requires a
generic representation format of these models in order to enable reusable analysis func-
tions. Providing just another EA meta model with specific element and relation types
would not result in a practicable approach since it does not consider the individual needs
of the organizations.
To cope with the variability of meta models during analysis, Jonkers and Iacob [JI09]
propose a differentiation between design space and analysis space. The design space is ex-
pressed by using languages like UML, business process modeling languages or architectural
description languages. The analysis space is expressed by using special-purpose languages
which enable the later analysis. Their analysis approach includes a model transformation,
followed by the execution of the analysis, and finally a reverse transformation back to the
design space (including the analysis result). Thereby, each analysis is built upon its own
meta model and thus for each analysis a new model transformation is required.
Kurpjuweit et al. [KA09] provide a formalism for EA meta models and EA models in order
to realize a generic and applicable dependency analysis. Within their formalism they do
not consider properties, neither for elements nor for relations. Properties are important
for later quantitative analysis. Additionally, they do not explicitly support relationships
to enable multi-level modeling and packaging. In contrast to our proposal, they explicitly
model the inverse of a relationship. We created a relation type only for one direction.
The reification of a relation as a class makes both directions accessible, the incoming and
outgoing one.
The ArchiMate GM as well as the proposed element hierarchy [The17] and the DM2
conceptual model as well as IDEAS Foundation of DoDAF [Dep10] propose a small set
of common concepts that can be used as foundation to describe an EA model. Both
rely on one foundational unit to describe an EA model which is represented with the
ModelNode within the GMM. But regarding the relationship and element classification
both approaches are not sufficient for EA model representation for analysis tasks. The
generic elements proposed within DoDAF DM2 are already too detailed to form a common
foundation for representing different EA models. [Dep10] provides a more abstract solution,
but still lacks a generic navigation mechanism. The proposed basic relationships within
the IDEAS Foundation, i.e. wholePart, superSubType, typeInstance, and beforeAfter,
can be mapped straightforward for the proposed relationship classes within the GMM.
Additionally, the GMM provides classes for provisioning, consuming and location.
The relation super types within ArchiMate [The17], structural, dependency, dynamic and
other, were also not detailed enough. The align-enable principle is not supported since
realization and composition relationships are aggregated in one category. Additionally, the
important type-instance relationship is missing. The differentiation only between structure
and behavior element is also not detailed enough. The more detailed approaches within
the Generic Metamodel of ArchiMate [The17] has a strong focus on service-orientation.
Services with their interface are the mean to provide and use functionality.
Meta meta languages like the domain independent Meta Object Facility (MOF) [Obj16,
Obj17] or the domain specific Multi-prespective Enterprise Modeling (MEMO) model-
ing language [Fra11,Fra14] provide no sufficient foundation for the representation of EA

64

3.5. Related Work

models for later analysis purposes. Broadly speaking, these meta meta models enable
the specification of classes, properties and relationships. These concepts allow the repre-
sentation of EA models as well as their meta models, but the structure is not sufficient
for analysis definition. The approaches provide no EA specific constructs that enable a
generic definition of complex analysis. The expressiveness of analyses relying only on the
semantics of classes, properties and relationships is not sufficient.
Buckl et al. propose in [BBJ+11] several requirements for a meta-language for EA informa-
tion modeling. The proposed primitives of an EA model are classes, properties and binary
associations. All of them are supported by the GMM. The demanded generalization and
hierarchy modeling, multi-level modeling and packaging relationships are addressed with
the specializations of ModelEdge. To enable properties for relations, they are explicitly
modeled for the ModelEdge and MetaModelEdge classes. Additionally, the datatype for the
properties should be provided. Further requirements addressing the specification of con-
straints or the explication of dependencies between properties are not considered within
the GMM. We argue that these issues are part of the analysis and not of the architectural
representation. Supporting intentional semantics, i.e. provisioning different names for a
type or an element, can be depicted with the generic property annotation mechanism.

65

Chapter 3. Capture the Enterprise Architecture Model

3.6 Conclusion

In this section we propose the Generic Meta Model (GMM) to enable the representation
of an arbitrary EA model for later analysis purposes. The GMM provides a technical
foundation to abstract from the specifics of the different EA meta models used in organi-
zations, while providing a uniform model structure to enable reusable analysis functions.
The basic idea of the GMM is to represent the EA as a stereotyped graph. Thereby, the
GMM incorporates the model data (i.e. elements with their relations and properties) as
well as the meta model data (i.e. the element relation, and property types). Therewith,
the GMM can be applied to architectural models that are defined in an object-oriented
manner, i.e. models which distinguish between type definitions and instances.
To provide additional semantics about the elements, the GMM provides an optional cat-
egorizations mechanism for elements and relations. Therefore, we identify common con-
cepts used within EA models. For relations we identified the seven classes: provides,
consumed by, located at, structural dependent on, behavioral dependent on, instance of
and generalization. The identified classes for elements are Human, Process, Application
and Infrastructure Element. Each element or relation can be assigned to one of them by
using one of the specializations of ModelEdge. We decided against the implementation
within the meta model or with stereotype to better support performant out-of-the-box
interpretations during analysis tasks.
To convert existing data into the GMM format, a respective parser including an optional
mapping of the element and relation types to categories has to be created once. In the
following, the data can be imported without further adaptions. If the EA meta model does
not change the adapter can also be used to update the existing model. In this case, new
elements are added and property values are updated but no information will be deleted.
Main source for data is the provided exports from EA tools or information within CSV files.
Additionally, to provide further details about the applications and their dependencies, also
application monitoring tools and communication log data can be considered. In this case
the frequency and data volume does not have to be estimated, and the created model
represents the current state. Ideally, this data is combined with the static data extracted
from EA tools.

66

4
Enterprise Architecture Analysis Definition

Within this chapter we consider current analysis approaches within EAM and derive com-
mon requirements for analysis activities. Based on these results we develop the Architec-
ture Analysis Language (Arla). Arla is a declarative language for analysis specification
that provides a uniform interface to the different analysis activities within EAM. There-
fore, different analysis classes are proposed that can be adapted to the individual concerns
of the stakeholders.
The foundational analysis of EA approaches utilizes results retrieved within the bachelor
thesis [Rau13] and the master thesis [Rau15]. Both were supervised by the author of this
thesis. The results provided in [Rau15] were additionally published in [RLB16,RLB17].
The idea and concepts of Arla were previously published in [LB17].

67

Chapter 4. Enterprise Architecture Analysis Definition

4.1 EA Analysis Approaches

In [Rau13] we considered 105 analysis approaches for EAM which we roughly clustered into
40 analysis types. The types are created based on the scope of the respective analyses. The
goals and execution methods of the analysis approaches assigned to one type can differ.
Examples of analysis types are Analysis of Service Response Time (e.g. [NBE14]), Change
Impact Analysis (e.g. [SKR13a]) and Performance and Workload Analysis (e.g. [Lan12]).
Figure 4.1 provides an overview of the 40 analysis types. The color indicates their degree
of development. Blue indicates a high level of maturity. Red indicates a low maturity, i.e.
there is not enough information or detail given to apply the approaches of this analysis
type.

54
 Abbildung 10: M

indM
ap EAM

 Analysen

high
medium
low

Figure 4.1: Enterprise architecture analysis types with their degree of development
[Rau13].

14 of these analysis types reference quantitative analysis approaches, whereas eight types
answer functional questions, e.g. the effects of changes. Another 14 types cannot be cat-
egorized solely in one of those dimensions. For three types no assignment was possible.
Based on the initial typing we propose a two-dimensional categorization of EA analyses in
order to derive typical characteristics requirements for analysis execution. Each analysis
approach is assigned to one technical dimension and at least one functional dimension. A
technical dimension summarizes approaches utilizing a similar method with similar steps
regardless of the addressed goal and subject. In contrast a functional dimension summa-
rizes approaches addressing the same objectives and goals. Since an approach can fulfill
different goals, there are several approaches with more than one functional dimension. For

68

4.1. EA Analysis Approaches

example, the cost analysis of [Nie06] is assigned to the technical dimension KPI and the
functional dimension Financial. The quality analysis of [NSJ+08] is assigned to the tech-
nical dimension Bayesian Networks and to the functional dimensions System, Attribute,
Quality and Data. In total we identified 10 functional dimensions and 17 technical dimen-
sions. The functional dimensions are briefly presented in the following:
Quality Quality of different aspects is analyzed (e.g. usability).
Attribute Analysis of specific attributes like availability.
Dependencies Focus are the relationships between the elements.
Effects Capture the effects of changes.
Business objects Addressing all kind of business objects (e.g. operations, artifacts).
Design Addressing the overall design of the enterprise architecture.
Requirements Validate the requirements for goal fulfillment.
System Object under analysis are (parts of) systems.
Financial Metrics for cost benefits, risks and weak points.
Data Analysis of the quality and accuracy of data.

The technical dimensions relying on probabilistic technologies are further summarized
within the Probabilistic dimensions. Also dimensions that utilize quantifying techniques for
answering the targeting questions are summarized. Additionally, the dimensions Matrices
and Design are mentioned together, since both utilize matrices during analysis execution.
The dimension AHP is short for the technique Analytic Hierarchy Process. Therewith,
the following overview of the technical dimensions can be provided:
Probabilistic dim. Includes Bayesian Networks, EID and PRM.
Quantitative dim. Includes Metrics and KPIs, Business entities, Time evaluation

and Weak points.
Matrices and Design Utilize matrices during analysis execution.
Comparisons Compares scenarios, processes, attributes and dependencies.
Views Creation different perspectives to analyze aspects in detail.
AHP Define theories about attributes and quality aspects of EAs.
Tree Utilize trees to analyze dependencies and quality features.
Social network Analyze questionnaires and email data to build network graphs.
Lifecycle Determine dependencies according to different lifecycle phases.
Ontology Assess the ontological representation of an EA.
Structural Observe obstacles of different architecture versions.

The assignment of the dimensions to the analysis approaches is described in detail in the
master thesis [Rau15] and the publications [RLB16,RLB17] building on it. A summary
of the assignment is provided in table 4.1. This provides an overview of the functional
dimensions, and which technical dimension are used for their realization. Additionally,
the number of analysis approaches within each dimension is presented. Thereby, each
publication is interpreted as one analysis approach. An analysis approach can be assigned
to several functional dimensions. Thus, approaches may be counted twice or three times.
The large number of probabilistic approaches is due to the strong publication effort from
one research group on this topic. The publications, used within the counting in [Rau15],
extend and rely on each other.
A general requirement that occurs across all dimensions, is the availability of one or more
concrete EA models which are subject to the analysis. Additionally, the utilized meta
model has to be given as well as the goal of the analysis. Identified goal types within
the approaches are percentage, probability, number, matrix, dependency, object, effect,

69

Chapter 4. Enterprise Architecture Analysis Definition

Table 4.1: Dependencies between functional and technical categories [Rau15].

Technical Fu
nc
tio

na
l

Q
ua
lit
y
(3
1)

At
tr
ib
ut
e
(2
8)

D
ep
en
de
nc
ies

(1
9)

Eff
ec
ts

(1
7)

Bu
sin

es
s o

bj
ec
ts

(1
6)

D
es
ig
n
(1
2)

Re
qu
ire

m
en
ts

(1
0)

Sy
st
em

(8
)

Fi
na
nc
ia
l (
7)

D
at
a
(7
)

O
th
er

(4
)

Probabilistic
dimensions (29)

x x x x x x

Quantitative
dimensions (17)

x x x x

Matrices (incl.
Design) (14)

x x x x x x

Comparisons (9) x x x x x
Views (6) x x x x
AHP (5) x x
Tree (4) x x x x
Social network (4) x x
Lifecycle (2) x x
Ontology (2) x x x x
Structural (1) x
Other (3) x x

scenario and Boolean. Despite these input parameters the obvious precondition must
be hold that the relevant data for analysis is available within the EA model. To be
able to execute the analysis, some approaches require additional information besides the
EA model. These are for example chance and utility nodes and their causal relations
for analysis utilizing extended influence diagrams. The final evaluation is merely done
using metrics and scales, and about 30% of the analysis approaches utilize probabilistic
techniques. A further important technique is the definition of views on the architecture.
Additionally, the functional category Dependencies is often used.
The approaches within the probabilistic dimensions require additional information and
dependency structures as well as probability distributions for attributes. Gaining this
information provides additional effort and the specifics of these approaches makes it hard
to provide a usable analysis definition language to the architect. Therefore, we focus in the
following on the analysis approaches assigned to the remaining technical dimensions.
Especially we concentrate on quantitative dimensions and views, as they belong to the
more important dimensions. In specific, we implement a performance analysis to enable
the evaluation of the run time behavior of a system. Additionally, we integrate an impact
analysis, a dependency analysis and a gap analysis for the comparison of two models.
The analysis language should also enable the composition of analysis approaches to
support more expressive analyses. This enables the calculation of metrics only for a
specific part of the architecture which is defined with another analysis specification.
The result of an analysis evaluation can either be calculated for a specific set of model
elements or be a single result for the whole architecture. For example, infrastructure costs
can be calculated for each infrastructure element but also a total value for the whole
infrastructure. Result types of an analysis evaluation can be

70

4.1. EA Analysis Approaches

• a numeric value (e.g. percentage, probability, or number),
• a single model element,
• a set of model elements representing a part of the architecture,
• an attribute value (e.g. effect type or Boolean), or
• a dependency, i.e. a path between two elements.

71

Chapter 4. Enterprise Architecture Analysis Definition

4.2 Language Overview

The Architecture Analysis Language Arla is a textual, domain specific language (DSL)
for analysis definition. The language provides a uniform interface to different analysis
approaches. Arla provides a declarative approach for analysis specification and abstracts
from technical details. The architect defines only "what" he is interested in, how this
information is retrieved, is generated from the Arla analysis definition. This execution
process, utilized for the evaluation of the language, is described in section 5.5.
For the language development we used Xtext [Ecl18b], a framework that comprises a pow-
erful language for the description of textual languages. The grammar language provided
by Xtext enables the description of the concrete syntax of a textual DSL as well as its
mapping to the semantic model. The model as well as a parser, linker, type checker
and compiler are generated by the framework. The DSL was developed according to the
meta model development process for abstract syntax development from [BCW12]. This
incremental and iterative process consists of three phases: The Modeling Domain Analy-
sis phase, elaborating the purpose and content for the language, the Modeling Language
Design phase, defining the meta model, and the Modeling Language Validation phase,
verifying the correctness and integrity. The results of the first phase, a description of the
different analysis types and their characteristics, were already presented in the previous
section. The results of the second phase are presented in the following, and the validation
of the language is presented in section 8.
Arla supports the specification of specific analysis definitions for a concrete EA model,
but also of generic template definitions using placeholder variables. In order to apply
a template on a concrete EA model, the declared variables have to be mapped to existing
stereotypes. A re-definition of the analysis is not necessary.
Another concept to ease the re-use of analyses and support template definition is node and
edge categorization as proposed within the GMM in section 3.2.2. The proposed classes
are used to abstract from EA specific stereotypes during analysis definition. We identi-
fied seven relation classes: provide, consumed by, located at, structural dependent
of, behavioral dependent of, generalization and instance of. Additionally, we
identified four element classes that are used in most EA meta models: Human, Process,
Application and InfrastructureElement. If the categories are insufficient for an anal-
ysis definition, it is always possible to use the concrete stereotypes.
An analysis or template definition is composed of a general part and an analysis specific
part. The general part comprises attributes like the name, the analysis style, the result
type and a description. Within the analysis specific part, the configuration information
necessary for analysis execution is provided. The language is designed in a modular way,
i.e. complex analyses are defined through the composition of simpler ones. The language
supports the following customizable analysis classes:

Metric Calculation Calculates a metric for each element or for the whole architec-
ture

Scope Analysis Defines a part of the model, i.e. a view
Path Analysis Calculates available dependencies between two elements accord-

ing to provided restrictions
Impact Analysis Calculates the effects of an event to the architecture
Gap Analysis Compares two models and determines the differences

72

4.2. Language Overview

Figure 4.2: Arla template for a scope definition.

Performance Analysis Calculates several performance metrics
Composed Analysis Enables the composition of analyses
Adapted Analysis Provides the relevant mapping for executing a predefined tem-

plate

Additionally, two further analysis classes are provided to enable the execution of native
SPARQL queries or individual data-flow analyses. The classes can be used if a desired
analysis cannot be captured with one of the seven previous ones.
The structure of analysis and template definitions is the same. The specification of a
template definition is exemplary shown in figure 4.2. For its illustration the definition of
the Application Structure Viewpoint from ArchiMate [The17] is used. This analysis can
be realized using the Scope Analysis class. Within the template definition the conditions
for executing the scope analysis are defined. A template definition, respectively analysis
definition, is composed of three parts. Within the Header (lines 1, 2) the name and
description of the analysis are defined. The header of a template starts with the signal
word Template, an analysis definition with the signal word Analysis. Within the Body
(lines 3 - 8) the details of the analysis are provided. First, in line 3 the analysis style and
the result type are defined. Aggregate states that this analysis definition will provide
one result, and this result is of the type Modelelementset. All elements within the
Modelelementset are part of the resulting view. Afterwards the constraints for analysis
execution are defined within the Configuration part (line 4-8). The configuration is
specific for each analysis class.
In the example, the view should contain the elements having the stereotype application
interface, application component, application collaboration or data object. This can be
formulated with a set definition, where these concepts can be listed using the OR op-
erator. Thereby, the class annotation Application is used for applications components
and nodeType references are used for the other element types. The three nodeType state-
ments provide only placeholder variables. In order to execute the analysis on a specific
EA model, these variables have to be mapped to concrete stereotypes of the model. For
understandability reasons it is recommended to give meaningful names to those variables,
although every term is possible. Within specific analyses instead of variables the concrete
stereotypes of the EA model are used.
Figure 4.3 provides an overview of the meta model utilized for the analysis language. Arla
consists of three packages. Arla Core (in the middle and at the bottom, green) defines
the parts that are used by both analyses, the specific analysis definitions and the template

73

Chapter 4. Enterprise Architecture Analysis Definition

Figure 4.3: Simplified Arla Overview.

definitions. Arla Specific (at the left side, yellow) defines the constructs for specific
analysis definitions, whereas Arla Template (on the right side, blue) defines the con-
structs for template definitions. The structures of Arla Specific and Arla Generic are very
similar to each other. The definitions are provided within a SpecificAnalysisPackage
respectively TemplatePackage. Each definition is composed of a Header, defined in the
core package, and a Body. The body provides the configuration for the analysis and is
individual for each analysis class. Omitted analysis configurations within both packages
are indicated with “...” and dashed incoming relations. The commonalities for the config-
uration of each analysis class is provided in a respective Definition in Arla Core. The
details of the analysis definitions in Arla Core, are also omitted here and presented in
section 4.3.

74

4.2. Language Overview

4.2.1 Arla Core

Within Arla Core the commonalities between template and specific analysis definitions
are depicted. In specific, this is the AnalysisHeader of a definition. The header is
used for the specification of the name and a description. The definitions are described
with an analysis specification file, the AnalysisPackage. The package declares the name
and the description for the file. The core package also defines enumeration types like
AnalysisStyle, ResultType, NodeClass and EdgeClass and a generic construct for ref-
erencing element and relation types. The AnalysisStyle defines whether the analysis
provides one result for the whole architecture (Aggregate) or a result for each element (El-
ement). The ResultType defines the kind of result. Possible results are Metric, Attribute,
Boolean, Modelelement, Modelelementset and Pathset. The result type and the analysis
style are attributes of all analyses. But since they can have predefined values for some
analysis classes, they are not specified within the AnalysisHeader. Additionally, for each
analysis class the respective definition used for its configuration is depicted. This includes
calculation rules for metrics, definition of a node set, rules for analysis composition, the
definition of a scope, the configuration of paths, the configuration of an impact and the
definition of a performance analysis. The details of the concrete definition classes are
presented in 4.3.
Element, relation and property types are referenced with a TypeReference. A TypeRef-
erence can either a StereotypeReference or a ClassReference. The ClassReference,
used for referencing node or edge classes, has a value field for the respective class enumera-
tion item. The NodeClass and EdgeClass enumeration represent the categories proposed
within the GMM in section 3.2.2. Using the categories enables the definition of generic
analysis templates without further adaption to a concrete EA model. The categories can
be used within both definitions, the specific analyses and the templates.
If the categories are not sufficient, it is also possible to use the StereotypeReference
instead. This concept defines a concrete stereotype in case of a specific analysis and a
stereotype variable in case of a template. StereotypeReference can be used to refer-
ence meta model nodes (NodeTypeReference), meta model edges (EdgeTypeReference)
and meta model properties (PropertyTypeReference). For referencing the property of a
specific node type a dedicated TypedPropertyReference is provided.
To enable the substitutable use of type and class references within analysis and template
definitions, the NodeTypeReference and the NodeClassReference inherit from the inter-
face NodeReference and accordingly for edge references from a EdgeReference. Addi-
tionally, the stereotype references, i.e. the NodeTypeReference, the EdgeTypeReference
and the PropertyTypeReference are overwritten in Arla Template and Arla Specific
to enable the adapted of templates within specific analysis definitions.

4.2.2 Arla Template

Source element of Arla Template is the TemplatePackage. The package consists of the
generic AnalysisPackage, defining the name and providing a description, as well as of
an arbitrary number of Templates. The respective grammar excerpts are presented in
listing 4.1.

1 TemplatePackage :
2 analysisPackage = AnalysisPackage
3 (genericDefinition += Template)*

75

Chapter 4. Enterprise Architecture Analysis Definition

4 ;

5 Template :
6 ’Template ’ header = AnalysisHeader ’{’
7 ’as’ body = TemplateConfiguration
8 ’}’
9 ;

10 TemplateConfiguration :
11 GenericImpactConfiguration | GenericEdgeConfiguration |

GenericPathConfiguration |
12 GenericNodeSetConfiguration | GenericElementMetric | GenericAggregatedMetric |
13 GenericPerformanceConfiguration | GenericCompositionConfiguration |
14 GenericDFAConfiguration
15 ;

Listing 4.1: Grammar excerpt for TemplatePackage, Template and Template-
Configuration.

A Template consists of an AnalysisHeader which defines the name and description
for the template. Further details are described within the body of the template, the
TemplateConfiguration. For each analysis class a specific configuration is provided. For
metric calculation and scope analysis two different configuration possibilities are provided.
Metric calculation differs between the configuration of element metrics and aggregated
metrics addressing the whole architecture. The scope analysis can be configured with a
GenericEdgeConfiguration or with a GenericNodeSetConfiguration. Gap analysis as
well as custom SPARQL queries are not supported for template definition.
Listings 4.2 and 4.3 show exemplary two different template configurations. Within the first
listing, the grammar excerpt for the configuration of a scope analysis using an edge defi-
nition is provided. Since the calculated result can only be one set of model elements, the
values for analysisStyle and resultType are predefined. The actual analysis configura-
tion is provided within the EdgeDefinition. Therein, the conditions required for analysis
execution are defined. The EdgeDefinition is depicted within Arla Core and can be
used for templates as well as specific analysis definitions. The details of this definition are
introduced in section 4.3.1.

1 GenericEdgeConfiguration :
2 analysisStyle = Aggregate
3 resultType = Modelelementset
4 ’defined with scope definition :’ configuration = EdgeDefinition
5 ;

Listing 4.2: Grammar excerpt for the configuration of a scope analysis template.

Listing 4.3 shows the configuration for a composition of two analyses. In contrast to the
previous one, the values for analysisStyle and resultType are not predefined. They
cannot be specified at design time and have to be provided by the user when defining the
analysis. As in the listing above, the actual configuration is provided with an element
from Arla Core. This CompositionDefinition is presented in detail in section 4.3.9.

1 GenericCompositionConfiguration :
2 analysisStyle = AnalysisStyle
3 resultType = ResultType
4 ’defined with composition rule:’ configuration = CompositionDefinition
5 ;

Listing 4.3: Grammar excerpt for the configuration of an analysis composition
template.

76

4.2. Language Overview

4.2.3 Arla Specific

The root element of Arla Specific is the SpecificAnalysisPackage. The respective
grammar excerpt is presented in listing 4.4, line 1 - 6. Within the package the concrete EA
model which is subject to the analyses, has to be provided. The EA model is identified with
the path of the triple store as well as the relevant URIs. The generic AnalysisPackage
from the core provides the name and the description. Finally, an arbitrary number of
specific analysis definitions (SpecificDefinition) can be added.

1 SpecificAnalysisPackage :
2 ’Model ’ modelUri = STRING
3 ’TripleStore ’ tripleStorePath = STRING
4 analysisPackage = AnalysisPackage
5 (specificDefinition += SpecificDefinition)*
6 ;

7 SpecificDefinition :
8 ’Analysis ’ header = AnalysisHeader ’{’
9 ’as’ body = AnalysisConfiguration

10 ’}’
11 ;

12 AnalysisConfiguration :
13 SpecificImpactConfiguration | SpecificEdgeConfiguration |
14 SpecificPathConfiguration | SpecificElementMetric | SpecificAggregatedMetric |
15 SpecificNodeSetConfiguration | SpecificPerformanceConfiguration |
16 SpecificCompositionConfiguration | SpecificDFAConfiguration |
17 AdaptedAnalysis | CustomQuery | GapConfiguration
18 ;

Listing 4.4: Grammar excerpt for the definition of a specific analysis package.

The SpecificDefinition (lines 7 - 11) and the referenced AnalysisConfiguration (lines
12 - 18), are constructed in the same way as the Template and the TemplateConfiguration.
In addition to the configurations provided for templates there exist three more configura-
tion types:
• the AdaptedAnalysis, used to customize a template,
• the CustomQuery, providing an interface for directly entering SPARQL queries, and
• the GapConfiguration, used to compare two models with each other.

Concrete AnalysisConfigurations are constructed in the same way as TemplateConfig-
urations. Exemplary, the configuration for a specific scope analysis is shown in listing
4.5.

1 SpecificEdgeConfiguration :
2 analysisStyle = Aggregate
3 resultType = Modelelementset
4 ’defined with scope definition :’ configuration = EdgeDefinition
5 ;

Listing 4.5: Grammar excerpt for the configuration of a specific scope analysis.

First, the details about the expected result are provided. The constraints for determin-
ing the desired part of the architecture are provided within the EdgeDefinition. The
EdgeDefinition is defined in Arla Core and described in the subsequent section.
To enable a unique identification of the stereotypes, the generic StereotypeReference
provided in Arla Core has to be extended with an identifier field. The NodeType-
Reference, the EdgeTypeReference and the PropertyReference are extended with an
additional id field. Therefore, these concepts from the core package have to be overwritten
in the specific package (see listing 4.6).

77

Chapter 4. Enterprise Architecture Analysis Definition

1 @Override
2 StereotypeReference :
3 NodeTypeReference | EdgeTypeReference | PropertyReference
4 ;

5 @Override
6 NodeTypeReference :
7 ’node:’ name = STRING ’[’id = STRING ’]’
8 ;

9 @Override
10 EdgeTypeReference :
11 ’edge:’ name = STRING ’[’id = STRING ’]’
12 ;

13 @Override
14 PropertyReference :
15 ’property :’ name = STRING ’[’id = STRING ’]’
16 ;

Listing 4.6: Grammar excerpt for for overriding the stereotype references in Arla
Specific.

78

4.3. Analysis Classes within the Language

4.3 Analysis Classes within the Language

In this subsection the nine analysis classes of Arla are presented in detail. The classes are
summarized in table 4.2.

Table 4.2: Analysis classes and their configuration definitions within Arla.

Analysis class Analysis/template definition Configuration definition

Scope analysis
SpecificEdgeConfiguration
GenericEdgeConfiguration EdgeDefinition

SpecificNodeSetConfiguration
GenericNodeSetConfiguration NodeSetDefinition

Impact analysis SpecificImpactConfiguration
GenericImpactConfiguration ImpactDefinition

Path analysis SpecificPathConfiguration
GenericPathConfiguration PathDefinition

Metric
SpecificElementMetric
GenericElementMetric ElementMetricDefinition

SpecificAggregatedMetric
GenericAggregatedMetric AggregateMetricDefinition

Performance
analysis

SpecificPerformanceConfiguration
GenericPerformanceConfiguration PerformanceDefinition

Gap analysis GapConfiguration GapDefinition
Adapted analysis AdaptedAnalysis mappings

Custom analysis
SpecificDFAConfiguration
GenericDFAConfiguration DFADefinition

CustomQuery query string

Composed analysis SpecificCompositionConfiguration
GenericCompositionConfiguration CompositionDefinition

Within the second column, for each class the respective configurations for specific analysis
definition and template definition are provided. In the third column, the utilized configu-
ration definition from the base package is provided. In the following, details for different
analysis classes are introduced and the language part relevant for their configuration is
depicted. This is done with example definitions and their execution on the RentalCar
model.

4.3.1 Scope analysis

Within Arla the scope analysis is used to generate different views of an architecture or
to define a domain architecture, i.e. partial EA models. Partial EA models representing
the relevant views for decision-making are an important asset within EA [RGA07]. They
support the senior IT managers in structuring and filtering the large amount of information
provided with EA models. Domain architectures focus on one part of the architecture that
is relevant for a specific stakeholder, i.e. the context of a business process for the business
process owner [BvSF+10]. It is important that the domain architecture has a clear scope
and that the related elements are included. Both generating views and generating domain
architectures are based on the concept of viewpoints. A viewpoint addresses a specific
concern of stakeholder which also determines the scope. Viewpoints can be used to either
concentrate on the details of an aspect or the coherence’s between elements.
Arla provides two different definition types for the configuration of viewpoints and to

79

Chapter 4. Enterprise Architecture Analysis Definition

generate the partial EA models. The NodeSetDefinition and the EdgeDefinition. The
first one enables the definition of a viewpoint using constraints which an element has
to fulfill to be part of the resulting set of model elements. For example, this can be
the condition of having a specific node type. In contrast an EdgeDefinition defines a
viewpoint for a concrete architecture element with constraints about the incoming and
outgoing relations. For example, this enables the definition of a realization viewpoint
through including all elements related with a direct or indirect realization relation.
Listing 4.8 provides an example for a scope analysis using the NodeSetDefinition. In
listing 4.7 the grammar for the NodeSetDefinition is presented.
As mentioned above, a NodeSetDefinition is a composition of conditions an element
must fulfill to be part of the result. These conditions can make statements about node
types, properties and relations (line 9). It is also possible to create nested conditions.
The conditions can be composed with an AND or an OR operator (lines 4 - 7) which are
interpreted as logical operators. I.e. either an element must fulfill all conditions that are
composed with AND or it must fulfill one of the conditions composed with OR.

1 NodeSetDefinition :
2 Composition
3 ;

4 Composition returns NodeSetDefinition :
5 Condition (({ AndComposition .left= current } ’AND ’ |
6 { OrComposition .left= current } ’OR’) right= Condition)*
7 ;

8 Condition returns NodeSetDefinition :
9 ’(’NodeSetDefinition ’)’ | NodeReference | PropertyCondition | RelationCondition

| NotCondition
10 ;

11 PropertyCondition :
12 ’having property ’ propertyName = PropertyReference
13 (’with value ’ propertyValue = ValueExpression)?
14 ;

15 ValueExpression :
16 { StringValue } value = STRING | ’(’{ NumericValue } op= Operator value = INT ’)’
17 ;

18 enum Operator :
19 EQUAL = ’=’ | LESS = ’<’ | GREATER = ’>’ | LESSorEQUAL = ’<=’ |

GREATERorEQUAL = ’>=’
20 ;

21 RelationCondition :
22 ’having relation to’ ’(’ nodeSet = NodeSetDefinition ’)’
23 ;

24 NotCondition :
25 ’NOT ’ ’(’ nodeSet = NodeSetDefinition ’)’
26 ;

Listing 4.7: Grammar excerpt for the NodeSetDefinition.

The simplest condition is the NodeReference. This enables the specification of the node
type an element must have to be included in the result. Using the PropertyCondition
(lines 11 - 14) the presence of a property with a specific property type for an element can
be depicted. Optionally, a concrete value can be provided for this property. This can be
either a specific String value or a numeric expression (line 15 - 17). The operator used
within the numeric expression enables a statement whether the element must exactly have
the given numeric value or if it has to be less, less or equal, greater or greater or equal
than this value (lines 18 - 20).

80

4.3. Analysis Classes within the Language

The RelationCondition (lines 21 - 23) enables the definition of another NodeSetDefi-
nition. All elements that have at least one relation to one of the elements of this nested
nodeSet are included in the result. The elements of the nested nodeSet are not part
of the results. This condition is important to allow statements like ’all business units
that have a relation to a business process with criticality greater than 3 ’. The respective
NodeSetDefinition is presented in listing 4.8.
Finally, the NotCondition can be used to negate a node set definition (lines 24 - 26).
The result consists in this case of all elements that do not meet the provided condition.
An example for its application is the specification of all elements being not of a specific
type.

1 Template ANodeSetExample {
2 "All business units that have a relation to a business process with criticality

greater than 3"
3 as Aggregate Modelelementset
4 defined with set definition :
5 nodeType :" business unit" AND
6 having relation to
7 (nodeType :" business process " AND
8 having property propertyType :" criticality " with value (> 3))
9 }

Listing 4.8: Example template for a NodeSetCondition.

The second alternative for the configuration of model parts is the EdgeDefinition. The
respective part of the grammar is presented in listing 4.10. This configuration type cal-
culates a set of model elements with respect to a selected start element. According to
the provided constraint for the relation types, additional elements will be included in the
resulting model element set. Constraint types for relations are single, transitive and
none. Assigning a single constraint to a relation type or relation class means that it
should be considered once to determine the model part, i.e. the target element is within
the result set, but none of the further related elements. In contrast transitive means
that the target element is in the result set and if further relations met one of the conditions,
those indirect related elements are also included.

1 Template AEdgeDefinitionExample {
2 " Determining the use by and realize context

for an element ."
3 as Aggregate Modelelementset
4 defined with scope definition : {
5 ModelEdge in: none out: none
6 ConsumedBy in: none out: single
7 Provide in: none out: transitive
8 }
9 }

Listing 4.9: Example template for an
EdgeDefinition. Figure 4.4: Result for the scope

definition.
Listing 4.9 provides an example template for the scope configuration with an edge defini-
tion. This definition determines the use and realize context for an element, i.e. the direct
and indirectly connected elements that are provided or consumed by the start element.
Therefore, the single constraint is assigned to the relation class ConsumedBy and the
transitive constraint is assigned to the class Provide. All other relations should not
be considered for determining the resulting model part. The meaning of the constraints
is illustrated with the example provided in figure 4.4. In the figure, the CRM System is
the selected start element for the scope analysis. Since the realization stereotype belongs

81

Chapter 4. Enterprise Architecture Analysis Definition

to the category Provide the relation should be considered in a transitive way, i.e. the
target element Customer Data is in the result. The further relations of this element, will
be considered too. The outgoing relation used by belongs to the category ConsumedBy and
is therefore considered in a single manner. That means, the target element CRM is added
to the result set, but further relations of this element are not assessed. Finally, the as-
signment relation from the CRM System is not considered, since it is evaluated according
to the constraint given for ModelEdge.
The part of the Arla grammar defining the EdgeDefinition is presented in listing 4.10.
The constraints can either be annotated at concrete stereotypes using the ScopeDefi-
nitionByStereotype or at relation classes using the ScopeDefinitionByClasses. The
ScopeDefinitionByClasses requires a mandatory specification of constraints for Model-
Edges (lines 5 - 6). This determines the default execution procedure. Further constraint
assignments to relation classes are optional (line 7). In all cases, the constraints must be
defined for incoming (in) and outgoing (out) relations.

1 EdgeDefinition :
2 EdgeDefinitionByStereotype | EdgeDefinitionByClasses
3 ;

4 EdgeDefinitionByClasses : ’{’
5 ’ModelEdge ’ ’in:’ defaultEdgeIncoming = ScopeValue
6 ’out:’ defaultEdgeOutgoing = ScopeValue
7 (edgeConstraints += EdgeConstraint)*
8 ’}’
9 ;

10 EdgeConstraint :
11 class= EdgeClass ’in:’ edgeIncoming = ConstraintValue ’out:’ edgeOutgoing =

ConstraintValue
12 ;

13 enum ConstraintValue :
14 None | Single | Transitive
15 ;

16 EdgeDefinitionByClasses : ’{’
17 (’TransitiveIn ’ ’(’ transitiveInStereotypes += EdgeTypeReference
18 (’,’ transitiveInStereotypes += EdgeTypeReference)* ’)’)?
19 (’TransitiveOut ’ ’(’ transitiveOutStereotypes += EdgeTypeReference
20 (’,’ transitiveOutStereotypes += EdgeTypeReference)* ’)’)?
21 (’SingleIn ’ ’(’ singleInStereotypes += EdgeTypeReference
22 (’,’ singleInStereotypes += EdgeTypeReference)* ’)’)?
23 (’SingleOut ’ ’(’ singleOutStereotypes += EdgeTypeReference
24 (’,’ singleOutStereotypes += EdgeTypeReference)* ’)’)?
25 (’None ’ ’(’ noneSteorotypes += EdgeTypeReference
26 (’,’ noneSteorotypes += EdgeTypeReference)* ’)’)?
27 ’}’;

Listing 4.10: Grammar excerpt for the EdgeDefinition.

The second alternative, the EdgeDefinitionByClasses, enables the assignment of the
constraints to concrete stereotypes or stereotype variables. For this case five different lists
indicating the constraint type and the direction of the relation are defined (lines 17 - 26).
By default, a stereotype is interpreted with no consideration for both directions.

4.3.2 Impact analysis

The impact analysis simulates the effects of certain events, like changes or failures, through
propagating impact values along the relations of the EA model. Therewith the potential
effects, direct and indirect ones, can be assessed. Thereby, three different types of impact

82

4.3. Analysis Classes within the Language

values are supported: high, medium, and low. Within respective rules the semantics for
propagating those impact values through the model are defined.
Due to the lack of detailed information in enterprise architecture models, an accurate
assessment of the impact is not possible. We decided against the use of probabilistic models
because of the inherent uncertainty when defining the thresholds (although, if desired,
the technique could be extended to compute probabilities for each effect). Instead, we
approximate impacts through a best case/worst case analysis. Similar to the practices in
software analysis, the worst case represents the maximal set of affected elements, whereas
the best case conforms to the minimal set. The actual impact (which must be determined
by a domain expert) typically lies somewhere in between. Additionally, customized impact
analyses are supported, where the propagation semantics can be individually defined.
The propagation semantics are captured with impact rules that define the effects according
the direction and type of the relation. For example, a propagation rule defines that a
service has a high impact type, if the hosting application also has a high impact value.
The impact status for each element is calculated with respect to the impact status of the
related elements.
The impact analysis can be applied for change impact but also for availability analysis.
In the first case the impact values are interpreted as the change status of the elements.
In [dBBG+05] three different change types are proposed: extend, modify and delete. Ex-
tension refer to cases where new issues are added but the initial functionality remains
the same. Consequently, an extension has no effects on depending elements and can be
mapped to the impact value low. By contrast, a modification also affects the functionality
or the structure and therefore it cannot be guaranteed that initially provided functional-
ity will still be available or that the behavior remains unchanged. This change status is
mapped to the impact value medium. Finally, deletion indicates that an element will be
removed from the EA. This is represented with the high impact type.
Within availability analysis, the effects of the breakdown of an element are simulated. The
strong impact type denotes a severe effect of the breakdown to this element. It cannot
be ensured that an element with a high impact type is available any longer. Whereas, a
low impact type denotes only a weak effect. This element will be still available, possibly
with small restrictions. It also possible to determine the effects of other events through
the definition of custom propagation semantics.
Arla provides three different types for the configuration of an impact analysis (see listing
4.11). The static mode (StaticImpactConfiguration) approximates the effects using
predefined propagation rules in two cases. The worst case represents the maximal set of
affected elements, whereas the best case represents the minimal set.

1 ImpactDefinition :
2 ImpactDefinitionByStereotype | ImpactDefinitionByEdgeClasses |
3 StaticImpactDefinition
4 ;

5 StaticImpactDefinition : { StaticImpactDefinition }
6 ’static ’ mode = (’worst ’ | ’best ’) ’case ’
7 ;

Listing 4.11: Grammar excerpt for the ImpactDefinition.

In the dynamic mode, the propagation semantics can be defined by the user. There-
fore, either the relation types (ImpactDefinitionByStereotype) or the relation classes
(ImpactDefinitionByEdgeClasses) are mapped to effect types. An effect type defines

83

Chapter 4. Enterprise Architecture Analysis Definition

propagation rules for each impact type. In Arla three different effect types are supported:

Table 4.3: Description of the effect types.

effect type description
weak_effect A high impact type causes a medium one, and a medium

value a low one.
strong_effect A high impact type causes a high one, and a medium type

a medium one.
no_effect No impact value is propagated.

A low impact type is propagated in no cases. The effect types have to be assigned to each
direction of a relation, i.e. one effect type for incoming and one for outgoing relations.
If, for example, an application component realizes a service, then the application com-
ponent has a strong impact on the service, while the service only has a weak impact on
the application component. Therefore, an outgoing realization would be assigned to the
strong_effect and an incoming realization to the weak_effect.
The assignment of the effect types to relations is done similar to the assignment of the scope
conditions in the section before. Listing 4.11 provides the grammar for the assignment to
stereotypes. For each effect type and each relation direction the list of stereotypes which
should be interpreted according to this type, has to be defined. If a stereotype is not
assigned to any of these lists, it is interpreted according to the no_effect type.

1 ImpactDefinitionByStereotype : { ImpactDefinitionByStereotpe }
2 (’WeakEffect In’ ’(’ incomingWeakStereotypes += EdgeTypeReference
3 (’,’ incomingWeakStereotypes += EdgeTypeReference)* ’)’)?
4 (’StrongEffect In’ ’(’ incomingStrongStereotypes += EdgeTypeReference
5 (’,’ incomingStrongStereotypes += EdgeTypeReference)* ’)’)?
6 (’WeakEffect Out ’ ’(’ outgoingWeakStereotypes += EdgeTypeReference
7 (’,’ outgoingWeakStereotypes += EdgeTypeReference)* ’)’)?
8 (’StrongEffect Out ’ ’(’ outgoingStrongStereotypes += EdgeTypeReference
9 (’,’ outgoingStrongStereotypes += EdgeTypeReference)* ’)’)?

10 ;

Listing 4.12: Grammar excerpt for the ImpactDefinitionByStereotype.

Listing 4.13 provides the relevant part of the Arla grammar for an assignment of the effect
types to the relation classes. Here as well, a default execution rule has to be provided
for the generic type ModelEdge (lines 2 - 3). Typically, this is no_effect for the incom-
ing as well as the outgoing direction. The default rule can be extended with individual
propagation rules for relation classes (line 4 and line 8).

1 ImpactDefinitionByEdgeClasses :’{’
2 ’ModelEdge ’ ’in:’ defaultEdgeIncoming = ChangePropagation
3 ’out:’ defaultEdgeOutgoing = ChangePropagation
4 (impactDefintion += ImpactDefinition)*
5 ’}’
6 ;

7 ImpactDefinition :
8 class= EdgeClass ’in:’ edgeIncoming = EffectType ’out:’ edgeOutgoing = EffectType
9 ;

10 enum EffectType :
11 no_effect | strong_effect | weak_effect
12 ;

Listing 4.13: Grammar excerpt for the ImpactDefinitionByEdgeClasses.

84

4.3. Analysis Classes within the Language

4.3.3 Path analysis

The path analysis assesses the direct and indirect dependencies between elements of the
EA model. We define a path as a dependency chain from a concrete source element
to a target element. A path contains of at least one relation and may contain several
intermediate elements. This analysis class enables answering questions like ’What are the
supporting application components for this business element?’. In figure 4.5 all possible
paths, with maximum length four, from the source element Return to elements with type
application components are depicted.

Figure 4.5: Paths from Return to application components.

The path analysis not only determines direct dependencies, also indirect ones are con-
sidered and possible intermediate elements must not be known during analysis definition.
The respective analysis configuration used to determine the paths within the figure is
provided in listing 4.14.

1 Template APathAnalysis {
2 " Determines all connected application for a selected element "
3 as Aggregate Pathset
4 defined with path definition : {
5 TargetStereotypes (nodeType :" application ")
6 use AllPath
7 }
8 }

Listing 4.14: Example template for the configuration of a path analysis.

Result of a path analysis is a set of paths from the selected source elements to the specified
target elements. The maximum length of the paths has to be provided when triggering
the analysis execution. The source and target elements can be provided either within the
analysis configuration or when triggering analysis execution. Listing 4.15, lines 3 and 4,
provide the respective part of the Arla grammar.
Despite the element type restrictions, it is also possible to restrict the considered relation
types. This can either be done with references to the stereotypes which should be consid-
ered (lines 10 - 12) or with referenced to the respective edge classes (lines 15 - 16). In the
first case it is further possible to choose between the AllPath or the ShortestPath mode
(line 12). Class restrictions are always determined within the AllPath mode.
The AllPath mode determines all possible dependencies chains between the source and
target element. The ShortestPath mode returns only the shortest path between a source
and a target element.

85

Chapter 4. Enterprise Architecture Analysis Definition

1 PathDefinition : { PathDefinition }
2 ’defined with path definition :’ ’{’
3 (’SourceStereotypes ’ ’(’source += NodeTypeReference (’,’ source +=

NodeTypeReference)*’)’)?
4 (’TargetStereotypes ’ ’(’target += NodeTypeReference (’,’ target +=

NodeTypeReference)*’)’)?
5 edgeCondition = PathEdgeCondition
6 ’}’
7 ;

8 PathEdgeCondition : PathByStereotypes | PathByClasses ;

9 PathByStereotypes :
10 (’Incoming ’ ’(’ in+= EdgeClassReference (’,’ in+= EdgeClassReference)*’)’)?
11 (’Outgoing ’ ’(’out += EdgeClassReference (’,’out += EdgeClassReference)*’)’)?
12 ’use ’ mode= (’ShortestPath ’ | ’AllPath ’)
13 ;

14 PathByClasses : { PathByClasses }
15 (’Incoming ’ ’(’ in+= EdgeTypeReference (’,’ in+= EdgeTypeReference)*’)’)?
16 (’Outgoing ’ ’(’out += EdgeTypeReference (’,’out += EdgeTypeReference)*’)’)?
17 ;

Listing 4.15: Grammar excerpt for the definition of a path configuration.

Selecting the option ShortestPath within the example in figure 4.5, determines only the
first and the third path. The second path has the same target element as the third one,
but since it is longer it will be discarded during analysis execution.
Replacing the use AllPath statement with the following class condition, enables the de-
termination of realization paths:

1 Incoming (edgeClass :Provide , edgeClass : ConsumedBy)

The condition states that only incoming relations assigned to the classes Provide or
ConsumedBy should be considered. Thus, only the third path will be returned as result.
The two other paths are ignored in this case, since they contain a triggering relation.
The source and target elements for the path analysis are either selected at run time,
through the selection of concrete elements within the EA model, or they are specified
within analysis definition. The elements of the provided stereotypes extend the respective
user selection of source and target elements. In the example above, no source stereotype
is provided, i.e. only the selected model elements are used as starting point for the paths.
The target elements of the paths should be of the type application. This means that
only those paths are within the result whose target element has the type application.
The result of the path analysis is often used to create a dependency matrix or a support
map. These are specific visualization types to focus on the dependencies between EA
model elements. Exemplary, a support map is shown in figure 4.6.

Figure 4.6: Example support map.

86

4.3. Analysis Classes within the Language

The support map provides a visualization of the dependencies between application com-
ponents (rows), application services (center) and business services (columns). The appli-
cation services are located within the support map according to the existence of a path
to the respective application component and business services. In contrast a dependency
matrix visualizes available paths between two types of elements and thus, a cell is filled
with ‘x’ if there exists a path from the element of the row to the element of the column.

4.3.4 Metrics

The calculation of metrics is important for the evaluation of an EA and several existing
analysis approaches utilize a quantification within their procedure. Metrics can be used
to quantify goals and determine their achievement as well as to quantify benefits, risks
and costs. In listing 4.16 an example metric using an Arla Template is provided. This
metric calculates the average costs for all applications. Therefore the costs, provided at
elements with type application, are summed up (line 5) and divided through the total
number of elements with type application (line 6).

1 Template AMetricTemplate {
2 " Calculate the average costs for an application "
3 as Aggregate Metric
4 defined with calculation rule averageCosts :
5 (SUM (nodeType :" application ". propertyType :"cost")) /
6 (COUNT (nodeType :" application "));
7 }

Listing 4.16: Example metric template to calculate the average application costs.

Within Arla, metrics are calculated as an aggregated value for the whole architecture
(lines 5 - 8 in listing 4.17). But it is also possible to calculate metrics for a specific set of
elements (lines 1 - 4). Thereby, the analysis definition is extended with a set of stereotypes
or element classes identifying the relevant elements (line 3).

1 ElementMetricDefinition :
2 ’defined with calculation rule:’ calculationRule = CalcExpression ’;’
3 ’for types ’ ’(’(nodeTypes += NodeReference (’,’ nodeTypes += NodeReference)*)?’)’
4 ;

5 AggregateMetricDefinition :
6 ’defined with calculation rule ’ (name=ID)? ’:’
7 calculationRule = CalcExpression ’;’
8 ;

Listing 4.17: Grammar excerpts for metric definition.

The CalcExpression enables the specification of the calculation rule. The respective
grammar is presented in listing 4.18.

1 CalcExpression :
2 Addition | Sum | Mult | NodeCount | EdgeCount
3 ;

4 Addition returns CalcExpression :
5 Multiplication (({ Plus.left= current } ’+’ |
6 {Minus.left= current } ’-’) right= Multiplication)*
7 ;

8 Multiplication returns CalcExpression :
9 PrimaryExpression (({ Multi.left= current } ’*’ |

10 {Div.left= current } ’/’) right= PrimaryExpression)*
11 ;

87

Chapter 4. Enterprise Architecture Analysis Definition

12 Sum:
13 ’SUM ’ value= CalcExpression (’of connected ’ nodeSet = NodeSetDefinition)?
14 ;

15 Mult:
16 ’MULT ’ value= CalcExpression (’of connected ’ nodeSet = NodeSetDefinition)?
17 ;

18 NodeCount :
19 ’COUNT ’ ’(’ value= NodeSetDefinition ’)’
20 ;

21 EdgeCount :
22 ’COUNT ’ ’(’ value= EdgeCondition (’for ’ nodeType = NodeReference)? ’)’
23 ;

24 EdgeCondition :
25 { UndirectedEdgeCount } ’connected ’ (edgetype = EdgeReference ’to’)? value =

NodeSetCondition |
26 { OutgoingEdgeCount } ’outgoing ’ value = EdgeReference |
27 { IncomingEdgeCount } ’incoming ’ value = EdgeReference
28 ;

29 PrimaryExpression returns CalcExpression :
30 ’(’ CalcExpression ’)’ |
31 { AggregatedMetricReference } value= AggregatedMetricReference |
32 { TypedPropertyReference } value= TypedPropertyReference |
33 { Number } value = Number
34 ;

35 AggregatedMetricReference :
36 metric =[AggregateMetricDefinition]
37 ;

38 Number :
39 INT | Float
40 ;

41 Float returns ecore :: EFloat :
42 INT ’.’INT
43 ;

Listing 4.18: Grammar excerpt for the definition of a calculation rule.

A CalcExpression supports the common mathematical arithmetic operations for addi-
tion, subtraction, multiplication and division (lines 4 - 10). For aggregating values Arla
provides the following four operations:

Sum to summarize all values defined by a calculation rule (lines 12 - 13)
Mult to multiply all values defined by a calculation rule (lines 15 - 16)
NodeCount the number of elements according to NodeSetDefinition (lines 18 - 19)
EdgeCount the number edges according to a EdgeCondition (lines 21 - 22)

Within a Sum or Mult statement, the considered elements for value aggregation can be fur-
ther restricted with a NodeSetDefinition. If such a definition is provided, only elements
within the node set that have a relation to the current context element are considered.
Within the NodeCount the number of elements within the referenced node set is deter-
mined. The EdgeCondition enables the specification of constraints over relations. There
are three different types of edge conditions provided within Arla. The first one counts
all relations to an element provided within the node set condition, independently from
the direction (line 25). Optionally, a restriction to a certain edge type or edge class can
be made. The other two ones are directed conditions (lines 26 - 27). They provide the
number of incoming, respectively outgoing, relations of a specific type.

88

4.3. Analysis Classes within the Language

Finally, the atomic values, i.e. PrimaryExpression, of a calculation rule are provided
in lines 29 - 43. The TypedPropertyReference depicts the values of the provided prop-
erty type. The AggregatedMetricReference references the result of another aggregated
metric and a Number is used to include a static numeric value of type int or float.

4.3.5 Performance analysis

A special element metric is the performance analysis proposed in [JI09]. The authors
propose the calculation of four different performance indicators: workload, processing
time, response time and utilization. Based on a top-down propagation, first the workload
of certain architecture elements is determined. This is followed by a bottom up propagation
of the performance measures. Thereby, the response time is approximated based on the
utilization of the resources and the processing time of requested elements.
The response time provides the time span from initiating a request until receiving an
answer. This measurement is relevant for the user or customer perspective. From a
service or product point of view, the processing time, i.e. the time for actual handling
of a request, is important. Finally, for the resource view the utilization is a relevant
measurement. It provides the percentage of the operational time, where this resource is
working. If the utility is too high, this may be an indicator for bottlenecks.
For each of the four measures the authors propose formulas for their calculation. The
calculation relies on the following set of properties:

• weight for any relation
• service time for behavior elements
• capacity for any resource, e.g. actor, application component, device and node
• arrival frequency for business level elements

The weight can be used to depict an average number of accesses or usages for a relation.
The default value is one, i.e. one incoming request triggers one outgoing call. The service
time of a behavior elements provides the internal time for the realization of the provided
functionality. The capacity provides the maximum number of requests that can be handled
by this resource.
Figure 4.7 provides the result of the performance analysis within the running example.
For visibility reasons, only an excerpt of the model is shown. Within the attribute section
of the elements, the retrieved results for the performance measures are provided. The
properties of the EA model like arrival frequency and service time are visualized in extra
boxes.
The workload is calculated for every model element. Initial value is the arrival frequency
of the top-level business service. The value is propagated to the process and further to the
application layer. At each element the workload is defined as the sum of all workloads from
incoming relations. Since the Car Management service is also used from other business
processes, the workload value is higher than the provided 120. The workload is further
propagated to the infrastructure layer until reaching the devices and the Mainframe node.
These elements have a capacity attribute which is used to determine their utilization.
The utilization is used to approximate the response time for elements having an service
time attribute. For the approximation a queuing model is used. Finally, the results of
the response time and processing time can be propagated bottom up until the business
layer.

89

Chapter 4. Enterprise Architecture Analysis Definition

Figure 4.7: Result for the performance analysis.

The recursive definition of the performance measures cannot be captured with the previ-
ously presented metric. Hence, a new analysis class for performance analysis is provided
within Arla. The respective grammar excerpt is presented in listing 4.19.

1 PerformanceDefinition :
2 ’defined with performance calculation ’ ’{’
3 ’target result :’ target = PerformanceResult
4 ’map ’ ’frequency ’ ’to’ frequencyProperty = PropertyReference
5 ’map ’ ’weight ’ ’to’ weightProperty = PropertyReference
6 ’map ’ ’capacity ’ ’to’ capacityProperty = PropertyReference
7 ’map ’ ’serviceTime ’ ’to’ serviceTimeProperty = PropertyReference
8 ’}’
9 ;

10 enum PerformanceResult :
11 workload | responsetime | processingtime | utilization
12 ;

Listing 4.19: Grammar excerpt for the definition of a performance configuration.

To enable the execution of this analysis the utilized properties in calculation rules of [JI09]
have to be mapped to actual property stereotypes of the EA model (lines 4 - 7). In

90

4.3. Analysis Classes within the Language

contrast to [JI09], we identify the elements for the calculation of the measures not with
their concrete stereotype. They are identified by having the respective property, i.e. the
utility is calculated for all elements having an capacity attribute. The relations referenced
within the calculation rules of [JI09] are replaced with the edge classes. Thus, no further
mapping to concrete stereotypes is required. Since Arla supports only the calculation
of one result per element, the targeting attribute for the performance analysis has to be
specified (line 3 and lines 11, 12).

4.3.6 Gap analysis

The purpose of the gap analysis in the EA context is the determination of differences,
respectively gaps, between two different architectural models [The18, DB14]. Thereby
both models are described using the same schema and elements in the two models can be
identified using names or IDs. Its goal is to identify newly added elements and elements
that no longer exist. The gap analysis is mainly used to compare the current architecture
with a desired target architecture or a planning scenario. A planning scenario describes
also a desired target architecture, but is does not comprise the whole architecture. The
gap analysis can also be used to compare different target alternatives with each other.
Figure 4.8 provides an example planning scenario for the CarRental company. Through
the implementation of a Return Machine and the respective application components, a
24h car return is realized.

Figure 4.8: Planning scenario 24h car return for the CarRental example.

To express the differences between the models, the gap analysis retrieves a status for each
element. Unaffected elements occur only in the current model, whereas new elements
occur only in the target model. Elements identified within both architectures are assigned
with the status affected. Elements with the assigned attribute unaffected are potential
deletion candidates, since it cannot be concluded automatically whether the absence in
the scenario was with purpose or not. Heuristics can be used to provide suggestions for
deleted elements. We further refine the set of deletion candidates to those that have at
least one relationship to an element affected by the planning scenario. Finally, it is the
task of the architect to decide about the planning status of the element. In figure 4.9 the
result of a gap analysis between the current architecture of the car rental company and
the proposed planning scenario for the 24h car return is provided.
The grammar excerpt for the respective analysis configuration in Arla is presented in

91

Chapter 4. Enterprise Architecture Analysis Definition

Figure 4.9: Result for a gap analysis using the Differences option.

listing 4.20. For performing a gap analysis, the current and the target model have to be
provided. If no current model is given, the actual EA model is used. The gap analysis
can be performed with two different options (line 5 and lines 7 - 8). With the Difference
option, an attribute is calculated for each element according to the description above. An
example result with this option is presented in figure 4.9.

1 GapDefinition :
2 ’defined with gap configuration :’
3 (’current model ’ base= STRING)?
4 ’target model ’ target = STRING
5 ’calculate ’ option = GapOption
6 ;

7 enum GapOption :
8 SuccessorCandidates | Differences
9 ;

Listing 4.20: Grammar excerpt for the definition of a gap analysis.

The SuccessorCandidate option determines a set of potential predecessors for each new
element within the target model. The respective result for the example is depicted in
figure 4.10. Only for the Return machine no predecessors are provided, since there exists
no element in the current architecture with the same stereotype device.

Figure 4.10: Result for a gap analysis using the SuccessorCandidates option.

92

4.3. Analysis Classes within the Language

4.3.7 Adapted analysis

Re-use of analysis definitions is provided with the analysis class AdaptedAnalysis. This
class is used to execute predefined templates on a specific EA model and is therefore only
provided in Arla Specific. Listing 4.21 illustrates the usage of an adapted analysis with
a customization of the template ANodeSetExample (provided earlier in listing 4.8).

1 Analysis AnAdaptedAnalysis {
2 " Description "
3 as Aggregate Modelelementset
4 adapt MyAnalysisPackage . ANodeSetExample {
5 map " business process " to node:" business process " ["7f2e37ca -2 baf"]
6 map " business unit" to node: " business role" ["4f48110f -ffb4"]
7 map " criticality " to property :" mission criticality " ["e1608cdb -4 e0e"]
8 }
9 }

Listing 4.21: Example analysis definition for an adapted analysis.

Each stereotype reference used within the template has to be mapped to a concrete stereo-
type of the EA model. In this case, these are the two node type references business
process (line 5) and business unit (line 6) as well as the property reference criticality
(line 7). The grammar excerpt for an AdapatedAnalysis is presented in listing 4.22.

1 AdaptedAnalysis :
2 analysisStyle = AnalysisStyle
3 resultType = ResultType
4 ’adapt ’ analysis = [genericArla :: Template | QualifiedName] ’{’
5 (mappings += Mapping)*
6 ’}’
7 ;

8 Mapping :
9 ’map ’ reference = [genericArla :: StereotypeReference | STRING]

10 ’to’ typeName = StereotypeReference
11 ;

Listing 4.22: Grammar excerpt for the configuration of an adapted analysis.

As for all analyses, the analysis type (i.e. if it provides an aggregated result or results for
each element) and the result type must be specified. This is followed by the qualified name
of the template that should be adapted. The qualified name consists of the name of the
TemplatePackage and the name specified within the AnalysisHeader of the template.
Finally, the mappings between the stereotype references used within the template and the
concrete stereotype references of the EA model are defined.

4.3.8 Custom analysis

If an analysis cannot be captured with one of the proposed classes above, Arla pro-
vides an interface for the execution of custom analyses. These custom analysis con-
figurations directly access the underlying execution environment. Two types of cus-
tom analyses are supported within Arla. The SpecificDFAConfiguration, respectively
DFAConfigurationTemplate, and the CustomQuery. The SpecificDFAConfiguration
and the DFAConfigurationTemplate use a DFADefinition (listing 4.23) for analysis con-
figuration.

1 DFADefinition :
2 ’defined with DFA configuration :’
3 ’Configuration path ’ configuration = STRING

93

Chapter 4. Enterprise Architecture Analysis Definition

4 ’Strategy ’ strategy = STRING
5 ;

Listing 4.23: Grammar excerpt for the definition of a DFA configuration.

The DFADefinition provides the path to a DFA analysis configuration as well as the
strategy that determines the triggered analysis from the configuration.
Additionally, the CustomQuery (listing 4.24) enables the specification of a SPARQL query
to analyze the EA model according to individual needs. This analysis can only be specified
as a specific analysis definition.

1 CustomQuery :
2 analysisStyle = AnalysisStyle
3 resultType = ResultType
4 ’defined with SPARQL Query ’ configuration = STRING
5 ;

Listing 4.24: Grammar excerpt for the definition of a custom query.

In order to use these two analysis classes, the user has to be familiar with the respective
technologies. There is no further support within Arla to create a respective DFA config-
uration or a SPARQL query. Nevertheless, they are important analysis classes to address
individual needs that are not covered by the previous analysis classes.

4.3.9 Composed analysis

To enable the definition of more complex analyses, Arla supports the composition of
analysis definitions and templates. This enables the combination of different analysis
results or to execute an analysis based on the result of another one. Additionally, analysis
composition is an important mean to deal with incomplete models. Before executing a
specific analysis, the model can be restricted to the relevant part of the architecture that
is sufficiently described. For example, if performance parameters are not available for all
servers, those servers can be excluded.
Arla provides four different possibilities for the CompositionDefinition which are shown
in listing 4.25. The ApplyRule and the ApplyEachRule define a successive execution of
the two referenced analysis definitions. The CombineRule and the SpecificCombineRule
merge the results of two independently executed definitions. An analysis is referenced
using the name provided within the AnalysisHeader.

1 CompositionDefinition :
2 ApplyRule | ApplyEachRule | CombineRule | SpecificCombineRule
3 ;

4 ApplyRule :
5 ’apply ’ analysis2 =[AnalysisHeader |ID] ’on’ analysis1 =[AnalysisHeader |ID]
6 ;

7 ApplyEachRule :
8 ’apply ’ analysis2 =[AnalysisHeader |ID] ’onEach ’ analysis1 =[AnalysisHeader |ID]
9 ;

10 CombineRule :
11 ’combine ’ analysis1 =[AnalysisHeader |ID] ’and ’ analysis2 =[AnalysisHeader |ID]
12 ;

13 SpecificCombineRule :
14 ’combine ’ analysis1 =[AnalysisHeader |ID] ’and ’ analysis2 =[AnalysisHeader |ID]

’with ’ ’operation ’
15 rule= SetOperation

94

4.3. Analysis Classes within the Language

16 ;

17 enum SetOperation :
18 INTERSECTION | UNION | DIFF
19 ;

Listing 4.25: Grammar excerpt for the definition of an analysis composition.

The procedure for composing two analysis definitions using the ApplyRule and the Apply-
EachRule is illustrated in figure 4.11. The result R1 of the first analysis (A1) is thereby
used within the second analysis (A2). The final result R is the result of the second
analysis. Whereas in the ApplyRule the result itself is used within the second analysis, in
the ApplyEachRule the result R1 is used as input parameter for the second analysis. In
this case R1 must be interpretable as a set of elements. These elements are the selected
elements used for the execution of (A2).

Figure 4.11: Successive analysis excu-
tion. Figure 4.12: Analysis result merging.

Listing 4.26 provides an example template for an analysis composition using the Apply-
EachRule. Thereby, the ANodeSetExample determines all business processes with a high
criticality (see listing 4.8). The result of this analysis is then used within metric calculation.
The referenced metric AElementMetricTemplate is calculated for all elements within the
node set result.

1 Template AAnalysisCompositionWithApplyEachRule {
2 " Calculate a metric for business critical processes "
3 as Element Metric
4 defined with composition rule:
5 apply AElementMetricTemplate onEach ANodeSetExample
6 }

Listing 4.26: Example template for an analysis composition using an ApplyEachRule.

The CombineRule and the SpecificCombineRule combine the results of the referenced
analysis definitions. This process is illustrated in figure 4.12. First the analyses are
both executed, retrieving result R1 from the first analysis and R2 from the second one.
Afterwards both results are merged with each other in order to create the final result R.
When using the CombineRule, R1 and R2 are simply merged with each other. That means,
model element sets and path sets are combined into one model element set respectively
path set. Calculated attributes are merged into one result list.
The SpecificCombineRule can only be applied to results referencing elements, like a
model element set or a path. The two sets of elements provided by R1 and R2 are then
merged with each other according to the specified SetOperation (line 15 and lines 17
- 18). An INTERSECTION returns only those elements that appear in both results. The
UNION operator returns all elements of both results and the DIFF operator returns the
elements of R1 without the elements of R2.

95

Chapter 4. Enterprise Architecture Analysis Definition

4.4 Conclusion and Related Work

In this section we presented a architecture analysis language (Arla) for the definition of
EA analyses. The language Arla provides a universal interface to EA analyses. Thereby,
it abstracts from the technical details and provides a declarative way of specifying and
customizing EA analyses. Arla enables the specification of different analysis classes:
• The Scope Analysis enables the specification of constraints to generate different views
of the architecture model.
• Within the Impact Analysis propagation rules can be customized in order to estimate
the effects of an event.
• Using Metrics it is possible to quantify quality attributes of the architecture or to
evaluate the goal fulfillment. Arla supports the typical mathematical operations as
well as aggregating mechanisms like the addition of property values from a set of
elements.
• The Performance Analysis facilitates the generic application and customization of
the analysis approach proposed in [JI09]. The analysis calculates different perfor-
mance indicators for the EA elements through top-down and bottom-up propagation
of workloads and execution times.
• Dependencies within an EA are analyzed using the Path Analysis class. The analysis
determines dependency chains between a source and a target element. Additionally,
specific constraints can be defined that must be met by the resulting path.
• Finally, the Gap Analysis enables the comparison of two different EA models.

Additionally, Arla supports the composition of these classes to support more complex
analyses. If an analysis cannot be captured with these classes, Arla provides an interface
for the custom definition of SPARQL queries or the execution of custom DFA analysis
configurations.
To address the heterogeneity of meta models within the EA domain and to support reuse
of analyses, Arla provides a Template mechanism. Despite the definition of specific anal-
ysis definitions for a concrete EA model, templates can be defined independently from
a meta model. Thereby, the proposed relation and element classes in section 3.2 can be
used. Additionally, stereotype variables can be utilized for further references that are not
captured by these classes. Within the Adapted Analysis the customization of templates
for a concrete EA is made. Thereby, only the variables have to be mapped to concrete
stereotypes.
Arla overcomes current weaknesses like the isolation of existing approaches. Existing
approaches have merely a limited scope and address only one goal. We could not identify
a language for the specification of EA analyses that covers different analysis types. Since a
unified approach for EA analyses is missing, analysis composition is also sparely considered
in current research.
In [BMS09] Buckl et al. provide a categorization of seven analysis approaches according
to five dimensions. These are the body of the analysis, i.e. if the analysis addresses the
structure, behavior statistics or the dynamic behavior, the time reference (ex-post or ex-
ante), the analysis technique (expert-based, rule-based or indicator-based), the analysis
concern (functional or non-functional) and the self-referantiality. They identify the ne-
cessity within further work to establish approaches that cover multiple characteristics, for
example through a combination of existing ones.

96

4.4. Conclusion and Related Work

Arla covers 62% of the identified EA analysis types in [Rau13]. Another 20% can be
captured with an individual definition of a SPARQL query or a custom DFA analysis con-
figuration. Only 18% of the types cannot be captured at all (see section 8.2). Regarding
the coverage of the technical dimensions, Arla is especially weak regarding probabilistic
techniques like Bayesian networks, PRMs or EIDs. The majority of the approaches can-
not be captured with the language, some of them can partially be realized with Arla.
All other technical dimensions are covered or at least partially covered with Arla. The
coverage of the functional dimensions with Arla is very high. Only the dimension System
is not covered. All approaches assigned to this dimension are also assigned to one of the
probabilistic dimensions.
[JUB+13] and [NSV14] provide frameworks for EA analysis dealing with different types
of analyses. [JUB+13] propose probabilistic OCL to describe properties of an architecture
and to determine them. [NSV14] focuses on the visualization of EA models. Through the
definition of a composition chain an individual view can be created using selectors and
decorators.
As discussed in [LSB14a], another related research area are general purpose querying lan-
guages like SQL [ISO11a] for databases and SPARQL [W3C13] for ontologies (proposed for
EA in [SKR13b]). Both have the weakness that they are highly dependent on the under-
lying structure (database schema, respective t-box for ontologies). Only the abstraction
layer introduced with Arla and the GMM allows a metamodel independent specification of
analyses. Also the constraint language OCL can be used for EA model analysis. It allows
the annotation of constraints at meta model elements and their evaluation for models.
Here as well, the OCL statements rely on the meta model. Changes in the meta model
lead to extensive adjustments to the statements. Analyses like the impact analysis or the
performance analysis, where the result depends on the value at the neighboring nodes,
are difficult to implement with OCL [Saa14]. SPARQL, without further reasoning sup-
port, and SQL do not support this kind of analyses either. All three approaches lack the
possibility to reuse given definitions by referencing them.
[HRSM13] evaluated 13 different EAM tools according to their metric support. About
half of the tools provide a user interface for metric definition, and another half of the
tools are shipped with predefined metrics. Only three tools (ABACUS, EA solutions
and iteraplan) provide a domain specific language for the definition of metrics. Despite
metrics, current tools support analysis definition either through providing predefined ones
or through referencing to SQL or a similar interface. Customization possibilities are often
limited to the way the data is visualized. Especially complex analyses have to be integrated
by the vendor. More than 60% of the participants of a survey regarding EAM tools have the
need for a user friendly analysis frontend which is specific for roles or users [HHKR16].

97

5
Architecture Analysis Framework

In the previous chapter we proposed the analysis definition language Arla for specification
of different analyses. The supported analysis classes are scope analysis, impact analysis,
metric calculation, performance analysis, path analysis and gap analysis. Additionally,
there is the need for the individual customization of these analyses according to the current
stakeholder needs. The proposed language enables the custom specification of analysis
definitions as well as to define generic analysis templates. These templates are independent
from a specific EA model and support the reuse of analyses definitions.
The goal of this chapter is the provisioning of an execution framework that is able to
interpret these analysis and template definitions and determines the results.
Parts of the presented results were previously published in [LSB14c,LSB14b,LB17]. The
details about impact analysis execution were previously published in [LSB14b, LSB14a].
The execution procedure for the gap analysis was previously published in [LB18a].

99

Chapter 5. Architecture Analysis Framework

5.1 Design Goals

EA analysis activities are characterized by the high dynamic regarding the underlying
meta model structures as well as regarding the demands from the stakeholders. To cope
with the challenges during EA analysis activities the Architecture Analysis Framework
A2F should consider the following design goals.

Generic applicability For representing the EA model, a large variety of different meta
models and tools is used. There exists no standard to rely on. Nevertheless, due to the
large and complex models tool support is required to process and evaluate them. It is
important that such an analysis support makes use of the existing EA models. To ensure
a generic applicability, the framework must be able to process and evaluate EA models
independently from the utilized meta model and tool.

Universal interface Different analysis types are proposed within literature to process and
evaluate EA models. An integrated approach, enabling the execution of different analysis
types is missing. The A2F should provide the stakeholders with a universal interface to
the EA analysis activities. Through supporting different analysis types, a large variety
of the goals during analysis activities can be covered. Such an integrated approach must
also allow the composition of analyses to enable a more in-depth consideration of the
architecture.

Custom analyses Not only the meta models but also the requirements for analysis ac-
tivities vary. Depending on the stakeholder and the EA maturity, different information
demands arise. Providing only predefined views and evaluation mechanisms does not cope
with the existing dynamic. Stakeholders want to be able to specify custom analyses,
respectively adapt predefined ones in order to fulfill their needs.

Declarative analysis definition The framework should enable a declarative specification
of the supported analyses. The stakeholders do not want to deal with the technical details
and challenges. Additionally, defining an analysis should not require being an expert
of the data model which is used for persistence. Therefore, analysis configuration deals
with the specification of parameters and constraints declaring the ‘What?’. The concrete
execution routine is generated automatically. Thus, the framework abstracts from the
technical details of analysis execution and provides a more abstract interface for analysis
specification to the stakeholders.

Re-use of analysis definitions Despite the individual needs for analysis activities, there
are also recurring questions. Examples are the views proposed within ArchiMate [The17]
which address typical information needs from different stakeholders. The predefined tem-
plates enable a fast and easy execution of the respective analysis. With ongoing maturity
of the EAM, these predefined templates will be further adapted to serve the individual
information needs. The short feedback cycles increase the acceptance of an EAM initia-
tive within the organization, especially at the beginning. A poor acceptance is a common
problem during EAM introduction.

100

5.1. Design Goals

Robustness regarding large models EA models are very large and complex models. The
analysis framework must be able to deal with this issue. This means that stakeholders
performing an analysis do not want to have overnight-evaluations. The decision-making
processes within EAM are interactive ones. The stakeholder performs an analysis, and
based on the result, new demands arise which trigger new analyses. This interactive nature
requires immediate feedback from the analysis framework.

Robustness towards incomplete models EA models describe the business of an organi-
zation, the dependencies to the applications as well as their IT infrastructure. Although,
it is the goal to provide a holistic model of the enterprise, the created models typically are
not complete and often not up to date. The analysis framework must be able to deal with
such incomplete models. It should provide mechanisms that are robust regarding missing
information as well as provide means to overcome them.

Round-trip-engineering Finally, the analysis framework should not be a dead end for
the data. It must be possible to return the analysis results back to the model or provide
them to other demanders. Although a generic application and representation of the EA
data is required, it is important that none of the specific information is dropped. This
is important to enable the integration within current tooling in the EAM context. The
available data can be extracted for analysis and, if new information is generated, it can
be returned back into the modeling tool.

101

Chapter 5. Architecture Analysis Framework

5.2 Overview

The Architecture Analysis Framework A2F consists of three main components, considering
the aspects analysis definition, analysis execution and model storage. Figure 5.1 provides
an overview of the structure.
Analysis definition is done with the proposed DSL Arla (see chapter 4). Arla enables
the declarative definition of nine different analysis classes. Thereby, it supports their
configuration for a specific EA model as well as the configuration of generic applicable
templates. Templates enable a meta model independent definition of EA analyses. The
templates, respectively specific analyses, can be configured according to the needs of the
stakeholders. Thus, enabling a customized analysis execution.
The analysis execution component contains the logic to convert Arla into evaluable con-
structs, i.e. it deals with the ‘How’ of analysis execution. The interpreter parses the
analysis definitions and generates the relevant artifacts for execution. Structural requests
are transformed into SPARQL [W3C13] queries. Behavioral requests and recursive defini-
tions are evaluated using DFA [SB13]. The interpreter generates the required configuration
for the DFA execution. The result processing component provides a uniform schema for
the final result. It also converts the specific result types of SPARQL queries and the DFA
into the common schema.

Figure 5.1: A2F Overview.

The model storage is realized with an RDF Triple Store. Thereby, the generic meta model
GMM, presented in chapter 3 is utilized. For data import, several adapters are provided
to convert the EA data into the RDF format. These are an adapter for the modeling tool
Innovator [MID19], an adapter for CSV files and an adapter for the open source modeling
tool Archi [Bea19]. The respective meta model is created dynamically during import.
The model storage, the analysis definition and the analysis execution are described in
detail in the following sections.

102

5.3. Model Storage

5.3 Model Storage

The model storage component within the Architecture Analysis Framework (A2F) deals
with the persistence of the EA data as well as their access for analysis purposes. Figure 5.2
provides a conceptual overview of the required sub components as well as the dependencies
between them. The flow from the import files at the bottom to the return values for
analysis execution at the top illustrates the storage approach.

Figure 5.2: Conceptual overview of the model storage component within A2F.

The export files provided by EA tools, like Innovator or Archi, but also generic CSV
files are processed by respective Adapters. Those adapters parse the files and load the
contained EA data into the triple store. During analysis execution the triple store is
accessed to provide the relevant data. SPARQL queries can directly be answered by the
triple store. For executing analyses based on the DFA technique, the EA data must be
transformed into an EMF model. The EMF converter translates the RDF triples within
the triple store into an EMF model and provides the generated model for DFA execution.

5.3.1 Data representation within the triple store

The captured EA model data is stored within the triple store utilizing the proposed
generic meta model in section 3. Semantic web technologies are already applied within
the EAM domain to store and analyze the data within in research [CHL+13, OLB15,
SKR13a,SKR13b] and practice [Top,Sof19a,Car16]. The property-centric data represen-
tation within RDFS provides a flexible and extensible storage technique. The principle of
URIs for identification as well as the inferencing mechanisms support the integration of
heterogeneous data, a common issue when creating EA models. We decided for RDFS and
not OWL for data representation, since the expressiveness is sufficient to represent the EA

103

Chapter 5. Architecture Analysis Framework

model and the query and inferencing engines for solely RDFS data are more performant.

GMM vocabulary

To enable the application of semantic web technologies the proposed meta model GMM has
to be transformed into an RDF graph. Due to the parallelism between RDFS and object-
oriented modeling this can be done straightforwardly. Each class of the GMM is translated
to an rdf:Class. The class hierarchy can be captured using rdfs:subClassOf statements.
Each relation between the classes is translated into a rdf:Property. The source and target
element of a relationship are depicted with the rdfs:domain and rdfs:range statement.
Class properties like name or UUID are also represented with an rdf:Property. In this
case the range of the property is not another class but an rdf:Literal, representing the
type of the property value. The resulting RDF graph is illustrated in listing 5.1 and the
tables 5.1 and 5.2.

1 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
3 @prefix gmm: <http :// www.smds.de/ autoanalyze /eam/gmm/gmm#> .
4 @prefix meta: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmetamodel #> .
5 @prefix model: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmodel #>.

6 meta: MetaModelNode
7 a rdf:Class ;
8 rdfs: subClassOf meta: MetaModelStereotype ;
9 rdfs: subClassOf meta: NamedElement .

10 meta: properties
11 a rdf: Property ;
12 rdfs: domain meta: MetaModelNode ;
13 rdfs: domain meta: MetaModelEdge ;
14 rdfs:range meta: MetaModelProperty .

Listing 5.1: RDF representation of the GMM.

Listing 5.1 shows the representation of the class MetaModelNode and its properties re-
lation within the RDF graph using the turtle syntax. Lines 1 - 5 declare the prefixes
used within the graph. The different packages used within the GMM meta model in sec-
tion 3.2 are represented as different namespaces within the RDF graph. Following there
is one namespace gmm for the generic elements like NamedElement. Additionally, there is
one namespace meta for the concepts describing the meta model part and one namespace
model for elements describing the model part.
The class MetaModelNode is described in lines 6 - 9. Since it inherits from the classes
MetaModelStereotype and NamedElement the respective subclass statements are added.
Properties and relations of this class are declared in Property statements due to the
property-centric approach. For example, in lines 10 - 14 the relation properties is defined,
having MetaModelNode as domain, and MetaModelProperty as range. Since MetaModel-
Edges can also have properties, the respective domain statement is added too (line 13).
In table 5.1 and table 5.2 an overview of the RDF graph describing the GMM vocabulary
is provided. A row in table 5.1 corresponds to one class declaration according to listing 5.1,
lines 6 - 9. The first column depicts the URI of the class. For each URI in table 5.1 a
respective class statement (rdf:type rdf:Class) exists within the graph. The second
column describes the available rdfs:subClassOf statements. For each class provided
within this column, a sub class statement according to lines 8 and 9 in listing 5.1 is added
to the graph.
A row within table 5.2 corresponds to one property declaration according to listing 5.1,

104

5.3. Model Storage

Class URI rdfs:subClassOf
gmm:GmmElement
gmm:NamedElement gmm:GmmElement
gmm:GmmModelContainer gmm:NamedElement
meta:MetaModelElement gmm:GmmElement
meta:GmmMetaModel meta:MetaModelElement
meta:MetaModelNode meta:MetaModelStereotype, gmm:NamedElement
meta:MetaModelProperty meta:MetaModelStereotype, gmm:NamedElement
meta:MetaModelEdge meta:MetaModelElement, gmm:NamedElement
meta:MetaModelEdgeConnection meta:MetaModelStereotype
meta:ModelLayer meta:MetaModelElement, gmm:NamedElement
meta:MetaModelStereotype meta:MetaModelElement
model:ModelElement gmm:GmmElement
model:GmmModel model:ModelElement
model:StereotypedElement model:ModelElement
model:ModelNode model:StereotypedElement, model:NamedElement
model:ModelEdge model:StereotypedElement, model:NamedElement
model:ModelProperty model:StereotypedElement
model:Provide
model:ConsumedBy
model:LocalizedAt
model:StructuralDependentOf model:ModelEdge
model:BehavioralDependentOf
model:InstanceOf
model:Generalization
model:Human
model:Process model:ModelNode
model:Application
model:InfrastructureElement

Table 5.1: Class statements for the GMM vocabulary.

lines 10 - 14. For each URI in table 5.2 a corresponding property statement (rdf:type
rdf:Property) exists within the graph. The second and third column in table 5.2 describe
the range and domain of the declared property. For each URI specified within the domain
respective range column the corresponding statements are defined in the RDF graph.

EA data representation

The proposed RDF graph is used as vocabulary to store the EA model within the triple
store. Elements and relations as well as the meta model elements and meta model relations
are represented as resources of the RDF graph. Each resource is associated with its class
using the rdf:type statement. The properties of elements and relations are also repre-
sented as resource. The dependencies between them are realized with an rdf:Property
statement. Names and the values of the properties are described with literals.
Listing 5.2 shows an excerpt of the RDF graph describing the example model in figure 3.5.
It describes the required part of the EA meta model and the EA model, to express that
the element Booking a car has the criticality value 7. The necessary meta model part
comprises the meta model node business process (lines 5 - 8) with the associated property
criticality (line 8). The property itself is described in lines 9 - 12 with its name and type.

105

Chapter 5. Architecture Analysis Framework

Property URI rdfs:domain rdfs:range
gmm:uuid gmm:GmmElement xsd:string
gmm:name gmm:NamedElement xsd:string
gmm:model gmm:GmmModelContainer model:GmmModel
gmm:metamodel gmm:GmmModelContainer meta:GmmMetaModel
meta:elements meta:GmmMetaModel meta:MetaModelNode
meta:edges meta:GmmMetaModel meta:MetaModelEdge
meta:layers meta:GmmMetaModel meta:MetaModelLayer
meta:incoming meta:MetaModelNode meta:MetaModelEdgeConnection
meta:outgoing meta:MetaModelNode meta:MetaModelEdgeConnection
meta:properties meta:MetaModelNode, meta:MetaModelProperty

meta:MetaModelEdge
meta:belongsTo meta:MetaModelNode meta:MetaModelLayer
meta:type meta:MetaModelProperty xsd:string
meta:connections meta:MetaModelEdge meta:MetaModelEdgeConnection
meta:source meta:MetaModelEdgeConnection meta:MetaModelNode
meta:target meta:MetaModelEdgeConnection meta:MetaModelNode
meta:contains meta:MetaModelLayer meta:MetaModelNode
model:elements model:GmmModel model:ModelNode
model:edges model:GmmModel model:ModelEdge
model:stereotype model:StereotypedElement meta:MetaModelStereotype
model:incoming model:ModelNode model:ModelEdge
model:outgoing model:ModelNode model:ModelEdge
model:properties model:ModelNode, model:ModelProperty

model:ModelEdge
model:value meta:ModelProperty xsd:string
model:source model:ModelEdge model:ModelNode
model:target model:ModelEdge model:ModelNode

Table 5.2: Property statements for the GMM vocabulary.

In the following the model element Booking a car (lines 13 - 17) is described. For this
element its type Process (line 14), its name (line 15), the stereotype (line 16) as well as
the respective criticality property (line 17) is provided. For the property an own resource
is defined (lines 18 - 21), where the respective meta model property is referenced (line 20)
as well as the value of the property is provided (line 21). The statements declaring the
UUID of the elements are omitted to visibility reasons.

1 @prefix meta: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmetamodel #> .
2 @prefix gmm: <http :// www.smds.de/ autoanalyze /eam/gmm/gmm#> .
3 @prefix model: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmodel #> .
4 @prefix rentalCar : <http :// rentalcarmodel #> .

5 rentalCar :7 f2e37ca -2baf -ad18 -ea02 -2 c6328e06ba2
6 a meta: MetaModelNode ;
7 gmm:name " business process " ;
8 meta: properties rentalCar :e1608cdb -4e0e -aad3 -fa8b -399259131 d0c .

9 rentalCar :e1608cdb -4e0e -aad3 -fa8b -399259131 d0c
10 a meta: MetaModelProperty ;
11 gmm:name " mission criticality " ;
12 meta:type " T_Integer " .

13 rentalCar :e15d6610 -585e -4504 -4507 - b8dec5469705
14 a model: Process ;
15 gmm:name " Booking a Car" ;
16 model: stereotype rentalCar :7 f2e37ca -2baf -ad18 -ea02 -2 c6328e06ba2 ;

106

5.3. Model Storage

17 model: properties rentalCar :e1608cdb -585e -4504 -4507 - b8dec5469705 .

18 rentalCar :e1608cdb -585e -4504 -4507 - b8dec5469705
19 a model: ModelProperty ;
20 model: stereotype rentalCar :e1608cdb -4e0e -aad3 -fa8b -399259131 d0c ;
21 model:value "7" .

Listing 5.2: RDF representation of an EA model.

For each data source of an EA model a named graph is created within the triple store.
Thus, the whole EA model can be referenced as a set of named graphs. Thereby, it is
important to use the same URI for identical elements within different named graphs. If a
new URI has to be created for an element, a preceding search for the UUID or the name
within the triple store is recommended. This ensures that there do not exist two URIs for
the same architectural element.
Named graphs are also used to store different versions of a data source, i.e. the status of the
applications at different point of times, or to persist analysis results. Using named graphs
allows the extension of the stored data without changing or extending the original graphs.
Combining different models can be done using the union-operator on the dataset. This
is illustrated in listing 5.3. Therein, a new property for a business process representing
the analysis result process costs is defined. Listing 5.3 depicts the named graph which
declares a further meta property process costs (lines 7-10) with the type integer. In lines
5 - 6 the meta property is assigned to the meta model node business process. For the
process Booking a car also a concrete value of this property is assigned (lines 11-12). The
property with its value and a reference to the respective meta property is described in
lines 13-16. The original graph as presented in listing 5.2 remains unaffected.

1 @prefix meta: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmetamodel #> .
2 @prefix gmm: <http :// www.smds.de/ autoanalyze /eam/gmm/gmm#> .
3 @prefix model: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmodel #> .
4 @prefix rentalCar : <http :// rentalcarmodel #> .

5 rentalCar :7 f2e37ca -2baf -ad18 -ea02 -2 c6328e06ba2 # MetaModelNode " business process "
6 meta: properties rentalCar :111 -222 -333 .

7 rentalCar :111 -222 -333
8 a meta: MetaModelProperty ;
9 gmm:name " process costs" ;

10 meta:type " T_Integer " .

11 rentalCar :e15d6610 -585e -4504 -4507 - b8dec5469705 # ModelNode " Booking a Car"
12 model: properties rentalCar :444 -555 -666 .

13 rentalCar :444 -555 -666
14 a model: ModelProperty ;
15 model: stereotype rentalCar :111 -222 -333 ;
16 model:value "100.000" .

Listing 5.3: RDF graph extending the EA model with analysis results.

5.3.2 Accessing the data for analysis purposes

The purpose of the triple store is to provide the EA model data for analysis execution.
Analyses within the A2F are either performed with SPARQL or with DFA. SPARQL is
used for structural requests like ‘Retrieve all processes with criticality over 5’. DFA is
used for behavior approximation like a calculation of expected response times. DFA is
also used to consider the indirect dependencies and assess ripple effects.

107

Chapter 5. Architecture Analysis Framework

SPARQL queries can directly be answered by the triple store. To be able to apply the DFA
technique, the EA model data has to be transformed into an EMF model. The EMF model
must be an instance of the meta model utilized for the definition of the propagation rules.
The analysis rules specified with the DFA technique are built upon the GMM presented
in section 3.2. Following a converter is required that takes one or more named graph IRIs
and returns the corresponding EMF model.
For the model conversion, the EMF Converter translates in a first step the stored meta
model. All layers, meta model nodes and meta model edges retrieved within the model
union of the specified named graphs are translated into the respective GmmMetaModel-
Elements. The specified meta properties for meta model nodes and edges as well as the
concrete edge connections are converted too. In the following the identified model elements
and model edges along with their properties are translated into the respective GmmModel-
Elements. Thereby a possible mapping of the types to the element and relation classes is
considered.

108

5.4. Analysis Definition

5.4 Analysis Definition

Analysis definition is done with the text editor provided by the Xtext framework [Ecl18b].
Based on the grammar presented in chapter 4 the respective language infrastructure can be
generated. This includes a parser, a linker, a type checker, compiler and editor. Important
for analysis definition is especially the textual editor. Among others, it provides support
for syntax and semantic coloring, error checking and auto-completion.

Figure 5.3: Overview of analysis definition.

As illustrated in figure 5.3, the user works with the textual editor to create specific analysis
and template definitions. For their creation he can use predefined templates. Additionally,
the language editor resolves the defined AdaptedAnalysis definition. With a model-to-
text transformation an additional file is generated which contains the resolved specific
definitions according to the provided mappings for a template. The two resulting files
with specific definitions, the manually created one as well as the generated one, are the
outcome of analysis definition and further processed within analysis execution.

5.4.1 Analysis definition support

To enable the specification of valid analysis definitions and to ease the use of the provided
DSL, the presented grammar in chapter 4 is extended with validation expressions as well
as proposals for auto completion. Auto completion proposals are generated by the Xtext
framework for all references and enumerations within the DSL, for example the node and
edge classes. Additional proposals are provided for node, edge and property references.
Therefore, it is necessary that a valid URI, referencing the EA model, and a valid triple
store path are provided. Further user support is provided, when specifying an adapted
analysis (see figure 5.4). The list of proposed templates that can be used is limited to
those that realize the specified analysis style and result type. To support the mapping,
the references within the templates are proposed, for whom no mapping is specified yet.

Figure 5.4: Customized mapping proposals for an adapted analysis.

109

Chapter 5. Architecture Analysis Framework

A missing mapping within an adapted analysis will lead to an error message. In figure 5.5
the reference business proces cannot be found due to a spelling mistake. Due to this
mistake, not all references used in the specified templates are mapped to a concrete stereo-
type. Further validation is done for the specified result type within an adapted analysis
and an analysis composition.

Figure 5.5: Validation of a specific analysis definition.

If the specified model URI within a specific analysis package cannot be found, the language
editor provides a warning. In this case no auto completion for node, edge and property
stereotypes is possible. A warning is also provided, if it is not possible to establish a
connection to the triple store at the specified path.

5.4.2 Utilization of templates

In order to enable the execution of AdaptedAnalysis definitions, the language editor
performs a model-to-text transformation. During this transformation, for each adapted
analysis definition the respective specific definition according to the template is generated.
Within the generation the variables of the templates are replaced with the stereotypes
provided in the mapping configuration. For executing the transformation, the Generator
provided by the Xtext framework is extended. Result of this transformation is a second
specific analysis definition file, containing an analysis definition for each AdaptedAnalysis.
The variables within the templates are resolved according to the mappings in the respective
adapted analysis definitions.
Listing 5.4 presents an analysis definition for a scope analysis, generated by the model-
to-text transformation. The respective adapted analysis configuration is provided in list-
ing 4.21 and the referenced template in listing 4.8.

1 Analysis AnAdaptedAnalysis_generated {
2 " Generated analysis definition . Description "
3 as Aggregate Modelelementset
4 defined with set definition :
5 (node:" business role" ["4f48110f -ffb4"] AND
6 having relation to ((node:" business process " ["7f2e37ca -2 baf"] AND

110

5.4. Analysis Definition

7 having property property :" mission criticality " ["e1608cdb -4 e0e"]
8 with value (> 3))))
9 }

Listing 5.4: Generated analysis definition for the adapted analysis in listing 4.21.

The name of the original adapted analysis is extended with a generated flag, and the
description is extended with the information that this is a generated analysis definition.
In the following the result type and analysis style are defined according values of the
adapted analysis. The subsequent set definition follows the configuration provided within
the referenced template. Only the used variables for business process, business unit and
criticality are replaced with concrete stereotypes from the current EA model.
The transformation procedure is presented in detail in the following listings using a scope
analysis with a node set definition as example. The transformation of the other analysis ap-
proaches is done similarly. Listing 5.5 presents the Xtend templates for the transformation
of the preceding general information about the EA model, the name and the description
of the analysis package. Thereby, the name is extended with the suffix adaptedAnalysis
(line 4) and the description is extended with a sentence to inform about the generated
nature of this package and the original analysis package (line 5). Finally, all analysis
definitions which are specified using an AdaptedAnalysis are processed (line 6 and lines
8 - 18).

1 static def generateSpecificArlaFile(SpecificAnalysisPackage analysis)’’’
2 Model "«analysis.modelUri»"
3 TripleStore "«analysis.tripleStorePath»"
4 Analysis_Package «analysis.analysisPackage.name»_adaptedAnalyses
5 "Generated specific analysis for analysis package «analysis.analysisPackage.name»"

6 «analysis.specificDefinition.filter(d | d.body instanceof AdaptedAnalysis).forEach[createDefinition]»
7 ’’’

8 static def createDefinition(SpecificDefinition definition)’’’
9 «val adaptedAnalysis = definition.body as AdaptedAnalysis»

10 Analysis «definition.header.name»_generated {
11 "Generated analysis definition. «definition.header.description»"
12 as «adaptedAnalysis.analysisStyle» «adaptedAnalysis.resultType»
13 «createAnalysisDefinition(adaptedAnalysis.analysis, adaptedAnalysis.mappings)»
14 }

15 «IF adaptedAnalysis.analysis.body instanceof GenericCompositionConfiguration»«
16 resolveCompositeAnalyses(adaptedAnalysis)»«
17 ENDIF»
18 ’’’

Listing 5.5: Model-to-text transformation for the analysis package.

For each AdaptedAnalysis a respective analysis definition is generated which utilizes the
configuration provided in the referenced template. The name, the description, the anal-
ysis style as well as the result type are defined according to the specification within the
AdaptedAnalysis definition (lines 10 - 12). The body of the analysis is constructed de-
pendent on the type of the referenced template and the provided mappings (line 13). If the
referenced template is configured with a GenericCompositionTemplate, the referenced
templates within the composition rules have to be transformed too (lines 15 - 17).
To illustrate the generation of the analysis body the Xtend template for the Generic-
NodeSetConfiguration is presented in listing 5.6.

1 static def createAnalysisDefinition(GenericNodeSetConfiguration template, EList<Mapping> mappings)’’’
2 defined with set definition: «getNodeSetCondition(template.configuration, mappings)»
3 ’’’

111

Chapter 5. Architecture Analysis Framework

4 static def String getNodeSetCondition(NodeSetCondition condition, EList<Mapping> mappings) {
5 switch condition {
6 PropertyCondition : return "having property " + resolveProperty(condition.propertyName.name, mappings) +

" with value " + getValueExpression(condition.propertyValue)
7 NodeReference : return resolveNode(condition, mappings)
8 RelationCondition : return "having relation to (" + getNodeSetCondition(condition.nodeSet, mappings) + ")"
9 AndComposition : return "(" + getNodeSetCondition(condition.left, mappings) +" AND " +

getNodeSetCondition(condition.right, mappings) + ")"
10 OrComposition : return "(" + getNodeSetCondition(condition.left, mappings) + " OR " +

getNodeSetCondition(condition.right, mappings) + ")"
11 default : return ""
12 }
13 }

Listing 5.6: Model-to-text transformation for the scope analysis using a node set
condition.

The createAnalysisDefinition method is the starting point for the generation and trig-
gers the conversion of the node set condition according to provided mappings in lines 4ff. A
RelationCondition, an AndComposition and an OrComposition are evaluated through
a recursive call of this method (lines 8 - 10). Finally, to convert the PropertyCondition
and the NodeReference the utilized variables within the template are resolved according
the given mapping (lines 6, 7). Resolving the variables of node references is illustrated in
listing 5.7. Properties and edges are processed in the same manner.

1 static def String resolveNode(NodeReference nodeReference, EList<Mapping> mappings){
2 switch reference {
3 NodeTypeReference: {
4 val mapping = mappings.findFirst(m | m.reference.name.equals(nodeReference.name))
5 return "node:\"" + mapping.typeName.name + "\" [\"" + mapping.typeName.id + "\"]"
6 }
7 NodeClassReference: return "nodeClass:" + nodeReference
8 }
9 }

Listing 5.7: Model-to-text transformation to resolve a NodeReference.

A NodeClassReference is kept also for the specific analysis definition. (line 7). A
NodeTypeReference has to be resolved according the provided mappings. In this case
the variable utilized within the template has to be replaced with the concrete stereotype.
(lines 4, 5).
Applying the presented transformation procedure onto a specific analysis package, will
result is an additional, generated analysis package containing an analysis definition for
each adapted analysis. These two files are the input for the following analysis execution.
The utilized template package is not required for analysis execution.

112

5.5. Analysis Execution

5.5 Analysis Execution

Within analysis execution, the analysis and template definitions specified in Arla are pro-
cessed and evaluated. As part of this process they are converted into executable SPARQL
queries, respectively DFA configurations. Through the combination of those techniques,
we are able to provide an analysis execution environment that is able to deal with different
meta models, incomplete EA models while covering most of the analysis types applied in
the EA context.

5.5.1 Execution approach

A conceptual overview of the execution approach applied within the A2F is provided in
figure 5.6. The Arla Interpreter takes an analysis specification as input and determines the
relevant analysis module for its execution. Analysis modules utilizing the DFA approach
for analysis execution are the Performance module (for performance analysis definitions),
the Impact module (for impact analysis definitions), the Scope definition module (for scope
analyses with edge definitions), the Path module (for path definitions) and the Custom
DFA module. During analysis execution the assignment of the propagation rules to GMM
elements is done according to the provided analysis definition. The data-flow rules itself
are defined beforehand at design time. Where required, further configuration parameters
are set, to customize the analysis execution.

Figure 5.6: Conceptual overview of analysis execution with the A2F.

Analysis modules utilizing SPARQL queries for the execution are the Gap module for gap
analyses, the Node set module for scope analyses with node set definitions, and the Custom
query module. In this case the respective SPARQL queries are generated or customized,
depending on the provided analysis definition.
The Metric module does not rely specifically on one of these two techniques. The math-
ematical operations are evaluated within code. For the evaluation of node set definitions
specified within the calculation rule, the respective node set module is triggered. Finally,
the Composition module triggers the execution of the referenced analyses and combines
the provided analysis results. To enable result composition and provide a unified result
format, a data structure for its representation was established.
In order to execute a specific analysis definition, the first step is to parse the respective
files. The provided parser from the Xtext language infrastructure can be used for this

113

Chapter 5. Architecture Analysis Framework

task and finally provides an EMF model for the analysis package as well as the generated
analysis package. The analysis definitions are now available and processable.

SPARQL

Analysis definitions capturing a structural request, like the node set definition for a scope
analysis, are evaluated with SPARQL queries. Based on the analysis configuration, the
respective SPARQL query is generated and evaluated by the triple store. Figure 5.7
presents an overview of the execution process.

Figure 5.7: Accessing the triple store for the evaluation of SPARQL queries.

For example, the node set definition presented in listing 5.8 requests all elements, having
a criticality rating with more than five.

1 defined with set definition :
2 having property propertyType :" criticality " with value (> 5)

Listing 5.8: Example analysis configuration using a node set condition.

From this analysis configuration, the SPARQL query in listing 5.9 is generated. This
query returns a list of URIs identifying elements that have a criticality over five.

1 @prefix gmm: <http :// www.smds.de/ autoanalyze /eam/gmm/gmm#> .
2 @prefix model: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmodel #> .

3 SELECT ? result
4 FROM <http :// rentalcarmodel >
5 WHERE {
6 ?model gmm: elements ? result
7 ? result model: properties ? property .
8 ? property model: stereotype ? metaproperty .
9 ? metaproperty gmm:name " criticality " .

10 ? property model:value ?value .
11 FILTER (? value > 5)
12 }

Listing 5.9: SPARQL query generated from the node set definition in listing 5.8.

The elements of the result have to match the following graph patterns: They must have
a reference to a Property (line 7) and the stereotype of this property must have the
name “mission criticality” (lines 8, 9). Finally, the value of the property is assigned to
the variable value (line 10) to which a filter is applied to identify the elements with a
value greater than five (line 11). The provided SPARQL result is finally converted into a
uniform result structure.

DFA

Behavioral requests and transitive analysis approaches are implemented using the DFA
technique. Figure 5.8 illustrates the execution process. Based on the provided URIs in
the analysis definition, the EMF Converter provides the EMF model.

114

5.5. Analysis Execution

Figure 5.8: Accessing the triple store for the evaluation of DFA rules.

DFA propagation rules can be customized in two different ways: The analysis configu-
ration is either used to generate parameters for DFA execution or an attribution file. If
edge classes are used in the analysis configuration, an attribution file is generated, and if
concrete stereotypes are used the customization via parameters is applied. This genera-
tion step enables the customization of the predefined propagation rules for DFA supported
analyses. The DFA result is converted into a uniform representation in the last step.
The concrete evaluation procedures for the different analysis classes are presented in the
subsequent sections. Beforehand, in section 5.5.2, the result model for its uniform repre-
sentation is described.

5.5.2 Result model

The uniform representation of the result enables the utilization of the result within sub-
sequent tasks, like visualization or the integration into an existing EA tool. Figure 5.9
provides the structure of the utilized model for result representation.
The AnalysisResult is the top level element. It has a reference to the Configuration,
utilized for analysis execution. Within the Configuration also the respective analysis
definition is referenced as well as input parameters like the selected model elements. This
class can also be used to provide visualization information like colors for specific values.
An AnalysisResult can either be an ElementResult or an AggregatedResult. De-
pending on the analysis style of the executed analysis the type is chosen. The value of
an ElementResult is a Result, whereas the value of an AggregatedResult is provided
within a ResultMap. Both value types inherit from the super class ResultValue.
ResultMaps represent the determined result for each element. The element is identified
with its URI within the map. The retrieved result is provided as Result. For example, an
entry of the PathResultMap consists of the element URI and the respective PathResult
determined for this element. Within an IDSetResultMap this would be an IDSetResult,
and within the AttributValueResultMap an AttributeValueResult.
A Result depicts one specific kind of result type. Atomic values are BooleanResult,
StringResult, NumericResult, and UriResult. These atomic result types are utilized
within the structured result types IDSetResult, AttributeValueResult and PathResult.
An IDSetResult consists of a set of UriResults. An AttributeValueResult is struc-

115

Chapter 5. Architecture Analysis Framework

Figure 5.9: Overview of the result model.

tured as a map. The contained ResultValues are identified with the attribute name.
Therewith, different attribute results can be captured within one Result and they can be
retrieved according to their identifier, i.e. the analysis that is used to determine them.
Finally, the paths within a PathResult are structured according to their source node.
Thus, the result consists of a map, with a ModelNode as key, and a set of Path as value.
This supports the post-processing of the result for support map creation which is an often
used scenario for path analysis.
For the implementation of result specific operations like visualizations or persistence, an
abstract ResultVisitor is provided to enable operations according to the concrete type
of the ResultValue.

5.5.3 Execution of scope analysis

The scope analysis class is used to determine views on an EA model. It provides an
aggregated result with a set of elements that belong to the defined view. Views can be
defined in two different ways in Arla. One is the definition of a NodeSetDefinition,
specifying constraints over elements, and the other one is the EdgeDefinition, specifying
constraints over relations. The first one is evaluated using SPARQL queries and described
in section 5.5.3.1. The second one is evaluated with the DFA technique and described in
section 5.5.3.2.

5.5.3.1 Node set condition

Within a NodeSetDefinition constraints on elements are defined. The elements must
fulfill these constraints to be part of the view. The node set definition is converted into a
SPARQL query during analysis execution. The query returns a list a URIs, identifying the
elements within the scope. Based on this list an AggregatedResult with an IDSetResult
is created.

116

5.5. Analysis Execution

An example conversion of a node set definition into a SPARQL query was provided in
listing 5.8 and listing 5.9.
For the generation of the SPARQL query, the node set definition is processed recursively
according to its structure. The procedure is illustrated in listing 5.10 using pseudo code.
This notation uses a simplification of the utilized Jena API for query creation and ex-
ecution. The SPARQL query is represented as an object which consists of a Group of
triples representing basic graph patterns. Filter and further special operators can be
added through respective groups, for example a FilterGroup.

1 static SPARQLResult executeNodeSetCondition(NodeSetCondition object, String resultVariable){
2 Query query = new SelectQuery()
3 query.setResultVariable(resultVariable)
4 query.setFromStatement(object.getRelevantUris())
5 query.setWhereStatement(new NodeSetSwitch(resultVariable).doSwitch(object))
6 return tripleStore.executeQuery(query);
7 }

Listing 5.10: Query generation for node set definitions.

Initially the generic query structure is created. This is, setting the query type (line 2),
setting the result variable (line 3) and declaring the model URIs within the FROM statement
(line 4). After determining the WHERE part (line 5), the query is executed on the triple
store and the result is returned.
The WHERE part of the query is determined according to the provided node set definition.
For each expression type used within a definition a separate triple group is created. Ac-
cording to the used operator (AND or OR), the groups are combined. Listing 5.11 depicts the
creation of the triple groups for the atomic expressions. To ensure a unique usage of vari-
able names within the different groups, a counter is increased after each group definition
and used for variable declaration within the var function.

1 Group caseStereotypeReference(StereotypeReference object){
2 Group group = new Group();
3 group.addTriple(resultVariable, "model:stereotype", var(stereotype))
4 group.addTriple(var(stereotype), "gmm:name", object.getName())
5 groupCounter++
6 return group
7 }

8 Group caseNodeClassReference(NodeClassReference object){
9 Group group = new Group();

10 group.addTriple(resultVariable, "rdf:type", object.getClassName())
11 groupCounter++
12 return group
13 }

14 Group casePropertyCondition(PropertyCondition){
15 Group group = new Group();
16 group.addTriple(var(model), "gmm:elements", resultVariable)
17 group.addTriple(resultVariable, "model:properties", var(property))
18 group.addTriple(var(property), "model:stereotype", var(metaproperty))
19 group.addTriple(var(metaproperty), "gmm:name", object.getName())
20 if (object.getPropertyValue != null){
21 group.addTriple(var(property), "model:value", var(value))
22 group.addFilterGroup(new PropertyValueSwitch().doSwitch(object.getPropertyValue()))
23 }
24 groupCounter++
25 return group
26 }

Listing 5.11: Evaluation of the atomic node set definition expressions.

117

Chapter 5. Architecture Analysis Framework

The atomic expressions, i.e. a NodeReference and a PropertyCondition, are converted
in a straightforward way. For a StereotypeReference, the respective triples identifying
the stereotype are added (lines 3, 4). For a NodeClassReference the triples determining
the respective type are added (line 10).
While converting the PropertyCondition, the required triples to ensure the appropriate
stereotype of the property are added (in specific lines 17 - 19). If the property condition
has a further value restriction (line 20), the value is bound to a variable and a Filter
is used to evaluate it. Within the PropertyValueSwitch the filter restriction is created
according to the used value comparison operator.

1 Group caseAndComposition (AndCompostion object){
2 Group group = new Group();
3 group.addTriples(doSwitch(object.getLeft()) .
4 group.addTriples(doSwitch(object.getRight()
5 return group
6 }

7 Group caseOrComposition (OrCompostition object){
8 return new UnionGroup (doSwitch(object.getLeft()), doSwitch(object.getRight())
9 }

10 Group caseRelationCondition(RelationCondition object){
11 Group incomingGroup = new Group();
12 incomingGroup.addTriple(resultVariable, "model:incoming", var(incomingEdge))
13 incomingGroup.addTriple(var(incomingEdge), "model:source", var(source))
14 incomingGroup.addTriples(new NodeSetSwitch("source").doSwitch(object.getNodeSetCondition()))

15 Group outgoingGroup = new Group();
16 outgoingGroup.addTriple(resultVariable, "model:outgoing", var(outgoingEdge))
17 outgoingGroup.addTriple(var(outgoingEdge), "model:target", var(target))
18 outgoingGroup.addTriples(new NodeSetSwitch(var(target)).doSwitch(object.getNodeSetCondition()))

19 groupCounter++
20 return new UnionGroup(incomingGroup, outgoingGroup)
21 }

22 Group caseNotCondition (NotCondition object){
23 ElementNotExists notExists = new ElementNotExists(doSwitch(object));
24 Group group = new ElementGroup(notExists);
25 return group;
26 }

Listing 5.12: Evaluation of the recursive node set definition expressions.

Within listing 5.12 the creation of the triple groups in the case of recursively defined
expressions is depicted. These are nested conditions using the AND or OR operator as well
as RelationConditions. The AND operator specifies that an element has to fulfill both
conditions, those on the left side and those on the right side. The respective triples for
those conditions can simply joined together (lines 3 - 4). By contrast, when applying the
OR operator, only one condition has to be fulfilled. This can be implemented with the
union operation provided by SPARQL (line 8). The result is composed of the one from
the first group together with the one from the second group.
Within a RelationCondition another node set definition is specified. All elements having
a relation to one of those elements are added to the result. For the implementation,
two triple groups are created and combined with the union operator. One validates all
incoming relations (lines 11 - 14) and the other one the outgoing relations (lines 16 - 18).
First the respective source or target element is bound to a variable in both cases. This
variable is then used to trigger a recursive evaluation of the contained node set definition
(line 14 and 18).
Finally, a NotCondition is evaluated with the FILTER NOT EXISTS operator. The triple

118

5.5. Analysis Execution

patterns within the filter statement are recursively determined (line 23). The filter state-
ment ensures that for all elements within the result, none of the triple patterns will
match.
For example, the following nested node set definition consists of a NodeReference (line1)
and a PropertyCondition (line 2), composed with the AND operator:

1 node:" application service " ["2f4a3ad3 -d698"] AND
2 having relation to (class: Process)

The condition specifies a view of the EA model containing application services which
have a relation to a Process. The generated SPARQL query to receive those elements is
presented in listing 5.13.

1 @prefix gmm: <http :// www.smds.de/ autoanalyze /eam/gmm/gmm#> .
2 @prefix model: <http :// www.smds.de/ autoanalyze /eam/gmm/ gmmmodel #> .

3 SELECT ? result
4 FROM <http :// rentalcarmodel >
5 WHERE {
6 { {
7 ? result model: incoming ? incomingEdge10 .
8 ? incomingEdge10 model: source ? source10 .
9 {? source10 rdf:type model: Process }

10 }
11 UNION
12 {
13 ? result model: outgoing ? outgoingEdge10 .
14 ? outgoingEdge10 model: target ? target10 .
15 {? target10 rdf:type model: Process }
16 } }
17 {
18 ? result model: stereotype ? stereotype11 .
19 ? stereotype11 gmm:name " application service "
20 }
21 }

Listing 5.13: Generated SPARQL query from the node set definition.

Lines 6 - 16 implement the PropertyCondition. A resulting element must have at least
one incoming or outgoing edge to an element, identified with the variables ?source10
(lines 7, 8) and ?target10 (lines 13, 14). This source or target element must have the
type Process (lines 9, 15). Beside this constraint, elements of the result set have to fulfill
the triples specified in lines 18 and 19. They represent the StereotypeReference and
ensure that all elements of the result have a stereotype relation to an element with name
application service.

5.5.3.2 Edge definition

In contrast to the NodeSetDefinition, within the EdgeDefinition constraints are as-
signed to relation types.
The EdgeDefinition is evaluated with the DFA approach. For each model node a scope
attribute is calculated which determines if the respective model node is within the scope
or not. An EdgeDefinition is evaluated in different ways, depending on its specification
using stereotypes or classes. In the first case, the customization of the propagation rules is
done with parameters. In the second case, an attribution file is generated which provides
the assignment of the propagation rules to the respective meta model classes.

119

Chapter 5. Architecture Analysis Framework

Customization through generation of an attribution file

Customization through the generation of an attribution file is utilized when evaluating a
DynamicEdgeDefinitionByClasses. For illustration purposes a respective configuration
is presented in listing 5.14.

1 defined with scope definition : {
2 ModelEdge in: None out: None
3 ConsumedBy in: None out: Single
4 Provide in: None out: Transitive
5 }

Listing 5.14: Example configuration for a EdgeDefinition.

Within the configuration the scope propagation types none, single and transitive, are
assigned to edge classes, for incoming as well as outgoing occurrences. According to this
configuration, the edge classes are extended with respective propagation rules to determine
the scope attribute. The respective Attribution file, required to perform the DFA, is
generated directly from the configuration. Listing 5.15 presents the Xtend template that
is employed for this task.

1 static def createAttribution (DynamicEdgeDefinitionByClasses configuration)’’’
2 attribution scope {
3 description "Computes a scope attribute.";

4 assignment nodescope : java call "ScopeByClassesRules.scope_init";
5 assignment edgeincomingscope : java call "ScopeByClassesRules.scope_init";
6 assignment edgeoutgoingscope : java call "ScopeByClassesRules.scope_init";

7 extend gmm.gmmmodel.ModelNode {
8 occurrence nodescope : java call "ScopeByClassesRules.node_scope";
9 }

10 extend gmm.gmmmodel.ModelEdge {
11 occurrence edgeincomingscope :
12 java call "ScopeByClassesRules.incomingedge_«scopeValue(configuration.defaultEdgeIncoming)»scope";
13 occurrence edgeoutgoingscope :
14 java call "ScopeByClassesRules.outgoingedge_«scopeValue(configuration.defaultEdgeOutgoing)»scope";
15 }
16 «definition.edgeDefinitions.forEach[createRule]»
17 }
18 ’’’

19 static def createRule (EdgeDefinition definition)’’’
20 extend gmm.gmmmodel.«definition.class_» {
21 occurrence edgeincomingscope :
22 java call "ScopeByClassesRules.incomingedge_«scopeValue(definition.edgeIncoming)»scope";
23 occurrence edgeoutgoingscope :
24 java call "ScopeByClassesRules.outgoingedge_«scopeValue(definition.edgeOutgoing)»scope";
25 }
26 ’’’

Listing 5.15: Xtend template for scope attribution generation.

After providing the name and a description for the attribution (lines 2 - 3) the attributes
that should be determined during analysis are defined together with an initialization rule
(lines 4 - 6). In the following, these attributes are assigned to elements of the GMM. To
perform the scope analysis, the ModelNode is extended with the attribute nodescope, and
this attribute is determined with the rule node_scope (lines 7, 8).
The ModelEdge and the respective subclasses are extended with the attribute edge-
incomingscope and edgeoutgoingscope. The rules which are used for the calculation of
these attributes are assigned according to the configuration. For the ModelEdge this is
presented in lines 10 - 14. Additional declarations of scope propagation types are optional.

120

5.5. Analysis Execution

Thus, the relation classes are only extended in the case of an available declaration in the
analysis configuration (line 18 and lines 23 - 28).
A part of the attribution file, generated from the configuration provided in listing 5.14,
is shown in listing 5.16. The excerpt depicts the extension of the GMM elements with
occurrences of the respective attributes and the assignment of propagation rules for their
calculation.

1 extend gmm.gmmmodel.ModelEdge {
2 occurrence edgeincomingscope : java call "ScopeByClassesRules.incomingedge_noscope";
3 occurrence edgeoutgoingscope : java call "ScopeByClassesRules.outgoingedge_noscope";
4 }
5 extend gmm.gmmmodel.ConsumedBy {
6 occurrence edgeincomingscope : java call "ScopeByClassesRules.incomingedge_noscope";
7 occurrence edgeoutgoingscope : java call "ScopeByClassesRules.outgoingedge_singlescope";
8 }
9 extend gmm.gmmmodel.Provide {

10 occurrence edgeincomingscope : java call "ScopeByClassesRules.incomingedge_noscope";
11 occurrence edgeoutgoingscope : java call "ScopeByClassesRules.outgoingedge_transitivescope";
12 }

Listing 5.16: Excerpt of the generated attribution file.

The super class ModelEdge is extended with the attributes edgeincomingscope and
edgeoutgoingscope. As defined in the analysis configuration, the attributes are de-
termined with the noscope rule. The attributes for the consumed by class are deter-
mined by incomingedge_noscope and outgoingedge_singlescope. And finally, for the
class provide, the rules incomingedge_noscope and outgoingedge_transitivescope
are used.
Listing 5.17 presents the implementation of the propagation rule for a ModelNode in pseudo
code. Initially, the status of each model node is NOT (line 2). If the current model node
is one of the selected start elements, the value SCOPE is returned (lines 3 - 4). In lines 6 -
9 the status of the current model node is updated according to the status of its outgoing
edges. Therefore, the status from the outgoing scope attribute of the edge is requested
(line 7) and the status of the model node is updated. The setScope method updates the
status according to the strongest value (line 8). For incoming nodes, the same procedure
is applied (lines 10 - 13).

1 Object node_scope(ModelNode modelNode) throws Exception {
2 ScopeStatus currentScopeStatus = NOT
3 if (currentSelection.contains(modelNode.getUuid())){
4 return currentScopeStatus = SCOPE
5 }
6 for (ModelEdge outgoingEdge : modelNode.getOutgoing()) {
7 ScopeStatus edgeStatus = outgoingEdge.getStatus(ATTRIBUTE.EDGE_OUTGOING_SCOPE)
8 currentScopeStatus = setScope(currentScopeStatus, edgeStatus)
9 }

10 for (ModelEdge incomingEdge : modelNode.getIncoming()) {
11 ScopeStatus edgeStatus = incomingEdge.getStatus(ATTRIBUTE.EDGE_INCOMING_SCOPE)
12 currentScopeStatus = setScope(currentScopeStatus, edgeStatus)
13 }
14 return currentScopeStatus
15 }

Listing 5.17: DFA rules to determine the scope value of a ModelNode.

For each scope value, i.e. none, single and transitive, a respective propagation rule is
defined for incoming as well as outgoing relations. Listing 5.18 presents the propagation
rules for outgoing relations in pseudo code.

121

Chapter 5. Architecture Analysis Framework

1 Object outgoingedge_transitivescope(ModelEdge edge) {
2 ScopeStatus targetStatus = edge.getTarget().getStatus(

ATTRIBUTE.NODE_SCOPE)
3 if (targetStatus == SCOPE)
4 return SCOPE
5 return NOT
6 }

7 Object outgoingedge_singlescope(ModelEdge edge) {
8 ScopeStatus targetStatus = edge.getTarget().getStatus(

ATTRIBUTE.NODE_SCOPE);
9 if (targetStatus == SCOPE)

10 return FINAL;
11 return NOT;
12 }

13 Object outgoingedge_noscope(ModelEdge edge) {
14 return NOT;
15 }

Listing 5.18: DFA
rules to determine the outgoing
scope value of a ModelEdge.

Figure 5.10: Assignment of scope
attributes.

In order to enable a context sensitive propagation of the scope status, first, the status of
the target element of the current edge has to be requested (line 2 and 8). Based on this
information, the status of the current edge is set according to the following rules: In the
transitive case (lines 1 - 6), if the target node of the current ModelEdge has the scope
status SCOPE, i.e. this node is included in the scope, then the current model edge is also
included (lines 3 - 4). In all other cases, i.e. if the status is FINAL or NOT, the model edge
is not included and thus the status NOT is returned (line 5).
The single case is depicted in lines 7 - 12. In contrast to the transitive case, the status
of the model edge is FINAL, if the target node of this edge is in the scope (lines 9 - 10).
This ensures that an edge class, assigned to the SINGLE propagation rule, will not be
transitively considered. Within the no-scope case (lines 13 - 15), in all cases the status
NOT is returned.
The rules for the incoming edges are defined accordingly. Instead of requesting the status
of the target element of an edge, the source element is used.
In figure 5.10 the application of the rules is illustrated with a small example. Therefore, the
analysis configuration in listing 5.14 is used with the selected start element CRM System.
The assignment relationship is part of the located at class. Within the analysis config-
uration no propagation rules are defined for this class, thus the default case (ModelEdge)
is used and the attribute NOT is propagated along the edge and also assigned to the model
node Mainframe. The NOT attribute is also propagated in the other direction, but since
the SCOPE attribute is stronger than the NOT attribute, the value for CRM System will not
be overwritten.
The realization relation belongs to the class provide which is evaluated in outgoing di-
rection with the transitive propagation rule. The SCOPE attribute is propagated over the
edge to the node Customer Data. The usedBy relation belongs to the class consumed
by which is evaluated with the single propagation rule in outgoing direction. Hence, the
final attribute is propagated to the CRM application. The realization relation to the
Customer Management propagates a NOT value, since the status of its source element is
final. The determined view according to the edge conditions consists of all elements with
attribute values SCOPE or FINAL.

122

5.5. Analysis Execution

Customization through the configuration of parameters

If the scope analysis configuration is defined using stereotypes, the customization is per-
formed through the specification of parameters. The parameters consist of four differ-
ent sets of MetaModelEdges. Each set represents one propagation type, i.e. single or
transitive and the direction of the relation, i.e. incoming or outgoing. The sets are
filled according to the DynamicEdgeDefinitionByStereotypes configuration.
The propagation rule for the ModelNode is the same as for evaluating class configurations
(see listing 5.17). The attribute occurrences for model edges are determined differently.
Each relation, independently from the relation class, is processed within the outgoingedge
and incomingedge rule of a ModelEdge. According to the provided parameters, the
propagation semantics for the current model edge is defined. For example, the propagation
rule for outgoing model edges is shown in listing 5.19.

1 @Rule(modelClass=ModelEdge,attribute=edgeoutgoingscope)
2 Object outgoingedge(ModelEdge edge) {
3 ScopeStatus targetStatus = edge.getTarget().getStatus(ATTRIBUTE.SCOPE);

4 if(parameter.getTransitiveOutStereotypes().stream().anyMatch(a −> a.equals(edge.getMetaModelEdge()))){
5 if(targetStatus == SCOPE)
6 return SCOPE
7 return NOT
8 }

9 if(parameter.getSingleOutStereotypes().stream().anyMatch(a −> a.equals(edge.getMetaModelEdge()))){
10 if(targetStatus == SCOPE)
11 return FINAL
12 return NOT
13 }

14 return NOT;
15 }

Listing 5.19: Propagation rule to determine the scope value for outgoing model edges.

In this case, the attribution file is stable and no generation is required, since all model
edges are evaluated with the presented propagation rule. Thus, the extension of the
ModelEdge with the attribute edgeoutgoingscope and the assignment of the respective
propagation be accomplished with Java annotations (line 1). The extension with the
attribute edgeincomingscope is done respectively.
Within the propagation rule, the scope attribute is set according to the containment of
the MetaModelEdge of the current model edge in the set of TransitiveOutStereotypes
or SingleOutStereotypes. An example analysis configuration using stereotypes for the
scope configuration is provided in listing 5.20. In line 2 the model edge realization is
assigned to TransitiveOut, i.e. an outgoing relation of this type should be evaluated
according to the transitive propagation semantic (lines 4 - 8 in listing 5.19). According to
line 3, the usedBy edge should be evaluated according to the single propagation semantic
in the outgoing case (lines 9 - 13 in the listing). The incoming cases as well as all other
relations are evaluated according to the no scope semantic (line 14 in listing 5.19).

1 defined with scope definition : {
2 TransitiveOut (edge:" realization " ["c5cf8176 -ac56"])
3 SingleOut (edge:"used by" ["cb2f58ad -8077"])
4 }

Listing 5.20: Example scope analysis configuration using stereotypes.

The view consists of all model elements, with a determined attribute value SCOPE or FINAL.
These elements are captured within an IDSetResult.

123

Chapter 5. Architecture Analysis Framework

5.5.4 Execution of impact analysis

The impact analysis provides an approximation of the direct and indirect effects of cer-
tain events within the architecture, like a change or a failure. For its implementation,
the reachability analysis principle of the DFA (presented in section 2.2) is extended with
context-specific declarations to restrict the results to a meaningful subset of elements and
to reflect different impact types. The effects are simulated by propagating the impact
values along the edges of the EA model. The respective propagation rules differentiate
between the impact type and the relation type to propagate the correct impact informa-
tion through the model. In order to execute the impact analysis, the user has to assign
impact types to the elements that trigger a respective event, i.e. which are changed or not
available.
Within the static execution mode, the propagation semantics are preset for a worst-case
and a best-case scenario. Alternatively, they can be customized to enable the individ-
ual definition of impact semantics. As within the implementation of the scope analy-
sis, an impact configuration with classes (ChangeImpactDefinitionByClasses) is eval-
uated through the generation of the attribution file. A configuration using stereotypes
(ChangeImpactDefinitionByStereotypes) is implemented through the definition of DFA
parameters.
To formalize the impact semantics for a relation type rt, we employ the following syntax:

A.X → B.Y (5.1)

This statement indicates that, if element A has the characteristic X, then element B will
have the characteristic Y . A and B are the source and the target of the relation type
rt while X and Y represent the impact type, i.e. X,Y ∈ {no impact, low, medium,
high}. Impact types can be clustered on the left-hand side: A.X, Y → B.Z states that, if
A has type X or Y , B will have the type Z. The impact types are prioritized as followed:
High overrides medium (med) overrides low overrides no impact (none). The semantics
for the three effects classes used for customization of the impact analysis are defined in
table 5.3.

Table 5.3: Impact rules for the effect classes.

effect rule
strong A.high→ B.high

A.med→ B.med
A.low → B.none

weak A.high→ B.med
A.med→ B.low
A.low → B.none

no effect A.{high,med, low} → B.none

If A strongly affects B, this indicates that, if A has a high impact value, B has a high
value too. A medium impact type of A leads to a medium status of B and the same
applies to extensions. The type of effect is specified for each direction of a relationship. If,
for example, an application component realizes a service, then the application component
has a strong impact on the service while the service may only have a weak impact on the

124

5.5. Analysis Execution

application component.
A weak effect denotes that a high impact type for A conducts a medium type for B. A
medium value for A leads to a low one for B. Finally, if A has a low impact status, B is
not affected by the event. If the relationship is mapped to no effect, any impact value of
A has no effect on B.
The propagation rule to determine the impact attribute for model nodes is presented in
listing 5.21. Thereby, the current status of the model node is updated to the strongest
value of all incoming and outgoing edges.

1 @Rule(modelClass=ModelNode,attribute=impact)
2 Object node_impactstatus(ModelNode node) {
3 ImpactStatus currentStatus = node.getStatus(ATTRIBUTE.IMPACT)

4 for(ModelEdge edge : node.getOutgoing()){
5 ImpactStatus edgeStatus = edge.getStatus(ATTRIBUTE.OUTGOING_IMPACT)
6 currentStatus.update(edgeStatus)
7 }

8 for(ModelEdge edge : node.getIncoming()){
9 ImpactStatus edgeStatus = edge.getStatus(ATTRIBUTE.INCOMING_IMPACT)

10 currentStatus.update(edgeStatus)
11 }

12 return currentStatus
13 }

Listing 5.21: DFA propagation rules for the impact status of model nodes.

First the current status of the model node is retrieved (line 3). Then, the outgoing
and incoming relations of this model node are processed. The respective impact status
attribute is requested (lines 5 and 9) and the current status of the model is updated (lines
6 and 10). This means that the attribute is set to the strongest value according to the
prioritization. A high will for example override a medium value, whereas a no impact
overrides none of the other impact types.
The implementation of the propagation rules for model edges differs based on the used
analysis configuration (static, with edge classes or with stereotypes).

Execution of the static mode

The static mode of the impact analysis, defined with the StaticImpactDefinition, dif-
ferentiates between a worst case and a best case. Therefore, the provided syntax to specify
the change semantics is extended to differentiate on the right-hand side between a worst
case (WC) and a best case (BC) impact:

A.high→
{
B.high (WC)
B.low (BC)

(5.2)

The rule presents the change semantic for the provide class. It indicates that, for example,
if a component A has a high impact type, a provided service B has the value high too
(worst case). In the best-case scenario, another application may implement the service
which is why it only has a low impact type value.
The rules for the relation classes utilized within the static mode are depicted in table
5.4. The first column contains the respective edge class. The second column provides
the propagation semantic for incoming relations of this class, and the third column for

125

Chapter 5. Architecture Analysis Framework

Table 5.4: Impact rules for the relationship classes.

edge class incoming outgoing

located at A.{high,med, low} → B.none

B.high→
{
A.high (WC)
A.low (BC)

B.med→
{
A.low (WC)
A.none (BC)

B.low → A.none

provide

A.high→
{
B.high (WC)
B.low (BC)

A.med→
{
B.med (WC)
B.none (BC)

A.low →
{
B.low (WC)
B.none (BC)

B.{high,med, low} → A.none

consumed by

B.high→
{
A.med (WC)
A.low (BC)

B.med→
{
A.med (WC)
A.low (BC)

B.low → A.none

A.{high,med, low} → B.none

structural
dependent on

A.high→
{
B.high (WC)
B.med (BC)

A.med→ B.none

A.low → B.none

B.high→
{
A.med (WC)
A.none (BC)

B.med→
{
A.med (WC)
A.none (BC)

B.low →
{
A.low (WC)
A.none (BC)

behavioral
dependent on

A.{high,med, low} → B.none

B.high→
{
A.med (WC)
A.low (BC)

B.med→
{
A.med (WC)
A.none (BC)

B.low →
{
A.low (WC)
A.none (BC)

generalization

A.high→ B.high

A.med→ B.med

A.low → B.low

B.{high,med, low} → A.none

instance of A.{high,med, low} → B.none

B.high→ A.high

B.med→ A.med

B.low → A.low

126

5.5. Analysis Execution

outgoing relations. For the provide example, this means that an element A provides an
element B. The equations in the incoming column describe the effects on B, according to
the impact type assigned to A. The outgoing column describes the opposite direction.
Each edge class is extended with an attribute providing the incoming impact status and
the outgoing impact status, in the best case and in the worst case. Listing 5.22 provides
the propagation rule of the provide class to calculate the attribute value for the worst
case.

1 @Rule(modelClass=Provide,attribute=incoming_impact_wc)
2 Object incomingprovide_impactpropagation_worstcase(Provide edge) {
3 ImpactStatus sourceStatus = edge.getSource().getStatus(ATTRIBUTE.IMPACT_WC)
4 if(sourceStatus == HIGH) return HIGH
5 if(sourceStatus == MEDIUM) return MEDIUM
6 if(sourceStatus == LOW) return LOW
7 return NO_IMPACT
8 }

9 @Rule(modelClass=Provide,attribute=outgoing_impact_wc)
10 Object outgoingprovide_impactpropagation_worstcase(Provide edge) {
11 return NO_IMPACT
12 }

Listing 5.22: DFA propagation rules for the provide class in the worst case.

The incoming rule (lines 1 - 8) determines the impact status of the edge according to
its source element and the outgoing rule (lines 9 - 12) according to the target element.
Depending on the retrieved status, the status of the current edge is defined following the
semantics provided in table 5.4 (lines 4 - 7 for incoming relations and line 11 for outgoing
relations). The best case and the rules for the other classes are defined accordingly.
Additionally, the ModelNode is extended with an attribute impact_bc for the best and
impact_wc for the worst case. The respective propagation rules follow the one presented
in listing 5.21. Within the rules the respective worst- or best-case attributes for retrieving
the current status and the status of the model edges is used.
Depending on the provided impact analysis configuration, either the worst case or the best
case semantic is evaluated. The DFA result is then converted into an AttributeValue-
ResultMap. The key of the map is the respective URI of the element, and the value is an
AttributeValueResult. This map consists of one entry for the impactstatus with the
determined impact type by the DFA.
Figure 5.11 provides the calculated worst-case effects for a severe event at the Reservation
System. This may be the retirement of the application or a failure. Thus, it is assigned
with a high impact type to trigger the impact calculation. Within the figure, the colors
of the model nodes indicate the impact status of the elements. The propagated impact
values along the model edges are illustrated with dashed, colored arrows.
The high impact type is propagated over the realization edge. This edge belongs to the
provide class. Thus, in the worst case a high impact is propagated in the outgoing
direction. In the incoming direction no impact is propagated, regardless of the status of
the target element.
The subsequent used by edge to the business process Booking a Car propagates only a
medium impact probability. Since this medium status is the strongest one of all incoming
and outgoing relations of this element, this is also the final impact status of the process.
The further attributes of the relations and elements are determined accordingly.

127

Chapter 5. Architecture Analysis Framework

Figure 5.11: Illustration of the result for an impact analysis.

Customization through generation of an attribution file

Despite the static mode to approximate the impact of an event, the A2F supports the in-
dividual definition of propagation semantics using the proposed effects types: strong, weak
and no effect (see table 5.3 for their semantics). Using the ImpactDefinitionByClasses
for analysis configuration, these effect types are assigned to the edge classes. Listing 5.23
provides an example impact analysis configuration for this case.

1 defined with impact definition : {
2 ModelEdge in: no_effect out: no_effect
3 Provide in: strong_effect out: weak_effect
4 ConsumedBy in: weak_effect out: no_effect
5 StructuralDependentOf in: strong_effect out: weak_effect
6 }

Listing 5.23: Impact analysis configuration using classes.

For evaluation of the configuration, an attribution file is generated which provides the
assignment of the respective DFA propagation rules to the edge classes. The generation
of the attribution files is realized using a model to text transformation. The structure
of the respective Xtend template is similar to the one for the scope analysis provided in
listing 5.15. The relevant part of the transformation, where the propagation rules are
assigned to the respective GMM elements is presented in listing 5.24.

1 static def createAttribution (ImpactDefinitionByClasses configuration)’’’
2 attribution impact {
3 ...
4 extend gmm.gmmmodel.ModelEdge {

128

5.5. Analysis Execution

5 occurrence incoming_impact : java call "ImpactRules.«configuration.defaultEdgeIncoming»_incoming";
6 occurrence outgoing_impact : java call "ImpactRules.«configuration.defaultEdgeOutgoing»_outgoing";
7 }
8 «definition.edgeDefinitions.forEach[createRule]»
9 }

10 ’’’

11 static def createRule (EdgeDefinition definition)’’’
12 extend gmm.gmmmodel.«definition.class_» {
13 occurrence incoming_impact : java call "ImpactRules.«definition.edgeIncoming»_incoming";
14 occurrence outgoing_impact : java call "ImpactRules.«definition.edgeOutgoing»_outgoing";
15 }
16 ’’’

Listing 5.24: Part of the Xtend template for impact attribution generation.

The assignment of propagation rules to the super class ModelEdge is done in lines 4
- 8. According to the provided analysis configuration, further attribute extensions are
provided to the subclasses (lines 10 and 14 - 19). In addition to the assignment of an
incoming_impact and outgoing_impact attribute to the model edge and its subclasses,
an attribute impact is assigned to model nodes. The impact attribute for the model node
is evaluated according to the propagation rule presented in listing 5.21.
To determine the attribute values for the model edges, five different propagation rules
are defined: One rule for each effect type and for each direction of the relation. The
propagation rules, used to determine the outgoing_impact attribute, are presented in
listing 5.25. The ones for the incoming_impact are defined accordingly. Instead of calling
the target element, the status of the source element is retrieved.

1 Object strong_effect_outgoing (ModelEdge edge){
2 ImpactStatus status = edge.getTarget().getStatus(ATTRIBUTE.IMPACT)
3 if(status == HIGH) return HIGH
4 if (status == MEDIUM) return MEDIUM
5 return NO_IMPACT
6 }

7 Object weak_effect_outgoing (ModelEdge edge){
8 ImpactStatus status = edge.getTarget().getStatus(ATTRIBUTE.IMPACT)
9 if(status == HIGH) return MEDIUM

10 if (status == MEDIUM) return LOW
11 return NO_IMPACT
12 }

13 Object no_effect_outgoing (ModelEdge edge){
14 return NO_IMPACT
15 }

Listing 5.25: Propagation rules for impact calculation for outgoing edges.

Based on the retrieved status (lines 2 and 8) the impact value for the model edge is set.
Thereby, the semantics of the effect classes provided in table 5.3 are used. In the strong
case the same status as retrieved from the edge target is returned (lines 3 - 4). Only
in the case of a low impact probability, a no impact is returned (line 5). In the weak
case, a high impact type at the target node leads to a medium impact at the edge (line
9). And a medium one at the target node leads to a low impact type value (line 10).
Otherwise no impact is propagated (line 11). The no_effect rule always returns no
impact. Regardless of the status at the target element (line 14).

Customization through parameters

If the impact analysis configuration is specified using stereotypes, i.e. a ImpactDefini-

129

Chapter 5. Architecture Analysis Framework

tionByStereotypes is used, the customization of the propagation rules is performed with
parameters. The parameters are comprised of four different sets of stereotypes:
• IncomingWeakStereotypes,
• IncomingStrongStereotypes,
• OutgoingWeakStereotypes, and
• OutgoingStrongStereotypes.

The content of the sets corresponds to the assignment of the stereotypes to impact effects
within the analysis configuration (see listing 5.26).

1 defined with impact definition {
2 WeakEffect In (edge:"used by" ["cb2f58ad -8077"])
3 StrongEffect In (edge:" realization " ["c5cf8176 -ac56"],
4 edge:" aggregation " ["4fa14568 -ceaa -49 f7"])
5 WeakEffect Out (edge:" realization " ["c5cf8176 -ac56"],
6 edge:" aggregation " ["4fa14568 -ceaa -49 f7"])
7 }

Listing 5.26: Impact analysis configuration using stereotypes.

Within the propagation rules, used to calculate the incoming_impact and outgoing_im-
pact attribute for the model edges, the parameters are used to determine the propagated
impact value. This is illustrated with the propagation rule determining the outgoing
impact value in listing 5.27.

1 @Rule(modelClass=ModelEdge,attribute=outgoing_impact)
2 Object outgoing_edge_impactpropagation (ModelEdge edge){
3 ImpactStatus targetStatus = edge.getTarget().getStatus(ATTRIBUTE.IMPACT)
4 if(parameters.getOutgoingStrongStereotypes().contains(edge.getStereotype()))
5 return propagateStrongEffect(targetStatus)

6 if(parameters.getOutgoingWeakStereotypes().contains(edge.getStereotype()))
7 return propagateWeakEffect(targetStatus)

8 return NO_IMPACT
9 }

Listing 5.27: Propagation rules for impact calculation for outgoing edges.

First, the current impact status of the target element of the edge is requested (line 3).
For the incoming propagation rule, this would be the source element of the edge. The
propagated impact value is determined according to the stereotype of the current model
edge and its occurrence in one of the stereotype sets of the parameters. If the stereotype
is contained in the OutgoingStrongStereotypes, the status of the model edge is set
according to the strong effect semantics (lines 4, 5). If the stereotype is contained in the
OutgoingWeakStereotypes, the status of the model edge is set according to the weak
effect semantics (lines 6, 7). In all other cases no impact is propagated. Evaluating
the propagation rules according to the parameters provides finally the resulting impact
attribute for model nodes.

5.5.5 Execution of path analysis

With the path analysis, the direct and indirect dependencies between the elements of the
EA model can be analyzed. Three different execution procedures are provided within A2F
which correspond to the different configuration possibilities within Arla. These are the
determination of all paths between source and target element and the determination of

130

5.5. Analysis Execution

only the shortest path. Both path types can be further restricted to specific set of relation
types. For the all path analysis a restriction based on classes is also possible.
For the implementation of the path analysis the generic flow path analysis template for
control flow graphs provided in [Saa14] (see section 2.2) has been tailored to the EA
domain. Since an EA does not provide a control flow structure and designated start
nodes, the proposed definition has to be adapted. The start element is replaced by a set of
start nodes, and since designated end elements are also missing, an optional set of target
elements can be provided. The definition of a maximum number of hops, i.e. intermediate
elements on a path, provides another stop criterion.
The implementation of the propagation rules differs, whether the PathByStereotypes or
the PathByClasses condition is used to restrict the considered relations. In the first case,
the respective incoming and outgoing relation types are provided as parameter within the
propagation rules. In the second case, the configuration is used to generate the respective
attribution file.
In both cases the following parameters supplement the customization:
• a set of source nodes,
• a set of target nodes,
• the number of maximum hops allowed for each path, and
• a Boolean value which indicates if a path should be ignored if the same stereotype
occurs twice on the same path.

Finally, each analysis provides an AggregatedResult containing a PathResult. The de-
tails for the two different implementation modes are described in the following.

5.5.5.1 Path configuration with stereotypes

The DFA propagation rule used to evaluate a path configuration with a PathByStereotype
condition is presented in listing 5.28. The rule describes the path definition within the
AllPath mode. In this case, the ModelNode is annotated with a data-flow attribute
ALLPATH. The DFA solver yields a result in the form of a map, where each entry con-
sists of a ModelNode and a set of associated outgoing Paths. The key identifies the source
element of the paths provided within the set.

Figure 5.12: Illustration of the execution of the all path analysis.

The idea of the AllPath algorithm is that the path from the current model node to the

131

Chapter 5. Architecture Analysis Framework

specified source node is determined through requesting and updating the paths from the
referenced elements. Figure 5.12 illustrates the procedure. In the figure the AllPath
option is chosen to determine all possible path from the Return element to application
components. The maximum number of hops is 4 and same stereotypes on one path are
allowed. There are no further constraints provided for the relation types. Hence, all
relations are considered. In total, three paths are identified (see figure 4.5 in the previous
chapter). The elements that occur at least on one path of the result are highlighted in blue
within figure 5.12. The values of the attributes, as determined by the DFA, are annotated
for each element.
For path calculation all related elements to the current processed elements are considered
(line 3 within listing 5.28). The first step evaluates, if the relation should be considered
for path calculation. This includes the verification of the relation type according to the
provided path configuration (line 4). Also, if the referenced node is one of the target
nodes, the result must not be updated (line 5). This is the case for the infrastructure
services Car management and Accounting Service at the bottom. If the sameStereotype
parameter is set, and the referenced node has the same stereotype as the current one, no
update of the paths is performed (line 6)
New paths are only created for elements, related to a source element, i.e. both Payment
elements, Collect Bonus and Take back Car (lines 7 - 11). A new path is initialized with
the source element, i.e. Return and the respective relation. Since the Return element is
the start element, there exists no path for it and the path result is empty.
Subsequently, the paths retrieved from the referenced element are retrieved updated (lines
12 - 24). If the retrieved status is still null, the next relation is processed (line 13).

1 Object node_allpaths(ModelNode currentNode) {
2 Map<ModelNode,Set<Path>> result = new Map<ModelNode,Set<Path>>();
3 for((ModelEdge edge, ModelNode referencedNode) : node.getReferenceMap()){
4 if(!parameters.validate(edge)) continue
5 if(parameters.getTargetNodes().contains(referencedNode)) continue
6 if(parameters.ignoreSameStereotype && referencedNode.getStereotype() == currentNode.getStereotype())

continue

7 if(parameters.getStartNodes().contains(referencedNode)){
8 Path path = new Path()
9 path.add(referencedNode).add(edge)

10 result.addPath(referencedNode, path)
11 }

12 Map<ModelNode,Set<Path>> targetStatus = referencedNode.getStatus(ATTRIBUTE.ALLPATH)
13 if(targetStatus = null) continue
14 for((ModelNode pathSource, Set<Path> pathSet) : targetStatus){
15 if(pathSource = currentNode) continue
16 for(Path path : pathSet){
17 if(path.getHops() == parameters.maxHops) continue
18 if(path.contains(currentNode)) continue
19 if(paremeters.ignoreSameStereotype && path.exists(e −> e.stereotype == currentNode.stereotype))

continue
20 Path extendedPath = path.clone()
21 extendedPath.add(referencedNode).add(Edge)
22 result.addPath(pathSource, extendedPath)
23 }
24 }

25 }
26 }

Listing 5.28: DFA propagation rules for AllPath calculation.

For the element Bonus Booking, the paths determined at Collect Bonus and at Booking

132

5.5. Analysis Execution

System have to be considered. An update is only performed, if this does not result in
a cyclic path to the path’s source node (line 15). Additionally, the maximum number
of hops, i.e. intermediate model elements, must not be exceeded (line 17). To prevent
cycles to the current node, it must not be present on the path (line 18). Finally, the
sameStereotype parameter is evaluated (line 19). If none of these conditions is met,
the retrieved paths from the referenced node are copied (line 20) and extended with the
current edge and the referenced node (line 21). The new path is then added to the result
set (line 22). In the case of Bonus Booking no condition is met for the retrieved value from
Collect Bonus. Thus, the retrieved path is extended. The paths determined at Booking
System have no influence, since this element is already one of the target elements.
For the Booking System, two outgoing relations have to be considered. Since the respective
target nodes of the relations each provide a path, both are extended and added to the result
value for the attribute of this node. For the Accounting Service no path is determined,
since the previous Booking Systems belongs to the target nodes. The Payment business
service is omitted within the post-processing of the result, since the target type of the
path is not an application component.
The result map is further processed after analysis execution. Within the DFA results,
the intermediate path sets, calculated at elements which are not a target element, are
included as well. Thus, the paths which do not end with a declared target element, have
to be removed afterwards. Finally, all paths are summarized within one PathResult.
The ShortestPath option is evaluated similar to the AllPath option. Instead of deter-
mining a set of paths, only the shortest path will be kept within the result. Thus, the
attribute value consists of a map with entries ModelNode and only one assigned Path. The
ModelNode depicts the source of the related Path.
Within the propagation rule, instead of adding the updated path to the result set (see line
22 of listing 5.28), the extended path is compared with actual path to this source node.
If it is shorter, then the extended path is kept within the result and replaces the previous
one.
The shortest path mode, restricts the potential exponential number of path combinations.
Thus, in cases where the shortest path is sufficient, it is recommended to choose this
mode.

5.5.5.2 Path configuration with classes

A path definition utilizing the PathByClasses condition is implemented with the gener-
ation of the respective DFA attribution file and the subsequent evaluation of the DFA
propagation rules. The path creation is not only performed for model nodes, also the
model edges are extended with respective incomingedge_path and outgoingedge_path
attributes. Model nodes are extended with a node_path attribute. Consequently, four
DFA propagation rules are defined to determine the values of these attribute occurrences:
One for the model nodes, one for edges which should not be considered and one rule
for the incoming as well as outgoing path attribute, in the case the relation should be
considered.
The propagation rules for the attribute occurrences at model edges are provided in list-
ing 5.30. The node_path attribute for model nodes is always determined with the respec-
tive node_rule provided in listing 5.29. For all elements which are not within the set of
start elements, an empty result is returned (line 4). For start elements, all incoming and

133

Chapter 5. Architecture Analysis Framework

outgoing relations are processed.
For each incoming edge the incomingedge_path attribute value is requested (line 6). The
received paths are extended with the source of the edge, the edge as well as the current
node (line 8) and finally included in the result (line 9).
The same procedure applies for outgoing edges. The outgoingedge_path attribute value
is requested and the path is extended with the respective target node instead of source
node (lines 11 - 16).

1 @Rule(modelClass=ModelNode, attribute=node_path)
2 Object node_rule(ModelNode currentNode) {
3 Map<ModelNode,Set<Path>> result = new Map<ModelNode,Set<Path>>()
4 if(!parameters.getSourceNodes().contains(currentNode)) return result;

5 for(ModelEdge edge : currentNode.getIncoming()){
6 Map<ModelNode,Set<Path>> targetStatus = edge.getStatus(ATTRIBUTE.INCOMINGEDGE_PATH)
7 if(targetStatus == null) continue
8 targetStatus.updateAllPaths(edge.getSource(), edge, currentNode)
9 result.addAllPaths(edge.getSource, targetStatus)

10 }
11 for(ModelEdge edge : currentNode.getOutgoing()){
12 Map<ModelNode,Set<Path>> targetStatus = edge.getStatus(ATTRIBUTE.OUTGOINGEDGE_PATH)
13 if(targetStatus == null) continue
14 targetStatus.updateAllPaths(edge.getTarget(), edge, currentNode)
15 result.addAllPaths(edge.getSource, targetStatus)
16 }
17 }

Listing 5.29: DFA propagation rule for path calculation based on class restrictions.

Figure 5.13 provides the result of a path analysis with a class configuration. The analysis
was executed with Return as start element and the target elements should be of the type in-
frastructure service. Additionally, the class constraint Incoming (modelClass:Provide,
modelClass:ConsumedBy) is provided. Thus, only the incoming used by and realization
relations are considered. For all other relations the provided attribute value is an empty
path set. According to the propagation rule for ModelNodes, only the start element has a
non-empty path set.

Figure 5.13: Illustration of the execution of the realizing path analysis.

The utilized propagation rules to determine the path sets for the model edges are pro-
vided in listing 5.30. This includes one rule to determine paths for incoming directions
of relations, one for outgoing directions of relations and one if the relation should not
be considered. The rules are assigned to relation classes of the GMM according to the
provided PathByClasses condition. As for the scope and impact analysis, a generation of

134

5.5. Analysis Execution

the respective DFA attribution is used for this task.
If no class constraints are provided, all relations, independently of the direction, are con-
sidered. Thus, the attribute occurrences for ModelEdge are defined with the incoming-
paths_rule and the outgoingpaths_rule.
If constraints are provided, the rule nopaths_rule is utilized for the attribute occurrences
at ModelEdges. The occurrences at the relation classes are defined according to the
provided constraints.
The nopaths_rule is called if the respective model edge should not be considered during
path calculation. Thus, always an empty result is provided (see lines 1 - 3).
If the respective edge should be considered the incomingpaths_rule, respectively out-
goingpaths_rule, is triggered, depending on the requested attribute. To determine the
value of the incomingedge_path attribute, the source node of the edge will be processed
(lines 6ff). If the source element is one of the target elements within the path configuration,
the path is initialized with the source element and an empty path (lines 6 - 7). This ensures
that the path calculation is finished, if one of the target elements is reached. In the above
example, this applies to the outgoing used by relation of the AccountingService.
In the other case, all incoming edges are processed (lines 10ff). From the followingEdge,
the current status is requested (line 11). If the status is still null (line 12) or if the
sameStereotype parameter applies (line 13), the retrieved paths are not considered. Oth-
erwise, all paths are processed, if its source is not equal to the source node of the current
edge (lines 14 - 15).
Assuming that the edge under consideration is the realization relation in figure 5.13, the
followingEdge is the outgoing usedBy relation of the Accounting Service. Since the
Accounting Service as source element of the path is not equal to the source of the current
edge (i.e. Booking System) the retrieved path is considered.

1 Object nopaths_rule (ModelEdge modelEdge) {
2 Map<ModelNode,Set<Path>> result = new Map<ModelNode,Set<Path>>()
3 }

4 Object incomingpaths_rule(ModelEdge modelEdge) {
5 Map<ModelNode,Set<Path>> result = new Map<ModelNode,Set<Path>>()

6 if(parameters.getTargetNodes().contains(modelEdge.getSource())){
7 result.addPath(modelEdge.getSource(), new Path())
8 return result
9 }

10 for(ModelEdge followingEdge : modelEdge.getSource().getIncoming()){
11 Map<ModelNode,Set<Path>> followingEdgeStatus = followingEdge.getStatus(ATTRIBUTE.

INCOMINGEDGE_PATH)
12 if(targetStatus == null) continue
13 if(parameters.ignoreSameStereotype && followingEdge.getSource().getStereotype() == modelEdge.getSource.

getStereotype()) continue

14 for((ModelNode pathSource, Set<Path> pathset) : followingEdgeStatus){
15 if(pathSource == modelEdge.getSource()) continue

16 if(pathSet.isEmpty() && followingEdge.getSource() == pathSource){
17 NodePath path = new NodePath()
18 path.add(followingEdge.getSource()).add(followingEdge)
19 result.add(followingEdge.getSource(), path)
20 continue
21 }

22 for(Path path : pathset){
23 if(path.getHop() == parameters.maxHops) continue
24 if(path.contains(modelEdge.getSource())) continue
25 NodePath extendedPath = path.clone();

135

Chapter 5. Architecture Analysis Framework

26 extendedPath.add(followingEdge.getSource()).add(followingEdge)
27 result.add(followingEdge.getSource(), extendedPath)
28 }

29 }
30 }
31 }

32 Object outgoingpaths_rule(ModelEdge modelEdge) {
33 ...
34 }

Listing 5.30: DFA propagation rules for realizing path calculation.

In the case where the path set is still empty and the source of the followingEdge is the
desired source of the path, a new path is created and included within the result (lines 16 -
21). Otherwise, the paths are copied and extended with the followingEdge and its source
element (lines 25 - 27). Only if the provided maximum numbers of hops is reached (line
23) or if the path already contains the source node of the current model edge (line 24)
it is ignored. In the example, the retrieved empty path is extended with the Accounting
Service and its outgoing used by. This path is then the result for the realization edge.
The procedure for the determination of the outgoingedge_path attribute is similar to the
presented one. Instead of processing the source node of the edge, the target node and its
outgoing relations are processed (lines 32 - 34).
After evaluating the DFA propagation rules the result is transformed into the uniform re-
sult structure. All determined paths at model nodes are aggregated into one PathResult.

5.5.6 Execution of metrics

An aggregated or an element metric is evaluated through its decomposition into the single
expressions. Property references and expressions questioning a set of elements or rela-
tions are evaluated through the creation and execution of a SPARQL query. The other
non-atomic expression, like metric reference, SUM, MULT and mathematical operations like
addition and subtraction are evaluated recursively. For the evaluation of an aggregated
metric and an element metric the same procedure is applied. Except that for an element
metric, the provided expression is evaluated for each of the desired elements. In this case,
an attribute currentUri provides the URI of the actual element.
Listing 5.31 describes the evaluation of the atomic expression. A TypedPropertyRefer-
ence depicts the property value for the current element (line 3). Beforehand, it is validated
that the type of the current element corresponds to the type provided within the property
expression (line 2). In the other case which also applies if no current element is set, the
value null is returned (line 4).
The NodeCount expression references a NodeSetDefinition. The definition is evaluated
according to the procedure described in section 5.5.3.1 and the size of the result set is
returned (line 6).

1 Float caseTypedPropertyReference :
2 if(validate(currentUri, expression.getTypeName()))
3 return SparqlQuery.getPropertyValue(currentUri, expression.getPropertyName())
4 return null;

5 Float case NodeCount :
6 return executeNodeSetCondition(expression.getNodeSetCondition()).size()

7 Float caseEdgeCount :

136

5.5. Analysis Execution

8 Float result = 0;
9 if(currentUri.isEmpty()){

10 for(String uri : SparqlQuery.getAllModelElements())
11 result += evaluate(expression.getValue(), uri)
12 return result;
13 }
14 if(validate(currentUri, expression.getTypeName()))
15 return evaluate(expression.getValue(), currentUri)
16 return result;

17 Float caseUndirectedEdgeCount :
18 return SPARQLQuery.getRelations(currentUri, expression.getEdgeType(), getQuery(expression.

getNodeSetCondition())).size()

19 Float caseOutgoingEdgeCount :
20 return SPARQLQuery.getAllOutgoingEdges(currentUri, expression.getName()).size()

21 Float caseIncomingEdgeCount :
22 return SPARQLQuery.getAllIncomingEdges(currentUri, expression.getName()).size()

Listing 5.31: Evaluation procedures for the atomic expressions of a calculation rule.

The number of outgoing and incoming relations of an element is evaluated with the
EdgeCount expression. In the case of an aggregated metric, no elementUri is set and the
expression is evaluated for all elements within the model. The single values are summed up
(lines 9 - 13). In the case of an element metric, the currentUri is set and the expression
is evaluated for this element (lines 14, 15). The evaluation of an EdgeCount distinguishes
between the three types. The UndirectedEdgeCount, the OutgoingEdgeCount and the
IncomingEdgeCount to either concentrate on incoming, outgoing or both directions of
relations.
The UndirectedEdgeCount is expressed with a NodeSetDefinition. The result is defined
as the number of all relations, from the current element to one of the elements within the
node set. Additionally, the type of the relation can be restricted too. For implementation,
the query for the NodeSetDefinition is retrieved and extended with a triple to ensure
the existence of a relation to the current element (line 18).
The OutgoingEdgeCount returns the number of outgoing relations from the current ele-
ment. The IncomingEdgeCount returns the number of incoming relations. Both expres-
sions are evaluated using SPARQL queries. The queries are parameterized, to enable their
execution depending on the actual value of the current element. Listing 5.32 provides query
to retrieve all outgoing relations of type relationType for the element currentUri.

1 SELECT ? resultURI
2 FROM <relevantUris>
3 WHERE {
4 <currentUri> model: outgoing ? outgoing .
5 ? outgoing model: target ? resultURI .
6 ? outgoing model: stereotype ? stereotype .
7 ? metamodeledge meta: connections ? stereotype .
8 ? metamodeledge gmm:name <relationName>
9 }

Listing 5.32: Parameterized query to retrieve all outgoing relations.

The evaluation procedures for the non-atomic expressions are provided in listing 5.33.
Thereby, expressions provided within a Sum or a Mult are either evaluated for all model
elements (lines 7 and 16) or only for the elements in the specified node set (lines 4, 5 and
13, 14). The retrieved results are added together or multiplied with each other (line 9 and
18 respectively).

137

Chapter 5. Architecture Analysis Framework

1 Float caseSum :
2 Float result = 0;
3 Set<String> relevantUris;
4 if(expression.getNodeSetDefinition() != null && !currentUri.isEmpty)
5 relevantUris = SPARQLQuery.getRelations(currentUri, getQuery(expression.getNodeSetDefinition()))
6 else
7 relevantUris = SparqlQuery.getAllModelElements()
8 for(String uri : relevantUris)
9 result += evaluate(expression.getValue(), uri)

10 return result;

11 Float caseMult :
12 Float result = 0;
13 if(expression.getNodeSetDefinition() != null && !currentUri.isEmpty)
14 relevantUris = SPARQLQuery.getRelations(currentUri, getQuery(expression.getNodeSetDefinition()))
15 else
16 relevantUris = SparqlQuery.getAllModelElements()
17 for(String uri : relevantUris)
18 result *= evaluate(expression.getValue(), uri)
19 return result;

20 Float caseAggregatedMetricReference : return evaluate(expression.getCalculation())

21 Float casePlus : return evaluate(expression.left()) + evaluate(expression.right())

22 Float caseMinus : return evaluate(expression.left()) − evaluate(expression.right())

23 Float caseMultiplication : return evaluate(expression.left()) * evaluate(expression.right())

24 Float caseDivision : return evaluate(expression.left()) / evaluate(expression.right())

Listing 5.33: Evaluation procedures for the non-atomic expressions of a calculation
rule.

The expression provided within an AggregatedMetricReference is evaluated according to
the presented procedure for metric execution (line 20). For Plus, Minus, Multiplication
and Division the expression defining the left side and the expression defining the right
side are evaluated and finally combined with each other according the provided type (lines
21 - 24).

5.5.7 Execution of performance analysis

For the realization of the performance analysis in A2F, the calculation rules provided
by [JI09] are applied. The proposed formulas for workload, processing time, response time
and utilization are implemented with several DFA propagation rules. In contrast to [JI09],
these rules are implemented independently from a specific EA meta model.
The ModelNode is extended with four data-flow attributes: workload λ, processing time
T , response time R and utilization U . The workload is calculated at every model node.
Processing time and response time are only determined for elements having an attribute
service time. The utilization is only calculated for element having an attribute capacity.
Instead of propagating the values over relations with a concrete stereotype, the edge
classes provide, consumed by and located at are used. Only for referencing the required
properties, the concrete stereotypes of the current EA meta model are required. They are
provided within the Arla analysis configuration for a performance analysis.
According to [JI09] the workload λa for an element a is defined as

λa = fa +
d+

a∑
i=1

na,ki
λki

, (5.3)

138

5.5. Analysis Execution

where fa denotes the arrival frequency of the node a, d+
a its out-degree, and na,ki

the
weight of the edge between a and its child ki.
This definition has to be translated into a data-flow rule to calculate the attribute workload
in the context of the class ModelNode. The attribute values are computed according to the
rule presented in listing 5.34. Line 3 initializes the workload with the value of the property
arrivalFrequency of the currently processed node. The UUID provided within the analysis
configuration is used to retrieve the value. If no value is assigned, the default value 0
is used. The loop in lines 5 ff. iterates over all outgoing edges. The result is updated
according to the retrieved status of the weighted_outgoing_workload attribute. This
corresponds to the sum statement within the formula and is illustrated in figure 5.14.

1 @Rule(modelClass=ModelNode, attribute=workload)
2 Object node_workload (ModelNode node){

3 Float workload = node.getPropertyValue(
4 parameters.getArrivalFrequencyUUID(), 0f)

5 for(ModelEdge edge : node.getOutgoing()){
6 workload += edge.getStatus(ATTRIBUTE.

WEIGHTED_OUTGOING_WORKLOAD)
7 }

8 for(ModelEdge edge : node.getIncoming()){
9 workload += edge.getStatus(ATTRIBUTE.

WEIGHTED_INCOMING_WORKLOAD)
10 }
11 return workload;
12 }

Listing 5.34: Propagation rule for workload
calculation. Figure 5.14: Example for workload

calculation.
In contrast to [JI09] we also consider incoming relations for the workload (lines 8ff), since
we observed that resources, for example a node or a device, are also connected with an
incoming localization relationship. Following, only the located at class is extended with
the respective weighted_incoming_workload attribute (see listing 5.35). In this rule,
the weight of the edge is multiplied with the retrieved workload status from its source
node (line 4). The UUID of the property representing the weight, is provided within the
parameters. If no weight is specified, the default value 1 is used. Since workload is a data-
flow attribute, the invocation of getStatus() informs the solver that a recursive fixed-point
evaluation is required at this point.

1 @Rule(modelClass={LocalizedAt}, attribute=weighted_outgoing_workload)
2 Object incoming_propagate_workflow (ModelEdge edge){
3 Float weight = edge.getPropertyValue(parameters.getWeightUUID(), 1f)
4 return weight * edge.getSource().getStatus(ATTRIBUTE.WORKLOAD)
5 }

6 @Rule(modelClass={Provide, ConsumedBy}, attribute=weighted_outgoing_workload)
7 Object outgoing_propagate_workflow (ModelEdge edge){
8 Float weight = edge.getPropertyValue(parameters.getWeightUUID(), 1f)
9 return weight * edge.getTarget().getStatus(ATTRIBUTE.WORKLOAD)

10 }

11 @Rule(modelClass=ModelEdge, attribute={weighted_incoming_workload,weighted_outgoing_workload)
12 Object no_propagate_workflow (ModelEdge edge){
13 return 0f;
14 }

Listing 5.35: Propagation rule for workload calculation.

For the classes provide and consumed by the outgoing_propagate_workflow rule is

139

Chapter 5. Architecture Analysis Framework

used to determine the value of the attribute. The weight of the edge is multiplied with the
value of the workload attribute at the target node. All other occurrences of this attribute,
i.e. for incoming provide and consumed by edges or for behavioral dependent edges, are
determined according to the no_propagate_workflow rule (lines 11 - 13).
The utilization Ur of a resource r is defined as:

Ur = 1
Cr

dr∑
i=1

λki
Tki

, (5.4)

with Cr the capacity of the resource, dr the number of assigned behavior elements ki and
Tki

the processing time of ki.
The corresponding DFA rule is provided in listing 5.36. The rule calculates the value for
the utilization attribute of ModelNodes.

1 @Rule(modelClass=ModelNode, attribute=utilization)
2 Object node_utilization (ModelNode node){
3 Float capacity = node.getPropertyValue(
4 parameters.getCapacityUUID(), 0f)
5 if(capacity <= 0) return −1f
6 Float sumProcessingTime = 0f
7 for(ModelEdge edge : node.getOutgoing()){
8 sumProcessingTime += edge.getStatus(ATTRIBUTE.

OUTGOING_PROCESSINGTIME)
9 }

10 for(ModelEdge edge : node.getIncoming()){
11 sumProcessingTime += edge.getStatus(ATTRIBUTE.

INCOMING_PROCESSINGTIME)
12 }
13 return sumProcessingTime/capacity
14 }

Listing 5.36: Propagation rule for utilization
calculation.

Figure 5.15: Example for utilization
calculation.

The value of the capacity property is also identified with the provided UUID in the
analysis parameters (lines 3, 4). If no capacity value is given, no utilization will be
calculated (line 5). Otherwise, the processing times from assigned behavior elements
which are retrieved with the outgoinging_processingtime attribute (lines 7, 8) and the
incoming_processingtime attribute (lines 10, 11) are added up and finally divided by
the capacity (line 13).
The outgoing_processingtime is calculated for outgoing relations of the class provide.
The incoming_processingtime for incoming located at relations. In the first case, the
attribute value is determined as the processing time multiplied with the workload of the
target element of the provide relation. In the second case, the processing time is the sum
of all processing times provided at the incoming and outgoing relations of the source of
this edge.
The calculation of the utilization is illustrated in figure 5.15. In the figure the relations
required to determine the utilization for the Mainframe are depicted. The required pro-
cessing time of the service is propagated in outgoing direction over the realization edge
and then in incoming direction over the assignment edge.

140

5.5. Analysis Execution

The recursive definition of the processing time Ta for a behavioral element a is:

Ta = Sa +
d−

a∑
i=1

nki,aRki
, (5.5)

where Sa is the service time of a, d−a is its in degree, ki is the parent of a and Rki
is the

response time of ki.
The implementation of this equation as data-flow propagation rule is presented in list-
ing 5.37. The processing time is only determined for elements having a valid service time
property (lines 5). The service time property is determined according to the given UUID
within the parameters. In the following, all incoming edges are processed and the available
response time attributes are added to the service time. This provides the final processing
time of the current model node.
The attribute incoming_responsetime is defined for provide and consumed by relations.
Within the propagation rule for provide relations, the attribute is requested transitively
for the incoming relations of the source node. All retrieved values are finally added up
to provide the processing time. At consumed by relations, the processing time provided
at the source node is retrieved and multiplied with the weight of the current edge. This
is illustrated in figure 5.16, where the required relations are shown to determine the pro-
cessing time of the Reservation Management. This is in specific the response time of the
utilized infrastructure service Reservation. The response time of this service is propagated
over the used by and the realization relation to the current node.

1 @Rule(modelClass=ModelNode, attribute=processingtime)
2 Object node_processingtime (ModelNode node){

3 Float servicetime = node.getPropertyValue(
4 parameters.getServiceTimeUUID(), −1f)

5 if(servicetime < 0) return −1f

6 Float processingtime = servicetime

7 for(ModelEdge edge : node.getIncoming()){
8 processingtime += edge.getStatus(ATTRIBUTE.

INCOMING_RESPONSETIME)
9 }

10 return processingtime
11 }

Listing 5.37: Propagation rule for processing
time calculation.

Figure 5.16: Example for processing
time calculation.

According to [JI09] the response time Ra for an element a is defined as:

Ra = Ta

1− Ura

, (5.6)

where ra denotes the realizing or assigned resource of a.
The response time can be approximated with different queuing models. In the definition
above the M/M/1 queuing model is used which is in most cases accurate enough on the
architecture level [JI09]. For this approximation it must be assumed that a processing
unit is only assigned to one resource.
The respective data-flow rule is presented in listing 5.38. To determine the response time

141

Chapter 5. Architecture Analysis Framework

of a model node, its processing time as well as the utilization of the assigned resource
is required. The current value for the processing time attribute is requested in line 3.
If no valid processing time is provided, no utilization is calculated (line 4). Otherwise,
all incoming and outgoing relations are processed to identify the assigned resource of the
current element. If a valid utilization is retrieved with the status request, the utilization
is set to this value (line 7 and 9). Finally, in line 10, the response time is determined
according to the previously presented equation.

1 @Rule(modelClass=ModelNode, attribute=responsetime)
2 Object node_responsetime (ModelNode node){
3 Float processingtime = node.getStatus(ATTRIBUTE.

PROCESSINGTIME)
4 if(processingtime < 0) return −1f
5 Float utilization = 0f
6 for(ModelEdge edge : node.getIncoming())
7 updateUtilization(edge.getStatus(ATTRIBUTE.

INCOMING_UTILIZATION))
8 for(ModelEdge edge : node.getOutgoing())
9 updateUtilization(edge.getStatus(ATTRIBUTE.

OUTGOING_UTILIZATION))
10 return processingtime/ (1−utilization)
11 }

Listing 5.38: Propagation rule for response
time calculation.

Figure 5.17: Example for response
time calculation.

A resource can either be related to a processing unit with an incoming provide relation
or with an outgoing located at. If the source element of an incoming provide relation
has no valid utilization attribute, the request for a utilization is forwarded to the incoming
and outgoing elements of the source element. In figure 5.17 the calculation of the response
time for the Reservation service is provided. Based on its own processing time and the
utilization of its realizing resource, the Mainframe, the value is calculated.

5.5.8 Execution of gap analysis

The gap analysis enables the comparison of two different models. Its configuration al-
lows two different execution options: Differences and SuccessorProposals. With the
Differences options, the current and target model are compared to each other to deter-
mine new elements, affected elements, unaffected elements and deletion candidates. These
element attributes are determined based on the three sets proposed in [DB14]:
• onlyCurrent := {x | x ∈ current ∧ x /∈ target}
• onlyTarget := {x | x /∈ current ∧ x ∈ target}
• currentAndTarget := {x | x ∈ current ∧ x ∈ target}

In A2F these sets are determined with SPARQL queries. For example, the set of elements
from the current architecture that occur also in the target architecture is determined with
the SPARQL query in listing 5.39. The primary named graph to execute the query is the
one provided within the currentModelUri (line 2). To be part of the result, an element
must be in the current model (line 4) and there must be an element within the target
model, identified with the targetModelUri that has the same UUID. Hence, a sub query
is defined which provides the UUIDs of the target model (lines 5 - 8). In the final filter
statement, the elements of the current model are restricted to those that have a pendant

142

5.5. Analysis Execution

in the target (line 9).
1 SELECT ? resourceURI
2 FROM <currentModelUri>
3 WHERE {
4 ?model gmm: elements ? resourceURI .
5 GRAPH <targetModelUri> {
6 ? targetModel gmm: elements ? targetResource .
7 ? targetResource gmm:uuid ? targetResourceID .
8 }
9 FILTER EXISTS {? resource gmm:uuid ? targetResourceID .}

10 }

Listing 5.39: SPARQL query to determine affected elements within the current
architecture.

The affected elements of the target model are determined accordingly. The elements which
occur only in the current or only in the target architecture are determined with a similar
query. Instead of filtering for the existence of an element, a filter for the non-existence is
used.
Depending on the set an element belongs to, the resulting planning status is defined
according to the following rules:

1. x ∈ onlyCurrent→ unaffected

2. x ∈ onlyTarget→ new

3. x ∈ currentAndTarget→ affected

For each element assigned to the unaffected attribute, a further evaluation is performed
to support the identification of deleted elements. A deletion candidate is identified as an
element that has a relation to an affected element in the current architecture but does
not occur within the target architecture. An ASK query is executed and evaluated to true,
if such a relation exists for an unaffected element. The query is provided in listing A.1
in the appendix. In this case the element will be assigned with the planning status at-
tribute deletion candidate. The strength of the dependency to affected elements can
be expressed as metric (using the metric calculation within A2F) and provides further
information to the architect. But finally, it is the task of the architect to decide about the
planning status of the element, i.e. if it is a deleted one or an unaffected one.
The determined planning status attributes are finally captured within an Attribute-
ValueResultMap. This map contains an entry for each element of the current and target
architecture with an AttributeValueResult representing the determined attribute new,
affected, unaffected or deletion candidate.
If the SuccessorProposals are evaluated, for each new element which occurs only in the
target architecture, a set of potential predecessors is calculated. Three different SPARQL
queries are executed to provide this set. The first one provides all elements of the current
architecture that have the same name and same type as the target element and do not have
a pendant in the target architecture (see listing A.2 in the appendix). The other two ones
identify elements as potential predecessor that have at least one relation in common with
the target element. This means, where the source, respective target of the relation, are
the same according to the UUID. The queries are provided in the appendix in listings A.2
and A.3. Again, the architect has to decide about a successor relationship, an automatic
conclusion cannot be made.
The retrieved proposals are finally provided as an IDSetResultMap. For each new element
in the target architecture an entry is created within the map. The stored result value

143

Chapter 5. Architecture Analysis Framework

for this entry consists of an IDSetResult. This set contains all URIs of the calculated
predecessors.
The information about the dependencies between the current and the target model is
stored in a so-called transformation model [AG10a]. In our method, the information is
expressed with the planning status attribute value as well as manually defined successor
dependencies in the case of a replacement. For the transformation model, a named graph
is created in the triple store. Therewith, the status of the elements is accessible for further
analyses.
Similarity measures can be used to evaluate successor proposals between elements of the
current and target architecture. The similarity measure for two elements ec, from the
current architecture, and et, from the target architecture, is calculated as:

Sim(ec, et) = #sharedRelationships(ec, et)/#Relationships(ec) (5.7)

A shared relationship between ec and et exists, if there is a relationship (ec, rc, e′c) in the
current architecture and a relationship (et, rt, e′t) in the target architecture and e′c and e′t
are the same elements (identified by UUID) or are related to each other with a successor
relationship. The relations rc and rt must have the same relation type rt. The measure
is 0, if there are no shared relationships and 1 if all relationships of ec are shared. The
higher the value, the higher the probability of a successor dependency.

5.5.9 Execution of adapted analysis

An AdaptedAnalysis is executed through evaluating the respective generated specific
analysis definition. During analysis definition the specific analysis definition is generated
from the information provided within the AdaptedAnalysis and the referenced template
definition (see section 5.4). The generated definition is then processed according to the
execution procedures presented in these sections. The retrieved result constitutes the
result of the AdaptedAnalysis.

5.5.10 Execution of custom analysis

The custom analysis configurations of Arla, i.e. the SpecificDFAConfiguration and
the CustomQuery, are evaluated with the DFA solver respectively through executing the
provided SPARQL query.
Within a SpecificDFAConfiguration the location of the respective DFA analysis config-
uration is provided. This file contains the required information to locate the propagation
rules and enables the triggering of the requested analysis strategy. The returned DFA
result is converted into an AttributeValueResultMap. For each element the determined
attribute instances are stored within the map.
A further possibility to extend the scope of Arla is the explicit definition of a SPARQL
query(CustomQuery configuration). This requires deep knowledge of the utilized GMM
vocabulary, but it provides access to the full expressive power of SPARQL. Depending on
the analysis style an AggregatedResult or an ElementResult is created. The provided
result type is used to determine the type of the result value.

1 Analysis ACustomSPARQLQuery {
2 " Number of instances of a meta model edge connection "
3 as Element Metric

144

5.5. Analysis Execution

4 defined with SPARQL Query
5 " SELECT ? stereotype (COUNT (? edge) as ? nrInstances)
6 FROM <http :// rentalcarmodel >
7 WHERE { ?model model:edges ?edge.
8 ?edge model: stereotype ? stereotype
9 }"

10 }

Listing 5.40: Example for a custom query analysis definition.

For example, the custom query provided in listing 5.40 describes an Element Metric.
The metric determines the number of instances for each MetaModelEdgeConnection. Ac-
cording to the analysis configuration, the query result is provided as ElementResult with
the result value type AttributeValueResultMap. The first variable within the SELECT
statement is interpreted as URI which is used as key for the result map. All other
variables, in this case only one, are interpreted as the results. Within the example, an
AttributeValueResult is created with a NumericResult as value.
If an Aggregate Modelelementset is defined, the first row of the query result will be
interpreted as URIs, identifying the elements of the set. All other result types, combined
with an Aggregate analysis style, are converted into an AttributeValueResult. There-
fore, only the first row is processed and for each column a result value is created using the
variable name as identifier.
An Element Modelelementset is converted into an IDSetResultMap. The first column
of the SPARQL result is interpreted as key of the map, all other columns as the entries of
the respective IDResultSet. All other analysis configurations with the Element style are
interpreted as AttributeValueResultMap. Again, the first column is interpreted as key
of the map. The following columns are interpreted as the result values using the variable
name as identifier. The used subclass for the Result is selected according to the provided
result type in the analysis configuration, i.e. a Modelelement will be converted into an
IDResult, a Metric into a NumericResult and a Boolean into a BooleanResult. Default
case is the StringResult.

5.5.11 Execution of composed analysis

In the A2F, analysis composition can be performed in two different ways. Either the two
composed analyses are executed subsequently. Thereby, the second one relies on the result
of the first one. In the other case, the two analyses can be executed independently from
each other and the results are combined afterwards.

Successive analysis execution

A successive execution can be defined with a ApplyRule and a ApplyEachRule in Arla.
With the ApplyRule the result provided in the first analysis is used within the second
analysis. This can be a set of elements, where the following analysis is only executed on
this part of the architecture. Or the determined attribute value in the first analysis is
utilized within the second one. In both cases, the first result is stored in a temporary
named graph. The URI of the named graph is added to the relevant model URIs for the
second analysis execution to be able to access the information. The result of the second
analysis is the final result of the analysis composition. The specific procedures to persist
the single result types are provided in the following.
If the first analysis provides a set of model elements, i.e. a IDSetResult, PathResult,

145

Chapter 5. Architecture Analysis Framework

PathResultMap or IDSetResultMap, the provided result is inverted. This means that
the set of model elements is determined that do not occur within the result. For each
element in this set a visibility property is added to the named graph with value false. If
the second analysis is executed with SPARQL queries, a validation pattern ensures that
only the desired elements are considered. Listing 5.41 presents the NOT EXISTS statement
that is added to SPARQL queries to cope with the restriction to a specific part of the
architecture.

1 SELECT ?value
2 FROM <modelUri>
3 FROM <analysisResultUri>
4 WHERE {
5 ...
6 NOT EXISTS {
7 ?value model: properties ? property .
8 ? property model:value "false" ;
9 model: stereotype ? stereotype .

10 ? stereotype gmm:name " visibility "}
11 }

Listing 5.41: Extension for visibility restriction wihtin SPARQL queries.

The EA model to be queried is provided within the first FROM statement in line 2. In line 3
the named graph containing the result of the first analysis is specified. In the WHERE clause,
first the statements as required for the second analysis are provided (line 5). Afterwards
an additional condition using a NOT EXISTS statement is defined, to restrict the resulting
elements to those determined in the first analysis. Hence, only elements are included,
where no visibility property with the value false exists.
If the second analysis is executed with the data flow approach, a validation step within
the propagation rules ensures the restriction to the provided element of the first analysis.
Within each propagation rule, used to determine the attribute instance at a ModelNode,
the method validateNode(modelNode) is requested. It evaluates to false, if the current
node should be excluded from the analysis. In this case no result is provided for the node.
The validation is performed only for model nodes to ensure that no important relations
are excluded during analysis. If a relation should not be considered, this is indirectly
captured with the context-sensitive propagation of the attribute values.
If the result of the first analysis is an AttributeValueResultMap also a new property
is created within the temporary model. This property is used to annotate the model
elements with the result values in the result map. The result of the first analysis is
now accessible like a normal model property within the second analysis. For example,
we consider the node set definition: having property property:"Impact" [""] with
value "MODIFICATION". This definition is applied to the result of an impact analysis and
evaluated with the query provided in listing 5.42.

1 SELECT ?value
2 FROM <http :// rentalcar >
3 FROM <http :// temp/ result /Impact >
4 WHERE {
5 ?model model: elements ?value .
6 ?value model: properties ? nodeProperty10 .
7 ? nodeProperty10 model: stereotype ? property10 .
8 ? property10 gmm:name " Impact " .
9 ? nodeProperty10 model:value ? propertyValue10

10 FILTER (? propertyValue10 = " MODIFICATION ")
11 }

Listing 5.42: Querying a temporary analysis result with SPARQL.

146

5.5. Analysis Execution

The result type AttributeValueResult of the first analysis cannot be utilized within a
second analysis according to the ApplyRule. Referencing an aggregated metric within
another metric can be done within the calculation rule.
With the ApplyEachRule in Arla the selection of model elements, is updated according
to the elements provided in the result of the first analysis. The input parameter selected
model elements is important for analyses like the scope analysis, the impact analysis, the
path analysis or an element metric. Within the scope and path analysis the selected
elements are interpreted as start elements. For impact analysis, these elements represent
the ones that are affected by an event. And within executing an element metric, the
selected elements are those elements, the metric is calculated for.
Thus, for the execution of an ApplyEachRule the first analysis is executed and the provided
result is converted into a set of element URIs. This can only be done for an IDSetResult,
a PathResult, a PathResultMap and an IDSetResultMap. For all other result types, the
ApplyEachRule is not implemented. The set of selected elements for the second analysis is
updated according to the result of the first analysis. Then, the second analysis is triggered
and its result is also the result of the composed analysis.

Result combination

A combination of two results can be defined with a CombineRule and a SpecificCombine-
Rule in Arla. In both cases, the two referenced analyses are executed independently from
each other and the retrieved results are combined afterwards. Thereby, the Specific-
CombineRule provides an operator which defines the procedure for combination. The
operator can be an intersection, an union or a diff and is only applicable to results
providing a set of elements. For those results the CombineRule follows the semantics of
the union operator.
The utilized combination strategies for evaluating the CombineRule are presented in ta-
ble 5.5. Combinations that are not presented in the table lead to an empty result set, since
there are no combination strategies available. For example, an AttributeValueResult
providing a metric cannot be combined with an IDSetResult, i.e. a set of model ele-
ments.
Combining two results, result1 and result2, of the same type is done straightforwardly. Two
IDSetResults, two PathResults or two AttributeValueResults are simply merged with
each other. For example, an IDSetResult consists of a set of IDResults. To retrieve the
final result of the composition, a new IDSetResult is created and all entries from result1
and result2 are added (row 1 in the table).
For the combination of two ResultMaps, also a new result of this type is created. Within
the first step, the (key, value) entries of the first result are copied to the final result. In
the second step, the entries of the second analysis result map are processed. The results
provided for each element are added to the respective existing entry in the final result (see
row 4-6 in the table).
Further combination strategies are implemented for the composition of results that can be
converted into set of model elements, i.e. for IDSetResult, PathResult, PathResultMap
and IDSetResultMap. These specific strategies are presented in rows 7-12 at the bottom
of the table.
The SpecificCombineRule is only implemented for result types that can be converted into
a set of elements. Following a PathResult, a PathResultMap and a IDSetResultMap are

147

Chapter 5. Architecture Analysis Framework

Table 5.5: Result combination strategies.

result types combination strategy
IDSetResult result1

result = new <Type>Result()
result.addAll(result1)
result.addAll(result2)

IDSetResult result2
PathResult result1
PathResult result2
AttributeValueResult result1
AttributeValueResult result2
IDSetResultMap result1

result = new <Type>ResultMap()
result.addAll(result1)
result2.forEach[(uri, values) -> result.add(uri, values)]

IDSetResultMap result2
PathResultMap result1
PathResultMap result2
AttributeValueResultMap result1
AttributeValueResultMap result2

IDSetResult result1
PathResult result2

result = new IDSetResult()
result.addAll(result1)
result.addAll(result2.getAllNodes())

IDSetResult result1
PathResultMap result2

result = new IDSetResult()
result.addAll(result1)
result2.forEach[(uri, pathResult) -> result.addAll(pathResult.getAllNodes())]

IDSetResult result1
IDSetResultMap result2

result = new IDSetResult()
result.addAll(result1)
result2.forEach[(uri, setResult) -> result.addAll(setResult)]

PathResult result1
IDSetResultMap result2

result = new IDSetResult()
result.addAll(result1.getAllNodes()))
result2.forEach[(uri, setResult) -> result.addAll(setResult)]

IDSetResultMap result1
PathResultMap result2

result = new IDSetResultMap()
result.addAll(result1)
result2.forEach[(uri, pathResult) -> result.(uri, pathResult.getAllNodes())]

PathResult result1
PathResultMap result2

result = new PathResult()
result.addAll(result1)
result2.forEach[(uri, pathResult) -> result.addAll(pathResult)]

converted into an IDSetResult. These two sets of elements are finally combined according
to the provided operator. Applying the union operator returns a result, where all elements
of the first and the second result are contained. With the intersection operator only
those elements are within the final result that occur in both analysis results. And finally,
the diff operator returns those elements that are within the result of the first analysis
and not in the result of the second one.

148

5.6. Related Work

5.6 Related Work

The existing analysis approaches within current literature use a large plethora of different
techniques. In current literature techniques like XML [dBBG+05], SPARQL [SKR13b],
extended influence diagrams [JLNS07a], probabilistic relational models [BUF+11], p-OCL
[JUB+13] or architecture theory diagrams [JNL07] have been proposed for the definition
of analyses. These techniques are dependent on the underlying meta model or schema, an
adaption of defined analyses to another context or due to changes requires much effort.
Analysis approaches within current literature that try to cover different analysis types are
rare.
As shown in [Rau15,RLB16] none of technical categories for EA analyses captures more
than six functional categories. This supports the statement that current approaches that
try to cover several analysis types and thus, several functional categories are rare. The ap-
proaches in current literature are typically isolated ones that are not related to each other.
Further challenges that are given only little attention are recursive analysis definitions.
Cyclic dependencies in the models as well as incomplete models are sparsely considered.
Only a few approaches (e.g. [KA09]) deal with indirect relationships in EA models.
In [JUB+13] the authors propose a multi-attribute framework for EA analysis using a
probabilistic extension of OCL. With this approach the authors consider the calculation
of dependencies between the properties as well as uncertainties regarding the existence
of elements and relationships. The value of the properties is described with probability
distributions as well as OCL expressions [JUB+13]. The probabilistic inferencing approach
lacks procedures of how to deal with cyclic dependencies as well as it is restricted to the
expressiveness of OCL.
Naranjo et al. [NSV14] propose the PRIMROSe framework for visual analysis of EA mod-
els. This is a graph based, modular approach to compose predefined analysis functions and
create sound visualizations by utilizing selectors and decorators. The architect can define
analysis chains, although the scope of the analysis functions is restricted to those that are
pre-defined. Analysis functions can be specified using plain java code. The framework
does not provide initial support for more advanced analysis techniques.
Frank et al. [FHK09] propose a domain specific language, ScoreML, for the definition of
indicator systems. The indicators can be used for dashboards in the EAM context. An
indicator can be a property of an element like costs, an aggregation of those properties or
a snapshot of its value within a specific time, i.e. average monthly costs. The indicators
within ScoreML are extended with a reference the relevant instance information for their
evaluation. The DSL corresponds to the functionality of Metrics within the A2F. Further
analysis types cannot be captured with this approach.
Current EA modeling tools provide extensive analysis support. Limitations are caused
by to the modeling approach, the supported meta models and the technical analysis ca-
pabilities [NSV15]. Such capabilities can for example only include conformity checks or
the generation of predefined views. Some EA tools provide also a possibility to query the
model either by providing a DSL or by integrating for example a SQL interface. EA tools
provide currently two major approaches to enterprise architecture analysis: Either they are
shipped with a predefined and static meta model (e.g. LeanIX [Lea19], iteraplan [ite19]).
Based on the meta model they provide several analysis techniques out of the box. In the
other case, tools allow the customization of the meta model (e.g. Alfabet [Sof19b]), but
vendor support is required for this task. The analysis functions of such a tool typically also

149

Chapter 5. Architecture Analysis Framework

have to be adapted which is associated with a high effort. To support further analyses,
they provide an interface to a query language. This is often an interface to execute SQL
statements, however this requires knowledge about the utilized data structure of the tool
within the database. Iteraplan for example proposes its own query language [ite18].
A tool survey among 213 participants identifies the functionalities of EA tools that are
rated as good by the participants [HHKR16]. Only about one quarter rates the support of
their EAM tool for the definition and usage of analysis patters, the stakeholder-dependent
creation of views and the support for planning scenarios as good. Good support for
complex calculations, e.g. for costs, is only mentioned by 20% of the participants.

150

5.7. Conclusion

5.7 Conclusion

In this section we presented the Architecture Analysis Framework A2F which provides
an execution framework for EA analysis. The A2F interprets an EA model as stereo-
typed graph and relies on the proposed metamodel GMM (chapter 3) to enable its generic
applicability. The analyses are specified with the Architecture Analysis Language Arla
(chapter 4) which allows the specification of different analysis types and provides a uni-
form interface to the user.
The GMM enables a tool and EA meta model independent execution environment for the
analyses. For executing the analyses, we utilize a combination of SPARQL and data-flow
based analysis. Both approaches are successfully applied in large application scenarios and
thus provide a scalable technical foundation for our analysis execution. The graph-based
query language SPARQL provides features to answer structural questions and extract
model parts. DFA is perfectly qualified to answer behavioral questions, execute recursive
analysis definitions and deal with cyclic dependencies. It enables a forward and also
backward traversing of the model. Combining both techniques provides support for the
realization of different analysis types as well as the customization of the analyses by the
users. Arla abstracts from all those technical details and provides the architect a simple
interface to analysis activities. The concrete execution procedures are generated from the
Arla definition at runtime within the A2F.
In the following, the design goals provided in section 5.1 are shortly discussed. The
generic applicability of the framework is ensured through the utilization of the generic
meta model GMM. The model storage within the triple store as well as the execution
process relies on the concepts of the GMM and interprets the EA model as stereotyped
graph. Thus, existing EA models, independently from the utilized meta model, can be
captured and processed.
Implementing the analysis language Arla provides a universal interface to analysis ac-
tivities. For all provided analysis classes within Arla, an execution procedure is defined.
Following, the A2F supports scope, impact, path, gap and performance analysis as well
as the execution of metrics. Composition of those analyses is also possible.
Custom analyses are supported through the individual analysis configurations specified
by the user. Depending on the provided configuration, the concrete execution procedure
is determined. If the predefined configuration possibilities are not sufficient, A2F as well
as Arla enable the definition and configuration of native SPARQL queries or data-flow
analyses.
Thereby, Arla enables a declarative analysis definition. The user declares what he is
interested in using an analysis or template definition. The actual implementation is gener-
ated from the analysis configuration. For example, a view can be defined with constraints
an element has to fulfill. How these constraints are evaluated, is not task of the user and
done automatically.
The re-use of analysis definitions is supported with the Arla templates and the adap-
tion of the concept of node and edge classes from the GMM. The later one enables the
adaption of pre-defined analysis to a concrete EA model with minimal effort. The re-
implementation of the previously static performance analysis [JI09] with DFA propagation
rules allows now its generic application. The analysis can be now applied to EA model, in-
dependently from the utilized EA meta model. A model transformation step, as proposed
by [JI09], is not necessary.

151

Chapter 5. Architecture Analysis Framework

Through relying on the scalable techniques of DFA and SPARQL for analysis execution
the robustness regarding large models can be ensured.
To enable robustness towards incomplete models, the analysis composition mecha-
nism can be used to restrict the model to a valid part. Additionally, the SPARQL queries
are designed to query the existence of certain conditions and not their absence. Within the
DFA propagation rules, default handling mechanisms are provided when accessing prop-
erty values. During the evaluation of a DFA rule system, only the present relationships
are processed.
Round-trip-engineering is supported, since the original information about UUIDs and
stereotypes is stored within the GMM model. This eases the process of writing analysis
results back into the model. The uniform result format provides a coherent structure for
further processing the results of the analyses.

152

Part III

Use Cases

153

6
Identification of Weak Points

Within this chapter the previously presented A2F is utilized to identify weak points in
EAs. To generate meaningful results, it is important to ensure a high quality of the
model. Weak points are an important asset for the subsequent planning steps. They point
out optimization potentials and required actions. Within architecture planning, concrete
scenarios are developed to deal with the weak points [Nie06].
Results of the master theses [Ose17] and [Eng17] are utilized for the implementation of the
proposed approach for weak point assessment. The author of this thesis was the supervisor
of both theses. Within [Ose17] requirements are identified that existing EA analysis
approaches set for the meta model and model. The results of [Eng17], an identification
and evaluation of microservice characteristics, are previously published in [ELBH18].
In the following we propose a method and tool support for the identification of weak
points. To ensure high quality, a preliminary assessment of the model quality is proposed.
Weak points are exemplary identified within the scenario of microservice architecture
evaluation.

155

Chapter 6. Identification of Weak Points

6.1 Overview of the Approach

The size of EA models makes it hard to identify weaknesses within the architecture without
analysis support. The architect is no longer able to understand the architecture with its
elements and relations at a whole. Employing analyses, optimization potentials within the
architecture models can be identified [Han13]. These weak points provide the foundation
for subsequent planning steps, in specific the development of planning scenarios [Nie06].
During analysis execution and result interpretation, the problem of incomplete models
arises. Properties for elements or relations may not be specified or parts of the architecture
are missing. Additionally, outdated data tampers the calculated results. In some cases,
it also occurs that the EA model no longer conforms to the employed meta model. For
example, the specified multiplicities are not met or mandatory properties are not specified.
And finally, the defined modeling guidelines are often not fulfilled.
Without further assessment the suitability of the model for analysis activities cannot be
ensured. A sufficient quality of the information in the EA model is important to receive
reliable results. Analyzing a model of bad quality provides only results of bad quality.
Making decisions based on such analysis results is not recommendable.
Nevertheless, it is important to use analyses to support decision-making. They support
the monitoring of goal fulfillment as well as identify weaknesses of the architecture. Weak
points can be assessed according to the organization-specific principles and goals. Often
used principles are described within [Han13]. This is for example the principle ‘Avoid
Heterogeneity’. Within an organization, a blue print is defined that specifies standard
technologies. With respective analyses, those architecture elements can be identified that
fail to comply with the blue print. Another principle regarding IT support is ‘Avoid
Redundancy’. Analyses can be employed to identify duplicate IT support, i.e. business
functions that rely on more than one information system or business data that is manipu-
lated by more than one information system. Additionally, metrics can be used to quantify
violations and monitor their improvement over time.

Figure 6.1: Overview of the process for weak point identification.

We propose the procedure presented in figure 6.1 for weak point analysis within EA models.
The figure also depicts its integration into EAM activities. Beforehand the current EA
model has to be captured. Subsequently, planning scenarios are developed to cope with
the identified weak points.
A previous assessment of the model quality ensures a sufficient data quality for the actual
weak point analysis. Within this assessment, the quality of the EA model is evaluated. On
the one hand, this is done with modeling metrics, used to quantify constraints provided
within the original meta model or within organization specific modeling guidelines. These
metrics are developed using the A2F.

156

6.1. Overview of the Approach

On the other hand, an analysis-specific assessment of the model quality is performed. The
model is evaluated regarding the specific constructs required for analysis execution. Based
on the analysis approaches within literature, the common requirements that analyses pose
towards the quality of EA models are determined. The requirements are implemented
with the A2F and their relevance for the analysis classes of Arla is outlined.
Depending on the results of the model quality assessment the architect can either:

1. Proceed with the weakness analysis,
2. Improve the model quality, or
3. Restrict the analysis to a part with sufficient quality.

After the assessment of the model quality, and a possible conduction of further actions, the
weak points within the architecture are determined. Foundation for weak point analysis
are the organization-specific architecture principles and goals. For weak point analysis,
mainly metrics and scope analyses are applied. The first one provides a quantitative
evaluation, whereas the second one retrieves the elements or the part of the architecture
with a weak point.
In this thesis, we illustrate weak point analysis in the context of microservice architectures.
Within current literature the typical characteristics of this architectural style are identified.
Additionally, current challenges within projects in practice are determined in interviews.
Based on these insights, principles regarding the design of microservices and microservice
architectures are identified. Using the Goal Question Metric approach [BR88] in total
nine metrics are derived from these principles. The metrics are implemented with the
A2F using templates.
In the following the three steps, model quality metrics, analysis-specific model assessment
and the analysis regarding the principles of microservice architectures are described in
detail.

157

Chapter 6. Identification of Weak Points

6.2 Model Quality Metrics

Within the case studies, we were faced with the problem of an insufficient data quality
of the EA models. The analysis capabilities including view generation, enabled a deep
insight into the models and uncovers several problems. In specific this were:
• Missing annotation of properties
• Missing relations between elements
• Contradicting information
• Violation of modeling principles

In order to increase the model quality and thus, also the analysis results, these flaws
should be identified and solved. The procedure for their identification depends on the set
up of the organization. If a formal meta model is provided the contained information about
mandatory properties and multiplicities for relations can be employed. Further restrictions
can be provided within model guidelines. They describe patterns, how a certain situation
should be represented within the model.
Metrics can be used to quantify the restrictions from the EA meta model and from the
modeling guidelines. They provide a mean to monitor the model quality over time. If the
metric results indicate a bad model quality, further analyses can be applied to locate the
causal elements.
We illustrate the identification and quantification of flaws by utilizing Arla to implement
representative templates for each of the above-mentioned problems.

Missing annotation of properties

Within each model, there exist mandatory properties for elements. Typically, this is
defined in a formal meta model (the original meta model of the source data). A common
mandatory property for application components is the responsible person.
The following Arla template definition provides the ratio of elements from type stereotype,
where a mandatory property with type propertyType is missing.

1 Template MissingPropertyMetric {
2 " Determines the ratio of elements with type ’stereotype ’ that have no property

with type ’propertyType ’."
3 as Aggregate Metric
4 defined with calculation rule ratio:
5 COUNT (nodeType :" stereotype " AND
6 (NOT (having property propertyType :" propertyType ")))
7 /
8 COUNT (nodeType :" stereotype ");
9 }

Listing 6.1: Template definition for a missing property annotation metric.

The concrete type of the element and the property can be specified during adaption of
the template. For the RentalCar example this would be application component for the
stereotype and responsibility for the mandatory propertyType. The analysis config-
uration of the respective adapted analysis is presented in listing 6.2.

1 adapt ModelQualityMetrics . MissingPropertyMetric {
2 map " stereotype " to node:" application component " ["cc277f97 -a4fd"]
3 map " propertyType " to property :" responsibility " [" 644255 cd -1 e1e"]
4 }

Listing 6.2: Adapted analysis configuration for the missing property metric.

158

6.2. Model Quality Metrics

Missing relations between elements

Despite mandatory properties, there also exist mandatory incoming or outgoing relations
between elements. This can be derived from the multiplicities within a formal meta model
or from the modeling guidelines. If the lower bound for a relation is not zero, at least one
relation has to be present. An example for such a mandatory relation would be a related
server for each application component. A metric quantifying the ratio of elements with a
missing mandatory relation within an EA model is provided in listing 6.3.

1 Template MissingRelationMetric {
2 " Determines the ratio of elements of a specific ’sourceType ’ that have a

missing mandatory relation to an element of type ’targetType ’."
3 as Aggregate Metric
4 defined with calculation rule ratio:
5 COUNT (nodeType :" sourceType " AND
6 (NOT (having relation to nodeType :" targetType ")))
7 /
8 COUNT (nodeType :" sourceType ");
9 }

Listing 6.3: Template definition for a missing property annotation metric.

This template definition provides the ratio of elements of a specific sourceType that have
no relation to an element with a specific targetType. Thereby, source and target do not
imply the direction of the relation. This might be an incoming as well as on outgoing
one. Within the example provided above the sourceType would be mapped to application
component and the targetType to server.

Contradicting information

Flaws within the EA model can also be caused by contradicting information. For example,
if a service has two related application components, this is typically caused by a modeling
fault. The realization relation between service and application is in most cases unambigu-
ous. A composition of the template definitions in listing 6.4 provides a quantification of
this issue. Within the first query, for each element of a specific nodeType, the number of
incoming relations of the type edgeType is provided. Within the example, this would be
the number of incoming realization relations for application services.

1 Template RelatedSourceElements {
2 " Provides the number of source elements for a specific edgeType ."
3 as Element Metric
4 defined with calculation rule: COUNT (incoming edgeType :" edgeType ");
5 for types (nodeType :" nodeType ")
6 }

7 Template SeveralIncomingRelationsMetric {
8 " Provides the ratio of elements with more than one related source element ."
9 as Aggregate Metric

10 defined with calculation rule ratio:
11 COUNT (nodeType :" nodeType " AND
12 having property propertyType :" RelatedSourceElements " with value (> 1))
13 /
14 COUNT (nodeType :" nodeType ");
15 }

Listing 6.4: Template definition for quantifying unambiguous relations.

Within the second query, this result is utilized to provide the ratio of elements that have
more than one incoming relation of this type. Therefore, within a PropertyCondition,
the element metric result is referenced. If this value is greater than one, the element is

159

Chapter 6. Identification of Weak Points

counted (line 12). Finally, the total amount is divided by the total number of elements of
type nodeType (lines 6,7).
The two templates have to be composed according to the composition rule:

apply SeveralIncomingRelationsMetric on RelatedSourceElements

This enables the access to the result of RelatedSourceElements within the Several-
IncomingRelationsMetric template.

Violation of modeling principles

The last quality problem within EA models is the violation of organization-specific mod-
eling principles. Examples for such modeling principles are that business processes only
access applications via the corresponding application services or that services always have
an assigned application. The degree of fulfillment of such modeling principles can also be
monitored with metrics.
In listing 6.5 a metric is defined that quantifies the availability of a relation between an
element of sourceType and an element of targetType. The metric is similar to the one
provided in listing 6.3, quantifying missing relations between elements. But in this case
the RelationCondition is not negated. Here as well, source and target do not imply the
direction of the relation.

1 Template AvailableRelationMetric {
2 " Determines the ratio of elements of a specific sourceType that have an

undesired relation to an element of type targetType ."
3 as Aggregate Metric
4 defined with calculation rule ratio:
5 COUNT (nodeType :" sourceType " AND (having relation to nodeType :" targetType "))
6 /
7 COUNT (nodeType :" sourceType ");
8 }

Listing 6.5: Template definition to measure the availability of a certain relation type.

Mapping the sourceType to business process and targetType to application component
allows the quantification of the first guideline provided above. The metric determines in
this case the ratio of business processes that directly access application components which
is not desired.
The other example, i.e. services always have an assigned application, can be quantified
through adapting the MissingRelationMetric from listing 6.3. The respective adapted
analysis configuration is provided in listing 6.6.

1 adapt ModelQualityMetrics . MissingRelationMetric {
2 map " sourceType " to node:" application service " ["2f4a3ad3 -d698"]
3 map " targetType " to property :" application component " ["cc277f97 -a4fd"]
4 }

Listing 6.6: Adapted analysis configuration to validate the service application
assignment.

The sourceType is mapped to application service and the targetType is mapped to
application component. Therewith the final metric provides the ratio of application services
that have no related application component.

160

6.3. Analysis Specific Model Assessment

6.3 Analysis Specific Model Assessment

Despite the metrics proposed in the previous section to assess the model quality according
to the formal meta model and the modeling guidelines, in this section the specific require-
ments for executing the analyses are considered. Therewith, it can be ensured that the
model suits for the desired analysis approaches and their execution provides a meaningful
result. Not only constraints for the meta model, e.g. the existence of a certain property,
are considered, but also their usage within the model. That means, if the property is
defined for all elements with valid values. This enables the assessment of the model to-
wards the meaningfulness of the analysis execution. The technical executability is ensured
through employing the A2F.
In the following the specific requirements of EA analyses towards the EA model are ex-
amined and their validation using SPARQL queries is provided.

6.3.1 Identification of analysis requirements

To identify respective requirements, one analysis approach for each of the technical dimen-
sion proposed presented in section 4.1 was chosen and considered in detail. An overview
of the representative for each dimension is provided in table 6.1.

Table 6.1: Representative approach for each technical dimension.

Dimension Representative Dimension Representative
Metrics and KPIs [IOB06] Matrix [vSSBB10]
Bayesian network [LJ08] Design [AS11]
Ontology [SKR13a] EID [NJN07]
Weak points [LLP+09] PRM [NFK+12]
Business entities [DBLR+11] AHP [DA09]
Time evaluation [JI09] Tree [NFK+12]
Lifecycle [ABF+09] Views [FJdW97]
Social networks [KMP11] Structural [BMNS09]
Comparison [YSD06]

Altogether, we identified five different categories of analysis requirements:
Availability of element types. Within an analysis definition references to certain
element types can be made. For example, the system quality analysis presented in [NJN07]
requires the element types information system, source code, security service and staff. If
there are no instances for these element types within the current model, the execution of
the analysis would provide no usable result.
Relations between elements. Analyses rely not only on element types, they also utilize
the relations between them. For example, the performance analysis within [JI09] requires
a realization between an internal behavior element and a service. This requirement is
interpreted as an implication. This means that if there exists a service within the EA
model, there also has to be a realization relationship to an internal behavior element.
Despite the actual existence of such a relation, the multiplicities have to be considered,
too. For example, the performance analysis can only be evaluated correctly if a processing
unit has only one assigned resource [JI09].
Limitation of property values. An analysis approach utilizes the values of properties

161

Chapter 6. Identification of Weak Points

assigned to the elements of the model. It is important that these values are within certain
lower and upper bounds in the case of numerical values. Additionally, for enumeration
values it must be ensured that the assigned values are from a finite domain, e.g. {high,
medium, low}.
For example, if a resource within the performance analysis is assigned with zero capacity,
this cannot be identified as missing value and thus the respective response time will be
calculated. This results in a negative response time which does not provide a useful
result.
Cyclic relations between properties. Especially analysis approaches relying on proba-
bilistic techniques like Bayesian networks (e.g. [LJ08]) require relations between the proper-
ties. These relations determine the influence of the properties on each other. For example,
the availability of a server has an influence on the availability of the assigned applica-
tions. It must be ensured that these relations exist, as well as the absence of a cyclic
dependency.
Adherence to the analysis metamodel. Finally, each analysis approach is built upon
its one meta model. It is important that the meta model of the EA model adheres to the
analysis meta model, i.e. it is a correct instance of it. Otherwise, it would not be possible
to execute the analysis.

6.3.2 Validation of analysis requirements

The five identified requirements are evaluated using SPARQL queries. Where possible,
the queries provide those elements that violate the requirements of the respective analysis.
Thus, the architect can immediately take further actions. This could be the improvement
of the model. If this is not possible, the respective part from the model can be excluded
for this analysis.

Availability of element types

Especially for analyses assigned the technical dimension Views it is important, whether
the referenced stereotypes are utilized within the model. The query proposed in listing 6.7
provides all meta model nodes within the EA model, for which element instances exist.

1 SELECT ? stereotype
2 WHERE {
3 ? stereotype rdf:type gmm: MetaModelNode .
4 FILTER NOT EXISTS {
5 ? subject rdf:type gmm: ModelNode .
6 ? subject gmm: stereotype ? stereotype .
7 }
8 }

Listing 6.7: Query for determing element types without instances.

To validate an Arla analysis definition, the returned list has to be compared with the
utilized NodeReferences of the analysis configuration. If one of the node references occurs
also in the result list, the execution of the analysis should be reconsidered. Alternatively,
this fact should be considered during result interpretation. A solution strategy in this
case would be an adaption of the analysis definition, where the respective stereotype is
replaced. A broader solution would be the extension of the model, for example with further
information sources to include elements of the missing type.

162

6.3. Analysis Specific Model Assessment

Relations between elements

To assess the existence of a relation between two elements or to validate the multiplicities
a SPARQL query utilizing the COUNT aggregator is employed. The query in listing 6.8
provides the elements for whom a specific outgoing relation does not exist. Despite the
type of the relation, the stereotype of the source and target element can be restricted too.
If these restrictions are not required, the line 4, line 9 or both lines can be omitted.

1 SELECT DISTINCT ? subject
2 WHERE {
3 ? subject rdf:type gmm: ModelNode ;
4 gmm: stereotype <source_stereotype>.
5 FILTER NOT EXISTS {
6 ?edge gmm: source ? subject ;
7 gmm: stereotype ? edgeStereotype ;
8 gmm: target ? target .
9 ? target gmm: stereotype <target_stereotype>.

10 <mm_edge> gmm: connections ? edgeStereotype .
11 }

Listing 6.8: Query to determine elements with a missing relation.

Due to the design of the A2F, there are no strict requirements for the existence of re-
lations. The utilization of relation types, referenced within an EdgeTypeReference, can
be validated with the above query. Since only the type is relevant, lines 4 and 9 are not
required. For a EdgeClassReference lines 9 and 10 are replaced with the triple ?target
rdf:type <class>. Both node stereotype restrictions (source and target) are omitted as
well. There may be further requirements for an analysis that cannot automatically be
identified from the analysis definition. They have to be provided manually by the analysis
designer.
The query proposed in listing 6.9 retrieves the elements that violate a multiplicity specifi-
cation for outgoing relations. With this query only those relations are assessed that exist
at least once within the model. The existence of relations, i.e. an assessment regarding
the multiplicity zero can be done with the query in listing 6.8.

1 SELECT DISTINCT ? subject (COUNT (DISTINCT) ? target AS ?nrRel)
2 WHERE {
3 ? subject rdf:type gmm: ModelNode ;
4 gmm: stereotype <source_stereotype>.
5 ?edge gmm: source ? subject ;
6 gmm: stereotype ? edgeStereotype ;
7 gmm: target ? target .
8 ? target gmm: stereotype <target_stereotype>.
9 <mm_edge> gmm: connections ? edgeStereotype .

10 }
11 GROUP BY ? subject
12 HAVING (? nrRel comparative_operator multiplicity)

Listing 6.9: Query to validate the multiplicities of outgoing relations.

To validate the multiplicity requirement, all outgoing relations of the type mm_edge for
elements of the type source_stereotype are considered (lines 3-7). If desired, the target
elements of the relations can also be restricted having a specific target_stereotype (lines
8). Finally, the number of target elements is counted (line 1) and filtered with the condition
provided in line 12. For example, an upper limit of one, would be represented as > 1.
Executing the query returns all elements that have more than one relation. Here as well,
the stereotype limitations can be omitted as well as replaced with class references.

163

Chapter 6. Identification of Weak Points

Both queries (listings 6.8 and 6.9) only consider outgoing relations. Incoming relations
can be assessed through interchanging the source and target assignments.

Limitation of property values

Property values are assessed in three different ways. First, the existence of a value for
a specific property type is determined. Additionally, the adherence to certain lower and
upper limits or enumeration types is validated. And finally, duplicate annotations of the
same property value are identified.
The query provided in listing 6.10 returns those elements, for whom no property of the
required property_stereotype is provided or for whom no value is specified. The type
of the element is restricted to the value node_stereotype in line 4 which can be omitted
if not required.

1 SELECT ? subject
2 WHERE {
3 ? subject rdf:type gmm: ModelNode ;
4 gmm: stereotype <node_stereotype>;
5 FILTER NOT EXISTS {
6 ? subject gmm: property ? property .
7 ? property gmm: stereotype <property_stereotype>;
8 gmm:value ?value.
9 }

10 }

Listing 6.10: Query to verfiy the existence of a property value.

All property references used within Arla analysis definitions, can be evaluated with this
query to ensure their existence. For a simple PropertyTypeReference, the stereotype
restriction for the elements in line 4 is omitted. For the TypedPropertyReference the
specified node type is used within the query.
A more detailed consideration of the property value can be performed with the query in
listing 6.11, The query assesses the properties with type property_stereotype and verifies
their value. Within the FILTER expression in line 8 the adherence to enumeration values
is ensured. Each element, whose property value is not one of the defined enumeration
values, is provided within the result of the query.

1 SELECT ? subject ?value
2 WHERE {
3 ? subject rdf:type gmm: ModelNode ;
4 gmm: stereotype <node_stereotype>;
5 gmm: property ? property .
6 ? property gmm: stereotype <property_stereotype>;
7 gmm:value ?value.
8 FILTER (!(?value = ... [OR ?value = ...]))
9 }

Listing 6.11: Query to verfiy the property value.

Numerical values can be evaluated using a comparative operator within the FILTER ex-
pression. For example, the requirement for non-negative values is evaluated with the
expression FILTER(?value < 0). In this case, the query provides all elements having a
negative property value.
The required information for evaluating constraints on property values, cannot be ex-
tracted from the Arla analysis definitions. The analysis designer has to provide them
manually for verification purposes.

164

6.3. Analysis Specific Model Assessment

Finally, within an RDF graph it is possible to assign the same property to an element
twice. During analysis execution it is not clear which value to use. This issue can be
identified with the query provided in listing 6.12.

1 SELECT DISTINCT ? subject ? propertyType
2 WHERE {
3 ? subject rdf:type gmm: ModelNode ;
4 gmm: property ? property1 ;
5 gmm: property ? property2 .
6 ? property1 gmm: stereotype ? propertyType .
7 ? property2 gmm: stereotype ? propertyType .
8 FILTER (? property1 != ? property2)
9 }

Listing 6.12: Query to identify multiply defined properties.

The query can be performed independently from the analysis definitions. It provides all
elements that have two values for one property. A concrete specification of the property
type is not necessary.

Cyclic relations between properties

Since we do not consider probabilistic analysis approaches within Arla, the requirements
regarding property dependencies are not relevant.
Beside this issue, the existence of a cycle within property dependencies cannot be identified
solely within SPARQL. A fix point calculation is required. A data-flow analysis can be
utilized to determine the transitive closure for each element. If the current element is
also within the transitive closure, a cycle is present. Alternatively, strongly connected
components according to the property dependencies can be determined. Their presence
points out a cyclic dependency.

Adherence to the analysis metamodel

This requirement is always met, when defining the analysis with Arla and having a repre-
sentation of the EA model according to the GMM format. The A2F ensures the technical
executability of the analysis definition on the EA model.

165

Chapter 6. Identification of Weak Points

6.4 Assessment of Microservice Characteristics

Microservices are an emerging style for designing software architectures to overcome cur-
rent issues with monoliths. This includes the difficulties of maintenance and system evolve-
ment but also their limited scalability. The style is characterized by building an appli-
cation through the composition of independent functional units, running its own process,
and communicating through message passing [DGL+17]. The microservice architectural
style enables the creation of scalable, reliable and agile software systems [HS17]. With
an automatic deployment, they enable shorter product development cycles and serve the
need for more flexible software systems.
Microservice systems are composed of up to hundreds or even thousands of services
[GCF+17]. Complexity increases also due to the nature of a distributed systems and
the typically high release frequency [BWZ17b]. Managing and monitoring those systems
is essential [HS17,GCF+17,BWZ17b]. This includes the detection of failures and anoma-
lies at runtime but also ensuring a suitable architecture design for example regarding
consistency and fault tolerance [HS17].
Organizations employing microservice architectures require a “systematic understanding
of maintainability as well as metrics to automatically quantify its degrees [of effectiveness
and efficiency with which a software system can be modified to correct, improve, extend, or
adapt it]” [BWZ17b]. Analyzing the performance of the system and understanding failures
that occur during runtime, is essential to understand the system as a whole [AAE16].
Existing measurement approaches for service- or object-oriented systems are difficult to
apply within microservice architectures [BWZ17b]. Since microservice systems can contain
up to thousands of single services, the architectural models get very large and complex. If
they are manually created, typical problems in practice are inconsistent and incomplete
models. Often, information is missing or only a part of the architecture is represented.
In the following we identify metrics that are used to evaluate a microservice architecture
and to identify weak points. First, an analysis of current literature as well as an assessment
of five microservice projects was performed. Based on the characteristics and challenges,
common principles for the design of an microservice-based architecture are identified.
From these principles, we derived metrics for the identification weak points. Weak points
denote those parts of the architecture, where problems may occur and thus require a
detailed consideration. The implementation of the metrics is done with the A2F.

6.4.1 Characteristics of microservice architectures

A microservice system is a decentral system, composed of several small services that are
independent from each other. The communication takes place with light-weight mech-
anisms i.e. messaging. Instead of a central orchestration, a decentral management like
choreography is applied. Core principles of a microservice architecture are loose cou-
pling and high cohesion [DGL+17,New15,Tho15,AMMN16]. Microservice architectures
follow a domain-driven design, where each microservice is responsible for one bounded
context [HS17,AMMN16,Eva03,FL14]. That means that a microservice provides only a
limited amount of functionality serving specific business capabilities. Microservices are
developed independently from each other i.e. they are independent regarding the uti-
lized technologies and programming languages, the deployment and also the development
team [HS17, FL14, APC+15, FML17]. A team is responsible for the full life cycle of a

166

6.4. Assessment of Microservice Characteristics

microservice, from development to operation [DGL+17]. The build and release process
is automated and enables continuous delivery [DGL+17, AMMN16, APC+15]. Accord-
ing to [AAE16] scalability, independence, maintainability (including changeability), de-
ployment, health management and modularity (i.e. single responsibility) are the most
mentioned attributes of microservice systems in literature.
During implementation of a microservice system, two major issues have to be considered:
The first one addresses challenges due to the nature of distributed systems and the second
one the context definition of a microservice. Finding the right granularity of microservices
is essential, since badly designed microservices increase the communication complexity of
the system [HS17,FL14,APC+15]. They also reduce the extensibility of the system and
impede later refactoring and the overall management.
Since communication is essential in microservice-based systems, network communication,
performance and complexity are important issues [DGL+17, AAE16, APC+15, FML17].
The system must be able to deal with latency and provides mechanisms for debug-
ging, monitoring, auditing and forensic analysis. The architectural design has to support
the openness of the system and has to deal with the heterogeneity [DGL+17, CDK11].
Additionally, fault handling and fault tolerance [AAE16, CDK11] as well as security is-
sues [DGL+17] must be considered.

6.4.2 Challenges within microservice architectures

Within an exploratory study we analyzed the challenges in five different microservice
projects. Table 6.2 presents the projects with their type, duration, size (in number of mi-
croservices MS) and utilized technologies. We conducted in-depth interviews with selected
experts from each project.

Table 6.2: Characteristics of the assessed microservice projects.

Project Project type Duration Size Technologies
Pr1 Big data

application
2.5 years 20-30 MS Cassandra, Elastic, HiveMQ,

Payara, PostgreSQL, Spark
Pr2 Cloud platform 1 year 3 MS Akka, PostgreSQL, Spring

Boot
Pr3 Cloud platform,

Smart Home
6 months 4 MS Docker, Kubernetes, Rabbit-

MQ, Vert.x
Pr4 ETL project 6 weeks 2 MS Docker, Kafka, Kubernetes,

Openshift
Pr5 Information sys-

tem
2 years ca. 50 MS AWS, consul, Docker, Feign-

Client, MongoDB, Rabbit-
MQ, Spring Boot

An interview constitutes of four parts: In the introduction the purpose of this study was
presented. Afterwards the interview partner was asked to describe the project including
her own role in the project. The first main part of the interview was about identifying
challenges and problems within the project. This included also the reason for choosing
a microservice architecture. Finally, an open part was left to discuss project-specific
topics in detail that were not covered so far. Resulting topics were e.g. the size of
microservices, rules for the decomposition into small services, use cases covering multiple

167

Chapter 6. Identification of Weak Points

microservices and a refactoring affecting more than one microservice. For some project’s
asynchronous communication, data consistency, deployment and testing were addressed
as well. Table 6.3 provides a summary of the identified challenges within the projects.

Table 6.3: Identified challenges within the microservice projects.

Challenge Projects
Context definition for Microservices Pr1, Pr5
Microservice-wide refactoring Pr1, Pr5
Non-local changes Pr1, Pr3
Cyclic dependencies Pr1
Keeping an overview Pr1, Pr4, Pr5
Monitoring and logging Pr1, Pr4
Consistency Pr4
Testing Pr5

Especially in larger projects, context definition of microservices was mentioned as a major
challenge (Pr1, Pr5). Questions in this context were ‘What is a microservice?’, ‘What size
does it have?’ and ‘Which tasks do the microservice implement?’. With these questions
as baseline, the problems arising through an unsuitable service decomposition were elab-
orated. Discussed consequences are an increasing communication complexity which leads
to performance weaknesses and the difficult integration of new features which result in an
increasing time-to-market. An unsuitable breakdown of microservices tends to have more
dependencies and thus the developer has to understand greater parts of a system for the
implementation of a new feature.
Another challenge is refactoring that affects more than one microservice (Pr1, Pr5). In
contrast to monolithic systems, there is no tool support to perform effective refactoring
of microservice systems. Additionally, the complexity increases through the utilization of
JSON objects or similar formats at the interfaces.
Closely related to that aspect is the issue of non-local changes (Pr1, Pr3). Experiences
in the projects have shown that changes made to one microservice may not be limited to
this microservice. For example, changing interface parameters has effects on all microser-
vices using that interface. Another reason why changes in one microservice may lead to
changes on other services is because of changes in the utilized technologies. Experiences
in the projects have shown that the adherence of homogeneity is advised for better main-
tainability, robustness and understandability of the overall system. Even if the indepen-
dence regarding technology and programming languages is possible and a huge advantage,
system-wide technology decisions should be made, and only if necessary deviations should
be made. This is why changes affecting the technology of one microservice may also lead
to changes in other microservices.
A challenge that addresses the design of microservice systems are cyclic dependencies
(Pr1). These dependencies cannot be identified automatically and cause severe problems
when deploying new versions of a service within a cycle. To prevent a system failure, the
compatibility of the new version to all services in the cycle has to be ensured.
Keeping an overview of the system was a big challenge in three projects (Pr1, Pr4, Pr5).
Especially large microservice systems are developed using agile development methods
within different autonomous teams. Each team is responsible for its own microservices,
carries out a refactoring and implements new functionality by its own. Experiences in the

168

6.4. Assessment of Microservice Characteristics

projects showed that it is hard to not lose track of the system. The complexity of this
task increases, since the dataflow and service dependencies cannot be statically analyzed
like in monolithic systems.
Beside the above challenges, monitoring and logging (Pr1, Pr4), data consistency (Pr4)
and testing (Pr5) were also mentioned in the interviews. Monitoring and logging address
the challenge of finding, analyzing and solving failures. Testing is aggravated by the nature
of a distributed system and the heavy usage of asynchronous communication, causing large
problems concerning data consistency.

6.4.3 Evaluation criteria: Principles and metrics

Based on the literature and the results of the structured interviews we identified 10 prin-
ciples for the design of microservice architectures. Table 6.4 provides an overview of them
with their references to literature and the related projects.

Table 6.4: Principles for microservice architectures.

Nr Principle Mentions Corresponding metric
P1 Small size of mi-

croservice
[DGL+17, New15,
Tho15, AMMN16], Pr2,
Pr5

M1: #(A)synchronous interfaces

P2 Single responsibil-
ity principle

[DGL+17,Tho15,Kil16],
Pr1, Pr2

M1: #(A)synchronous interfaces
M2: Security similarity
M3: Distribution of call frequency

P3 Scalability [AAE16, Kil16], Pr1,
Pr5

M3: Distribution of call frequency
M4: Distribution of data volume

P4 Loose coupling
and high cohesion

[DGL+17, New15], Pr1,
Pr3

M5: #(A)synchronous usages

P5 Domain-driven
design

[Eva03, FL14],Pr1, Pr2,
Pr3, Pr5

M5: #(A)synchronous usages
M6: Longest synchronous call trace
M7: Average size of messages

P6 Clarity of the sys-
tem design

[AAE16, FL14,
APC+15], Pr1

M5: #(A)synchronous usages

P7 Low network com-
plexity

[DGL+17,FL14], Pr2 M5: #(A)synchronous usages

P8 Performance [AAE16, APC+15,
FML17], Pr1

M6: Longest synchronous call trace
M7: Average size of messages

P9 Independence [AAE16, HS17, FL14,
DGL+17, AMMN16,
APC+15,FML17], Pr1

M8: Utilization degree of technologies

P10 No cyclic depen-
dencies

[Sha17], Pr1 M9: Elements in synchronous depen-
dency cycles

To evaluate the principles, we derive metrics using the Goal Question Metric approach
[BR88]. For metric definition, we also considered the proposed metrics by [BWZ17b]
to measure quality attributes of a service-oriented system like coupling, cohesion and
granularity. The metrics proposed in [ZNL17] were not practicable for our approach,
since the required information cannot automatically be gathered from communication
logs. Especially in-memory dependencies are not graspable.
The overall goal, according to the Goal Question Metric approach, is the adherence to the
principles. A possible question in this context is for example ‘Are the microservices of a

169

Chapter 6. Identification of Weak Points

small size?’ (P1). The derived metric for the small size principle counts the number of
synchronous and asynchronous interfaces of a service (M1). An (a)synchronous interface
indicates a provided functionality of a service via an endpoint that can be consumed
synchronously respectively asynchronously. The number of interfaces is an indicator for
the amount of implemented functionality and can thus be used to measure the size of a
microservice.
Due to the derivation of the implemented functionality, the metric can also be used for
evaluating P2. The single responsibility principle depicts that one microservice should
realize one task. Additionally, the similarity of security requirements can be assessed
(M2). Different requirements at the implemented interfaces are a hint for the provisioning
of different tasks. Finally, the distribution of the call frequency at interfaces (M3) can be
considered. Therefore, the empirical variance of the call frequency at the interfaces of a
service is considered. Having a large variance indicates that the number of interface calls
varies widely and the microservice may implement more than one task.
A high diversity within the number of interface calls also hampers scalability (P3). Exe-
cuting several instances of a service to deal with the high number of incoming requests,
leads also to a duplication of the functionality behind the less requested interfaces. The
same counts for the distribution of data volume at the provided interfaces of a service
(M4).
To evaluate the principles loose coupling and high cohesion (P4), the number of syn-
chronous and asynchronous usages (M5) can be used. This metric is calculated at service
level and denotes the number of service calls, either via synchronous or asynchronous
communication dependencies.
This metric is also used to assess the principle of domain-driven design (P5). If a system
is built around business capabilities, the services own the majority of the required data
by themselves. In contrast, a system built around business entities contains more depen-
dencies since more data has to be exchanged. A further indicator that speaks against a
domain-driven design is the lengths of synchronous call traces. M6 provides the longest
synchronous call trace identified in the microservice system.
The principles P6 and P7, low network complexity and clarity of the system design, can
be evaluated using the number of (a)synchronous usages (M5). A small amount of de-
pendencies indicates a low complexity of the network, while it also supports the clarity of
the whole system. The clarity of the system design encompasses the mentioned issue of
manageability of the overall system.
To provide indicators for the system performance (P8), the longest synchronous call trace
(M6) and the average size of asynchronous messages (M7) are proposed. Large messages
may cause performance bottlenecks and the problem of network latency increases with a
rising number of services within one call trace. Both factors have negative impact on the
overall performance of an microservice system.
P9 describes the independence of the microservice in different aspects like technology,
life cycles, deployment but also the development team. The independence degree can be
quantified with the utilization degree of certain undesired technologies for communication
and deployment (M8), e.g. the usage of Remote Method Invocation (RMI) for communi-
cation.
Finally, P10 deals with cyclic dependencies between the microservices. Overall design goal
should be at least the absence of a synchronous dependency cycle. Therefore, the number

170

6.4. Assessment of Microservice Characteristics

of elements that are part of a synchronous cycle are determined (M9). This metric should
be zero in the best case.

6.4.4 Implementation with the A2F

The nine identified metrics in 6.4.3 are implemented using the A2F in order to enable
their generic application. The provided Arla template definitions can easily adapted to a
concrete EA model.

M1: #(A)synchronous interfaces

The number of implemented (a)synchronous interfaces for a service can be determined with
the template definition in listing 6.13. The metric is calculated for each service (line 6)
and provides the number of interfaces (line 4) that communicate in an asynchronous way
(line 5). Only those interfaces are considered that are related to the services with a provide
dependency (line 4).

1 Template AsynchronousInterfacesMetric {
2 " Description "
3 as Element Metric defined with calculation rule:
4 COUNT (connected edgeClass : Provide to (nodeType :" interface " AND
5 having property propertyType :" communication " with value " asynchronous "));
6 for types (nodeType :" service ")
7 }

Listing 6.13: Template definition for metric M1.

To retrieve the number of synchronous interfaces, the value field has to be updated ac-
cordingly. For the application of the template the variables service and interface have
to be mapped to the concrete element stereotypes within an AdaptedAnalysis config-
uration. Additionally, the variable communication has to be mapped to the respective
property type of an interface and edgeType has to mapped to the stereotype depicting the
realization dependency.

M2: Security similarity

To quantify the similarity of security requirements at the different interfaces of a service,
a metric is established that provides the ratio of interfaces with no security requirements.
Security requirements may specify in this case the need for authentication or authorization.
The presence of a value ’no’ or the absence of such a property are assessed.
The template in listing 6.14 provides the NegatingPropertyRatio. This metric deter-
mines the ratio of interfaces of a service that have the value ’no’ for a certain property
type.

1 Template NegatingPropertyRatio {
2 "Ratio of connected elements with property value ’no ’."
3 as Element Metric defined with calculation rule:
4 COUNT (connected edgeType :" edgeType " to (nodeType :" connectedElementType "
5 AND having property propertyType :" property " with value "no"))
6 /
7 COUNT (connected edgeType :" edgeType " to (nodeType :" connectedElementType "));
8 for types (nodeType :" elementType ")
9 }

Listing 6.14: Template definition for metric M2.

171

Chapter 6. Identification of Weak Points

Considering the authentication property of interfaces, the metric provides for each service
the ratio of interfaces that do not require an authentication. Different requirements at
the interfaces of a services are always a hint that the single responsibility principle is not
met. Thus, only in the case of zero or one all interfaces have the same security requirement
regarding authentication. For metric evaluation in a concrete context, the variables within
the template have to be mapped respectively. The elementType is mapped to service, the
connectedElementType to interface, the edgeType is mapped to realization and finally
the property to authentication.

M3 and M4: Distribution of call frequency and data volume at interfaces

The call frequency and the data volume are important to assess the scalability princi-
ple. These values are either measured by monitoring tools or estimated by developers
or architects. Therefore, the distribution of these interface properties is determined for
each service. It is measured through determining the empirical variance of the numer-
ical property values. The Arla template definition in listing 6.15 contains the calcula-
tion rule to determine the average value of call frequency respectively data volume for
each service (lines 1-9). Therefore, all property values of related elements with the type
connectedElementType are added and divided through the total number of connected
elements with type connectedElementType. The metric is executed for all element of
type elementType.

1 Template Average {
2 " Calculates the average of numeric ’property ’ values for an ’elementType ’ from

connected elements with ’connectedElementType ’."
3 as Element Metric
4 defined with calculation rule:
5 SUM (propertyType :" property ") for connected (nodeType :" connectedElementType ")
6 /
7 COUNT (connected (nodeType :" connectedElementType "));
8 for types (nodeType :" elementType ")
9 }

10 Template Variance {
11 " Calculates the variance of numeric ’property ’ values for an ’elementType ’ from

connected elements with ’connectedElementType ’."
12 as Element Metric defined with calculation rule:
13 (SUM ((propertyType :" property " - propertyType :" Average ")*
14 (propertyType :" property " - propertyType :" Average "))
15 for connected (nodeType :" connectedElementType "))
16 /
17 (COUNT (connected (nodeType :" connectedElementType ")));
18 for types (nodeType :" elementType ")
19 }

Listing 6.15: Template definition for metric M3 and M4.

Within the second calculation rule (lines 10-19), the Average value is utilized to determine
the variance. Therefore, the two analyses have to be composed with each other according
to the rule:

apply Variance on Average

To determine the distribution of call frequency and data volume, the variables have to be
mapped according to the following mapping:

172

6.4. Assessment of Microservice Characteristics

Template variable Mapping for M3 Mapping for M4
elementType service service
connectedElementType interface interface
propertyType frequency data volume

M5: #(A)synchronous usages

To determine the number of (a)synchronous usages, the same Arla template definition as
for M1 (number of (a)synchronous interfaces) can be used. The template is provided in
listing 6.13. Since the utilized EdgeCondition within the metric is evaluated independently
from the actual direction, this template provides the required metric for M5 as well. For
M5, edgeType has to be mapped to a stereotype depicting a used by relation. Then, the
ratio of interfaces with property value asynchronous that are related to the service with
a used by relation is determined. For the synchronous case, the value field within the
template has to be updated.

M6: Longest synchronous call trace

To determine the longest synchronous call trace the path analysis is utilized. With an indi-
vidual analysis configuration, the dependency chains between the services can be assessed.
The respective template definition is provided in listing 6.16.
A call trace is interpreted as a dependency chain starting from a service s that syn-
chronously calls an interface i1. This interface i1 is realized by another service s1 that
calls the interfaces i2, . . . , in which are realized by further services s2, . . . , sn. For analysis
definition we assume that the synchronous call dependency is mapped to the edge class
behavioral dependent of. This indicates that the service requires the called interface
to provide its functionality. If the interface is not available, the service cannot perform its
task.
Within the path analysis configuration the source and target stereotypes are restricted to
services. The provide class is considered in incoming direction for path determination
and the behavioral dependent of in outgoing direction.

1 Template CallTrace {
2 " Determines all call traces ."
3 as Aggregate Pathset defined with path definition :{
4 path type CustomPath
5 SourceStereotypes (nodeType :" service ")
6 TargetStereotypes (nodeType :" service ")
7 Incoming (edgeClass : Provide)
8 Outgoing (edgeClass : BehavioralDependentOf)
9 }

10 }

Listing 6.16: Template definition for metric M6.

The final result of this analysis is a set of all synchronous call traces. Within Arla currently
no further processing of the paths itself is possible.

M7: Average size of messages

The average size of message can be determined with the AggregateAverage template
in listing 6.17. This template definition specifies an aggregated metric for the whole
architecture. This generic definition adds all values of a specific property from elements
with type elementType. The sum is divided through the total amount of elements with

173

Chapter 6. Identification of Weak Points

type elementType.
1 Template AggregateAverage {
2 " Description "
3 as Aggregate Metric defined with calculation rule avg:
4 (SUM (nodeType :" elementType ". propertyType :" property "))
5 /
6 (COUNT (nodeType :" elementType "));
7 }

Listing 6.17: Template definition for metric M7.

According to the stereotype of a concrete EA model, the variables have to be mapped
respectively. This could be for example a mapping of elementType to interface and
of property to message size. In this case, the interfaces within the EA model have a
respective message size property value.

M8: Utilization degree of technologies

The measurement of the utilization degree of technologies is illustrated with the template
definition in listing 6.18. The metric determines the ratio of interfaces that utilize RMI as
communication method.

1 Template SOAPUtilizationDegree {
2 " Description "
3 as Aggregate Metric defined with calculation rule avg:
4 COUNT (nodeType :" interface " AND
5 having property propertyType :" communication method " with value "RMI")
6 /
7 COUNT (nodeType :" interface ");
8 }

Listing 6.18: Template definition for metric M8.

According to the available information within a concrete EA model, further implemen-
tations of this metrics can be used to provide a metric measuring the independence of
microservice.

M9: Synchronous dependency cycles

Finally, assessing cycles within an EA model is not directly supported with the A2F. To
provide a respective metric, a custom data-flow analysis is implemented that determines
an attribute cycle. If the element is part of a cycle, the attribute identifies the cycle
the element belongs to. Otherwise the attribute has the value ‘zero’. For the implemen-
tation of the data-flow analysis, the strongly connected component detection algorithm
proposed in [Saa14] is adapted. Thereby, only incoming provide and outgoing behavioral
dependent of relations are considered. The custom data-flow analysis can be referenced
within an Arla analysis definition (see listing 6.19). Therein, the respective data-flow
analysis configuration file is provided as well as the strategy which should be evaluated.

1 Analysis Cycles {
2 " Determine a cycle id for each element ."
3 as Element Metric
4 defined with DFA configuration :
5 Configuration path " CycleAnalysisConfiguration "
6 Strategy "cycle - attribute "
7 }

Listing 6.19: Template definition for metric M9.

174

6.4. Assessment of Microservice Characteristics

The provided analysis style and result type define the representation of the DFA result. In
this case, the cycle id will be provided as numerical result for each element. A subsequent
metric can make use of the result to determine all elements having the Cycle attribute
with value greater than zero. This depicts the number of elements that are part of a
synchronous dependency cycle.

175

Chapter 6. Identification of Weak Points

6.5 Related Work

Within current literature several publications propose analyses or metrics to assess the
architecture. For example, Hanschke [Han13] provides several analysis patterns to identify
needs for action and optimization potentials within EAs. Matthes et al. propose in
[MMSS11] an EAM KPI catalog. The 52 proposed KPIs to measure EA management
goals. Each metric is related to one or more EAM goals and they provide best practice
interpretations of the results. This supports the architect during architecture assessment
and during identification of required actions. The implementation of the metrics is not
further considered within these two publications.
Regarding the assessment of microservice architecture, scenario-based or metric-based
evaluation is proposed by [BWZ17a]. The evaluation results are used to assess the quality
of attributes of a software system and to provide a solid foundation for planning activities.
There exists a large number of metrics for measuring and evaluating services and service-
based systems. [BWZ17a] provides an overview of the metrics in current literature with
focus on maintainability and analyzed their applicability for microservice systems. Despite
some minor limitations, in particular centralization metrics, the majority of the identified
metrics are also important for microservice systems. Specific evaluation approaches for
microservices are rare, especially practicable and automatic evaluation methods are miss-
ing [BWZ17b].
In [ZNL17] constraints and metrics are presented to automatically evaluate microservice
decomposition architectures. The authors define metrics to assess pattern conformance
regarding decomposition. They focus on two aspects, the independence of the microservice
and the existence of shared dependencies or components. The metrics and constraints rely
on information about the connector type, i.e. whether it is an ‘in-memory’ connector or a
loosely coupled connector. For example, to quantify the independence degree the ratio of
the number of independent clusters to the number of all non-external components is used.
Ideally the cluster has the size ‘one’ and thus the resulting ratio is ‘one’. Components are
aggregated to a cluster if they have an in-memory connection.
Bogner et al. [BWZ17b] present a maintainability model for service-oriented systems and
also microservice systems. For the identified quality attributes the authors determine ap-
plicable metrics to measure the system architecture. For example, the coupling degree
of a service can be measured considering the number of consumed services, the number
of consumers and the number of pairwise dependencies in the system. Metrics for mea-
suring cohesion are the diversity degree of parameters types at the interfaces. A highly
cohesive service can also be identified by considering the distribution of using services to
the provided endpoints. Granularity is for example measured with the number of exposed
interface operations. Further quality attributes are complexity and code maturity. A
weakness of [BWZ17b] is the missing tool support and integration into the development
process.

176

6.6. Conclusion

6.6 Conclusion

Within this chapter we propose a procedure for weak point analysis in EA models that
takes care of the problem of bad data quality. We propose the subsequent evaluation
of model quality metrics to validate the conformance of the EA model to the constraints
provided in the original meta model as well as to the modeling guidelines. Additionally, we
propose the execution of an analysis specific assessment of the model quality. Depending on
the statements within an analysis configuration, the model is evaluated and the elements
are determined that may hinder the analysis execution. The metrics are implemented with
the A2F, the analysis specific assessment is performed directly with SPARQL queries. The
Arla analysis definition can be used as input for query generation.
To evaluate the weak points of an architecture, we consider the design of microservice
architectures in detail. Within an exploratory study of five microservice projects we iden-
tified several challenges. Major issues are the context definition of microservices, keeping
an overview of the systems and the effects of refactoring and non-local changes. Addi-
tional, cyclic dependencies, monitoring, logging, consistency and testing are mentioned
topics by the interviewed experts. Based on these challenges and the common character-
istics identified within literature, we derived principles for the microservice architecture
design. Using the Goal Question Metric approach we developed metrics for architecture
assessment. The metrics are finally implemented with the A2F. In contrast to other pub-
lications like [Han13,MMSS11] the metrics are provided as a directly executable template
catalog.

177

7
Evaluation of Planning Scenarios

In this chapter an applicable method for Enterprise Architecture Planning (EAP) is de-
veloped, in specific for the evaluation of planning scenarios. Based on an analysis of
the information demands within EA planning, analysis potential is determined. Using
the A2F, templates are provided that support the proposed tool-supported method for
scenario evaluation.
The research provided within this chapter was previously published in [LB18b] and [LB18a].

179

Chapter 7. Evaluation of Planning Scenarios

7.1 Method Blocks for EA Planning

EA planning deals with the development and implementation of a desired target archi-
tecture. A target architecture can be defined as an independent EA model capturing the
elements and relations of a future scenario. The target architecture can also be defined in
terms of goals that should be reached or strategies to follow.
The target architecture is implemented with so called strategic projects. Despite those
strategic projects also demand-driven projects are executed that implement new business
requirements or technology changes. It is important to ensure that the projects conform to
the current strategies and goals. Adequate evaluation possibilities are required to decide
about the fitness and conformance of new projects [ACS15]. The respective stakeholders
require aggregated and integrated information for this task [Pul06,RGA07]. Additionally,
they utilize different viewpoints, created upon partial EA models, for decision-making
[RGA07]. Using quality attributes the strategy and goal fulfillment can be quantified.
The measurements enable the monitoring of the architecture transformation towards the
desired target architecture. In current practice, the proposed methods for EA planning
from literature are not widely adopted, often because of insufficient data quality but also
because practical approaches, especially for comparisons, are missing [NFT+17].
In the following, we present the results of a literature research of EA planning processes.
We identified common method blocks utilized within these processes. [NFT+17] does not
present a process itself but summarizes requirements for EAP from literature and practice.
[FB08] identifies best practices in this context. Table 7.1 provides a summary of the seven
identified method blocks as well as their mentions within literature.

Table 7.1: Common method blocks for EA planning.

Method block Authors
M1 Evaluation of cost, risk, metrics and per-

formance
[Nie06,SH93,AGSW09,AS11,PH05,
Pul06,NFT+17,The18]

M2 Development of scenarios [Nie06, NFT+17, AGSW09, AS11,
PH05,Pul06]

M3 Use of domain architectures [AS11,PH05,Pul06,FB08,NFT+17]
M4 Evaluation of conformance to principles

and goals
[ASML12,FHBB12,Nie06,SH93]

M5 Evaluation of gaps [Nie06,SH93,The18,NFT+17]
M6 Evaluation through different visualiza-

tions
[Nie06,The18,NFT+17,Pul06]

M7 Evaluation of impact [ASML12,The18]

The most mentioned method block is the evaluation of cost, risk, metrics and performance.
This method block summarizes a plethora of different approaches that are used to quantify
the EA or a scenario. The metrics are used to analyze and compare current and target
model as well as interpret the results with respect to an ideal value [ASML12]. [SH93]
propose the measurement of cost savings and economies to determine the return on in-
vestment of breaking down redundant support. In [AS11] architecture principles are used
as input for the evaluation. The scenarios are evaluated towards their conformance to
them and are also subject to business case calculations. Within the change management
process in TOGAF [The18] a performance analysis is proposed. Based on the result and

180

7.1. Method Blocks for EA Planning

the current performance goals a decision about the change request is made. [PH05,Pul06]
propose a discussion of risks, costs and benefits in the context of EA planning.
Most EA planning processes utilize the concept of scenario development. The desired
target architecture as well as new business requirements can be implemented in different
ways [AGSW09]. During EAP, this is captured with the creation of several scenarios or
also alternatives [Nie06,NFT+17,AGSW09,AS11,PH05,Pul06]. In order to decide for the
best solution regarding the EA strategy, different alternatives should be developed and
compared with each other. Finally, the scenario which fits best to the specified goals and
requirements is chosen and implemented.
Another important method during EAP is the establishment of domain architectures. Al-
though the understanding of domain architectures varies within literature, the underlying
concept of reducing the scope of the model under consideration is the same. We follow
the definition of [FB08]. They understand a domain architecture as a special focus on a
group of products, services or functions.
Ensuring the conformance of planning scenarios to the principles and goals is mentioned in
[ASML12,FHBB12,Nie06,SH93]. Especially demand-driven projects have to be evaluated
regarding their conformance to the EA principles [ASML12]. Also in practice, the necessity
to define projects with respect to the EA strategy is recognized [FB08]. The EA strategy
can be defined in terms of a vision or target architecture that should be realized but
also with a set of principles and guidelines that must be fulfilled. Finally, goals can be
established to enable the monitoring of the progress.
The evaluation of gaps is an essential mean to compare the current and target architecture
with each other. Proposed by [Nie06, SH93, The18, NFT+17], the gap analysis provides
the foundation for the creation of the transformation plan. New elements that have to be
introduced and retired elements can be identified. More detailed gap analyses can also
identify changes regarding the relations among the elements.
The evaluation based on visualizations is a commonly mentioned method during EAP. In
current practice, decision making during EA planning is mostly made based on a visual
comparison and analysis of the models [NFT+17]. The differences between the stakeholder
drive the need for the creation of specific ones [Pul06,Nie06]. Within [The18] the creation
of a plethora of different diagrams and matrices is proposed to fulfill the information
demands.
Finally, the evaluation of impact is proposed by [ASML12] to determine the effects of
changes to other architectural elements. Also in [The18] impact analysis is proposed to
identify potential dependencies of so-called road map candidates to other parts of the EA
model. Road map candidates denote elements that are subject to change.

181

Chapter 7. Evaluation of Planning Scenarios

7.2 Evaluation Process for Planning Scenarios

In the following we propose a method for the evaluation of planning scenarios within
EAP based on the identified common method blocks. The method was created within
an iterative process consisting of the activities development of process steps, enhancing
tool support and evaluation of its applicability. Tool-supported analyses are employed for
the single method steps to manage the complexity and size of current EA models. The
data foundation for the analyses is provided through utilizing established architecture
models. To ensure the applicability, the method and the analyses should be adaptable
to individual needs as well as combinable with existing EAP processes and EA models.
The A2F (chapter 5) is utilized to provide the tool support and enables generic analysis
definition as well as the customization of them to the specific needs of the stakeholders.
Figure 7.1 gives an overview of our proposed method and its placement within EAP.
Preliminary, the goals and principles for the enterprise architecture have to be defined
as well as metrics in order to quantify them. Additionally, the current architecture is
documented and up-to-date and partial model(s) representing the scenario(s) are available.
Planning scenarios may introduce changes to the business model, like a new provisioning
model for products, but also changes within the application or infrastructure architecture.
For each scenario, the evaluation process will be executed and finally, the results can be
compared to each other. As a result, the architect decides for one scenario and starts the
development of an implementation and migration plan. If the evaluation results are not
promising, the scenario(s) can be rejected and improved. This triggers a new iteration of
the method.

Figure 7.1: Planning scenario evaluation process.

The proposed evaluation process consists of three steps: the determination of the relevant
domain architecture in order to narrow the scope and support user-based verification;
the integration of the scenario into the domain architecture and generation of the target
architecture; and finally, the evaluation of the target architecture.
Domain architectures are an often-proposed concept to provide manageable parts of the

182

7.2. Evaluation Process for Planning Scenarios

architecture, where dependencies can be obtained visually [AS11, Pul06, FB08]. Due to
the large nature of EA models and their high complexity, domain architectures and views
are required to enable user feedback throughout the planning process. Full automation
without user feedback is not applicable, since the architect has relevant but non-written
knowledge about the architecture and the strategy [ASML12]. Thus, user verification of
created artifacts and feedback loops are another main concept of our method.
A further key issue within the method is the evaluation, i.e. quantification, of the scenario
to be able to decide about its fitness to the EA strategy. Capturing the defined goals and
principles with metrics enables their measurement and their comparison. Comparisons
can be done between the current and the target architecture but also to ideal values.
The consistency of the planning scenario and the resulting target architecture is another
important issue. With adequate support the direct and indirect effects are determined
and the validity of the model can be assessed.
The key analysis concepts utilized within the single steps are gap analysis, scope analysis,
impact analysis as well as metric calculation. Figure 7.2 presents their mapping to the
process steps.

Figure 7.2: Analysis support within the process steps.

The method block M5, gap analysis, is used at the beginning to identify the differences
between the current architecture and the planning scenario. This enables the derivation
of a planning status attribute for each element and thus, the creation of a transformation
model linking both models. With a subsequent scope analysis the relevant domain of the
planning scenario is determined (M3). This domain architecture is used for the subsequent
steps, since it provides a manageable part of the architecture. The architect is able to
make valid statements, since the provided model is limited in its scope.
The planning scenario is integrated in the current architecture to provide a target archi-
tecture for further evaluation purposes. With an impact analysis the consistency can be
further assessed (M7). Finally, if the target architecture is approved by the architect, it
can be used for evaluation purposes. To address M1 and M4, metrics are applied to mea-
sure the goal fulfillment as well as cost and benefits. These results support the architect
during decision-making. Additionally, further views can be created for the target archi-
tecture with the scope analysis to provide more detailed information (M6). Experts can
utilize these views for a quantitative assessment of the target architecture. Finally, M2
is supported, since the proposed process can be applied for each scenario. The provided
metrics and views can be compared with each other to choose the best scenario according
to the specified goals. Additionally, the gap analysis can be utilized again to determine
the differences between the scenarios.
The details for each process step are provided within the following subsections. Thereby,
the enterprise model of the RentalCar company (see figure A.1) is used for illustration
purposes. As planning scenario, the 24h-car return in figure 4.8 is used. The execution

183

Chapter 7. Evaluation of Planning Scenarios

details for the employed analyses are described in section 7.3.

7.2.1 Determine relevant domain architecture

Within the first step, the relevant domain architecture for the planning scenario is iden-
tified. Therefore, the dependencies between the current EA and the scenario are defined
through a comparison of them. This task is supported by the Gap Analysis. The result
provided by the gap analysis is presented in figure 4.9. According to the analysis result, a
planning status attribute is determined for each element:
Unaffected The element is only present in the current architecture or the element is avail-

able in the current architecture and the planning scenario and the properties
and relations keep unchanged.

Affected The element is present in the current architecture and the scenario, at least
one property or relation is changed.

New The element is only present in the planning scenario.
Deleted The element is only present in the current architecture.
Since the scenario describes uncompleted part of the future architecture, deleted elements
cannot be specified automatically. The architect has to define them explicitly. The gap
analysis provides a further set of deletion candidates that support him in this task. Dele-
tion candidates are part of the current architecture and not in the scenario, but have a
relationship to an element of the scenario.
New elements can have a predecessor element in the current architecture which they
replace. This successor information must be added by the user, too. To support this
task, the gap analysis calculates a set of predecessor proposals for each new element. The
provided successor proposals for the RentalCar example are presented in figure 4.10.
Once the dependencies between the current architecture and the planning scenario are
approved by the user, relevant domain architecture is generated. It is defined with respect
to the content of the scenario and utilizes the same abstraction layer as the enterprise
architecture. The domain architecture encompasses business as well as IT aspects. The
Scope Analysis is used for this task. We identified the following requirements that have to
be met by the domain architecture in order to provide a solid foundation for the subsequent
evaluation:
• All affected and deleted elements.
• Elements that are required to provide the affected and deleted elements.
• Elements that are provided or used by the affected and deleted elements.
• Structural dependent elements.

This ensures that potential dependencies or changes that are not considered in the initial
scenario, may be detected during the following evaluation. Thus, inconsistencies in the
planning scenario can be identified. Result of this step is the relevant part of the current
enterprise architecture for scenario evaluation. The scope of the domain architecture has to
be big enough to cover all effects of the scenario but also small enough to keep manageable
by the architect. The architect has to verify the generated current domain architecture
and if necessary, make adaptions like including or excluding further elements. This is
important, since the resulting domain architecture is used for all subsequent analysis and
evaluation steps. The generated current domain architecture for the running example is
provided in figure 7.3.

184

7.2. Evaluation Process for Planning Scenarios

Figure 7.3: Current domain architecture for the planning scenario.

Despite the deleted and affected elements determined by the gap analysis, further unaf-
fected ones are added according to the requirements defined above. These are the appli-
cation components realizing the affected application services, the business processes that
use those application services as well as the realized business services of the affected and
deleted business elements. The retired element Return is represented as a deleted one.
The other deletion candidates are set to the status unaffected.

7.2.2 Integrate scenario into the domain architecture

After the definition of the relevant domain architecture, the changes made by the project
are integrated and validated. Therefore, the target domain architecture is established and
an approximation of the change impact is used for validation. The target domain archi-
tecture contains all affected elements and unaffected element from the calculated current
domain architecture. A deleted element is only present in the target domain architecture,
if no predecessor is provided and thus, this element will be retired. Finally, the newly
introduced elements from the planning scenario are added. An attribute indicates the
planning status for this element, i.e. if it is new, affected or deleted. If a new element with
an assigned predecessor is added, the relations are updated accordingly for the new ele-
ment. These elements have an additional attribute identifying their predecessor elements
in the current architecture. Figure 7.4 shows the target domain architecture for the 24h
car return scenario. The color of the elements indicates their planning status.
The automatically defined domain architecture has to be verified by the user and if nec-
essary further adaptions have to be made. In order to validate its scope and quality,
the change consistency is assessed, i.e. if all direct and indirect effects of the proposed
changes are considered. For this task, each affected element has to be assigned to one of
the following impact statuses:
no No changes are actively made to the respective element.
low The element’s existing functionality remains, new one is added.
medium The element’s functionality is changed.
high The element is no longer available.

185

Chapter 7. Evaluation of Planning Scenarios

Figure 7.4: Target domain architecture for the planning scenario.

A high impact status is automatically assigned to all deleted elements without a successor.
For affected elements, the architect has to decide about the impact of the performed
changes. The information is utilized to approximate the direct and indirect effects of the
changes using the Impact Analysis. The result is visualized, for example using different
colors, within the target domain architecture and used by the architect for verification
purposes.
Indicators for inconsistencies are unchanged elements, for whom a change is calculated or
change effects outside the domain architecture. The last case refers to potential changes
that may be unconsidered. The architect should evaluate the respective elements and
optionally extend the domain architecture. Also, a large number of unchanged elements
is an indicator for an insufficient scope of the domain architecture. In order to ease the
ongoing evaluation, the scope of the domain architecture should be decreased.
The indicators can be evaluated with metrics. The metric for inconsistent changes
provides the number of elements which are unaffected but have an impact attribute value
low, medium or high. The metric for scope validity determines the elements for whom
an impact probability is determined, but they are not in the scope of the domain architec-
ture. And finally, the unchanged elements metrics provides the ratio of elements without
impact probability within the domain architecture. Figure 7.5 presents the result of the
impact analysis for the running example.
For the impact analysis, a medium impact type was initially set for the two application
services and the business process Return Car, representing a modification of these ele-
ments. The medium impact type is depicted with an orange color, a low impact type with
a blue color. The inconsistent changes metric identifies nine elements which are as-
signed with the planning status unaffected but an impact is determined for them. These
are for example the business services Payment and Car return. Since the unaffected
status was determined automatically during impact analysis, this status may not reflect
the actual situation. If the business services will be adapted within the planning scenario,
the architect should update the planning status.

186

7.2. Evaluation Process for Planning Scenarios

Figure 7.5: Impact analysis result for the target domain architecture.

The scope validity provides two elements, the business role Renter and the business
process Collect Bonus, for whom an impact is calculated, but they are not part of the
domain architecture. The architect has to decide about adding those elements to the
domain architecture, depending on their relevance for the planning scenario.
The metric for unchanged elements returns a ratio of zero. For all elements within
the domain an impact probability was determined. Thus, no indicator is given that the
provided target domain architecture includes unnecessary elements.
The final result of this step is a verified target domain architecture. It provides a more
detailed planning status regarding the impact of the performed changes as well as its scope
and consistency is verified.

7.2.3 Evaluate the target architecture

Finally, the target architecture is evaluated to ensure the conformance of the scenario to the
strategy. We propose view generation and metric calculation to support the architect. The
quality of the designed solution can be assessed with respective views in detail. Each view
serves a specific information demand and has a different focus, where irrelevant elements
are hidden. For example, the business perspective hides elements from the application and
infrastructure layer and therewith enables a detailed review of the dependencies between
the business elements. To ease this task and to ensure the consistency of the views, they
can be created with the Scope Analysis.
Figure 7.6 provides two different views on the target domain architecture, each representing
the context for an element. Within the view on the left side the context of the two business
services is provided, i.e. the services and all direct relations are retrieved. The view on
the right-hand side provides the context for the business interaction Return process. Here
again, all direct relations are retrieved to enable a detailed review of them.
Additionally, metrics can be used to quantify the target architecture and compare it with
the current architecture, other alternatives or desired target values. The metrics are used

187

Chapter 7. Evaluation of Planning Scenarios

Figure 7.6: Example views determined with the scope analysis.

to quantify goals or to express architecture principles and validate their degree of fulfill-
ment. In the following, we illustrate their application within the running example. The
CarRental company has the goals of ‘no manual data transfer ’ between the applications
and that ‘a process is supported by only one IT component’. To measure the goal fulfillment
three metrics are defined:
(1) The IT Coverage indicates the amount of processes with IT support;
(2) IT Usage provides the average number of applications used by a process; and
(3) Connectivity as the average number of services that an application uses.

Table 7.2 shows the result for these metrics for the current and target architecture.

Table 7.2: Metric results for the running example.

Metric Current
EA

Target
EA

Current
domain

Target
domain

Target
value

IT Coverage 71% 75% 66% 100% >80%
IT Usage 1,6 1,75 0,6 1,3 >1,2
Connectivity 0,58 0,87 0,62 1,12 >1

Based on the results of the evaluation the decision about the implementation of the sce-
nario can be made. In the example, the target architecture with the integrated planning
scenario increases the value of all metrics. Specifically, all measures of the target domain
architecture fulfill the target value, i.e. this project conforms to the architecture strategy,
respectively the goal that is measured with these metrics. If the evaluation results are not
satisfying, they can be used as input for the definition of a new planning scenario that fits
better into the architectural strategy.

188

7.3. Tool Support

7.3 Tool Support

In the following the analysis types used in the single steps of the evaluation process are
summarized:
(1) Determine domain architecture: Gap Analysis, Scope Analysis
(2) Integrate scenario: Impact Analysis, Metric Calculation
(3) Evaluate target architecture: Metric Calculation, Scope Analysis

For the determination of the domain architecture the gap and the scope analysis are
employed. First, the gap analysis is used to identify the differences and commonalities
between the current architecture and the planning scenario. The subsequent scope analysis
provides the relevant part of the architecture. The change consistency during scenario
integration is verified with the impact analysis. And finally, for evaluation purposes,
metrics will be calculated and the scope analysis is used in order to determine specific
views. The utilized Arla template definitions to enable tool support for the single steps
are presented in the following.

7.3.1 Templates for determining the domain architecture

Since the gap analysis is independent from stereotypes used in the EA model, no tem-
plate is available. The configuration is directly done within a specific analysis definition.
Therein, the URI from the current architecture model (the current model) and the URI
from the planning scenario (the target model) are provided. Choosing the Differences
option provides an attribute value result with the planning status, i.e. for each element
it is determined whether it is a new one, an affected one or an unaffected one. Addi-
tionally, potential deletion candidates are determined. With the SuccessorCandidates
option, for each new element within the planning scenario a set of potential predecessors
is calculated.
Based on this information the architect has finally to decide about the planning status.
In specific, she has to define the deleted elements as well as the successor relationships
between elements form the current architecture and the planning scenario.
The approved planning status is utilized to determine the respective domain that is affected
by the scenario. A domain architecture is a specific view related to scope of the planning
scenario. Characteristics of domain architectures are the reduced scope and the increased
level of detail with respect to the EA [BvSF+10]. Thus, the corresponding view includes
the business and IT constructs related to the project. The domain architecture is defined
in two steps. First all elements that are affected or deleted by the scenario are captured.
The respective scope analysis template is provided in listing 7.1.

1 Template InitialCurrentDomainArchitecture {
2 " Determines the initial domain architecture ."
3 as Aggregate Modelelementset
4 defined with set definition :
5 (having property propertyType :" planning status " with value " AFFECTED " OR
6 having property propertyType :" planning status " with value "NEW")
7 }

Listing 7.1: Scope analysis template to determine the initial domain architecture.

To consider the realization and usage context of these elements, for each element within
the initial domain architecture the dependent elements are added. The respective Arla
templates are provided in listing 7.2.

189

Chapter 7. Evaluation of Planning Scenarios

1 Template DomainArchitecture {
2 " Description "
3 as Aggregate Modelelementset
4 defined with composition rule:
5 apply ElementSpecificExtension onEach InitialCurrentDomainArchitecture
6 }

7 Template ElementSpecificExtension {
8 "Scope for an element that is included "
9 as Aggregate Modelelementset

10 defined with scope definition : {
11 ModelEdge in: None out: None
12 ConsumedBy in: Single out: None
13 Provide in: Single out: Single
14 StructuralDependentOf in: Single out: Single
15 }
16 }

Listing 7.2: Scope analysis template to determine the extended domain architecture.

To extend the initial domain architecture with the context of each element, an analysis
composition with the apply on each rule is utilized (lines 1 - 6). The composition defines
that for each element within the initial domain architecture, the respective context should
be determined. Finally, all elements are summarized within one result set.
The context is defined within another scope analysis (lines 7ff). This analysis states
that for each element all incoming and outgoing provide and structural dependent
of relations should be included. Additionally, incoming used by relations should also be
considered. With these three conditions, the context of elements that are required for the
provisioning or that are used or provided by the affected or deleted elements are included.
With the statement in line 13 the structural dependent elements are included, i.e. nested
or container elements.

7.3.2 Templates for scenario integration

If the architect has annotated the model with successor dependencies and the planning
status of the elements is validated, the integration of the planning scenario into the current
domain architecture can be done automatically.
Foundation for the new target domain architecture is the current one. In a first step, all
elements with planning status deleted are processed. If there is a respective successor in
the target architecture, the deleted element is replaced with the new one. An successor
property keeps the information about the replacement. The relations and properties of
the element are updated accordingly. Relations within the current architecture are kept
and those from the scenario are added.
If no successor is specified, the deleted element is kept within the target domain with the
planning status attribute deleted. Afterwards, all new elements of the planning scenario
are added to the domain architecture with their relations. The resulting model represents
the target domain architecture which will be used for the subsequent analyses.
First, an impact analysis is applied to verify the scope and consistency of the changes.
For such a change impact analysis the impact types high, medium and low can be inter-
preted according to the change types deleted, modified and extended (see section 4.3.2).
Listing 7.3 provides the template with the impact configuration.

1 Template ChangeImpact {

190

7.3. Tool Support

2 " Determine the effect of changes ."
3 as Element Attribute
4 defined with impact definition : {
5 ModelEdge in: no_effect out: no_effect
6 BehavioralDependentOf in: weak_effect out: no_effect
7 ConsumedBy in: weak_effect out: no_effect
8 InstanceOf in: strong_effect out: weak_effect
9 LocalizedAt in: no_effect out: strong_effect

10 Provide in: strong_effect out: strong_effect
11 StructuralDependentOf in: weak_effect out: weak_effect
12 }
13 }

Listing 7.3: Template for a change impact analysis.

In order to capture the semantics of change propagation within an EA model the effect
types no, weak and strong are assigned to the relation classes. For example, a change at
the source or target of a provide relation has always a strong effect on the other element
(line 10). In contrast for a used by relation (see line 7), a change at the target element
has a weak impact on the source. In the other direction no impact is expected.
The templates to determine the metrics for change consistency verification are presented
in the following. First, in listing 7.4 the inconsistent changes metric is defined (lines
1 - 9). Therein, all elements are counted that have the planning status unaffected and
for whom during impact analysis an impact type is determined. Within the template
InconsistentChangesMetric (lines 10 - 15) the analysis composition of the metric with
the impact analysis is specified (line 14). The apply rules ensures that the respective
ChangeImpact attribute is calculated before evaluating the actual metric.

1 Template InconsistentChanges {
2 " Determine the number elements which are unaffected but have an impact value

calculated ."
3 as Aggregate Metric
4 defined with calculation rule inconsistentChanges :
5 COUNT (having property propertyType :" planning status " with value " UNAFFECTED "
6 AND (having property propertyType :" ChangeImpact " with value "LOW" OR
7 having property propertyType :" ChangeImpact " with value " MEDIUM " OR
8 having property propertyType :" ChangeImpact " with value "HIGH"));
9 }

10 Template InconsistentChangesMetric {
11 " Ensure the execution of change impact analysis before metric evaluation ."
12 as Aggregate Metric
13 defined with composition rule:
14 apply InconsistentChanges on ChangeImpact
15 }

Listing 7.4: Template to determine the inconsistent changes metric.

Within listing 7.5 the templates to determine the scope validity is provided. Based
on the results of the impact analysis, the template in lines 1 - 8 provides the number of
elements with an impact type low, medium or high. The respective composition configu-
ration is provided in the template in lines 9 - 14. Finally, the scope validity is determined
in lines 15 - 20. Within this composition configuration the ImpactedElementMetric is re-
stricted to the elements that are not in the domain architecture (line 19). These elements
are provided within another template NotDomainArchitecture.

1 Template ImpactedElements {
2 " Determine the number elements which have an impact value calculated ."
3 as Aggregate Metric
4 defined with calculation rule impactedElements :

191

Chapter 7. Evaluation of Planning Scenarios

5 COUNT (having property propertyType :" ChangeImpact " with value "LOW" OR
6 having property propertyType :" ChangeImpact " with value " MEDIUM " OR
7 having property propertyType :" ChangeImpact " with value "HIGH");
8 }

9 Template ImpactedElementMetric {
10 " Ensure the execution of change impact analysis before metric evaluation ."
11 as Aggregate Metric
12 defined with composition rule:
13 apply ImpactedElements on ChangeImpact
14 }

15 Template ScopeValidity {
16 " Determines the elements with an impact but which are not in the domain

architecture ."
17 as Aggregate Metric
18 defined with composition rule:
19 apply ImpactedElementMetric on NotDomainArchitecture
20 }

Listing 7.5: Template to determine the scope validity metric.

The ratio of unchanged elements within the target domain architecture is determined
with the two templates provided in listing 7.6. The calculation rule for the metric is
defined in lines 1 - 6. Thereby, the number of elements with impact status NO is divided
through the total number of elements having an impact status, regardless of the attribute
value. As for the two other metrics, an additional template for a composed analysis
(UnchangedElementsMetric) is required to ensure the availability of the impact attribute.
The configuration of this composed analysis is similar to the on provided in listing 7.4,
lines 10 - 15.

1 Template UnchangedElements {
2 " Provides the ratio of unaffected elements to all elements "
3 as Aggregate Metric defined with calculation rule unchangedElements :
4 (COUNT (having property propertyType :" ChangeImpact " with value "NO")) /
5 (COUNT (having property propertyType :" ChangeImpact "));
6 }

7 Template UnchangedDomainElements {
8 " Restricts the unchanged elements metric to the domain architecture ."
9 as Aggregate Metric

10 defined with composition rule:
11 apply UnchangedElementMetric on DomainArchitecture
12 }

Listing 7.6: Template to determine the ratio of unaffected elements.

Additionally, to restrict the metric to the domain architecture a further analysis composi-
tion is defined. Within the UnchangedDomainElements the UnchangedElementMetric is
applied on the result of the analysis DomainArchitecture. Thus, for metric calculation
only the elements within the domain are considered.

7.3.3 Templates for target architecture evaluation

The scenario evaluation is performed depending on the organization’s strategy and goals.
A common view that can be used during evaluation is the context view for an element. This
scope analysis provides all direct relations for one or more selected elements. Listing 7.7
provides the respective template definition. The definition was also used to create the two
example views in figure 7.6. For view generation each edge class should be considered

192

7.3. Tool Support

according to the single constraint, i.e. the source respective target of the relation is
included within the result but none of the further related elements.

1 Template ElementContext {
2 " Provide an element specific view."
3 as Aggregate Modelelementset
4 defined with scope definition : {
5 ModelEdge in: None out: None
6 ConsumedBy in: Single out: Single
7 LocalizedAt in: Single out: Single
8 Provide in: Single out: Single
9 StructuralDependentOf in: Single out: Single

10 BehavioralDependentOf in: Single out: Single
11 Generalization in: Single out: Single
12 InstanceOf in: Single out: Single
13 }
14 }

Listing 7.7: Template to determine the context view for an element.

To illustrate the metric application for measuring goal fulfillment, the template for the
IT coverage metric is presented in listing 7.8. The metric can be used to monitor the
coverage of IT support for business processes. Two variables are utilized: the business
element and the application element. Depending on the concrete meta model they can be
mapped to processes or business services respectively application services or application
components. The metric is determined by dividing the business elements with application
support through the total number of business elements.

1 Template ITCoverageMetric {
2 " Indicates the amount of processes with IT support "
3 as Aggregate Metric
4 defined with calculation rule itCoverage :
5 (COUNT (nodeType :" business element " AND
6 having relation to (nodeType :" application element "))) /
7 (COUNT (nodeType :" business element "));
8 }

Listing 7.8: Template for the IT coverage metric.

To provide a comparison table as provided in table 7.2 the template is executed within
the current and target architecture. Additionally, with an analysis composition the metric
can be restricted to the current respectively target domain architecture.

193

Chapter 7. Evaluation of Planning Scenarios

7.4 Related Work

Current EAP processes are not really accepted within practice. Due to a missing practica-
bility of them [NFT+17], the decisions during EAP are often based on a visual inspection
of available models. However, these models are not specific for this task and often do not
provide the relevant information in an adequate way. The manual creation of the required
views as well as ensuring their consistency is very time consuming. The flexible creation
of individual views and metrics is not sufficiently supported in current approaches from
research (regarding diversity) and in tools (regarding flexibility).
The steps within our proposed method are developed with respect to the EAP processes in
current literature. We integrated the method blocks identified in literature (see table 7.1)
in our approach as well as propose tool-supported analyses for their execution. Comparing
our method with the requirements for EAP in [NFT+17,AG10b], we cover most of them
including an analysis and comparison of the current and target architecture, support for
different scenarios, consideration of successor relationships between current and target
architecture elements as well as consideration of specific requirements from stakeholders.
Weaknesses of our approach are a missing support for life-cycles and the derivation of
project activities and support for transformation paths. An additional shortcoming of our
approach is the dependency on the data quality and completeness of the EA model.

Table 7.3: Comparison with related work (abbreviations according to figure 2.13).

Steps in our method Equivalent steps from other work
Preliminaries (principles and strategy) A1-A3, B1-B3, C1, D1, D2a, E1-E1
Definition of planning scenarios A4, B4, C2, C3(a), D2b, E3
Evaluation of planning scenarios B5, C3A, (A4), D2c, D2d, E4
Compare, decide, implement A5-A6, B6, D3, E5, E6

In table 7.3 we mapped our EAP process steps onto the existing ones identified in liter-
ature. Process steps from literature are represented with the abbreviations introduced in
figure 2.13. A step is mapped to a step from an EAP process, if they have similar main ac-
tivities and the goals correspond to each other. Our main contribution is comprised within
the process step Evaluation of planning scenarios. For the previous and subsequent steps,
we do not provide further details. It is possible to follow other approaches for these tasks
and use our proposed method for executing the respective evaluation step (steps A4, B5,
C3A, D2c and D2d as well as E4).

194

7.5. Conclusion

7.5 Conclusion

We identified common method blocks from existing EAP processes and requirements in
literature to develop a practicable scenario evaluation process. Preliminary for this pro-
cess is a documentation of the current enterprise architecture, the definition of goals and
principles as well as a planning scenario model. Based on these artifacts, the relevant
domain architecture for the planning scenario is determined. This is supported with a
gap analysis between current and target architecture and a subsequent definition of the
relevant architecture part using a scope analysis. In the second step, the proposed changes
are integrated in the domain architecture and an impact analysis is performed to ensure
the consistency and validate the domain architecture. Finally, views can be determined
onto the target domain architecture for quality reviews as well as metrics can be calculated
to quantify the target model.
The analysis execution environment A2F provides a single point of access for all the
different analysis types. The definition of generic analysis templates eases the execution
of the proposed method. The applicability of our approach is also supported by utilizing
the information within an EA model. The universality of A2F enables an easy adaption to
different EA models as well as provides the functionality to extend the analyses according
to specific needs from stakeholders. For example, individual metrics or view definitions can
be defined and the rules for the generation of the domain architecture can be adapted.
With this work, we show the benefit of such an integrated environment, since it enables
the development of an applicable and customizable method for EAP. Since current EAP
methods lack acceptance in practice [NFT+17], we focused especially on this issue. Uti-
lizing EA models as foundation for the analyses provides two advantages: First, there is
no need for specific data collection in order to apply the method and second, we can show
the usefulness of these models during transformation planning. Establishing EA models
is an expensive task and gaining benefits from these models increases the acceptance of
an EA initiative. The utilized A2F provides us with the required functionality to keep
independent from a specific meta model for enterprise architecture. The required analyses
for scenario evaluation are defined as generic templates within the A2F. When applying
the process, these templates can be re-used as well as it is possible to further refine or
extend them according to specific needs.

195

Part IV

Case Studies and Conclusions

197

8
Evaluation

Within this chapter we present the evaluation results for the developed artifacts. Next
to assessing the scope of Arla and the A2F regarding existing EA analysis approaches,
we employ a scenario-based evaluation. The scenarios are determined according to the
technical and functional dimensions. An existing analysis approach is implemented with
Arla for each scenario.
Additionally, the relevance and applicability are evaluated through application of the use
cases within case studies. Two different implementations of the A2F and several EA
data adapters are developed for this. Parts of the evaluation are previously published
in [LB17,LB18a,Eng17,ELBH18].

199

Chapter 8. Evaluation

8.1 Implementation

To enable the evaluation of the A2F, we provide two different implementations. One is
the integration as plugin into the modeling tool Innovator [MID19]. Thereby, only a sub-
set of the described concepts is implemented. This implementation is further described
in section 8.1.1. The other implementation utilizes the model analysis product Auto-
Analyze (section 8.1.2). This Eclipse-based product was developed within the research
group the author was part of. AutoAnalyze is used to provide a user interaction and
visualization regarding model representation and analysis execution. The implementation
with AutoAnalyze encompasses nearly all of the previously presented concepts. Finally,
several data adapters are developed to load existing data into the AutoAnalyze product
(section 8.1.3).

8.1.1 Integration into a modeling tool

The Innovator Enterprise Modeling Suite [MID19] is a modeling tool for business analysis,
software architecture, information architecture, business intelligence as well as enterprise
architecture. The product from the company MID allows the integrated modeling of
the different architectures. For modeling enterprise architectures, the tool relies on the
ArchiMate standard. The provided meta model and notation of this standard can be
adapted to the specific needs of the organization. This leads in some case to complete
custom meta models used for the representation of the EA. The tool enables the definition
of different diagrams that represent views of the EA model.
We integrated parts of the A2F as plugin into the modeling tool. This includes the
realization of the data-flow based analyses: Impact analysis, performance analysis, path
analysis and scope analysis. The customization of the analyses, i.e. analysis definition,
is done with a user interface. The user interface provides a more comfortable abstraction
from the textual language Arla. Analysis classes based on SPARQL as well as analysis
composition are currently not implemented in the plugin.
The model data is extracted from the tool and subject to the selected analysis. Finally, the
retrieved result is returned the modeling tool and visualized within the original diagrams.
In the case of a scope analysis a new diagram, i.e. a view, is generated. Therewith, the
plugin enables a round-trip model engineering.
Before data extraction the scope of the model can be reduced to the relevant part. This
part of the model is then converted into an EMF model which is utilized for analysis exe-
cution. The GMM, presented in section 3.2, is utilized for internal model representation.
This is important to support the custom defined EA meta models within Innovator. Ad-
ditionally, the user input via the user interface is transferred into the respective analysis
configuration. The plugin is in productive use for analyzing the EA model of a public
administration. The model contains about 2.500 elements and 6.700 relations. For its
description 28 element types and 39 relation types are used.
Figure 8.1 provides a screenshot of the modeling tool. The plugins for the different anal-
ysis classes can be found within the ribbon bar. Within the center the currently opened
diagram is shown. The visualized model is the RentalCar model. The element colors
depict the result of an impact analysis.

200

8.1. Implementation

Figure 8.1: A2F Plugin for the Innovator showing the result of an impact analysis.

Meta model support

The plugin was applied in five different EA models using four different meta models.
One is the EA model of a medium-sized software product vendor. This model is created
utilizing the ArchiMate modeling language without further adaptions. This model is also
utilized within the EA planning case study in section 8.4.1. The utilized running example
RentalCar is the demo EA model from Innovator and also created along the ArchiMate
standard.
The other three EA models analyzed with the A2F plugin each rely on a custom meta
model. This is the EA model of a public administration, the EA model of an automotive
manufacturer and the EA model of a fictional use case utilized within the tool evaluation
report in [MBLS08]. Although this is a fictional use case, the model and the meta model
are a good representative for actual EA models. The meta model encompasses about 25
classes, 30 associations and about 90 attributes.
During model extraction and conversion for analysis purposes, the respective meta model
part of the GMM is built dynamically. This means that only those concepts are created
that are actually used within the model. Additionally, the mappings between the concrete
stereotypes and the edge and node classes are resolved during this step.
This procedure could be performed for all five EA models. Their conversion into the GMM
format was executed without further adaptions or manual corrections. Only the mapping
of the stereotypes to the node and edge classes has to be done manually once. Afterwards

201

Chapter 8. Evaluation

the models can be utilized for the implemented analyses. The supported classes and their
implementation details are described in the following.

Impact analysis

The impact analysis is customized in the same way as the analysis and template def-
initions within Arla. Despite providing the configuration within a textual file, a user
interface is used to abstract from it. Figure 8.2 provides the user interface for impact
analysis definition. Despite predefined settings for a worst- and best-case scenario, also
custom assignments of the effect types can be made. The expressiveness of the user inter-
face corresponds to the ImpactDefinitionByStereotype configuration. Custom impact
definitions can be stored for later reuse. The worst- and best-case scenario represent the
execution modes that can be triggered with the StaticImpactConfiguration in Arla.
The result for executing the impact analysis definition is presented in figure 8.1. The col-
ors indicate the impact status. Yellow denotes a low impact and orange a medium impact
value. The dark orange color denotes the source of the impact.

Figure 8.2: Impact analysis definition within the Innovator analysis plugin.

Scope analysis

The scope analysis is captured in a similar way within the analysis plugin. The definition
of a scope analysis according to the DynamicEdgeDefinitionByStereotype from Arla
is illustrated in figure 8.3. The assignment of the concrete stereotypes to one of the
constraint types single, transitive and none can be done within the right table of the
user interface. Such a custom configuration can be stored and re-used. Therefore, the
information at the top of the user interface is required. The fields denote the name and
the respective diagram type that should be used for diagram generation.
The table on the left enables the restriction of the considered element stereotypes. This
was necessary since the analysis plugin supports no analysis composition and no restriction
of elements within a scope analysis. Additionally, the allowed stereotypes for the start
elements can be restricted too. Executing such an analysis definition provides a model
element set. Based on this set a new diagram is created in the modeling tool.

Path analysis

The path analysis within Innovator is used for the generation of business support maps.
Business support maps provide a matrix visualization depicting the relations within an

202

8.1. Implementation

Figure 8.3: Scope analysis definition within the Innovator analysis plugin.

EA model. Figure 8.4 provides an example support map generated from the RentalCar
model. The content of the matrix is filled according to the results of the path analysis.
The path results that lead to the placement of an element, can be provided at the bottom.
Within the figure, there are two paths for Benutzerverwaltung that arrange this element in
the row of the infrastructure service Benutzerverwaltung and the column of Telefonische
Reservierung.

Figure 8.4: Support map within Innovator with results from the path analysis.

The support map generation can be configured with a user interface. Therein the utilized
stereotypes for the rows, columns and content as well as the considered meta model paths
can be selected (see figure 8.5). The provided stereotypes depict the source and target
stereotypes of the path analysis in the A2F. Additionally, it can be chosen between the
AllPath and the ShortestPath execution mode. If this information is provided in a first
step the available paths within the meta model are calculated. The result is provided in
the two screens at the bottom. The architect can now select those paths that should be
considered for the final support map generation.

Performance analysis

Finally, the performance analysis is implemented within the analysis plugin. Currently
the analysis cannot be customized by the user according to the property definitions. For
execution the edge classes as described in section 5.5.7 are used. The result is presented
as table within the modeling tool.

203

Chapter 8. Evaluation

Figure 8.5: User interface for support map configuration.

204

8.1. Implementation

8.1.2 Integration into AutoAnalyze

Despite the partial integration into Innovator, we provide an almost complete integration
of A2F into the Eclipse-based product AutoAnalyze. AutoAnalyze provides a visualization
and analysis execution environment for models. The registration of connectors enables the
integration of individual analysis and visualization functionality. AutoAnalyze relies on the
concepts of the Eclipse Modeling Framework to visualize the model data. The integration
of graph libraries enables automatic layouting. The product is utilized to provide a user
interface for analysis activities, especially to be able to visualize the EA model and the
retrieved analysis results.
For data persistence we choose the Triple Store from Apache Jena [Fou18] as data store.
Apache Jena [Fou18] is an open source framework that enables the creation of RDF graphs,
to query the models with SPARQL, and provides an inference interface as well as a triple
store to persist the data. Alternatives comprising similar functionality are Virtuoso [Sof15],
RDF4J [RDF19] or RDF Knowledge Graph from Oracle [Ora19].
The final AutoAnalyze product supports all proposed analysis classes of Arla. A textual
editor is provided for analysis specification through integrating the generated Xtext arti-
facts into the final product. The editor provides syntax highlighting and auto completion
to support the specification of analysis configurations.
Figure 8.6 provides an overview of the AutoAnalyze product with the A2F connector.
Within the center, the graph of the current EA model is visualized. Within the views on

Figure 8.6: Overview of AutoAnalyze with A2F integration.

205

Chapter 8. Evaluation

the bottom properties of a selected element as well as overall model metrics are presented.
On the right-hand side, filter options enable the user interaction with the graph. Selecting
and deselecting the filters leads to enabling respectively disabling of the respective elements
within the graph.
Figure 8.7 provides the dialogue to load Arla analysis definition files as well as to execute
the desired analysis definitions. In the table at the bottom the already loaded analysis
definitions are provided. The selected ones are considered, when triggering analysis exe-
cution. At the top, further input parameters for analysis execution can be provided, like
the current model element selection. This input parameter provides the start elements
for impact, scope and path analysis. Additionally, it is possible to declare the analysis
which should be used for coloring of the elements. The checkbox allows the restriction
of the analyzed elements to the current view within the graph. This means that during
analyses execution the current filter selection within AutoAnalyze is considered. Finally,
the maximum number of hops within path analyses can be specified as well as the impact
status that should be assigned to the start element during impact analysis.

Figure 8.7: Analysis settings within AutoAnalyze.

The visualization of the analysis result is implemented depending on the result type. For
model element sets and path sets respective filters are created. Additionally, for each path
so called regions are provided. Regions enable a highlighting of certain elements with
colors without disabling them. The coloring of the region can be enabled and disabled by
the user. Attribute results for elements are always visualized within a property field at
each element. The different attribute values can also be indicated with different colors as
well as a filter category is created for each value. Further aggregated results like metrics
are presented within a model metric view.

206

8.1. Implementation

8.1.3 EA model adapter

The EA model has to be loaded into the AutoAnalyze product in advance of model visual-
ization and analysis execution. We implemented several adapters for different information
sources. The simplest way to accomplish this task consists of a traversal of the source
model, creating corresponding GMM nodes, properties and edges on-the-fly. As part of
this process, the meta information of the element has to be evaluated as well, and the
GmmMetaModel has to be extended or updated accordingly. This approach ensures that
all relevant information is transferred into the GMM representation, while unused parts
of the original EA language are automatically excluded.
We developed adapters for capturing the data provided within EA tools and Excel sheets
as well as adapters that focus on the actual communication dependencies between appli-
cations and services. Therewith, we address the issue of outdated data which often affects
the communication dependencies.

EA tools and Excel files

We captured the syntax of the serialized Innovator model using an ANTLR [ANT14]
grammar, to load them into the AutoAnalyze product. From the grammar, ANTLR
generates a parser that enables the creation and walk through of the parse tree. We
utilize this parser to create an EMF model using the GMM scheme. The EMF model is
finally converted to and persisted as RDF graph.
Additionally, we provide support to capture the data from CSV files.
Most EA tools provide export functionality into CSV or XMI files (e.g. iteraplan [ite19],
LeanIX [Lea19] or Archi [Bea19]). If no EA tool is established in an organization, the
relevant data is often managed within Excel files instead. We demonstrate the CSV
import with a loader for Archi export data and a loader for custom created Excel sheets.
Archi [Bea19] is an open source modeling tool for EA that utilizes the ArchiMate language
for the creation of the models. The loader for custom Excel sheets captures products,
applications, services, interfaces and their dependencies.

Communication dependencies between applications

A source for actual communication data is provided by Application Performance Moni-
toring (APM) tools like Dynatrace [Dyn19a] and Instana [Ins19]. These tools are used to
automatically capture operational data. Thus, they provide a very detailed view of the
actual state of application landscape on a very technical level. Aggregating and process-
ing those information makes them usable on an EA level. We implemented an adapter
for the tool Dynatrace. The adapter accesses either the REST API or utilizes generated
XML reports. The communication data is further processed and aggregated to provide
a high-level architectural view. It is possible to extract the communication dependencies
between the services from this data. Despite information about services, queues, databases
as well as their communication dependencies, Dynatrace also provides information about
the utilized infrastructure elements, i.e. the host, response and execution times as well as
the call frequency within the requested time span.
If no APM tool is established, synchronous communication data can be retrieved with the
OpenTracing standard [Ope19a]. OpenTracing is a vendor neutral API for distributed
tracing that enables the collection of trace data. OpenTracing unifies the different ex-
isting tracing APIs in order to improve the exchangeability of them. Zipkin [Ope19b]

207

Chapter 8. Evaluation

implements the OpenTracing API for all common programming languages like Java, C#,
C++, Javascript, Python and Go and even for some technologies like Spring Boot. We
implemented a data collector that implements the same API as Zipkin. Thus, the libraries
developed for Zipkin can be used to collect synchronous data.
In contrast to synchronous data retrieval, there is no standard available for collecting asyn-
chronous data. Therefore, we implemented our own API for asynchronous data retrieval
that is independent of any message broker. The interface expects the service name, the
message size, an identification endpoint, the name of the message broker, a time stamp
and a type indicating if it was a send or received message. The generic interface was
implemented for the message broker RabbitMQ using the built in Firehose Tracer [Piv07]
to collect communication data. If the Firehose Tracer is activated, all sent and received
messages are also sent to a tracing exchange and are enriched with additional meta data.
Finally, we provide an adapter that assesses log files to retrieve current communication
data. Within these files, depending on the organization specific configuration, commu-
nication dependencies as well as traces can be extracted. In our case, two different log
types were accessible: The normal log of a service contains information about the called
endpoints, incoming requests and further functional information. The access log contains
only information about incoming requests, but provides additional information about their
duration and data volume. The assignment of the calls and requests to each other, in order
to create the respective usage dependencies, was performed utilizing the unique request
ID.

208

8.2. Coverage of EA Analysis Approaches

8.2 Coverage of EA Analysis Approaches

We evaluated the analysis language Arla with its implementation infrastructure A2F re-
garding the coverage of existing analysis approaches. We examined the identified anal-
ysis types within [Rau13] as well as the different technical and functional dimensions
from [Rau15]. We refer to the types and dimensions instead of the single approaches,
since it is not obvious to decide whether a following publication of an approach is a new
one or an extension to an existing one. Hence, referring to the concrete approaches would
provide a biased view on the coverage of the A2F.
Analysis approaches relying on expert interviews (e.g. [DBLR+11,PSP12]) or approaches
addressing the method EAM like maturity analyses (e.g. [AS11]) are not considered in our
evaluation. Following, we excluded all approaches assigned to the analysis types Business
Entity Analysis, Design Analysis, Run-time Analysis, Intentional Analysis, Maturity Anal-
ysis and Sensitivity Analysis from our evaluation. Another 15 approaches of further types
are excluded according to these criteria or since they do not directly represent concrete
EA analyses. Either they provide surveys about the practical use (e.g. [BFKW06]) or they
deal only marginally with the topic EAM like the social network analysis from [TTF79] in
the context of organization theory. A final reason for the exclusion of analysis approaches
was a missing access to the respective publication (specifically [JBR+99,WC12]). In total,
29 analysis approaches were excluded within the following coverage assessment
For the remaining 67 approaches, we decided whether they can be completely described
and evaluated with the A2F (i.e. they are covered by the A2F), partially described and
evaluated with the A2F or whether the A2F does not cover them. For example a partial
coverage is given for approaches considering date specifications. Currently the A2F does
not comprise special expressions for evaluating time spans or point of times. Indirectly,
it is possible by utilizing other expression types. Some analyses assigned to the technical
dimension PRM [NBE14] are also partially covered. The probabilistic aspects of these
analyses which are implemented in a Monte Carlo fashion, cannot be reproduced with the
A2F. By replacing the probability distributions with single values, the analyses can be
defined and evaluated. An analysis approach is also declared as partially covered, if it is
necessary to specify new DFA propagation rules or to create custom SPARQL queries for
its realization.

Covered types

62%

Partially covered types

20% Not covered types
18%

Figure 8.8: Coverage of analysis types.

Figure 8.8 provides a summary of the coverage of the analysis types. A detailed coverage
report for each type is provided in figure 8.9.

209

Chapter 8. Evaluation

Figure 8.9: Coverage of analysis types in detail.

210

8.2. Coverage of EA Analysis Approaches

From the 34 considered analysis types, 21 are covered by the A2F and additional 7 types
are at least partially covered. A total of 6 analysis types is not covered. We say that
the A2F covers an analysis type, if there exists at least one analysis approach which is
assigned to this analysis type and covered by the A2F. If no approach of an analysis type
is covered but there is at least one approach that is partially covered, then the analysis
type is partially covered. Otherwise the A2F does not cover the analysis type. Within
the detailed report in figure 8.9 the amount of covered, partially covered and not covered
approaches for each analysis type is provided.
For example 50% of the assigned analysis approaches of the type Critical Path and Com-
pletion Time are covered by the A2F. The other part is only partially covered. This is the
analysis approach described in [Yen09]. The approach utilizes the technique of AHP to
combine several measures, among other, the expected time from start to end of a process.
A2F does not provide support for AHP itself, but the final combinations of the weighted
values can be realized with a metric calculation rule.
The analysis type failure impact analysis contains only the approach of Holschke et al.
[HNF+09]. They realize the failure impact analysis using Bayesian Belief Networks. This
probabilistic technique is not covered within the A2F.
Most of the approaches that are not covered by the A2F, rely on probabilistic techniques.
This is illustrated within a further evaluation of the coverage according to the functional
and technical dimension proposed in [Rau15]. The coverage of the technical dimension is
provided in figure 8.10.

Figure 8.10: Coverage of technical dimensions.

Most of the technical categories are covered or partially covered by the A2F. That means
that at least one analysis approach assigned to this dimension can be realized or at least
partially realized with the A2F. In figure 8.10 the percentage of covered, partially covered
and not covered analysis approaches is illustrated for each technical dimension.
Only the categories containing probabilistic approaches are not covered. These are Prob-
abilistic Relational Model, Bayesian Networks and Extended Influence Diagrams. The

211

Chapter 8. Evaluation

approaches within the technical dimensions AHP, Business Entities and Design were ex-
cluded within the evaluation according to the restrictions presented at the beginning of
this section. These dimensions are not presented within the figure.
The coverage of the functional dimensions is provided in figure 8.11. Only the dimension
System is not covered within the A2F. All approaches assigned to this dimension are also
assigned to one of the technical dimensions with probabilistic techniques. For all other
categories there exist approaches that are covered or at least partially covered (Data) by
the A2F.

Figure 8.11: Coverage of functional dimensions.

212

8.3. Scenario-based Evaluation

8.3 Scenario-based Evaluation

To assess the applicability of the A2F we utilize a scenario-based evaluation. Based on
existing approaches within literature we identified in total 12 different scenarios. The
scenarios cover all technical and functional dimensions that are covered by the A2F. Also,
each Arla analysis class is utilized at least once.
Only the technical categories Bayesian networks and Extended influence diagrams
are not covered by the scenario-based evaluation, since it is not possible to capture the
contained approaches with the A2F. Additionally, the technical dimensions AHP, Business
entities and Design are not covered, since all assigned analysis approaches were excluded
beforehand due to their scope (see section 8.2). Consequently, no scenario addresses the
functional dimension System, since we could not identify any approach that is realizable
with the A2F.
Table 8.1 provides an overview of the functional and technical dimensions as well as their
coverage of the scenarios (S1–S12). If the scenario identifier is provided within brackets,
the approach is only partially realized.

Table 8.1: Dimension coverage of the scenarios.

Technical Fu
nc
tio

na
l

Q
ua
lit
y

At
tr
ib
ut
e

D
ep
en
de
nc
ies

Eff
ec
ts

Bu
sin

es
s o

bj
ec
ts

D
es
ig
n

Re
qu
ire

m
en
ts

Fi
na
nc
ia
l

D
at
a

Comparison S1 S1
Metrics and KPIs S2 S2 S2 S2
Matrix S4 S4
Ontology S5 S5
Views S9
Time evaluation S8
Social network S7 S7
Structural (S10)
Life cycle (S3)
Tree (S11)
Weak point (S12) (S12) (S12)
PRM (S6) (S6)

Additionally a mapping of the scenarios to the Arla analysis classes is provided in table 8.2
Here as well the brackets denote a partial realization of the analysis.

8.3.1 Scenario 1: Change impact analysis

Analysis approach: [dBBG+05]
Technical dimension: Comparison
Functional dimension: Dependencies, Effects
Arla analysis class: Impact analysis

Within the first scenario we established the template for implementing a change impact
analysis. The applied analysis approach for the template is presented in [dBBG+05]. The

213

Chapter 8. Evaluation

Table 8.2: Dimension coverage of the scenarios.

Arla analysis class Scenario
Scope analysis (node definition) (S3), S9, (S10)
Scope analysis (edge definition) S9
Impact analysis S1, (S11)
Path analysis S4, S5, (S12)
Metric S2, S7, (S10), (S11), (S12)
Performance analysis S8
Gap analysis S7
Custom analysis (DFA) (S6), (S11)
Custom analysis (SPARQL) (S10)
Composed analysis S2, S9

authors propose three different change types (remove, extend and modify) that are used
to determine the direct and indirect effects of a change event. The respective change type
of an element is defined depending on the change type of the immediate neighbors as well
as the relation type between them. The authors propose change propagation rules for five
different relations types from ArchiMate.
Despite the three change types the authors propose a signal to mark elements that are
not directly affected by a change but have eventually to be considered. For example the
signal is assigned to a process, where the used application service is deleted. In this case
the user has to decide about the change effect. For our implementation we interpret a
signal in the same way as an extension of an element. The change types can be mapped
to the impact types as followed:

high impact: delete
medium impact: modify
low impact: extend

The change semantics for the five relation types can be approximated with the Arla impact
analysis template provided in listing 8.1

1 Template ChangeImpactAnalysis {
2 " Template for change impact analysis according to [dBBG+05] in the worst case."
3 as Element Attribute
4 defined with impact definition :{
5 WeakEffect In (edgeType :" usedBy ", edgeType :" realize ")
6 StrongEffect In (edgeType :" access ", edgeType :" assign ")
7 StrongEffect Out (edgeType :" access ", edgeType :"use", edgeType :" realize ")
8 }
9 }

Listing 8.1: Arla change impact template for scenario 1.

For each relation type in [dBBG+05] a variable is declared and assigned to the best fitting
effect type. Since Arla only enables the assignment of three different effect types (strong,
weak, no), the actual change semantics as proposed in the paper cannot be captured
completely. Especially the behavior in the case of a deletion of an element is concerned
of this weakness. Alternatively, it would be possible to implement own DFA propagation
rules for this case or to approximate them with the effects type provided in Arla. This can
be done through implementing a worst-case and a best-case scenario. The semantics of the
signal element can also be captured with the approximation of best- and a worst-case.

214

8.3. Scenario-based Evaluation

8.3.2 Scenario 2: Risk and security analysis

Analysis approach: [IOB06]
Technical dimension: Metrics and KPIs
Functional dimension: Quality, Requirements, Financial
Arla analysis class: Metric, Composed analysis

Innerhofer et al. [IOB06] propose a qualitative approach to combine EA with risk driven
security management. Beside the qualitative part, they propose the following supportive
reports:

• Number of model elements with status analyzed = false

• Number of security requirements of a domain that have status evaluated = false

• All security objectives with state detailed = false

The reports can be realized with a node set definition in Arla. The node set definition for
determining model elements with status false is:

1 nodeType :"model element " AND
2 having property propertyType :" analyzed " with value "false"

To retrieve the number of those elements, the definition can be wrapped into a COUNT
statement within a metric. The other reports can be configured by replacing the nodeType
and propertyType with the corresponding values.
Additionally, the authors propose aggregated risk matrices. They depict the risk ratings of
the threats for each model element, for each security requirement, each security objective or
the whole organization. Exemplary, the realization of the risk matrix for model elements is
illustrated. Within the risk matrix, the impact and probability values of the related threats
are accumulated. For each impact value (high, medium, low) and each probability value
(high, medium, low) an element metric template is defined. The template to determine
the number of threats with a low probability value and a low impact value is presented in
listing 8.2, lines 1 - 9.

1 Template ProbabilityLowImpactLow {
2 " Determine the number of threats with low probability value."
3 as Element Metric
4 defined with calculation rule:
5 COUNT (connected nodeType :" thread " AND
6 having property propertyType :" probability " with value "low" AND
7 having property propertyType : " impact " with value "low");
8 for types (nodeType :"model element ")
9 }

10 Template ProbabilityLowValues {
11 " Compose the aggregated probability values ."
12 as Element Metric
13 defined with composition rule:
14 combine ProbabilityLowImpactLow and ProbabilityLowImpactMediumAndHigh
15 }

16 Template MatrixValues {
17 " Compose the aggregated probability values ."
18 as Element Metric
19 defined with composition rule:
20 combine ProbabilityLowValues and ProbabilityMediumHighValues
21 }

Listing 8.2: Arla metric templates for scenario 2.

215

Chapter 8. Evaluation

For the medium and high probability a respective element metric has to be defined, too.
And additionally, for each impact type. In total, nine element metrics are created to pro-
vide the aggregated threat values for each model element. The metric templates are com-
bined within several Arla composition definition. For example, the ProbabilityLowValues
template (lines 10 - 15) combines aggregated values for medium and high impact threats
with those for low impact threats, where in all cases the threat probability is low. The
template definition providing the final result for matrix creation is provided in lines 16 -
21. Therein, the results for the low probability values are merged with those for medium
and high probabilities.
Executing the MatrixValues template with A2F would provide an AttributeValue-
ResultMap. For each element the respective metrics, e.g. ProbabilityLowImpactLow,
ProbabilityLowImpactMedium and so on, are provided to finally create the matrix.

8.3.3 Scenario 3: Analysis of dependencies

Analysis approach: [Saa10]
Technical dimension: Life cycle
Functional dimension: Dependencies
Arla analysis class: Scope analysis (node)

Within scenario three, we provide the templates for the realization of the time-related
dependency analysis proposed in [Saa10]. The authors extend EA elements with properties
indicating their status (current, planned), their lifecycle (planned, active, retired), their
duration as well as with time stamps indicating their start and end. The properties are
considered during the subsequent dependency analysis. In specific, the relations between
applications and processes are visualized with respect to a specific point of time.
This analysis can be realized with a scope analysis. Discrete values like planned, active
and retired are completely supported. For considering time stamps only indirect sup-
port is provided, thus the A2F covers this approach only partially. Since the A2F does
not provide a data type Date, it has to be represented as integer. Also the date values
within the model have to be present as integer values. In this case, a time-related process
application view can be defined with the template provided in listing 8.3.

1 Template TimeRelatedView {
2 "Time - related dependency view for processes and applications ."
3 as Aggregate Modelelementset
4 defined with set definition :
5 (nodeType : " application " AND
6 having property propertyType :" active " with value (< 20190201)) OR
7 (nodeType : " process " AND
8 having property propertyType :" active " with value (< 20190201))
9 }

Listing 8.3: Arla scope analysis template for scenario 3.

This scope analysis determines a view which only contains elements that are active at the
requested point of time ’01.02.2019 ’. It is also possible to add an additional constraint for
retired property, to ensure that the element is not retired yet.
Additionally, the author introduces projects to aggregate changes to model elements within
a defined time span. Using the relation conditions in Arla, it is possible to solely focus on
elements assigned to one specific project or to validate their time related properties.

216

8.3. Scenario-based Evaluation

8.3.4 Scenario 4: Analysis of conformity

Analysis approach: [Nie06]
Technical dimension: Matrix
Functional dimension: Quality, Attribute
Arla analysis class: Path analysis

[Nie06] identifies the following questions that should be answered with conformity analy-
sis:
• Are there provisions for the definition of EA elements like business processes?
• Are there best practices for processes like recovery, backup, authorization, authen-
tication defined?
• Are important processes been drafted (e.g. deployment procedures)?
• Are the deployed infrastructure components internally certified?
• Are the applications designed according to the reference architecture models?
• Are there development procedures and tools in use that are not included in the
infrastructure standards?

The first four questions can be answered within Arla with property conditions, assuming
that the information is present in the EA model. Additionally, Arla can be used to verify
the adherence to the provisions, best practices, standards and reference architecture.
More specific, [Nie06] proposes a heterogeneity analysis to identify the elements within
the architecture that do not adhere to the reference architecture. Therefore, the utilized
technologies are provided within a product process matrix. The product process matrix
can be established with two path analyses. The analysis results are used to create a
support map with products and processes on the two axis and the respective technology
components in the center. The technology components can either be realized as concrete
element or they are the property of another element, e.g. an application component.
Listing 8.4 provides the path analysis template for the localization of the components on
the product axis.

1 Template ProductComponentPaths {
2 " Provide the paths to locate the components within the matrix on the product

axis."
3 as Aggregate Pathset
4 defined with path definition : {
5 path type AllPath
6 SourceStereotypes (nodeType :" product ")
7 TargetStereotypes (nodeType :" technology component ")
8 IncomingEdges (class: StructualDependentOf)
9 OutgoingEdges (class:ConsumedBy , class:Provide , class:LocatedAt , class:

StructualDependentOf)
10 }
11 }

Listing 8.4: Arla path analysis template for scenario 4.

The all path analysis mode is chosen and source and target elements of the paths are
product and technology component. The considered edge classes for path determination are
incoming and outgoing structural dependent of relations as well as outgoing consumed
by, provide and located at relations. A respective template has to be created to localize
the components on the process axis.
Figure 8.12 illustrates the construction of the product process matrix, based on the result

217

Chapter 8. Evaluation

Figure 8.12: Exemplary entry of the product process matrix for conformity analysis.

of the two path analyses. Depending on the actual EA model, the technology components
already represent the demanded technologies or they have a property determining it.
In the second case, only the property is presented within the matrix. The so created
matrix supports the identification of architecture parts that do not conform to the defined
reference architecture models.

8.3.5 Scenario 5: Structural analysis

Analysis approach: [LB09]
Technical dimension: Ontology
Functional dimension: Business objects, Design
Arla analysis class: Path analysis

The structural analysis proposed by [LB09] focuses on specific elements and relations that
are used within views. The views enable the assessment of the enterprise performance as
well as its structure from different perspectives. Examples for proposed analyses and the
corresponding views within [LB09] are:
• Aggregation-disaggregation analysis: Organizational view, process view, product
family view
• Market analysis: Product customer view, product market segment view
• Pareto analysis of resources or actors: rank products in terms of contribution to
revenue, profit, or units sold
• Outsourcing analysis: Activity resource view, activity actor views
• Reuse analysis: Product people view
• Value driver analysis: Product KPI view

Most of the views are visualized as a two-dimensional matrix. Within the cells an ‘x’
indicates a dependency between the entry of the row and the entry of the column. Alter-
natively, a number indicates the number of dependencies. An example result for such a
view is provided in figure 8.13. The rows represent products and the columns people that
perform activities within the processes. In the cells the number of activities the people per-
form for the product is provided. Within the underlying metamodel products are directly
related to activities, as well as a person is also directed related to an activity [LB09].
Within the A2F we can utilize the path analysis to determine the required information

218

8.3. Scenario-based Evaluation

Leung and Bockstedt: Structural Analysis of a Business Enterprise
Service Science 1(3), pp. 169-188, © 2009 SSG

179

product, or a customer to different stakeholders. Ultimately who is responsible for the process, product, or
customer? Is there any built-in conflict of interest of the different stakeholders due to their measurements, say?
These are important issues to consider when designing a process, but so far little research has addressed them.

Using the coffee shop example introduced in Section 3, Fig. 5 shows a product-people view, indicating who is
directly involved in producing the three products. (Note that in all of the following product-related views, only the
entities directly related to the product are computed. Entities that contribute indirectly to the product are not
included, but are easily computed if needed. For example, the store manager performs activities that contribute
indirectly to all the products but is not shown in Fig. 5.) The number in a cell indicates how many activities of that
product require the person. Fig. 6 shows a product-organization view, indicating which organization within the
enterprise is directly involved in producing the products. The number in a cell indicates how many activities of that
product require people from that organization. In this case all products happen to be made by the same organization
called DayShift. Fig. 7 shows an activity-people view, indicating who is performing the different activities. The
last column shows the total number of people required by that activity. Fig. 8 shows an activity-organization view,
indicating which organization within the enterprise is performing the different activities. The number in a cell
indicates how many people of that organization are required by that activity.

Figure 5 Product-People View (showing Number of Activities)

Figure 6 Product-Organization View (showing Number of Activities)

Figure 7 Activity-People View

Figure 8.13: Exemplary result for the product people view [LB09].

to fill the matrix. Therewith it is possible to abstract from the meta model, and a direct
relation is no longer required. Listing 8.5 provides exemplary one path configuration for
the creation of the product people view.

1 Template ProductActivityPaths {
2 " Provide the paths to locate the activities within the matrix on the product

axis."
3 as Aggregate Pathset
4 defined with path definition : {
5 path type AllPath
6 SourceStereotypes (nodeType :" product ")
7 TargetStereotypes (nodeType :" activity ")
8 }
9 }

Listing 8.5: Arla path analysis template for scenario 5.

This template determines the path set that is required to locate the activities according
to rows. Since we do not provide further restrictions about the relation types, all possible
paths of a given maximum length are determined. If desired, the relation type can be
further restricted. An additional template is required to locate the activities according to
the participating persons. Instead of visualizing the concrete activities within the matrix,
their total number is counted per cell and displayed.

8.3.6 Scenario 6: Data accuracy analysis

Analysis approach: [NBE14]
Technical dimension: Ontology
Functional dimension: Business objects, Design
Arla analysis class: Custom analysis (DFA)

[NBE14] propose a data accuracy analysis which estimates the accuracy of the data sets
provided in the EA model. The analysis relies on services that are related to data sets,
as well as on internal behavior elements, i.e. functions that accesses the data sets. The
authors assume that a data set contains N elements. A specific part of these elements
is accurate, the other part is inaccurate. This ratio may change if a service or function
processes the data set. For each service and each function, its correction rate as well as
its deterioration rate is provided. The current data set accuracy, i.e. the accuracy at time
t+ 1, can be defined with these two factors as well as the input data accuracy (time t).
This definition can be captured with DFA propagation rules. Thereby, the behavior of the
accuracy of the data set is simulated according to the presence of respective processing or
access relations.

1 @Rule(modelClass=ModelNode,attribute=accuracy)
2 Object data_accuracy(ModelNode node) {
3 int currentAccuracy = node.getPropertyValue(parameters.getInitialAccuracyUUID(),−1);
4 if(currentAccuracy < 0) return currentAccuracy

219

Chapter 8. Evaluation

5 for(ModelEdge modelEdge : node.getIncoming()){
6 int correctionRate = modelEdge.getSource().getPropertyValue(parameters.getCorrectionUUID(),−1)
7 int deteriorationRate = modelEdge.getSource().getPropertyValue(parameters.getDeteriorationUUID(),−1)
8 if(correctionRate == −1 || deteriorationRate −1) return currentAccuracy
9 currentAccuracy = currentAccuracy(1−correctionRate) + deteriorationRate (1−currentAccuracy)

10 }

11 for(ModelEdge modelEdge : node.getOutgoing()){...}
12 return currentAccuracy
13 }

Listing 8.6: DFA propagation rule for implementation of scenario 6.

Each ModelNode is extended with an attribute accuracy that is determined with the rule
in listing 8.6. The rule provides only a valid result, if the model node has a respective
initial accuracy property (lines 3, 4). This property identifies an element as data set.
The accuracy of the data set is calculated according to the related processing elements.
Therefore the incoming (lines 5 - 10) as well as the outgoing (line 11) relations are pro-
cessed. If the source, respectively target element, has a valid property for the correction
and deterioration rate (lines 6 - 8), the accuracy is updated (line 9).
In [NBE14] it is also possible to add uncertainty conditions for elements, relations and
properties. They are evaluated with a Monte Carlo simulation and provide further in-
formation about the quality of the result. Since this is not possible with the A2F, this
analysis approach is only partially covered.

8.3.7 Scenario 7: Social network analysis

Analysis approach: [KMP11]
Technical dimension: Social network
Functional dimension: Quality
Arla analysis class: Metric, Gap analysis

[KMP11] propose the extraction of social network data to create a graph of the employees of
an organization. The edges within the graph are defined by the sent and received emails.
From this graph, several characteristics can be derived to assess the organization and
communication structure. Examples are the total number of edges, the average number
of edges per node or the range of incoming or outgoing edges. These characteristics can
be captured using metrics in the A2F. For example, the template definition provided in
listing 8.7 provides the number of incoming edges per node.

1 Template IncomingEdgeDegree {
2 " Determines the number of incoming emails per employee "
3 as Element Metric
4 defined with calculation rule:
5 COUNT (incoming edgeType :" emails ");
6 for types (nodeType :" employee ")
7 }

Listing 8.7: Arla metric template for scenario 7.

With a subsequent scope analysis those processes can be identified, whose participants
communicate less via emails. They are potentially interesting for optimizations, since the
small number of emails could be a hint for much paper work [KMP11].
Additionally, it would be interesting to compare the employee list, according to the or-
ganigram of the organization, with the retrieved employees from the graph. This analysis

220

8.3. Scenario-based Evaluation

identifies persons that are either actual employees, but do not send any emails, or are no
longer employed at the organization. The difference can be captured with a gap analysis
in the A2F (see listing 8.8).

1 Analysis GapAnalysis {
2 " Comparison of the communication employees with the organizations organigram "
3 as Element Attribute
4 defined with gap configuration :
5 base model "http :// organization / organigram "
6 target model "http :// organization / communicationGraph "
7 calculate Differences
8 }

Listing 8.8: Arla gap analysis definition for scenario 7.

The gap analysis determines the status unaffected for each employee that is present
within the organigram and the communication graph. Employees only present within
the communication graph are identified as new and employees only in the organigram as
deletion candidate. Either they do not write emails or they already left the organiza-
tion, but the organigram was not updated.

8.3.8 Scenario 8: Performance and workload analysis

Analysis approach: [JI09]
Technical dimension: Ontology
Functional dimension: Business objects, Design
Arla analysis class: Performance analysis

The performance and workload analysis provided in [JI09] is completely captured with the
Arla analysis class Performance analysis. For the definition of the DFA propagation
rules the proposed procedure is used. The definition and implementation of the analysis
is described in sections 4.3.5 and 5.5.7.

8.3.9 Scenario 9: Business process support analysis

Analysis approach: [SK11]
Technical dimension: Views
Functional dimension: Business objects
Arla analysis class: Scope analysis (edge, node), Composed analysis

[SK11] present a formalization of viewpoints, required for business process support anal-
ysis. Within the A2F, we can implement the formalized definitions and enable the gener-
ation of the respective views using the scope analysis.
For example the elements Elt and the relations Rel within the business flow viewpoint
(BPFV) are defined with the following two definitions:

(1) Elt(BPFVAnBP) = {x|x ∈ AnBP ∪ SPAnBP }
(2) Rel(BPFVAnBP) = {(x, y)|(x, y ∈ AnBP ∪ SPAnBP) ∧ ((x, y) ∈ Triggering)}

AnBP is the set of analyzed business processes and SPANBP is the set of all behavior sub
elements of the analyzed business processes. These sub elements can be of the type sub
process, business function, business event, or business interaction and have to be related

221

Chapter 8. Evaluation

to the business process with an aggregation of composition relation. The set of analyzed
business process is represented in the A2F through the set of selected start elements.
For the implementation of the viewpoint, two different scope analysis templates have to
be provided (see listing 8.9). The first one (lines 1 - 9), restricts the elements according
to the presence of a relation to one of the start elements. The second one (lines 10 - 15)
further restricts the set according to the allowed element types.

1 Template BusinessFlowRelationRestriction {
2 " Provides the relation restriction for the business process flow viewpoint ."
3 as Aggregate Modelelementset
4 defined with scope definition : {
5 ModelEdge in: None out: None
6 BehavioralDependentOf in: Single out: Single
7 StructuralDependentOf in: None out: Single
8 }
9 }

10 Template BusinesFlowElementRestriction {
11 " Provides the element restriction for the business process flow viewpoint ."
12 as Aggregate Modelelementset defined with set definition :
13 nodeType :" business process " OR nodeType :" business function " OR
14 nodeType :" business event" OR nodeType :" business interaction "
15 }

16 Template BusinessProcessFlowViewpoint {
17 " Determines the flow viewpoint for a set of selected processes ."
18 as Aggregate Modelelementset defined with composition rule:
19 combine BusinessFlowRelationRestriction and BusinesFlowElementRestriction
20 with operation INTERSECTION
21 }

Listing 8.9: Arla gap analysis definition for scenario 9.

The elements of the final business process flow viewpoint have to be present within both
results. Thus, these templates are composed according to the composition rule in the
BusinessProcessFlowViewpoint analysis (lines 16 - 21). This analysis composes both
results according to the intersection operation.

8.3.10 Scenario 10: Wiki-based analysis

Analysis approach: [BMNS09]
Technical dimension: Structural
Functional dimension: Design
Arla analysis class: Scope analysis, Custom analysis (SPARQL)

[BMNS09] propose the usage of wikis for the documentation, the information communi-
cation and analysis of EA models. The wiki enables traceability of decisions through its
inherent versioning approach. Differentiating between minor and major changes restricts
the amount of information that has to assessed by the user. Within Arla, property condi-
tions of a scope analysis can be used to filter elements according to one of these conditions.
Assuming that the respective information is accessible in the model. The scope analysis
is also used to determine, for example, all elements tagged with business process.
Furthermore, an analysis of the property usage within the wiki is proposed to support the
creation of a consistent information model. This can be implemented in the A2F with
metrics by providing the usage ratio for each property.
Finally, [BMNS09] propose the comparison of different versions of a wiki page for an
element. Since the A2F does not provide initial support for time related analysis, this is

222

8.3. Scenario-based Evaluation

only partially covered. A custom SPARQL query can be used to implement this analysis.
For example, the query provided in listing 8.10 provides the values of all properties of an
element within two different versions.

1 SELECT ? element ? propertyStereotype ? valueNew ? valueOld
2 FROM <currentVersionUri>
3 WHERE {
4 ? newElement gmm:uuid ?uuid
5 ? newElement model: property ? newProperty .
6 ? newProperty model: stereotype ? propertyStereotype .
7 ? newProperty model:value ? valueNew .
8 GRAPH <oldVersionUri> {
9 ? oldElement gmm:uudi ?uuid.

10 OPTIONAL {
11 ? oldElement model: property ? oldProperty .
12 ? oldProperty model: stereotype ? propertyStereotype .
13 ? oldProperty model:value ? valueOld .
14 }
15 }
16 }

Listing 8.10: Custom SPARQL query for scenario 10.

We assume that the different versions of the model are represented with different named
graphs. The SPARQL query retrieves all properties of an element in the current model.
Additionally, it identifies the respective element within the previous version and optionally
provides the corresponding property values. If this property was not defined in the old
version, the element and the new value are anyway part of the result. Finally, the A2F
provides an AttributeValueResultMap, where for each element an entry for the property
stereotype, the new value and the old value is provided.

8.3.11 Scenario 11: Analysis of dependencies

Analysis approach: [FFJ09]
Technical dimension: Tree
Functional dimension: Dependencies
Arla analysis class: Impact, Metric, Custom analysis (DFA)

[FFJ09] propose the utilization of Fault Tree Analysis and Bayesian networks for depen-
dency analysis within EA models. Within in the A2F, we are not capable to perform the
dependency analysis on this level of detail. Nevertheless, it is possible to approximate the
result using the impact analysis. Custom DFA propagation rules can be used to provide
more detailed results including a quantification of the impact.
For example, the authors determine the impacts of computer failures and the absence of an
employee to the process quality. The effects on the process quality are represented within
a conditional probability matrix. Within the A2F, we approximate this with the discrete
impact types high, medium and low. For example, a high probability of a computer failure
has a high impact on the process quality.
Dependencies between the impact events can also be described with an element metric.
For example, a computer failure is dependent on an HDD failure, a screen failure and a
power outage. The probability of a computer failure can be defined with the Arla template
in listing 8.11. The probability of a powerOutage is independent from the element and
determined within another aggregated metric template.

223

Chapter 8. Evaluation

1 Template ComputerFailureProbability {
2 " Determine the number of threats with low probability value"
3 as Element Metric
4 defined with calculation rule:
5 (propertyType :"HDD failure probability " * propertyType :" screen failure

probability ") * powerOutage ;
6 for types (nodeType :" computer ")
7 }

Listing 8.11: Arla metric template for scenario 11.

8.3.12 Scenario 12: Availability weak point analysis

Analysis approach: [LLP+09]
Technical dimension: Weak point
Functional dimension:Attribute, Finance, Business objects
Arla analysis class: Path analysis, Metric

[LLP+09] propose a methodology for the analysis of availability weak points in deployment
framework of service-oriented architectures. Based on the relationships between business
workflows and IT resources an optimal high-availability recommendation is calculated.
The analysis, especially the optimization part, is not supported within the A2F. But
it is possible to implement the dependency elicitation as well as the calculation of the
availability measures. The different availability measures for workflow, application and IT
resources can be captured with an element metric.
The dependencies between the business workflows to the IT resources can be captured with
the path analysis provided in listing 8.12. Therein the services, the workflow is composed
of are considered as well as the applications they use and the resources these applications
are assigned to.

1 Template BusinessWorkflowResourcePath {
2 "Paths form a business workflow to the IT resources ."
3 as Aggregate Pathset
4 defined with path definition : {
5 path type CustomPath
6 SourceStereotypes (nodeType :" Business workflow ")
7 TargetStereotypes (nodeType :"IT resource ")
8 Incoming (edgeClass : ConsumedBy)
9 Outgoing (edgeClass : StructuralDependentOf , edgeClass : LocalizedAt)

10 }
11 }

Listing 8.12: Arla metric template for scenario 12.

224

8.4. Case Studies

8.4 Case Studies

Next to the scenario-based evaluation we employed the A2F within three case studies.
This was done in context of the two use cases weak point identification and EA planning,
described in chapter 6 and chapter 7. The case studies are used to evaluate to the following
issues:
Evaluate the following issues:
• Applicability of use case
• Flexibility and adaptability of the A2F
• Relevance

The applicability of the use cases is evaluated in terms of the out-of-the-box usage of
the provided templates within the case studies. Thereby, the generic applicability of the
templates is assessed as well as the quality of the provided results. If necessary, the scope
of adaptions to the templates is documented.
The flexibility and adaptability of the A2F is assessed through evaluating the effort for EA
data import. Also the possibility to define new custom analyses to cope with the specific
information demands in the case study is considered.
Finally, the usefulness of the retrieved results is considered to evaluate the relevance of the
artifacts. That means, it is assessed whether it was possible to determine weak points and
if the change process could be supported. The effort and the results provided by the A2F
are compared to the typical effort and results within a manual procedure. The manual
procedure is the typical approach, if no or only insufficient tool support is available.
Within section 8.4.1 the EA planning use case is applied to a medium-sized software
product company. Sections 8.4.2 and 8.4.3 provide two case studies realizing the weak
point use case. One is a microservice service landscape within a logistic company and the
other one a backend service landscape providing customer services within the automotive
sector.

8.4.1 Case study 1: EA planning

We applied the developed approach for scenario evaluation within a case study of a
medium-sized software product company. The company wants to shift the product de-
livery to a Software-as-a-Service (SaaS) model. The transformation is divided into three
main activities which result in three different planning scenarios: Cloud Business Man-
agement, SaaS Operational Support and SaaS Security and Policy. The scenarios have a
size between only 12 architectural elements and over 80 architectural elements.
The complete manual procedure for EA planning was described within the master thesis
[Gra15]. The master thesis provides a description of the current architecture, the desired
target scenarios as well as further planning steps like gap analysis and identification of
transformation hot spots. The master thesis was supervised by the author of this thesis.
For development and analysis of the three different scenarios, the following steps were
carried out:

1. Document the current architecture
2. Develop planning scenarios
3. Execute transformation analysis

225

Chapter 8. Evaluation

• Gap analysis
• Transformation analysis
• Future actions

Within gap analysis, the current architecture and the developed target scenarios are com-
pared with each other based on the contained elements. The differences are outlined and
for each element it is decided, whether it is included, impacted, new or eliminated. Addi-
tionally, the effects of the changes are discussed and potential ripple effects on direct and
indirect related elements are considered.
Within transformation analysis, the different changes that will be performed during the
scenario are further assessed. A hot spot provides an aggregation of several changes being
part of one topic area. The transformation hot spots are merely defined according to the
identified key process flows. These flows provide a view on the target architecture that is
related to one process and its affected events, functions and products.
Finally, to decide about future actions, the transformation hot spots are evaluated in terms
of potential preconditions and time constraints.
For the evaluation, we automated the steps proposed within the master thesis by utilizing
the proposed concepts in chapter 7. Additionally, we compared the generated domain
models with the manually created ones.

Applicability We implemented the proposed EA planning process for each scenario.
Within the first step the gap analysis was performed between the current architecture
and the proposed planning scenarios. Figure 8.14 provides the result for the cloud sce-
nario. In total eight elements of this scenario were identified as new elements (green ones).
The remaining elements were identified as affected (blue ones). In this planning scenario
no unaffected elements were identified. This was the same for the other two planning
scenarios. They only contain new and affected elements.

Figure 8.14: Gap analysis result for the cloud scenario.

Subsequently, the domain architectures were generated. The defined analysis templates
could be applied to all three scenarios without adaption. We also compared the generated
domain architectures with the manually created ones. In all cases the determined domain
architecture contains more elements than the manually created model. This is due to
the absence of unaffected elements within the target scenario model. We observed that
the rules for the generation of the domain architecture have to be adapted for the largest
scenario. Otherwise the generated target domain would be too large.
Finally, we verified the scope of the domain architecture with an impact analysis. Fig-
ure 8.15 provides an example of the result for a worst-case impact analysis of the deletion

226

8.4. Case Studies

Figure 8.15: Impact analysis result for the target architecture in the cloud scenario.

of one process. The result is visualized for the whole target architecture. According to this
result, the domain architecture was extended with further elements. The same occurs for
the smallest scenario. Here as well, the domain architecture was further extended based
on the result of the impact analysis. Mainly elements that use affected elements of the
planning scenario were added.
Within the large scenario, SaaS Operational Support, more than 70% of the contained
elements were identified as affected, the other 30% as new elements. After further con-
sideration of the model and the execution of an impact analysis, several of the affected
elements were identified as unaffected ones. Based on these findings, several elements were
excluded from the domain architecture to enable a better manageability of it.
Finally, the target domain architectures were evaluated through view generation. The
utilized key process views within the manual planning procedure can be created automat-
ically with Arla scope analyses. In figure 8.16 the key process view for the cloud business
management is presented. Thereby, we observed that the manual created views are not
complete. For example, within the Cloud Business Management scenarios a process was
overseen. Especially in the large projects, the subsequent view generation was essential
to assess the quality of the proposed scenarios and to determine the transformation hot
spots and future actions.

Figure 8.16: Key process view for cloud business management.

227

Chapter 8. Evaluation

Flexibility and adaptability The provided templates for scenario evaluation enabled a
quick and easy application of the proposed method. During the evaluation process we
identified needs for further customization of the proposed templates based on the retrieved
results. These demands could be realized with the available configuration options of the
Arla analysis classes.
Additionally, the proposed procedure for scenario evaluation could be mapped into the
approach performed within SaaS transformation planning. The first steps including gap
analysis, definition of the domain architecture and verification of the change effects were
performed manually before. Within the last step, the actual evaluation, the A2F provides
enough functionality to support the identification of hot spots and future actions. This
case study does not include a quantification of the scenarios. Our proposed planning
process as well as the A2F provide the required flexibility and adaptability to capture the
procedure of the case study.

Relevance Comparing the tool-supported artifacts with the manually retrieved ones,
the effort for their creation is significantly smaller. During the evaluation, several incon-
sistencies, especially missing elements, could be identified within the available scenario
architectures. The automated view generation supports the overall understanding for the
different scenarios.
Utilizing the predefined templates provides a fast first feedback regarding the relevant
domain and potential impacts. Within the first iteration, the manually created domain
architecture provides a higher quality. Based on the first feedback, more precise analyses
were defined. The generated domain architectures and determined impacts of these anal-
yses provide more suitable results. These analysis results uncovered inconsistencies within
the manually created models. The final view generation for the key processes was done
with custom scope analyses.
Summarizing, human input is still required during the whole planning processes. The
quality of the results of the automated analyses depend to a large extend on the user.
Nevertheless, it is still less effort than without analysis support. Due to the fast creation
of views, the user tends to create several different ones. This increases his understanding
of the scenarios and decreases the probability of overlooked effects.

8.4.2 Case study 2: Weak points regarding microservice characteristics

We applied the weak point use case within a service landscape consisting of about 50
services at a large logistic company. In a first step, the model quality was assessed, and
in a second step, the architecture was considered regarding the identified microservice
principles. The results of the weak point analysis were also discussed with the developers
and architects of the services.
The required architecture model was retrieved from the communication data between the
services. One data reporter was implemented to capture the data from the middleware
RabbitMQ [Piv07]. Another reporter implements the OpenTracing API [Ope19a] and
provides the synchronous communication data.
The data for the case study was retrieved during a system test. Thereby, 45 microser-
vices were identified which were clustered in 9 groups. 3 466 synchronous calls could be
aggregated to 14 different communication dependencies and another 49 847 asynchronous
calls to 57 dependencies. The major question within this case study was the coherence of

228

8.4. Case Studies

the landscape to the microservice principles. Nevertheless, we performed a model quality
assessment beforehand.
For evaluating the quality of the retrieved model, three different metrics were employed:
(1) Number of services not assigned to a services group
(2) Number of services without usages
(3) Adjusted number of total services

Within the adjusted number of total services, services without usages and without a service
group are ignored.
Six services were identified that have no assignment to a service group. These services
represent mocks that are used during the system test for the simulation of external systems.
The six services are not part of the actual service landscape. These services were kept
within the system, since the mock services only have one dependency to an internal service
and thus, have no significant effect on the later analysis results.
Additionally, five services without usage dependencies were identified and excluded for
later analyses. The adjusted number of services is 34. Services which are not part of the
system test are not contained within the data set. At least one missing service could be
identified. Summarizing, the quality of the model was observed as good by the developers
and architects.
The specific requirements regarding microservice assessment are all fulfilled by the model.
There exist elements that can be mapped to utilized variables service, interface and
realization. As well as there exists a property at interfaces with values synchronous
or asynchronous.
The metrics for microservice assessment were nearly all executed and the results are dis-
cussed with an architect of the development team. In figure 8.17 the evaluation of the
metric ‘Number of asynchronous dependencies’ is presented. According to the number of
dependencies, the services are colored with green, yellow and red.

Applicability The provided templates in chapter 6 could be utilized for assessing the
model quality as well as the microservice characteristics. The services without usages
and the services without service groups were identified through adapting the Missing-
RelationMetric (see listing 6.3). Adapting the template in listing 6.4, no endpoints could
be identified that are realized by more than one service.
Evaluating the requirements of the microservice assessment templates provides shortcom-
ings of the model regarding the metric M2, measuring security similarity, and M8, the
utilization degree of technologies. Since no respective properties are available, these met-
rics cannot be applied in this case study. The remaining templates could all be adapted
to the model of the case study.

Flexibility and adaptability The adaption procedure for Arla templates was sufficient for
the case study to assess the microservice quality. To evaluate the model quality, predefined
templates were used as well as individual Arla analyses were defined. Since the data was
derived from a system test, not the complete productive system was represented. In this
specific case, it was important to compare the adjusted number of services with the target
value. This was done with a new metric definition.

229

Chapter 8. Evaluation

Figure 8.17: Visualization of the number of asynchronous dependencies.

Relevance The metric results advance the discussion about the architectural design in
the team. The result for the metric ’asynchronous dependencies’ (provided in figure 8.17)
identifies one service that does not fulfill the principle of loosely coupled services. The
service marked red in the figure has a high number of asynchronous dependencies. Together
with its name (originally timetable), this indicates a violation of the principle domain-
driven-design.
Further implications from the evaluation were a missing data caching at a microservice
and a missing service in the system test. These issues were not known to the team before.
All over, the positive outcome of the metric evaluation confirms the perception of the team
having a quite good architecture.
The beforehand model quality assessment identifies those metrics templates which are not
applicable within this case study. The developers and architects can rely on the provided
metrics, since the data foundation is sufficient. The missing service, identified within the
adjusted number of services, will be included into system test in the future.

8.4.3 Case study 3: Weak points of a backend service landscape

The third case study deals with a large backend system providing customer services. The
service landscape comprises clusters which represent the provided products and applica-
tions which are a logical aggregation of services. Services provide their functionality via
interfaces to other services. The landscape is characterized by a large heterogeneity and
the target vision of independent clusters is out of reach. In total the landscape com-

230

8.4. Case Studies

prises 17 clusters, 148 applications, 458 services and about 650 usage dependencies (see
figure 8.18). An additional integration of the communication data from the Application
Performance Monitoring tool Dynatrace [Dyn19a] provides an incomplete list of databases,
their accesses by services and further communication dependencies between the services.
Within the case study a major demand was the model quality. Currently, the documenta-
tion of the service landscape was done in Excel files. Especially the usage dependencies,
but also information about the single elements is outdated and incomplete. Afterwards,
the model is used to assess the microservice characteristics as well as to identify weak
points according to the specific demands of the organization.
The model quality was determined with several template adaptions as well as further in-
dividual analysis configurations. Thereby, a large amount of isolated services, i.e. services
without a usage dependency, were identified. According to the architect, those 128 services
are either retired or the usage dependencies are not modeled. In all cases, this is due to a
bad quality of the model. There exists no service within the landscape without at least one
usage dependency. An additional metric determines in total 110 internal services that are
not assigned to a logical application. This too indicates the bad quality of the model.
Afterwards, the applications that are already marked as retired or as active-deprecated
are considered. From the three retired applications, one is still in use. This is also not
the case in the productive system and is due to outdated data. Additionally, eight active-
deprecated applications are also still in use. Either this is due to bad model quality as
above, but it could also point out weak points of the architecture. The services relying on
the functionality of those applications should be considered and eventually adapted.
Finally, the quality of the available properties was determined. Thereby, the properties
are checked for missing ones as well as for empty string fields or na values. About 20
interfaces have no valid entry for either transfer security and/or encryption.
With regard to the subsequent microservice assessment, the properties determining the
message size and call frequency are considered. In both cases no numeric values are pro-
vided, as demanded within the Arla templates. Within the model only discrete values are

Figure 8.18: Service landscape with a visualization of the synchronous cycle result.

231

Chapter 8. Evaluation

provided. Additionally, the values to determine asynchronous and synchronous communi-
cation are provided with different keywords.
The majority of the microservice templates can be applied to the model. However, the
validity of the results is low due to the bad model quality. We identified two synchronous
dependency cycles within the model (see figure 8.18 the red and green elements). In con-
trast to the previous case study, we were able to employ the security similarity metric
and the utilization degree for a technology. For the later one the SOAP percentage is
determined which is currently at 11%. In the first case, only 38 services have different
requirements at their interfaces regarding transfer security and encryption. The visual-
ization of this result is provided in figure 8.19. The red services are those ones where the
determined ratio is neither 1 or 0, i.e. there exist different security specifications at the
interfaces of this service.

Figure 8.19: Visualization of the security similarity result.

Applicability The majority of the provided templates from chapter 6 are applicable within
this case study. In specific the missing property metric was used to verify the existence
of a transfer, encryption, data volume and frequency property. An additional metric was
added to test for empty string values or the specific value na. The missing relation metric
was used to retrieve the isolated services without any usage. A customization of this
metric was used to determine the internal services without application. To assess the
retired or active-deprecated applications that are still in use, two new analysis definitions
were created that configure the respective metrics.
Considering the model requirements for microservice assessment, it turns out that the val-
ues for the properties data volume and frequency are unsuitable. The templates require
a numerical value, whereas within the model only discrete values are provided. Following
the templates for M3, M4 indicating their distribution and M7, determining the average
size of messages, cannot be applied. Additionally, the discrete values required to iden-
tify synchronous and asynchronous interfaces are slightly different. Thus, the respective

232

8.4. Case Studies

templates have to be adapted regarding the expected property value.

Flexibility and adaptability To enable the application of the predefined templates within
the model of this case study, several adaptions were required and could be performed
with less effort. To cope with the different ways of annotating the synchronous, respective
asynchronous, communication, those templates had to be redefined. The expected prop-
erty value had to be changed from synchronous to online synch. The structure of the
calculation was remained. To verify the absence of property specifications, the provided
template could be used but was not sufficient. We had to add further analysis definitions
that test e.g. for empty string values. Also the missing relation metric was adapted with
an additional property condition in order to restrict the services without applications to
the internal ones.
Additionally, we provide a new analysis definition to assess the database usage of services.
Using an element metrics, all databases are identified which are accessed by more than
one service. The current blueprint demands a one-to-one dependency between services
and databases to avoid static data dependencies. 6 of the 20 identified databases violate
the blueprint.

Relevance The results from the case study were valuable feedback for the responsible ar-
chitect. Up to this point, the mentioned Excel file was the foundation for further planning
activities and during decision-making. Shortly after our case study, the file was updated
and finally replaced with a new service catalog. The microservice assessment can only be
interpreted with caution, due to the bad model quality. Nevertheless the results indicate
that the organization requires several restructurings to reach their goals of a more homo-
geneous and loosely coupled landscape. Especially between the different clusters, the goal
of minimal dependencies is not fulfilled. Using the defined analyses, the progress regarding
homogenization and loosely coupling can be further monitored. Additionally, the model
quality analyses are further used to monitor the progress of updating the data. Despite the
metrics, we implemented respective views to outline the outdated or inconsistent elements
to support this process.

233

Chapter 8. Evaluation

8.5 Discussion

The A2F provides comprehensive analysis functionality for enterprise architecture models.
The representation of the model with the GMM enables its generic applicability and the
large coverage of the analysis language Arla provides access to several different analysis
types. For executing the analyses we utilize a combination of SPARQL and data-flow
based analysis. Both approaches are successfully applied in large application scenarios and
thus provide a scalable technical foundation for our analysis execution. The graph-based
query language SPARQL provides features to answer structural questions and extract
model parts. DFA is perfectly qualified to answer behavioral questions, execute recursive
analysis definitions and deal with cyclic dependencies. It enables a forward and also
backward traversing of the model.
Common practice is a visual inspection of the available EA models or the manual creation
of further views. If the relevant views are already available, it is obviously easier to
utilize them for decision-making. Within the case studies we observed that the quality
of the existing models is often not sufficient and that this fact is not known to the users.
Additionally, the consistency of manually created views cannot be ensured. Analysis
support enables the assessment of the quality as well as provides reliable views for further
processing. Additionally, specific demands like a database usage assessment can be directly
evaluated with respective metrics or views.
Major weakness of the proposed framework is the missing support for probabilistic analy-
sis approaches. Probabilistic techniques are widely used within EAM and meet several of
the information demands as well as they enable to deal with the uncertainty of the pro-
vided information. Additionally, the usability of the provided textual language should be
improved or replaces with user interfaces. Especially for the business-related stakeholders,
the textual language is not suitable.
In an additional case study we compared the model-based analysis approach to automated
tests to determine the effects of interface changes. The case study is described within the
bachelor thesis [Wet18] which was supervised by the author of this thesis. To determine
potential effects of interface changes within a customer relationship management system,
the architecture of the system was represented within AutoAnalyze. Using the provided
analysis functionality the effects of a semantic or syntactic change at an interface are
determined. The suitability of the model-based approach is compared to the suitability of
automated tests. The tests were implemented to ensure the compatibility of changes.
The model-based approach enables the approximation of the effects of syntactic as well
as semantic changes. However, the test-based approach provides the actual effects of a
change, but only in the syntactic case. The model-based approach has the short coming
of maintaining the model and ensuring a sufficient data quality. Whereas within the
test-based approach, the provided results depend on the quality of the executed tests.
In the following the proposed analysis framework A2F is finally discussed according to the
specified design goals in section 5.1.

Generic applicability The GMM enables a tool and meta model independent represen-
tation of the EA data for analysis execution. The adaption process for a specific EA
initiative is kept as simple as possible. The concept of element and relation classes, pro-
vides a mechanism to define generic analyses and execute them with small effort on a
specific model. Only during import definition the mapping of stereotypes to the classes

234

8.5. Discussion

has to be made once. Additionally, if more detailed semantics about the elements and re-
lations are required, it is possible to use stereotype variable within the analysis templates.
These variables have to be mapped to concrete EA model stereotypes before execution.
We were able the represent several different EA models, relying on different EA meta
models, with the GMM. These are the three models from the case studies. Additionally,
the EA model of a medium-sized manufacturing company, the EA model of automotive
manufacturer and those of a public administration were captured with the GMM.
The application of the provided templates in the use cases within the three case studies
proves the suitability of this representation format for analysis execution. Within the
medium-sized manufacturing company the impact, scope and path analysis are in produc-
tive use.

Universal interface With Arla a DSL is provided that enables a uniform interface to
common analysis activities during the EAM process. The overall coverage of the A2F
regarding existing EA analyses is quite high. More than 60% of the identified analysis
types within EAM can be captured with the A2F. An additional 20% of the types can
partially be captured with the A2F. Regarding the identified technical and functional
dimensions, the A2F covers nearly all. Only for the functional dimension System no
approach could be identified that is captured or partially captured with the A2F. This is
due to the major weakness of a missing support for probabilistic approaches like Bayesian
networks and Extended Influence Diagrams. All other technical dimensions are covered
or at least partially covered by Arla.

Custom analyses The language supports seven different analysis classes as well as the
possibility to integrate custom analysis definition using the DFA approach or individual
SPARQL queries. Each analysis class can be instantiated according to the configuration
possibilities. This enables the custom definition of views with the scope analysis as well as
of custom metrics. Also dependencies can be determined according to the current informa-
tion demand using the path analysis. This is important for the creation of the often-used
business support maps. Finally, the rules for the impact analysis can be customized to be
able to cover different impact types like changes or failures. The supported analysis com-
position enables the definition of more complex analyses and extends the expressiveness
of the language.

Declarative analysis definition The language Arla abstracts from all the technical details
during analysis definition. The concrete execution procedures are generated form the Arla
definition at runtime. For example views can be defined through defining the constraints
an element has to fulfill to be part of it. The verification procedure for these constraints is
generated from the analysis configuration. Also for the path analysis only the source and
target element types have to be provided as well as the considered relation types. The
remaining evaluation and conversion are performed by the A2F.

Re-use of analysis definitions The requested re-use of EA analyses is supported through
template definition within Arla. We evaluated the template mechanism through an appli-
cation of the two use cases within the case studies. If the data quality was sufficient, the
templates could be easily adapted within the respective case study. Especially templates

235

Chapter 8. Evaluation

like the missing property metric or the missing relation metric are highly reusable.
Re-use is also supported with the provided element and relation classes of the GMM. Anal-
yses can be defined while only referencing to those classes instead of concrete stereotypes.
In this case, even no mapping between the stereotypes of the templates and those of the
concrete EA model is required. The respective definition can be directly executed.
Additionally, we demonstrated the flexibility of the utilized technologies with a re-im-
plementation of the performance analysis proposed in [JI09]. The beforehand statically
defined execution procedure could be converted into a dynamic one using DFA propagation
rules. The determination of the performance measures relies only on the provided relation
classes and the presence of the required property values. The identifiers for the property
values are provided within the analysis configuration. Therewith, the performance analysis
is now executable independently from the utilized EA meta model.

Robustness regarding large models SPARQL as well as the utilized DFA approach are
well-proved technologies that are capable to deal with large models. Since we restricted
the concepts for data representations to RDFS there exists several implementations for
scalable reasoners as well as query engines. The DFA approach is already applied in
medium-sized as well as very large models.
The largest case study, case study 3, consists of about 1.200 model elements and 650
usage dependencies. Additionally, there are another 1.200 assignment and realization
dependencies between the model elements. The execution times for executing the impact
analysis, a scope analysis or a metric calculation are below 100ms on an average laptop.
The path analysis, the scope analysis and the impact analysis are currently in use within
a very large enterprise architecture. The EA model contains about 2.700 elements and
about 6.700 relations. Within the modeling tool, more than 250 different views in terms
of diagrams are created for its representation. We measured the analysis execution times
in two cases for the most complex analysis, the path analysis, on an average laptop. The
path analysis result is used for business support map creation. To retrieve the necessary
information one to three path configurations are executed. The results are used to locate
the elements within the support map.
In the first case, two path configurations with maximum path size 1 are executed. In
total 792 paths were determined in 500 ms on average. In the second case, three path
configurations are executed. The first two ones retrieve paths of the length 3, the third
one paths of the length 6. In this case in total 76.270 paths are identified in 16 seconds
on average.

Robust towards incomplete models Especially the third case study, the backend service
landscape, had the problem of insufficient data quality. With the beforehand assessment
of model quality in generic terms as well as analysis specific terms, valuable feedback could
be provided to the architect. Templates, for which the data was not present, were not
included during the assessment of the microservice principles. Additionally, parts of the
architecture with obviously outdated data were excluded. The execution procedures for
SPARQL and DFA are implemented in a robust way so that missing entries do not lead
to errors during evaluation.

236

8.5. Discussion

Round-trip-engineering The A2F was integrated as a plugin in the modeling tool Innova-
tor. Thereby, not only the model data is exported to execute the analyses, the determined
results are also provided back into the modeling tool. In specific the impact analysis is
used to apply a coloring to the available diagrams. The result of a scope analysis is used for
the generation of new diagrams and the path analysis result is used to generate business
support maps. These maps are also represented as diagrams within the tool.

237

9
Conclusion

239

Chapter 9. Conclusion

9.1 Summary

Within this thesis, we presented a comprehensive approach for EA analysis. Analyzing EA
models is an essential part within enterprise architecture management. They increase the
understanding of the current architecture and thus, enable the identification of weak points
and optimization potentials. The generic applicable approach supports the understanding,
the evaluation as well as the comparison of enterprise architecture models.
Analysis support is essential to handle the large and complex nature of EA models as well
as to fulfill the information demands of the stakeholders. The proposed architecture anal-
ysis framework fosters the assessment of the current architecture as well as the evaluation
and integration of planning scenarios. Figure 9.1 depicts the structure of the proposed
framework A2F. The three components, Generic Meta Model, Analysis Execution and
Analysis Definition Language, represent the main contributions to meet the objectives of
this thesis.

Figure 9.1: Overview of the architecture analysis framework (A2F).

Objective 1: Generic representation

Objective one, a generic representation for EA models that facilitates analysis execution,
is achieved with the Generic Meta Model GMM. This representation enables the re-use
of the existing EA models within an organization. One or more existing resources can
be integrated into one GMM model to create a holistic overview of the architecture. A
respective adapter has to be defined once, the actual conversion can be performed without
further user interaction. Thus, it is possible to make use of these existing models and
increase their utility (challenge one).
For analysis execution, a processable representation of the architecture as a model is
required. Within the EA domain there exists a plethora of different meta models that
propose concepts for the description (challenge two). A standard representation does not
exist and thus, it is essential that the analysis framework can deal with the variety. The
proposed Generic Meta Model (GMM) interprets an EA model as stereotyped graph. It is
used to describe the model itself as well as the corresponding meta model. An EA model
within the GMM consist of ModelNodes, ModelEdges and ModelProperties that represent
the elements and relations as well as their properties. The type of these elements is
captured with respective MetaModelNodes, MetaModelEdges and MetaModelProperties.
MetaModelEdges are further distinguished by MetaModelEdgeConnection that define the
concrete source and target MetaModelNodes. Finally, MetaModelNodes can be assigned

240

9.1. Summary

to a ModelLayer to depict the different hierarchies within the EA model. Therewith, it
is possible to represent most of the EA models, more concrete those EA models that are
specified in an object-oriented manner.
Additionally, the GMM includes an optional categorization approach for the different ele-
ment and relation types. Seven different relations classes and four different element classes
are provided to extend the generic GMM element with further semantics. The classes de-
pict commonly used concepts within EA models. The seven identified relation classes
are: Provide, located at, consumed by, structural dependent of, behavioral de-
pendent of, instance of and generalization. Relation types can be assigned to these
classes to enable the correct interpretation within predefined analyses. The proposed el-
ement classes are: Human, Process, Application and Infrastructure Component. The
classes provide an additional information despite the concrete type of an element. There-
with, analysis definitions can be provided without relying on a concrete meta model.

Objective 2: Generic architecture analysis framework

Objective two, the provisioning of a universally applicable analysis framework that is in-
dependent from the utilized meta model, is met through the combination of the different
components of the A2F. The Architecture Analysis Framework A2F encompasses three
components. One for model storage, one for analysis definition and one for analysis execu-
tion. Utilizing the GMM for model storage and Arla for analysis definition as well as the
previously presented execution approach fulfills objective two. Arla provides a uniform
interface towards the different analysis activities.
Analysis activities within EAM are implemented with various different analysis types.
Within [Rau13] we identified in total 40 analysis types within current literature. A com-
prehensive approach covering different types is missing [NSV14, BMS09, JNL07]. With
the Analysis Definition Language Arla we presented a declarative DSL that provides
a uniform interface to analysis activities. The language supports eight different analy-
sis classes that are customizable according to the current information demands of the
stakeholder. These are the Scope analysis, the Impact analysis, the Path analysis,
Metric calculation, the Performance analysis, the Gap analysis, the Adapted anal-
ysis and the Composed analysis.
With these eight mentioned classes it is possible to capture 60% of the identified analysis
types which addresses the challenge of the various different analysis approaches and the
necessity for an integrated one (challenge four). Another 20% of the types can be captured
with the definition of a Custom Analysis. This class allows the direct specification of
SPARQL queries or the reference to individual data-flow analysis configurations.
To be able to fulfill the varying and changing analysis needs of the stakeholders (chal-
lenge three), the analysis classes can be customized. Thereby the user defines ’what’ he
is interested in, the technical details for the implementation are generated. Re-use of
analysis definitions within Arla is supported with two mechanisms. One is the definition
of templates. A template provides a generic configuration for a specific analysis, indepen-
dent from a concrete meta model. Variables are used to reference meta model elements
instead of concrete stereotypes. Within an Adapted analysis, a template can be tailored
to a concrete EA model through providing a mapping of the variable to stereotypes. A
re-definition of the configuration details is not required.
The other one is the support of Arla for the proposed element and relation classes of

241

Chapter 9. Conclusion

the GMM. They can be used within templates and specific analysis definitions. A tem-
plate, only defined with classes, does not require any mapping for its execution. This
enables predefined out-of-the-box analyses while keeping independent form the utilized
meta model.
For the execution of the template and analysis definitions two different techniques are
employed. Structural requests are transformed into SPARQL queries, a query language
for RDF data. Behavioral requests, like the impact of an event, are evaluated with the
data-flow analysis. The combination of both techniques facilitates the implementation of
each analysis classes in Arla. The concrete execution routines are generated from the Arla
definitions, while considering the specific configurations made by the user. Utilizing these
techniques provides a scalable execution environment. SPARQL as well as DFA are proven
techniques, with reasonable response time also in large models. It is possible to consider
cyclic dependencies as well as to deal with missing information in the models.

Objective 3: Employ framework for architecture assessment

To fulfill objective three, the A2F is employed for the assessment of weak points as well
as the evaluation of planning scenarios. The A2F is employed to provide analysis support
within these use cases. The use cases depict different analysis activities of stakeholders
during EAM. Within each use case different views and evaluations are required (challenge
five).
The first one is the assessment of weak points within enterprise architectures. Based on
a preliminary assessment of the model quality, the architecture is evaluated regarding
possible weak points. This is exemplified with the assessment of microservice principles.
Based on challenges within practice and typical characteristics of microservice architec-
tures, nine metrics are defined to validate the adherence to the principles. The metrics for
microservice assessment as well as the metrics to evaluate the model quality are realized
with templates.
The second use case provides analysis support during EA planning, in specific for the
evaluation of planning scenarios. A combination of different analyses is proposed to eval-
uate a planning scenario regarding its conformance to the current principles and goals.
The relevant domain of a planning scenario is defined with a gap analysis, providing the
differences to the current architecture. The scope analysis retrieves the relevant part of
the current architecture that is affected by the planning scenario. An impact analysis
approximates potential ripple effects of the changes and thus ensures the consistency of
the scenario. Finally, the target architecture is assessed with quantitative measures as
well as the generation of views for qualitative assessment. The analysis support is realized
using Arla templates which enable the generic application of the evaluation method.

Objective 4: Evaluate the methods and the framework

To fulfill objective four, three case studies as well as a scenario-based evaluation are carried
out. They account for the applicability of the framework as well as its coverage regarding
existing analysis approaches. We identified twelve scenarios to prove the coverage of
Arla regarding the different functional and technical dimensions of EA analyses. Each
scenario depicts the implementation of one existing analysis approach from literature. All
covered and partially covered dimensions are addressed in at least one scenario. Only
the functional dimension System cannot be captured with Arla as well as the technical

242

9.1. Summary

dimensions depicting probabilistic approaches (Bayesian networks and Extended Influence
Diagrams).
For the application within the case studies we provided two implementations of the A2F.
One is a partial integration in the modeling tool Innovator, the other one is an almost
complete realization utilizing the AutoAnalyze modeling product. Within the case stud-
ies, we proofed the applicability of the provided templates within the use cases as well as
demonstrated the generic applicability of the framework. Each case study utilizes a dif-
ferent meta model and comprises different types of EA elements. The performed analyses
provide valuable feedback for the stakeholders which enhances their understanding of the
architecture and also points out weaknesses. The analysis support for the evaluation of
planning scenarios detected inconsistencies within the previously manually created domain
models.

243

Chapter 9. Conclusion

9.2 Future Work

There are two main focuses for future work. One is the improvement of the EA model
through considering more data sources and provide better integration possibilities. The
other one is the extension of Arla and the analysis execution with further functionality.
This includes an extension of the analysis classes regarding their expressiveness and also
the creation of a comprehensive collection of different analysis templates.
The quality of the analysis results is highly dependent of the quality of the EA model.
Integrating different sources into one model provides a more solid foundation for analysis
activities. It also enables the verification of manually created data, e.g. from EA tools,
with data about actual dependencies from monitoring tools and data logs. Thus, outdated
or missing data can be identified and the model quality can be increased. Future work
includes the creation of further model adapters to support those comparisons. Addition-
ally, the mapping possibilities for EA data from different sources have to be extended.
Reasoning over the RDF data set or the employment of rules can be applied for this
task.
Within future work the data representation with RDFS could be further extended to the
use of OWL. This enables more expressiveness, especially regarding relations between the
model elements. OWL allows the specification of multiplicities as well as the annota-
tion of inverse relations. In this case, it is possible to validate the quality of the model
automatically with reasoning techniques.
The second focus of future work addresses the expressiveness and coverage of Arla and the
A2F. Since probabilistic analyses are currently not supported, we will elaborate ways to
integrate them. For example, Bayesian reasoning (see e.g. [SBLH06]) can be integrated to
derive probabilities of certain events according to their probability distribution. Additional
probabilistic techniques allow the consideration of uncertainties regarding the existence of
relations, properties and elements (see e.g. [NBE14]). The integration of this techniques
enables the coverage of all identified functional and technical dimensions of EA analyses.
To enable more fine-grained analysis definitions by the user, the configurations for path,
impact and scope analysis will be extended. In the future, it should be possible to uti-
lize relation classes and stereotype references in combination. Thereby, the stereotype
references will overwrite the more generic relation classes. This decreases also the effort
for customization of existing analyses. The user can choose the templates that fits best
for his scenario and then only have to provide extensions for certain stereotypes that are
interpreted differently.
Additionally, to increase the independence of the analysis definition in Arla from a specific
meta model, future work will include further consideration of indirect dependencies within
analysis configurations. The results of the path analysis or results of a reasoning provide
the related elements and not the definition of a concrete relation type or relation class.
For example, the expression “realizing component” will not rely on a specific type, but on
a dynamic determination of this element. Thus, it is irrelevant if there are one or more
intermediate elements between the current element and its realizing component.
Future work will also include the extension of the analysis composition possibilities. Within
the case studies, we observed that the characteristics of paths, like their lengths, their total
number or the number of paths to one source node, are characteristics that are needed
within other analysis classes. Furthermore, it must be possible to assign a set of elements
as result for an element. A use case would be the determination of those applications

244

9.2. Future Work

that realize a business process. Also, the adaption of Arla templates will be extended
within future work. This includes support for overwriting a specified property value for
comparisons. Additionally, new analysis classes, like an analysis of strongly connected
components, or the direct support of date values are planned.
Finally, the provided implementation of the A2F within the modeling tool Innovator is
extended with the remaining analysis classes in future work. Thereby, the usability of the
proposed language is considered and improved. A user interface is developed to enable
the specification of analysis and templates definitions in a more user-friendly way.

245

Part V

Annex

247

Bibliography

[AAE16] N. Alshuqayran, N. Ali, and R. Evans. A systematic mapping study in
microservice architecture. In IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA). IEEE, 2016.

[ABF+09] S. Aier, S. Buckl, U. Franke, B. Gleichauf, P. Johnson, P. Närman, C.M.
Schweda, and J. Ullberg. A survival analysis of application life spans based
on enterprise architecture models. In 3rd International Workshop on Enter-
prise Modelling and Information Systems Architectures, 2009.

[ACS15] P. Andersen, A. Carugati, and M. G. Sørensen. Exploring Enterprise Archi-
tecture Evaluation Practices: The Case of a Large University. In Proceedings
of the 48th Hawaii International Conference on System Sciences (HICSS
15), 2015.

[AG10a] S. Aier and B. Gleichauf. Application of enterprise models for engineering
enterprise transformation. Enterprise Modelling and Information System
Architectures, 5(1):58–75, 2010.

[AG10b] S. Aier and B. Gleichauf. Applying Design Research Artifacts for Building
Design Research Artifacts: A Process Model for Enterprise Architecture
Planning. In Global Perspectives on Design Science Research. DESRIST
2010, volume 6105 of Lecture Notes in Computer Science. Springer, 2010.

[AGSW09] S. Aier, B. Gleichauf, J. Saat, and R. Winter. Complexity Levels of Repre-
senting Dynamics in EA Planning. In Advances in Enterprise Engineering
III. CIAO! 2009, EOMAS 2009, volume 34 of Lecture Notes in Business
Information Processing. Springer, 2009.

[AKRS08] S. Aier, S. Kurpjuweit, C. Riege, and J. Saat. Stakeholderorientierte Doku-
mentation und Analyse der Unternehmensarchitektur. In H.-G. Hegering,
A. Lehmann, H.J. Ohlbach, and C. Scheideler, editors, Proceedings of IN-
FORMATIK 2008 : Beherrschbare Systeme - dank Informatik. Gesellschaft
für Informatik, 2008.

[AMMN16] M. Amundsen, M. McLarty, M. Mitra, and I. Nadareishvili. Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly Media,
2016.

[ANT14] ANTLR. Another tool for language recognition ANTLR. In http://www.
antlr.org, 2014. Accessed 26/03/2019.

[APC+15] M. Amaral, J. Polo, D. Carrera, Mohomed I., M. Un-uvar, and M. Steinder.
Performance evaluation of microservices architectures using containers. In
IEEE 14th International Symposium on Network Computing and Applica-
tions (NCA). IEEE, 2015.

[APH10] A. Aryani, I.D. Peake, and M. Hamilton. Domain-based change propagation

249

http://www.antlr.org
http://www.antlr.org

Bibliography

analysis: An enterprise system case study. In IEEE International Conference
on Software Maintenance (ICSM). IEEE, 2010.

[Arc18] Architecture Capability Team. NAF Architecture Framework. Technical
Report Version 4, NATO, 2018.

[AS11] S. Aier and J. Saat. Understanding processes for model-based enterprise
transformation planning. International Journal of Internet and Enterprise
Management, 7(1), 2011.

[ASML12] F. Ahlemann, E. Stettiner, M. Messerschmidt, and C. Legner. Strategic
Enterprise Architecture Management. Springer, 2012.

[BBJ+11] S. Buckl, M. Buschle, P. Johnson, F. Matthes, and C. M Schweda. A meta-
language for EA information modeling. Enterprise, Business-Process and
Information Systems Modeling, page 511–525, 2011.

[BCW12] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering
in practice. Morgan & Claypool Publishers, 2012.

[Bea19] Phillip Beauvoir. Archi – Open Source ArchiMate Modelling. In https:
//www.archimatetool.com, 2019. Accessed 26/03/2019.

[BEL+07] S. Buckl, A.M. Ernst, J. Lankes, K. Schneider, and C.M. Schweda. A pat-
tern based approach for constructing enterprise architecture management
information models. In Wirtschaftinformatik Proceedings 2007, 2007.

[BFH+09] S. Buckl, U. Franke, O. Holschke, F. Matthes, C.M. Schweda, T. Sommes-
tad, and J. Ullberg. A pattern-based approach to quantitative enterprise
architecture analysis. In 15th Americas Conference on Information Systems
(AMCIS), 2009.

[BFKW06] T. Bucher, R. Fischer, S. Kurpjuweit, and R. Winter. Analysis and applica-
tion scenarios of enterprise architecture: An exploratory study. In 10th IEEE
International Enterprise Distributed Object Computing Conference Work-
shops (EDOCW 06). IEEE, 2006.

[BG14] D. Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation, 2014.
[BHS+12] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K. Shahzad. A Tool

for Automatic Enterprise Architecture Modeling. In S. Nurcan, editor, IS
Olympics: Information Systems in a Diverse World. CAiSE 2011, volume
107 of Lecture Notes in Business Information Processing. Springer, 2012.

[BLO03] L.C. Briand, Y. Labiche, and L. O’Sullivan. Impact analysis and change
management of UML models. In International Conference on Software
Maintenance (ICSM 2003). IEEE, 2003.

[BMNS09] S. Buckl, F. Matthes, C. Neubert, and C.M. Schweda. A wiki-based approach
to enterprise architecture documentation and analysis. In 17th European
Conference on Information Systems (ECIS 2009), 2009.

[BMS09] S. Buckl, F. Matthes, and C.M. Schweda. Classifying enterprise architecture
analysis approaches. In Enterprise Interoperability. IWEI 2009, volume 38
of Lecture Notes in Business Information Processing. Springer, 2009.

[Boh02] S.A. Bohner. Software change impacts-an evolving perspective. In Interna-
tional Conference on Software Maintenance (ICSM 2002). IEEE, 2002.

[BR88] V. R. Basili and H. D. Rombach. The TAME project: towards improvement-

250

https://www.archimatetool.com
https://www.archimatetool.com

Bibliography

oriented software environments. IEEE Transactions on Software Engineer-
ing, 14(6):758–773, 1988.

[BUF+11] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad. A tool
for enterprise architecture analysis using the PRM formalism. In Informa-
tion Systems Evolution, volume 72 of Lecture Notes in Business Information
Processing. Springer, 2011.

[BvSF+10] W. Bruls, M. van Steenbergen, R.M. Foorthuis, R. Bos, and S. Brinkkem-
per. Domain architectures as an instrument to refine enterprise architecture.
Communications of the Association for Information Systems, 27:517–540,
2010.

[BW05] C. Braun and R. Winter. A comprehensive enterprise architecture meta-
model and its implementation using a metamodeling platform. In J. Desel
and U. Frank, editors, Enterprise Modelling and Information Systems Ar-
chitectures - Proceedings of the Workshop in Klagenfurt. Gesellschaft für
Informatik, 2005.

[BWZ17a] J. Bogner, S. Wagner, and A. Zimmermann. Automatically masuring the
maintainability of service- and microservice-based systems - a literature re-
view. In Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Prod-
uct Measurement. ACM, 2017.

[BWZ17b] J. Bogner, S. Wagner, and A. Zimmermann. Towards a Practical Maintain-
ability Quality Model for Service-and Microservice-based Systems. In Pro-
ceedings of the 11th European Conference on Software Architecture: Com-
panion Proceedings. ACM, 2017.

[Car16] J. Carter. The Essential Project Team Blog - What about OWL? In https:
//www.enterprise-architecture.org/blogs/tag/owl/, 2016. Accessed
26/03/2019.

[CDK11] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design. Pearson, 2011.

[CHL+13] W. Chen, C. Hess, M. Langermeier, J. von Stülpnagel, and P. Diefenthaler.
Semantic Enterprise Architecture Management. In International Conference
on Enterprise Information Systems (ICEIS 13), 2013.

[CWL14] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation, 2014.

[DA09] M. R. Davoudi and F. S. Aliee. A New AHP-based Approach towards En-
terprise Architecture Quality Attribute Analysis. In Third International
Conference on Research Challenges in Information Science (RCIS 2009).
IEEE, 2009.

[DB13] P. Diefenthaler and B. Bauer. Gap Analysis in Enterprise Architecture using
Semantic Web Technologies. In 15h International Conference on Enterprise
Information Systems (ICEIS 2013), 2013.

[DB14] P. Diefenthaler and B. Bauer. From Gaps to Transformation Paths in En-
terprise Architecture Planning. In Enterprise Information Systems, volume
190 of Lecture Notes in Business Information Processing. Springer, 2014.

[dBBG+05] F.S. de Boer, M.M. Bonsangue, L.P.J. Groenewegen, A.W. Stam, S. Stevens,

251

https://www.enterprise-architecture.org/blogs/tag/owl/
https://www.enterprise-architecture.org/blogs/tag/owl/

Bibliography

and L. van der Torre. Change impact analysis of enterprise architectures. In
IEEE International Conference on Information Reuse and Integration (IRI
2005). IEEE, 2005.

[DBLR+11] M. Della Bordella, R. Liu, A. Ravarini, F.Y. Wu, and A. Nigam. Towards
a method for realizing sustained competitive advantage through business
entity analysis. In Enterprise, Business-Process and Information Systems
Modeling, volume 81 of Lecture Notes in Business Information Processing.
Springer, 2011.

[Dep10] Department of Defense, United States. The DoDAF Architecture Frame-
work Version 2.02. In http://dodcio.defense.gov/dodaf20.aspx, 2010.
Accessed 26/03/2019.

[DGL+17] N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina. Microservices: yesterday, today, and tomor-
row. In M. Mazzara and B. Meyer, editors, Present and Ulterior Software
Engineering, pages 195–216. Springer, 2017.

[Dyn19a] Dynatrace LLC. Dynatrace - Software Intelligenz für die Enterprise Cloud.
In https://www.dynatrace.de, 2019. Accessed 26/03/2019.

[Dyn19b] Dynatrace LLC. Top Challenges Facing CIOs in a Cloud-Native World.
In https://www.dynatrace.com/cloud-complexity-report/, 2019. Ac-
cessed 26/03/2019.

[Ecl18a] Eclipse Foundation. Eclipse Modeling Framework (EMF). In https://www.
eclipse.org/modeling/emf/, 2018. Accessed 26/03/2019.

[Ecl18b] Eclipse Foundation. Xtext - Language Engineering for Everyone. In https:
//www.eclipse.org/Xtext/, 2018. Accessed 17/01/2019.

[EFJ+09] M. Ekstedt, U. Franke, P. Johnson, R. Lagerstrom, T. Sommestad, J. Ull-
berg, and M. Buschle. A tool for enterprise architecture analysis of maintain-
ability. In 13th European Conference on Software Maintenance and Reengi-
neering. IEEE, 2009.

[EHH+08] G. Engels, A. Hess, B. Humm, O. Juwig, and M. Lohmann. Quasar enter-
prise: Anwendungslandschaften serviceorientiert gestalten. dpunkt.verlag,
2008.

[ELBH18] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann. Evaluation
of Microservice Architectures: A Metric and Tool-Based Approach. In
J. Mendling and H. Mouratidis, editors, Information Systems in the Big
Data Era. CAiSE 2018, volume 317 of Lecture Notes in Business Informa-
tion Processing. Springer, 2018.

[Eng17] T. Engel. Evaluation von Microservice-Architekturen: Definition von
Metriken und Entwicklung eines Analysetools. Master thesis, University
of Augsburg, 2017.

[Eva03] E.J. Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison Wesley, 2003.

[Exe12] Executive Office of the President of the U.S. The common approach to
federal enterprise architecture. In https://obamawhitehouse.archives.
gov/sites/default/files/omb/assets/egov_docs/common_approach_
to_federal_ea.pdf, 2012. Accessed 26/03/2019.

252

http://dodcio.defense.gov/dodaf20.aspx
https://www.dynatrace.de
https://www.dynatrace.com/cloud-complexity-report/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf

Bibliography

[FAB+11] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke. Au-
tomation processes for enterprise architecture management. In 15th IEEE
International Enterprise Distributed Object Computing Conference Work-
shops (EDOCW 11). IEEE, 2011.

[FB08] R. Foorthuis and S. Brinkkemper. Best Practices for Business and Sys-
tems Analysis in Projects Conforming to Enterprise Architecture. Enterprise
Modelling and Information Systems Architectures, 3(1):36–47, 2008.

[FFJ09] U. Franke, Waldo R. Flores, and P. Johnson. Enterprise architecture depen-
dency analysis using fault trees and Bayesian networks. In Proceedings of the
2009 Spring Simulation Multiconference. Society for Computer Simulation
International, 2009.

[FHBB12] R. Foorthuis, F. Hofman, S. Brinkkemper, and R. Bos. Compliance Assess-
ments of Projects Adhering to Enterprise Architecture. Journal of Database
Management, 23(2):44–71, 2012.

[FHK09] U. Frank, D. Heise, and H. Kattenstroth. Use of a domain specific mod-
eling language for realizing versatile dashboards. In Proceedings of the 9th
OOPSLA workshop on domain-specific modeling (DSM). Helsinki Business
School, 2009.

[FJdW97] H.M. Franken, H. Jonkers, and M.K. de Weger. Structural and quantitative
perspectives on business process modelling and analysis. In Proceedings of
the 11th European Simulation Multiconference. Citeseer, 1997.

[FL14] M. Fowler and J. Lewis. Microservices - a definition of this new archi-
tectural term. In https://martinfowler.com/articles/microservices.
html, 2014. Accessed 26/03/2019.

[FML17] P. D. Francesco, I. Malavolta, and P. Lago. Research on Architecting Mi-
croservices: Trends, Focus, and Potential for Industrial Adoption. In IEEE
International Conference on Software Architecture (ICSA). IEEE, 2017.

[Fou18] The Apache Software Foundation. Apache Jena. In https://jena.apache.
org, 2018. Accessed 26/03/2019.

[Fra11] U. Frank. The MEMO Meta Modelling Language (MML) and Language
Architecture. ICB-Research Report 43, University Duisburg-Essen, 2011.
2nd edition.

[Fra14] U. Frank. Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges. Software & Systems Modeling,
13(3):941–962, 2014.

[GCF+17] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and
A. D. Salle. Towards Recovering the Software Architecture of Microservice-
Based Systems. In 2017 IEEE International Conference on Software Archi-
tecture Workshops (ICSAW), 2017.

[Gra15] J. Gräupner. Transformation from a product house to a SaaS provider from
the viewpoint of Enterprise Architecture Management by the case example
MID GmbH. Master thesis, University of Augsburg, 2015.

[Han13] I. Hanschke. Strategisches Management der IT-Landschaft: Ein praktischer
Leitfaden für das Enterprise Architecture Management. Carl Hanser Verlag,
2013.

253

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://jena.apache.org
https://jena.apache.org

Bibliography

[HBLE14] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt. Automatic data
collection for enterprise architecture models. Software & Systems Modeling,
13(2):825–841, 2014.

[HGR13] S. Harris, N. Gibbins, and A. Riddoch. 3store. In http://sourceforge.
net/projects/threestore, 2013. Accessed 26/03/2019.

[HHKR16] I. Hanschke, S. Hanschke, A. Kozlovskaya, and M. Rempte. EAM-Tool-
Survey 2015/2016, 2016.

[HKP+12] P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, and S. Rudolph.
OWL 2 Web Ontology Language Primer (Second Edition). W3C Recom-
mendation, 2012.

[HMPR04] A.R. Hevner, S.T. March, J. Park, and S. Ram. Design Science in Informa-
tion Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[HNF+09] O. Holschke, P. Närman, W.R. Flores, E. Eriksson, and M. Schönherr. Using
Enterprise Architecture Models and Bayesian Belief Networks for Failure
Impact Analysis. In Feuerlicht G. and Lamersdorf W., editors, Service-
Oriented Computing – ICSOC 2008 Workshops. ICSOC 2008, volume 5472
of Lecture Notes in Computer Science. Springer, 2009.

[HRSM13] M. Hauder, S. Roth, C. Schulz, and F. Matthes. Current tool support for
metrics in enterprise architecture management. In MetriKon 2013, 2013.

[HS17] W. Hasselbring and G. Steinacker. Microservice Architectures for Scala-
bility, Agility and Reliability in E-Commerce. In 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE, 2017.

[IFI99] IFIP–IFAC Task Force on Architectures for Enterprise Integration.
GERAM: Generalised Enterprise Reference Architecture and Methodology.
In Handbook on Enterprise Architecture. International Handbooks on Infor-
mation Systems. Springer, 1999.

[Ins19] Instana GmbH. Instana. In https://www.instana.com/, 2019. Accessed
26/03/2019.

[IOB06] F. Innerhofer-Oberperfler and R. Breu. Using an enterprise architecture
for it risk management. In Proceedings of the ISSA 2006 from Insight to
Foresight Conference, 2006.

[ISO11a] ISO/IEC 9075:2011. Information technology - Database languages - SQL.
International standard, 2011.

[ISO11b] ISO/IEC/IEEE 42010:2011. Systems and software engineering - architecture
description. International Standard V1, 2011.

[ite18] iteratec GmbH. iteraplan Query Console. In https://doc.iteraplan.de/
display/iteraplan64/Query+Console, 2018. Accessed 26/03/2019.

[ite19] iteratec GmbH. iteraplan. In https://www.iteraplan.de, 2019. Accessed
26/03/2019.

[JBR+99] H. Jonkers, P. Boekhoudt, M. Rougoor, E. Wierstra, et al. Completion time
and critical path analysis for the optimisation of business process models.
In Summer Computer Simulation Conference. Citeseer, 1999.

[JI09] H. Jonkers and M.-E. Iacob. Performance and cost analysis of service-
oriented enterprise architectures. In Global Implications of Modern En-

254

http://sourceforge.net/projects/threestore
http://sourceforge.net/projects/threestore
https://www.instana.com/
https://doc.iteraplan.de/display/iteraplan64/Query+Console
https://doc.iteraplan.de/display/iteraplan64/Query+Console
https://www.iteraplan.de

Bibliography

terprise Information Systems: Technologies and Applications, pages 49–73.
Information Science Reference, 2009.

[JJ05] E. Johansson and P. Johnson. Assessment of enterprise information security-
an architecture theory diagram definition. In Proceedings of 3rd Annual
Conference on Systems Engineering Research (CSER 05), 2005.

[JJSU07] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg. A tool for en-
terprise architecture analysis. In 11th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 07). IEEE, 2007.

[JLNS07a] P. Johnson, R. Lagerström, P. Närman, and M. Simonsson. Enterprise ar-
chitecture analysis with extended influence diagrams. Information Systems
Frontiers, 9(2-3):163–180, 2007.

[JLNS07b] P. Johnson, R. Lagerström, P. Närman, and M. Simonsson. Extended influ-
ence diagrams for system quality analysis. Journal of Software, 2(3):30–42,
2007.

[JNL07] P. Johnson, L. Nordström, and R. Lagerström. Formalizing analysis of enter-
prise architecture. In G. Doumeingts, J. Müller, G. Morel, and B. Vallespir,
editors, Enterprise Interoperability. Springer, 2007.

[JUB+13] P. Johnson, J. Ullberg, M. Buschle, U. Franke, and K. Shahzad. P2AMF:
Predictive, Probabilistic Architecture Modeling Framework. In Enterprise
Interoperability. IWEI 2013, volume 144 of Lecture Notes in Business Infor-
mation Processing. Springer, 2013.

[KA09] S. Kurpjuweit and S. Aier. Ein allgemeiner Ansatz zur Ableitung von Ab-
hängigkeitsanalysen auf Unternehmensarchitekturmodellen. In Wirtschaft-
informatik Proceedings 2009, 2009.

[KAV05] S. H. Kaisler, F. Armour, and M. Valivullah. Enterprise Architecting: Crit-
ical Problems. In Proceedings of the 38th Annual Hawaii International Con-
ference on System Sciences (HICSS 05). IEEE, 2005.

[Kil73] G.A. Kildall. A unified approach to global program optimization. In Proceed-
ings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. ACM, 1973.

[Kil16] T. Killalea. The Hidden Dividends of Microservices. Communications of the
ACM, 59(8):42–45, 2016.

[KMKB14] J. Kienberger, P. Minnerup, S. Kuntz, and B. Bauer. Analysis and Validation
of AUTOSAR Models. In 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD). IEEE, 2014.

[KMP11] P. Kazienko, R. Michalski, and S. Palus. Social network analysis as a tool
for improving enterprise architecture. In Agent and Multi-Agent Systems:
Technologies and Applications. KES-AMSTA 2011, volume 6682 of Lecture
Notes in Computer Science. Springer, 2011.

[Krc05] H. Krcmar. Informationsmanagement. Springer, 2005.
[KRRR08] A. Kumar, P. Raghavan, J. Ramanathan, and R. Ramnath. Enterprise

interaction ontology for change impact analysis of complex systems. In IEEE
Asia-Pacific Services Computing Conference (APSCC 08). IEEE, 2008.

[KW07] S. Kurpjuweit and R. Winter. Viewpoint-based Meta Model Engineering.
In 2nd International Workshop on Enterprise Modelling and Information

255

Bibliography

Systems Architectures (EMISA 2007). Gesellschaft für Informatik, 2007.
[Lan12] M. Lankhorst. Enterprise Architecture at Work. Springer, 2012.
[LB09] Y.T. Leung and J. Bockstedt. Structural analysis of a business enterprise.

Service Science, 1(3):169–188, 2009.
[LB17] M. Langermeier and B. Bauer. Generic EA Analysis Framework for the

definition and automatic execution of analyses. In International Conference
on Enterprise Information Systems (ICEIS 17), 2017.

[LB18a] M. Langermeier and B. Bauer. A Model-Based Method for the Evaluation
of Project Proposal Compliance within EA Planning. In 22nd IEEE Inter-
national Enterprise Distributed Object Computing Workshop (EDOCW 18).
IEEE, 2018.

[LB18b] M. Langermeier and B. Bauer. Evaluating Project Compliance During EA
Planning: A Model-based Semi Automatic Method for Enterprise Archi-
tecture Planning. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings. ACM, 2018.

[LDL+13] F. Lautenbacher, P. Diefenthaler, M. Langermeier, M. Mykhashchuk, and
B. Bauer. Planning Support for Enterprise Changes. In The Practice of
Enterprise Modeling. PoEM 2013, volume 165 of Lecture Notes in Business
Information Processing. Springer, 2013.

[Lea19] LeanIX GmbH. LeanIX - Next-Generation Enterprise Architecture Manage-
ment. In https://www.leanix.net/, 2019. Accessed 26/03/2019.

[LJ08] R. Lagerstrom and P. Johnson. Using architectural models to predict the
maintainability of enterprise systems. In 12th European Conference on Soft-
ware Maintenance and Reengineering. IEEE, 2008.

[LJE10] R. Lagerström, P. Johnson, and M. Ekstedt. Architecture analysis of enter-
prise systems modifiability: a metamodel for software change cost estima-
tion. Software Quality Control, 18(4):437–468, 2010.

[LJJ+06] Å. Lindström, P. Johnson, E. Johansson, M. Ekstedt, and M. Simonsson.
A survey on CIO concerns - do enterprise architecture frameworks support
them? Information Systems Frontiers, 8(2):81–90, 2006.

[LJW+16] B. Lantow, D. Jugel, M. Wißotzki, B. Lehmann, O. Zimmermann, and
K. Sandkuhl. Towards a classification framework for approaches to enterprise
architecture analysis. In The Practice of Enterprise Modeling. PoEM 2016,
volume 267 of Lecture Notes in Business Information Processing. Springer,
2016.

[LLP+09] J. Luo, Y. Li, J. Pershing, L. Xie, and Y. Chen. A methodology for analyzing
availability weak points in soa deployment frameworks. IEEE Transactions
on Network and Service Management, 6(1):31–44, 2009.

[LSB14a] M. Langermeier, C. Saad, and B. Bauer. Adaptive approach for impact anal-
ysis in enterprise architectures. In Shishkov B., editor, Business Modeling
and Software Design. BMSD 2014, volume 220 of Lecture Notes in Business
Information Processing. Springer, 2014.

[LSB14b] M. Langermeier, C. Saad, and B. Bauer. Context-Sensitive Impact Analy-
sis for Enterprise Architecture Management. In Proceedings of the Fourth
International Symposium on Business Modeling and Software Design, 2014.

256

https://www.leanix.net/

Bibliography

[LSB14c] M. Langermeier, C. Saad, and B. Bauer. A unified framework for enterprise
architecture analysis. In 18th IEEE International Enterprise Distributed Ob-
ject Computing Conference Workshops and Demonstrations (EDOCW 14).
IEEE, 2014.

[MBLS08] F. Matthes, S. Buckl, J. Leitel, and C.M. Schweda. Enterprise Architec-
ture Management Tool Survey 2008. Technical report, Technical University
Munich, 2008.

[MID19] MID GmbH. Innovator for Enterprise Architects. In https://www.mid.de/
leistungen/tools/innovator/enterprise-architects, 2019. Accessed
26/03/2019.

[Min12] Ministry of Defence, United Kingdom. MOD Architecture Framework.
In https://www.gov.uk/guidance/mod-architecture-framework, 2012.
Accessed 26/03/2019.

[MMSS11] F. Matthes, I. Monahov, A. Schneider, and C. Schulz. EAM KPI Catalog.
Technical Report v 1.0, Technical University Munich, 2011.

[NBE14] P. Närman, M. Buschle, and M. Ekstedt. An enterprise architecture frame-
work for multi-attribute information systems analysis. Software & Systems
Modeling, 13(3):1085–1116, 2014.

[New15] S. Newman. Building Microservices. O’Reilly and Associates, 2015.
[NFK+12] P. Närman, U. Franke, J. König, M. Buschle, and M. Ekstedt. Enterprise

architecture availability analysis using fault trees and stakeholder interviews.
Enterprise Information Systems, 8(1):1–25, 2012.

[NFT+17] E. Nowakowski, M. Farwick, T. Trojer, M. Häusler, J. Kessler, and R. Breu.
Enterprise Architecture Planning: Analyses of Requirements from Practice
and Research. In Proceedings of the 50th Annual Hawaii International Con-
ference on System Sciences (HICSS 17), 2017.

[Nie06] K.D. Niemann. From enterprise architecture to IT governance. Springer,
2006.

[NJN07] P. Narman, P. Johnson, and L. Nordstrom. Enterprise architecture: A
framework supporting system quality analysis. In 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007). IEEE,
2007.

[NSJ+08] P. Narman, M. Schonherr, P. Johnson, M. Ekstedt, and M. Chenine. Using
enterprise architecture models for system quality analysis. In 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference (EDOC
08). IEEE, 2008.

[NSV14] D. Naranjo, M. Sánchez, and J. Villalobos. Towards a unified and modular
approach for visual analysis of enterprise models. In 18th IEEE Interna-
tional Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW 14). IEEE, 2014.

[NSV15] D. Naranjo, M. Sánchez, and J. Villalobos. Primrose: A graph-based ap-
proach for enterprise architecture analysis. In Cordeiro J., Hammoudi S.,
Maciaszek L., Camp O., and Filipe J., editors, Enterprise Information Sys-
tems. ICEIS 2014., volume 227 of Lecture Notes in Business Information
Processing. Springer, 2015.

257

https://www.mid.de/leistungen/tools/innovator/enterprise-architects
https://www.mid.de/leistungen/tools/innovator/enterprise-architects
https://www.gov.uk/guidance/mod-architecture-framework

Bibliography

[Obj13] Object Management Group. Unified Profile for DoDAF and MODAF. OMG
Specification V 2.1, 2013.

[Obj16] Object Management Group. Meta Object Facility. OMG Specification, 2016.
[Obj17] Object Management Group. Unified Modeling Language. OMG Specification

V 2.5.1, 2017.
[OLB15] M. Osenberg, M. Langermeier, and B. Bauer. Using Semantic Web Technolo-

gies for Enterprise Architecture Analysis. In F. Gandon, M. Sabou, H. Sack,
C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann, editors, The Seman-
tic Web. Latest Advances and New Domains. ESWC 2015, volume 9088 of
Lecture Notes in Computer Science. Springer, 2015.

[Ope19a] OpenTracing Specification Council. OpenTracing - Vendor-neutral APIs and
instrumentation for distributed tracing. In https://opentracing.io, 2019.
Accessed 26/03/2019.

[Ope19b] OpenZipkin volunteer organization. Zipkin. In http://zipkin.io/, 2019.
Accessed 26/03/2019.

[Ora19] Oracle Corporation. Oracle Spatial and Graph RDF Knowledge
Graph. In https://www.oracle.com/technetwork/database/options/
spatialandgraph/overview/rdfsemantic-graph-1902016.html, 2019.
Accessed 26/03/2019.

[Ose17] M. Osenberg. Formale Spezifikation von Analyseanforderungen im Enter-
prise Architecture Management. Master thesis, University of Augsburg,
2017.

[PH05] M. Pulkkinen and A. Hirvonen. EA Planning, Development and Manage-
ment Process for Agile Enterprise Development. In Proceedings of the 38th
Annual Hawaii International Conference on System Sciences (HICSS 05),
2005.

[Piv07] Pivotal Software Inc. RabbitMQ. In https://www.rabbitmq.com, 2007.
Accessed 26/03/2019.

[PSP12] H. Plessius, R. Slot, and L. Pruijt. On the categorization and measurabil-
ity of enterprise architecture benefits with the enterprise architecture value
framework. In Trends in Enterprise Architecture Research and Practice-
Driven Research on Enterprise Transformation. PRET 2012, TEAR 2012,
volume 131 of Lecture Notes in Business Information Processing. Springer,
2012.

[Pul06] M. Pulkkinen. Systemic Management of Architectural Decisions in Enter-
prise Architecture Planning. Four Dimensions and Three Abstraction Levels.
In Proceedings of the 39th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS 06), volume 8, 2006.

[Rau13] J. Rauscher. Analysen in Unternehmensarchitekturen - Ziele, Techniken,
Anwendungsbereiche. Bachelor thesis, University of Augsburg, 2013.

[Rau15] J. Rauscher. Anforderungen an und Definition von einer Analysesprache
für das Enterprise Architecture Management. Master thesis, University of
Augsburg, 2015.

[RDF19] Eclipse RDF4J. RDF4J 2.5.0 released. In http://rdf4j.org, 2019. Ac-
cessed 26/03/2019.

258

https://opentracing.io
http://zipkin.io/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
https://www.rabbitmq.com
http://rdf4j.org

Bibliography

[RGA07] G. Riempp and S. Gieffers-Ankel. Application portfolio management: a
decision-oriented view of enterprise architecture. Information Systems and
e-Business Management, 5(4):359–378, 2007.

[RHF+13] S. Roth, M. Hauder, M. Farwick, R. Breu, and F. Matthes. Enterprise
Architecture Documentation: Current Practices and Future Directions. In
Wirtschaftsinformatik Proceedings 2013, 2013.

[RLB16] J. Rauscher, M. Langermeier, and B. Bauer. Characteristics of Enterprise
Architecture Analyses. In Proceedings of the Sixth International Symposium
on Business Modeling and Software Design, 2016.

[RLB17] Julia Rauscher, Melanie Langermeier, and Bernhard Bauer. Classification
and definition of an enterprise architecture analyses language. In Business
Modeling and Software Design. BMSD 2016, number 275 in Lecture Notes
in Business Information Processing. Springer, 2017.

[Saa10] J. Saat. Zeitbezogene Abhängigkeitsanalysen der Unternehmensarchitektur,
booktitle = Multikonferenz Wirtschaftsinformatik 2010. 2010.

[Saa14] C. Saad. Data-flow based Model Analysis - Approach, Implementation and
Applications. PhD thesis, University of Augsburg, 2014.

[SB11] Christian S. and Bernhard B. The Model Analysis Framework - An IDE
for Static Model Analysis. In Proceedings of the Industry Track of Soft-
ware Language Engineering (ITSLE) in the context of the 4th International
Conference on Software Language Engineering (SLE’11), 2011.

[SB13] C. Saad and B. Bauer. Data-flow based Model Analysis and its Applications.
In Moreira A., Schätz B., Gray J., Vallecillo A., and Clarke P., editors,
Model-Driven Engineering Languages and Systems. MODELS 2013, volume
8107 of Lecture Notes in Computer Science. Springer, 2013.

[SBLH06] N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web Revisited.
IEEE Intelligent Systems, 21(3):96–101, 2006.

[SH93] S.H. Spewak and S.C. Hill. Enterprise Architecture Planning: Developing a
Blueprint for Data, Applications and Technology. QED Information Sciences,
1993.

[Sha17] S. Sharma. Mastering Microservices with Java 9. Packt Publishing, 2017.
[SK11] A. Sasa and M. Krisper. Enterprise architecture patterns for business process

support analysis. Journal of Systems and Software, 84(9):1480–1506, 2011.
[SKR13a] S. Sunkle, V. Kulkarni, and S. Roychoudhury. Analyzable enterprise models

using ontology. In Proceedings of CAiSE Forum, 2013.
[SKR13b] S. Sunkle, V. Kulkarni, and S. Roychoudhury. Analyzing enterprise models

using enterprise architecture-based ontology. In Model-Driven Engineering
Languages and Systems. MODELS 2013, volume 8107 of Lecture Notes in
Computer Science. Springer, 2013.

[Sof15] OpenLink Software. About OpenLink Virtuoso. In https://virtuoso.
openlinksw.com, 2015. Accessed 26/03/2019.

[sof18] soffico GmbH. Orchestra – agile Middleware. In https://orchestra.
soffico.de, 2018. Accessed 26/03/2019.

[Sof19a] Softplant GmbH. Semantic Enterprise Architecture Man-

259

https://virtuoso.openlinksw.com
https://virtuoso.openlinksw.com
https://orchestra.soffico.de
https://orchestra.soffico.de

Bibliography

agement. In https://www.softplant.de/portfolio-item/
semantic-enterprise-architecture-management/, 2019. Accessed
26/03/2019.

[Sof19b] Software AG. Alfabet - Plan your IT to power innovation. In http://
alfabet.softwareag.com, 2019. Accessed 26/03/2019.

[SR14] G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Working Group Note,
2014.

[ST06] S.H. Spewak and M. Tiemann. Updating the enterprise architecture planning
model. Journal of Enterprise Architecture, 2(2):11–19, 2006.

[Stu11] H. Stuckenschmidt. Ontologien: Konzepte, Technologien und Anwendungen.
Springer, 2011.

[Tho15] J. Thönes. Microservices. IEEE Software, 32(1):116–116, 2015.
[The13] The Open Group. ArchiMate 2.1 Specification. Open group standard, 2013.
[The17] The Open Group. ArchiMate 3.0.1 Specification. Open group standard,

2017.
[The18] The Open Group. TOGAF Version 9.2. Van Haren Publishing, 2018.
[The19] The Open Group. The TOGAF Standard, Version 9.2. In https://www.

opengroup.org/togaf-standard-version-92-overview, 2019. Accessed
26/03/2019.

[TNJH07] A. Tang, A. Nicholson, Y. Jin, and J. Han. Using bayesian belief networks
for change impact analysis in architecture design. Journal of Systems and
Software, 80(1):127–148, 2007.

[Top] Top Quadrant Inc. Towards Executable Enterprise Models: Build-
ing Semantic Enterprise Architecture Solutions with TopBraid
Suite. In https://www.topquadrant.com/docs/whitepapers/
WP-BuildingSemanticEASolutions-withTopBraid.pdf. Accessed
26/03/2019.

[TTF79] N.M. Tichy, M.L. Tushman, and C. Fombrun. Social network analysis for
organizations. Academy of management review, 4(4):507–519, 1979.

[UFBJ10] J. Ullberg, U. Franke, M. Buschle, and P. Johnson. A tool for interoperability
analysis of enterprise architecture models using pi-OCL. In Popplewell K.,
Harding J., Poler R., and Chalmeta R., editors, Enterprise Interoperability
IV, page 81–90. Springer, 2010.

[vKG03] A. von Knethen and M. Grund. QuaTrace: a tool environment for (semi-)
automatic impact analysis based on traces. In International Conference on
Software Maintenance (ICSM 2003). IEEE, 2003.

[vSSBB10] Marlies van Steenbergen, Jurjen Schipper, Rik Bos, and Sjaak Brinkkem-
per. The dynamic architecture maturity matrix: Instrument analysis and
refinement. In A. Dan, F. Gittler, and F. Toumani, editors, Service-Oriented
Computing. ICSOC/ServiceWave 2009 Workshops, volume 6275 of Lecture
Notes in Computer Science. Springer, 2010.

[vWWH+11] J. van’t Wout, M. Waage, H. Hartman, M. Stahlecker, and A. Hofman. The
Integrated Architecture Framework Explained - Why, What, How. Springer,
2011.

260

https://www.softplant.de/portfolio-item/semantic-enterprise-architecture-management/
https://www.softplant.de/portfolio-item/semantic-enterprise-architecture-management/
http://alfabet.softwareag.com
http://alfabet.softwareag.com
https://www.opengroup.org/togaf-standard-version-92-overview
https://www.opengroup.org/togaf-standard-version-92-overview
https://www.topquadrant.com/docs/whitepapers/WP-BuildingSemanticEASolutions-withTopBraid.pdf
https://www.topquadrant.com/docs/whitepapers/WP-BuildingSemanticEASolutions-withTopBraid.pdf

Bibliography

[W3C13] W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recommen-
dation, 2013.

[W3C15] W3C. Semantic Web. In https://www.w3.org/standards/semanticweb/,
2015. Accessed 26/03/2019.

[WC12] H. Wan and S. Carlsson. Towards an understanding of enterprise architec-
ture analysis activities. In 6th European Conference on Information Man-
agement and Evaluation. Academic Conferences, 2012.

[Wet18] J. Wetterich. Fallstudie zur Qualitätssicherung der Schnittstellenkommu-
nikation in Microservice-Systemen. Bachelor thesis, University of Augsburg,
2018.

[WF06] R. Winter and R. Fischer. Essential layers, artifacts, and dependencies of
enterprise architecture. In 10th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW 06). IEEE, 2006.

[Yen09] V.C Yen. An integrated model for business process measurement. Business
Process Management Journal, 15(6):865–875, 2009.

[YSD06] E. Yu, M. Strohmaier, and X. Deng. Exploring intentional modeling and
analysis for enterprise architecture. In 10th IEEE International Enterprise
Distributed Object Computing Conference Workshops (EDOCW 06). IEEE,
2006.

[Zac87] J. A. Zachman. A framework for information architecture. IBM System
Journal, 26(3):276–295, 1987.

[Zac08] J.A. Zachman. The Concise Definition of The Zachman Framework.
In http://www.zachman.com/about-the-zachman-framework, 2008. Ac-
cessed 26/03/2019.

[ZNL17] U. Zdun, E. Navarro, and F. Leymann. Ensuring and Assessing Architecture
Conformance to Microservice Decomposition Patterns. In Maximilien M.,
Vallecillo A., Wang J., and Oriol M., editors, Service-Oriented Computing.
ICSOC 2017, volume 10601 of Lecture Notes in Computer Science. Springer,
2017.

261

https://www.w3.org/standards/semanticweb/
http://www.zachman.com/about-the-zachman-framework

Glossary

A2F Architecture Analysis Framework
ADM Architecture Development Method
AHP Analytic Hierarchy Process
Arla Architecture Analysis Language
APM Application Performance Monitoring
AUTOSAR AUTomotive Open System ARchitecture
BBN Bayesian Belief Networks
CEO Chief Executive Officer
CIO Chief Information Officer
CSV Comma-separated Values
CTO Chief Technology Officer
DA Domain Architecture
DFA Data-flow Analysis
DM2 DoDAF Meta Model
DoDAF Department of Defense Architecture Framework
DSL domain specific language
EA Enterprise Architecture
EAM Enterprise Architecture Management
EAP Enterprise Architecture Planning
EID Extended Influence Diagrams
EMF Eclipse Modeling Framework
FEAF Federal Enterprise Architecture Framework
GERAM Generalised Enterprise Reference Architecture and Methodology
ArchiMate GM ArchiMate Generic Model
GMM Generic Meta Model
IAF Integrated Architecture Framework
IDEAS International Defence Enterprise Architecture Specification
IRI International Resource Identifier
IT information technology
KPI Key Performance Indicator
KTH Royal Institute of Technology
MAF Model Analysis Framework
MEMO Multi-prespective Enterprise Modeling

263

Bibliography

MODAF Ministry of Defense Architectural Framework
MOF Meta Object Facility
NAF NATO Architecture Framework
OCL Object Constraint Language
OWL Web Ontology Language
PA Project Architecture
PRM Probabilistic Relational Models
p-OCL probabilistic OCL
RMI Remote Method Invocation
RDF Resource Descripion Framework
RDFS Resource Descripion Framework Schema
SPARQL SPARQL Protocol And RDF Query Language
SQL Structured Query Language
TOGAF The Open Group Architecture Framework
UML Unified Modeling Language
UUID Universally Unique Identifier
URI Universal Resource Identifier
W3C World Wide Web Consortium
XML Extensible Markup Language

264

List of Figures

1.1 Analyses as foundation for decision-making. 5
1.2 Objectives of this thesis with their addressed challenges. 12
1.3 Research framework for this thesis according to [HMPR04]. 13
1.4 Outline of this thesis. 19

2.1 Core layers of an enterprise architecture according to [The17]. 22
2.2 Method for the enterprise architecture development (TOGAF ADM) [The18]. 24
2.3 EA development processes according to [Nie06]. 26
2.4 Application Structure Viewpoint [The13]. 27
2.5 Full framework of ArchiMate [The17]. 28
2.6 Meta model of the application layer of ArchiMate [The17]. 29
2.7 Generic meta model provided by ArchiMate [The17]. 30
2.8 Elements and data constructs of the IDEAS Foundation [Dep10]. 30
2.9 Analysis categories in the context of enterprise architectures. 32
2.10 Approach for EA analysis with Bayesian networks [NSJ+08]. 36
2.11 Conditional probability matric [NSJ+08]. 36
2.12 Extended influence diagram representing the theory for maintainability

analysis [NJN07]. 37
2.13 Selected planning processes in literature (extended table from [AGSW09]). . 38
2.14 Control-flow graph metamodel with annotated analysis [SB13]. 43
2.15 Control-flow model with attribute instances [Saa14]. 43
2.16 RDF graph describing a realization relationship between two elements. . . . 46

3.1 Overview of the Generic Meta Model GMM. 55
3.2 Part of the enterprise architecture of the CarRental company. 56
3.3 Details of the GMM meta model package. 57
3.4 Details of the GMM model package. 59
3.5 Example for the instantiation of the generic meta model. 61
3.6 Translating an EA model into the GMM. 62

4.1 Enterprise architecture analysis types with their degree of development
[Rau13]. 68

4.2 Arla template for a scope definition. 73
4.3 Simplified Arla Overview. 74
4.4 Result for the scope definition. 81
4.5 Paths from Return to application components. 85
4.6 Example support map. 86
4.7 Result for the performance analysis. 90
4.8 Planning scenario 24h car return for the CarRental example. 91
4.9 Result for a gap analysis using the Differences option. 92

265

List of Figures

4.10 Result for a gap analysis using the SuccessorCandidates option. 92
4.11 Successive analysis excution. 95
4.12 Analysis result merging. 95

5.1 A2F Overview. 102
5.2 Conceptual overview of the model storage component within A2F. 103
5.3 Overview of analysis definition. 109
5.4 Customized mapping proposals for an adapted analysis. 109
5.5 Validation of a specific analysis definition. 110
5.6 Conceptual overview of analysis execution with the A2F. 113
5.7 Accessing the triple store for the evaluation of SPARQL queries. 114
5.8 Accessing the triple store for the evaluation of DFA rules. 115
5.9 Overview of the result model. 116
5.10 Assignment of scope attributes. 122
5.11 Illustration of the result for an impact analysis. 128
5.12 Illustration of the execution of the all path analysis. 131
5.13 Illustration of the execution of the realizing path analysis. 134
5.14 Example for workload calculation. 139
5.15 Example for utilization calculation. 140
5.16 Example for processing time calculation. 141
5.17 Example for response time calculation. 142

6.1 Overview of the process for weak point identification. 156

7.1 Planning scenario evaluation process. 182
7.2 Analysis support within the process steps. 183
7.3 Current domain architecture for the planning scenario. 185
7.4 Target domain architecture for the planning scenario. 186
7.5 Impact analysis result for the target domain architecture. 187
7.6 Example views determined with the scope analysis. 188

8.1 A2F Plugin for the Innovator showing the result of an impact analysis. . . . 201
8.2 Impact analysis definition within the Innovator analysis plugin. 202
8.3 Scope analysis definition within the Innovator analysis plugin. 203
8.4 Support map within Innovator with results from the path analysis. 203
8.5 User interface for support map configuration. 204
8.6 Overview of AutoAnalyze with A2F integration. 205
8.7 Analysis settings within AutoAnalyze. 206
8.8 Coverage of analysis types. 209
8.9 Coverage of analysis types in detail. 210
8.10 Coverage of technical dimensions. 211
8.11 Coverage of functional dimensions. 212
8.12 Exemplary entry of the product process matrix for conformity analysis. . . 218
8.13 Exemplary result for the product people view [LB09]. 219
8.14 Gap analysis result for the cloud scenario. 226
8.15 Impact analysis result for the target architecture in the cloud scenario. . . . 227
8.16 Key process view for cloud business management. 227
8.17 Visualization of the number of asynchronous dependencies. 230
8.18 Service landscape with a visualization of the synchronous cycle result. . . . 231

266

List of Figures

8.19 Visualization of the security similarity result. 232

9.1 Overview of the architecture analysis framework (A2F). 240

A.1 Full enterprise architecture model for the RentalCar company. 276

267

List of Tables

2.1 Phases within the iterative process of the TOGAF ADM [The18]. 25

3.1 Requirements for a generic meta model for the representation of EA models. 53
3.2 Categorization of EA relationship types. 60

4.1 Dependencies between functional and technical categories [Rau15]. 70
4.2 Analysis classes and their configuration definitions within Arla. 79
4.3 Description of the effect types. 84

5.1 Class statements for the GMM vocabulary. 105
5.2 Property statements for the GMM vocabulary. 106
5.3 Impact rules for the effect classes. 124
5.4 Impact rules for the relationship classes. 126
5.5 Result combination strategies. 148

6.1 Representative approach for each technical dimension. 161
6.2 Characteristics of the assessed microservice projects. 167
6.3 Identified challenges within the microservice projects. 168
6.4 Principles for microservice architectures. 169

7.1 Common method blocks for EA planning. 180
7.2 Metric results for the running example. 188
7.3 Comparison with related work (abbreviations according to figure 2.13). . . . 194

8.1 Dimension coverage of the scenarios. 213
8.2 Dimension coverage of the scenarios. 214

269

Listings

2.1 DFA propagation rules for reachability analysis [LSB14c]. 43
2.2 DFA propagation rules for flow path analysis [Saa14]. 44
2.3 RDF Schema describing the EAM vocabulary using turtle syntax. 47
2.4 Example SPARQL query. 47

3.1 Meta model for the RentalCar example. 58

4.1 Grammar excerpt for TemplatePackage, Template and Template-
Configuration. 75

4.2 Grammar excerpt for the configuration of a scope analysis template. 76
4.3 Grammar excerpt for the configuration of an analysis composition template. 76
4.4 Grammar excerpt for the definition of a specific analysis package. 77
4.5 Grammar excerpt for the configuration of a specific scope analysis. 77
4.6 Grammar excerpt for for overriding the stereotype references in Arla

Specific. 78
4.7 Grammar excerpt for the NodeSetDefinition. 80
4.8 Example template for a NodeSetCondition. 81
4.9 Example template for an EdgeDefinition. 81
4.10 Grammar excerpt for the EdgeDefinition. 82
4.11 Grammar excerpt for the ImpactDefinition. 83
4.12 Grammar excerpt for the ImpactDefinitionByStereotype. 84
4.13 Grammar excerpt for the ImpactDefinitionByEdgeClasses. 84
4.14 Example template for the configuration of a path analysis. 85
4.15 Grammar excerpt for the definition of a path configuration. 86
4.16 Example metric template to calculate the average application costs. 87
4.17 Grammar excerpts for metric definition. 87
4.18 Grammar excerpt for the definition of a calculation rule. 87
4.19 Grammar excerpt for the definition of a performance configuration. 90
4.20 Grammar excerpt for the definition of a gap analysis. 92
4.21 Example analysis definition for an adapted analysis. 93
4.22 Grammar excerpt for the configuration of an adapted analysis. 93
4.23 Grammar excerpt for the definition of a DFA configuration. 93
4.24 Grammar excerpt for the definition of a custom query. 94
4.25 Grammar excerpt for the definition of an analysis composition. 94
4.26 Example template for an analysis composition using an ApplyEachRule. . . 95

5.1 RDF representation of the GMM. 104
5.2 RDF representation of an EA model. 106
5.3 RDF graph extending the EA model with analysis results. 107
5.4 Generated analysis definition for the adapted analysis in listing 4.21. 110

271

Listings

5.5 Model-to-text transformation for the analysis package. 111
5.6 Model-to-text transformation for the scope analysis using a node set condition.111
5.7 Model-to-text transformation to resolve a NodeReference. 112
5.8 Example analysis configuration using a node set condition. 114
5.9 SPARQL query generated from the node set definition in listing 5.8. 114
5.10 Query generation for node set definitions. 117
5.11 Evaluation of the atomic node set definition expressions. 117
5.12 Evaluation of the recursive node set definition expressions. 118
5.13 Generated SPARQL query from the node set definition. 119
5.14 Example configuration for a EdgeDefinition. 120
5.15 Xtend template for scope attribution generation. 120
5.16 Excerpt of the generated attribution file. 121
5.17 DFA rules to determine the scope value of a ModelNode. 121
5.18 DFA rules to determine the outgoing scope value of a ModelEdge. 122
5.19 Propagation rule to determine the scope value for outgoing model edges. . . 123
5.20 Example scope analysis configuration using stereotypes. 123
5.21 DFA propagation rules for the impact status of model nodes. 125
5.22 DFA propagation rules for the provide class in the worst case. 127
5.23 Impact analysis configuration using classes. 128
5.24 Part of the Xtend template for impact attribution generation. 128
5.25 Propagation rules for impact calculation for outgoing edges. 129
5.26 Impact analysis configuration using stereotypes. 130
5.27 Propagation rules for impact calculation for outgoing edges. 130
5.28 DFA propagation rules for AllPath calculation. 132
5.29 DFA propagation rule for path calculation based on class restrictions. . . . 134
5.30 DFA propagation rules for realizing path calculation. 135
5.31 Evaluation procedures for the atomic expressions of a calculation rule. . . . 136
5.32 Parameterized query to retrieve all outgoing relations. 137
5.33 Evaluation procedures for the non-atomic expressions of a calculation rule. . 137
5.34 Propagation rule for workload calculation. 139
5.35 Propagation rule for workload calculation. 139
5.36 Propagation rule for utilization calculation. 140
5.37 Propagation rule for processing time calculation. 141
5.38 Propagation rule for response time calculation. 142
5.39 SPARQL query to determine affected elements within the current architecture.143
5.40 Example for a custom query analysis definition. 144
5.41 Extension for visibility restriction wihtin SPARQL queries. 146
5.42 Querying a temporary analysis result with SPARQL. 146

6.1 Template definition for a missing property annotation metric. 158
6.2 Adapted analysis configuration for the missing property metric. 158
6.3 Template definition for a missing property annotation metric. 159
6.4 Template definition for quantifying unambiguous relations. 159
6.5 Template definition to measure the availability of a certain relation type. . 160
6.6 Adapted analysis configuration to validate the service application assignment.160
6.7 Query for determing element types without instances. 162
6.8 Query to determine elements with a missing relation. 163
6.9 Query to validate the multiplicities of outgoing relations. 163

272

Listings

6.10 Query to verfiy the existence of a property value. 164
6.11 Query to verfiy the property value. 164
6.12 Query to identify multiply defined properties. 165
6.13 Template definition for metric M1. 171
6.14 Template definition for metric M2. 171
6.15 Template definition for metric M3 and M4. 172
6.16 Template definition for metric M6. 173
6.17 Template definition for metric M7. 174
6.18 Template definition for metric M8. 174
6.19 Template definition for metric M9. 174

7.1 Scope analysis template to determine the initial domain architecture. 189
7.2 Scope analysis template to determine the extended domain architecture. . . 190
7.3 Template for a change impact analysis. 190
7.4 Template to determine the inconsistent changes metric. 191
7.5 Template to determine the scope validity metric. 191
7.6 Template to determine the ratio of unaffected elements. 192
7.7 Template to determine the context view for an element. 193
7.8 Template for the IT coverage metric. 193

8.1 Arla change impact template for scenario 1. 214
8.2 Arla metric templates for scenario 2. 215
8.3 Arla scope analysis template for scenario 3. 216
8.4 Arla path analysis template for scenario 4. 217
8.5 Arla path analysis template for scenario 5. 219
8.6 DFA propagation rule for implementation of scenario 6. 219
8.7 Arla metric template for scenario 7. 220
8.8 Arla gap analysis definition for scenario 7. 221
8.9 Arla gap analysis definition for scenario 9. 222
8.10 Custom SPARQL query for scenario 10. 223
8.11 Arla metric template for scenario 11. 224
8.12 Arla metric template for scenario 12. 224

A.1 Query to determine deletion candidates. 277
A.2 Query to determine predecessor proposals based on name and type equality. 277
A.3 Query to determine predecessor proposals according to the source context. . 277
A.4 Query to determine predecessor proposals according to the target context. . 278

273

A
Appendix A

275

Appendix A. Appendix A

A.1 Full EA model for the RentalCar company

Figure A.1: Full enterprise architecture model for the RentalCar company.

276

A.2. SPARQL queries for gap analysis

A.2 SPARQL queries for gap analysis

ASK query to determine deletion candidates.

1 ASK
2 FROM <currentModelUri>
3 WHERE {
4 <currentElementUri> ? relation1To ? modelEdge .
5 ?model model:edges ? modelEdge .
6 ? affectedElement ? relation2To ? modelEdge .
7 ?model model: elements ? affectedElement .
8 ? affectedElement gmm:name ? affectedElementName .
9 FILTER (? affectedElement != <currentElementUri>)

10 GRAPH <targetModelUri> {
11 ? targetModel model: elements ? targetResource .
12 ? targetResource gmm:uuid ? targetResourceID .
13 }
14 FILTER EXISTS {
15 ? affectedElement gmm:uuid ? targetResourceID .
16 }
17 }

Listing A.1: Query to determine deletion candidates.

Predecessor proposals based on name and type equality.

1 SELECT DISTINCT ? proposedPredecessor
2 FROM <currentModelUri>
3 WHERE {
4 GRAPH <targetModelUri> {
5 <targetElementUri> gmm:name ? targetElementName .
6 <targetElementUri> model: stereotype ? targetStereotype .
7 ? targetStereotype gmm:uuid ? targetStereotypeUUID .
8 }
9 ? currentModel model: elements ? proposedPredecessor .

10 ? proposedPredecessor gmm:uuid ? predecessorUUID .
11 ? proposedPredecessor gmm:name ? targetElementName .
12 ? proposedPredecessor model: stereotype ? predecessorStereotype .
13 ? predecessorStereotype gmm:uuid ? targetStereotypeUUID .
14 FILTER NOT EXISTS {
15 GRAPH <targetModelUri> {
16 ? targetModel model: elements ? targetResource .
17 ? targetResource gmm:uuid ? predecessorUUID .
18 }
19 }
20 }

Listing A.2: Query to determine predecessor proposals based on name and type
equality.

Predecessor proposals according to the source context of a relation

1 SELECT ? proposedPredecessor
2 FROM <currentModelUri>
3 WHERE {"
4 ? currentEdge model: source ? currentElement .
5 ? currentEdge model: target ? proposedPredecessor .
6 ? currentElement gmm:uuid ? currentElementUUID .
7 ? proposedPredecessor gmm:uuid ? proposedPredecessorUUID .
8 ? proposedPredecessor model: stereotype ? predecessorStereotype .
9 ? predecessorStereotype gmm:uuid ? predecessorStereotypeUUID .

277

Appendix A. Appendix A

10 GRAPH <targetModelUri>{
11 ? targetEdge model: source ? targetElement .
12 ? targetEdge mode: target <targetElementUri>.
13 ? targetElement gmm:uuid ? currentElementUUID .
14 <targetElementUri> model: stereotype ? stereotype .
15 ? stereotype gmm:uuid ? predecessorStereotypeUUID .
16 }
17 FILTER NOT EXISTS {
18 GRAPH <targetModelUri> {
19 ? targetResource gmm:uuid ? proposedPredecessorUUID .
20 }
21 }
22 }

Listing A.3: Query to determine predecessor proposals according to the source context.

Predecessor proposals according to the target context of a relation

1 SELECT ? proposedPredecessor
2 FROM <currentModelUri>
3 WHERE {
4 ? currentEdge model: target ? currentElement .
5 ? currentEdge model: source ? proposedPredecessor .
6 ? currentElement gmm:uuid ? currentElementUUID .
7 ? proposedPredecessor gmm:uuid ? proposedPredecessorUUID .
8 ? proposedPredecessor model: stereotype ? predecessorStereotype .
9 ? predecessorStereotype model:uuid ? predecessorStereotypeID .

10 GRAPH <targetModelUri> {
11 ? targetEdge model: target ? targetElement .
12 ? targetEdge model: source <targetElementUri>
13 ? targetElement gmm:uuid ? currentElementUUID .
14 <targetElementUri> model: stereotype ? stereotype .
15 ? stereotype gmm:uuid ? predecessorStereotypeID .
16 }
17 FILTER NOT EXISTS {
18 GRAPH <targetModelUri> {
19 ? targetResource gmm:uuid ? proposedPredecessorUUID .
20 }
21 }
22 }

Listing A.4: Query to determine predecessor proposals according to the target context.

278

	Contents
	I Introduction and Basics
	1 Introduction
	1.1 Problem and Challenges
	1.1.1 Capture the architecture model
	1.1.2 Understand the architecture model
	1.1.3 Assess the architecture model

	1.2 Objectives, Approach and Contributions
	1.2.1 Generic representation
	1.2.2 Generic architecture analysis framework
	1.2.3 Employ framework for architecture assessment
	1.2.4 Evaluate the methods and the framework

	1.3 Research Methodology
	1.4 Publications
	1.5 Outline of this Thesis

	2 Foundations
	2.1 Enterprise Architecture
	2.1.1 Processes and frameworks
	2.1.2 EA documentation
	2.1.3 EA analysis
	2.1.4 EA planning and decisions making

	2.2 Data-flow Analysis
	2.2.1 Application: Reachability analysis
	2.2.2 Application: Flow path analysis

	2.3 Semantic Web Technologies

	II Performing Architecture Analysis
	3 Capture the Enterprise Architecture Model
	3.1 Requirements
	3.2 Generic Meta Model
	3.2.1 GMM meta model
	3.2.2 GMM model

	3.3 Example Application
	3.4 Converting Architectural Data to the GMM
	3.5 Related Work
	3.6 Conclusion

	4 Enterprise Architecture Analysis Definition
	4.1 EA Analysis Approaches
	4.2 Language Overview
	4.2.1 Arla Core
	4.2.2 Arla Template
	4.2.3 Arla Specific

	4.3 Analysis Classes within the Language
	4.3.1 Scope analysis
	4.3.2 Impact analysis
	4.3.3 Path analysis
	4.3.4 Metrics
	4.3.5 Performance analysis
	4.3.6 Gap analysis
	4.3.7 Adapted analysis
	4.3.8 Custom analysis
	4.3.9 Composed analysis

	4.4 Conclusion and Related Work

	5 Architecture Analysis Framework
	5.1 Design Goals
	5.2 Overview
	5.3 Model Storage
	5.3.1 Data representation within the triple store
	5.3.2 Accessing the data for analysis purposes

	5.4 Analysis Definition
	5.4.1 Analysis definition support
	5.4.2 Utilization of templates

	5.5 Analysis Execution
	5.5.1 Execution approach
	5.5.2 Result model
	5.5.3 Execution of scope analysis
	5.5.4 Execution of impact analysis
	5.5.5 Execution of path analysis
	5.5.6 Execution of metrics
	5.5.7 Execution of performance analysis
	5.5.8 Execution of gap analysis
	5.5.9 Execution of adapted analysis
	5.5.10 Execution of custom analysis
	5.5.11 Execution of composed analysis

	5.6 Related Work
	5.7 Conclusion

	III Use Cases
	6 Identification of Weak Points
	6.1 Overview of the Approach
	6.2 Model Quality Metrics
	6.3 Analysis Specific Model Assessment
	6.3.1 Identification of analysis requirements
	6.3.2 Validation of analysis requirements

	6.4 Assessment of Microservice Characteristics
	6.4.1 Characteristics of microservice architectures
	6.4.2 Challenges within microservice architectures
	6.4.3 Evaluation criteria: Principles and metrics
	6.4.4 Implementation with the A2F

	6.5 Related Work
	6.6 Conclusion

	7 Evaluation of Planning Scenarios
	7.1 Method Blocks for EA Planning
	7.2 Evaluation Process for Planning Scenarios
	7.2.1 Determine relevant domain architecture
	7.2.2 Integrate scenario into the domain architecture
	7.2.3 Evaluate the target architecture

	7.3 Tool Support
	7.3.1 Templates for determining the domain architecture
	7.3.2 Templates for scenario integration
	7.3.3 Templates for target architecture evaluation

	7.4 Related Work
	7.5 Conclusion

	IV Case Studies and Conclusions
	8 Evaluation
	8.1 Implementation
	8.1.1 Integration into a modeling tool
	8.1.2 Integration into AutoAnalyze
	8.1.3 EA model adapter

	8.2 Coverage of EA Analysis Approaches
	8.3 Scenario-based Evaluation
	8.3.1 Scenario 1: Change impact analysis
	8.3.2 Scenario 2: Risk and security analysis
	8.3.3 Scenario 3: Analysis of dependencies
	8.3.4 Scenario 4: Analysis of conformity
	8.3.5 Scenario 5: Structural analysis
	8.3.6 Scenario 6: Data accuracy analysis
	8.3.7 Scenario 7: Social network analysis
	8.3.8 Scenario 8: Performance and workload analysis
	8.3.9 Scenario 9: Business process support analysis
	8.3.10 Scenario 10: Wiki-based analysis
	8.3.11 Scenario 11: Analysis of dependencies
	8.3.12 Scenario 12: Availability weak point analysis

	8.4 Case Studies
	8.4.1 Case study 1: EA planning
	8.4.2 Case study 2: Weak points regarding microservice characteristics
	8.4.3 Case study 3: Weak points of a backend service landscape

	8.5 Discussion

	9 Conclusion
	9.1 Summary
	9.2 Future Work

	V Annex
	Bibliography
	Glossary
	List of Figures
	List of Tables
	Listings
	A Appendix A
	A.1 Full EA model for the RentalCar company
	A.2 SPARQL queries for gap analysis

