Deadlock Avoidance for Multiple Tasks in a
Self-Organizing Production Cell

Joseph Hirsch, Martin Neumayer, Hella Ponsar, Oliver Kosak and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany
E-Mail: joseph.hirsch@student.uni-augsburg.de, {neumayer, ponsar, kosak, reif} @isse.de

Abstract—Deadlocks represent situations in which two par-
ticipants are waiting for each other to finish an activity so
that neither of them will ever finish. Deadlocks can occur in
complex computer-integrated systems, such as flexible and self-
organizing production systems. As deadlocks bring production
to halt, methods for deadlock control in production systems are
widely studied. Yet most algorithms proposed are not suited for
the use in decentral multi-agent systems, as they require central
control or can not handle concurrency. Other algorithms can be
used in a decentral fashion but assume that only one type of
product will be manufactured at a time. But in times of mass
customization, where customers choose a product from a variety
of options, support for several product types is required. To
meet both the requirements of mass customization and decentral
multi-agent systems, we present a new decentralized approach
for avoiding deadlocks in a self-organizing production cell, where
several types of products are being manufactured in parallel.
Our approach is based solely on local knowledge and does not
assume central control. We evaluate our approach in terms of
effectiveness and message overhead to conclude that it avoids
starvation and deadlocks with a reasonable message overhead.

Index Terms—deadlock avoidance, decentral mechanisms, self-
organization, production systems, multi-agent systems

I. INTRODUCTION

Mass production systems are tailored to produce one prod-
uct in high quantities. The machinery used is highly special-
ized for its operation and rigidly linked. As every machine
performs only one specific task before the product is handed
over to the next machine, cycles are prevented by design, as
they may become a bottleneck for throughput or yield hold-
and-wait-conditions. While this design enables high through-
put and low costs, these traditional production lines are also
prone to failure and do not offer the flexibility to manufacture
different types of products at once [1]. Due to rigid linkage,
often realized with conveyor belts, the breakdown of a single
machine or conveyor might bring the whole line to halt.

With mass customization, small lot sizes, and ever-
increasing cost pressure, production systems are about to
change [2]. Manufacturers strive for flexible automation to pro-
vide customers with just the product they need while keeping
production costs low [1]. Self-organizing production systems
represent an approach to meet these requirements. Modeling
production systems as a set of self-organizing agents offers
a way to increase autonomy, responsiveness, and openness
[3]. Self-organizing production systems also leverage decentral
control to ensure scalability [4] and robustness [5]. Connecting
production agents with automatically guided vehicles (AGVs)

instead of using conveyor belts can further increase the degree
of flexibility and automation [6].

Self-organizing production systems are also not tailored to
a specific type of product. Instead, self-organizing production
systems consist of agents or machines offering capabilities
such as milling or drilling and AGVs connecting those agents
as needed. We consider machines that process one product
at a time while having no buffers. Products are described
as a sequence of capabilities and given to the system. The
matching between the capabilities needed to manufacture the
type of product and the capabilities offered by the agents is
termed task allocation [2]. Task allocation is formulated as
a Constraint Satisfaction Problem (CSP) [7] and solved at
runtime. We denote the result of task allocation as product
flow. Task allocation at runtime has two main advantages:

1) Robustness: A self-organizing production system can
deal with partial breakdowns by detecting faults, finding,
and implementing a new task allocation.

2) Flexibility: Self-organizing production systems offer
flexibility in terms of the product manufactured. As long
as the needed capabilities for a new type of product
exist in the system, new task allocations can be found
by solving the corresponding CSP.

However, the shift towards finding a task allocation at
runtime, instead of design time, yields the problem of cycles
emerging. Cycles arise if an agent receives a product he has
processed before, or if two different product flows are arranged
in a circle. Cycles can then overflow with products and result
in deadlocks, as demonstrated in Fig. 1. Cyclic arrangements
should be avoided in the first place as they may lead to
inefficiency and the hazard of deadlocks. However, this is not
always possible, assuming limited redundancy of machinery
and capabilities per machine. In cases of agent or component
failures, there could no longer be any task allocation left that
prevents cyclic arrangements. Even in such a state, production
should continue to ensure the desired robustness.

In this paper, we present a new approach for preventing
deadlocks in a decentralized, self-organizing production cell,
where several products are being manufactured in parallel. To
prevent deadlocks, the approach detects cycles in the product
flow whenever the configuration of the system changes. For

'We refrain from using the word resource as it is ambiguous in the
manufacturing domain and can serve as a term for a machine as well as
for a product [2].

Agent 1

AGV1 - o~ ~

b -
Agent 2
A
7N
])
Pr .
ocessing C] AGV
agent
Product
Q Product ocue
flow
Fig. 1. A production system, consisting of two agents and two AGVs,

encounters a deadlock caused by two opposing product flows. As every agent
and AGYV is holding a product while cyclically waiting for another agent or
AGY, the system comes to a halt.

each cycle, the maximum permissible number of products
is calculated and then enforced at runtime. This approach
extends previous work done in [8]. It supports multiple types
of products and is based solely on local knowledge.

The remainder of this paper is structured as follows: In
Section II, we introduce a motivating example and review
the fundamentals of deadlocks and dealing with deadlocks.
Section III examines previous work and other approaches
towards the problem. In Section IV our approach is explained.
We evaluate our approach in terms of messages sent and
effectiveness in Section V. We conclude this paper with future
work and further research directions in Section VI.

II. PROBLEM DEFINITION

In this section, we present a motivating example to illus-
trate how deadlocks can emerge in self-organizing production
systems. To better understand the phenomenon of deadlocks,
a formal introduction into deadlocks and deadlock control is
given. Finally, we lay out the requirements for a possible
solution and match these requirements with the methods for
deadlock control presented before.

A. Motivating example

Consider the motivating example depicted in Fig. 1: Assume
a production system consisting of two processing agents and
two AGVs, where there are two types of products to be
manufactured. While the blue products (dashed product flow)
require processing by Agent 1, the orange products (solid
product flow) have to be processed by Agent 2. In the situation

presented AGV 1 and Agent 1 hold blue products, while Agent
2 and AGV 2 hold orange products.

This arrangement is problematic: AGV 1 cannot pass on the
product it holds to Agent 1, as Agent 1 also holds a product.
Yet Agent 1 cannot pass on its product to AGV 2, as AGV 2
holds a product. This pattern continues until we reach AGV 1
again. As every participant is waiting for another participant
in a way that none ever finishes, a deadlock emerges and the
production halts.

B. Deadlocks

Formally, deadlocks are situations where two or more
participants are waiting for another to finish in a way that
no one ever finishes. Coffman et al. describe four conditions
that have to be met for a deadlock to occur [9]:

1) Mutual exclusion: Two participants can’t use the same
resource at the same time.

2) No preemption: Participants keep their resources until
their computing finishes. Under no circumstances, re-
sources are removed from the participants forcibly.

3) Hold and wait: Participants can wait for a resource if
they already hold another one.

4) Circular wait: The participants wait relationships are
arranged in a circle so that each participant waits for
another one to release a resource.

We assume the first three criteria are met in self-organizing
production systems. Circular wait situations might arise de-
pending on the arrangement of agents, as pointed out in the
motivating example in Fig. 1. Especially after partial failures
of the system, there may be no arrangement of agents left,
which is both free of cycles and able to keep up production.
Consequently, a mechanism to deal with deadlocks is needed.

C. Dealing with deadlocks

Coffman et al. [9] distinguish between three approaches to
deal with deadlocks:

a) Deadlock prevention: The approach of designing a
system in a way that no circular wait situations can emerge
because no product flow contain any cycles and product flows
are not arranged in cycles. Prevention of deadlocks results in
a system that is deadlock-free. But the design requires global
knowledge about the product flows and the arrangement of
agents within it. In scenarios, where only task allocations
exist that yield cyclic arrangements, no task allocation can
be implemented. This contradicts our motivation to continue
production as long as possible.

b) Deadlock detection and recovery: This approach does
not prevent deadlocks in the design of the system. Instead,
the system detects deadlocks at runtime and recovers from
them. In general, this approach yields a higher utilization of
the system. Yet, deadlock recovery is a non-trivial challenge,
especially when not only computer processes and data but also
physical objects such as products are affected. Therefore, we
concentrate on a third approach.

¢) Deadlock avoidance: The goal of deadlock avoidance
is to prevent the system from reaching a deadlock at runtime.
This is achieved by monitoring the product flow and using the
knowledge about the future behavior of each agent to detect
circular wait situations before they emerge. The advantage of
this approach is a system that can adapt to different situations
while having a high utilization of the available agents. There
is no need for the recovery of deadlocks, but communication
between the agents might be required.

D. Problem Statement

In summary, deadlocks can appear in production systems,
when there are circular wait situations. These circular wait
situations are the result of cyclic arrangements of agents. Yet,
in self-organizing production systems, cyclic arrangements
cannot be ruled out, as the product flow is determined at
runtime. Therefore, an approach for dealing with deadlocks
is required.

As deadlock prevention approaches inhibit cyclic arrange-
ments of agents, these approaches rule out configurations that
could keep up production. This contradicts our motivation to
manufacture products as long as possible. Deadlock recovery
approaches are not further considered in this paper, as recover-
ing from deadlocks involving physical products is beyond the
scope of this work. Therefore, to solve the problem presented,
a decentral deadlock avoidance approach inhibiting circular
wait relationships is suited.

Besides the functional requirement of avoiding deadlocks in
production with different types of products, the approach has
to match the decentral nature of multi-agent systems and allow
for concurrency. Lastly, the message overhead to provide the
aforementioned functionality should be as low as possible.

III. RELATED WORK
A. The Organic Design Pattern (ODP)

Self-organizing production systems in this paper are spec-
ified and modeled using the Organic Design Pattern (ODP),
described in [10] and [11]. The relevant parts of the pattern are
described in the following paragraphs. For more information,
please refer to the cited sources.

a) Definitions: The active participants of the system are
called agents, while products are processed by the agents. In
contrast to previous work, we refrain from using the term
resource as it is ambiguous in the context of manufacturing
systems [2]. The blueprint on how to manufacture a product
is called rask. A task consists of a set of capabilities in a
specified order. The task’s state specifies which capabilities
were already applied and which capability has to be executed
next. To meet the required capabilities of a product, each agent
has a set of capabilities it can provide. The concept of a role
encompasses three aspects:

1) A precondition that includes an agent to take products

from, called port, as well as the product’s task and state.

2) A set of capabilities to apply to the product.

3) A postcondition that comprises an agent to pass products

on to (port), as well as the product’s task and state.

An adequate system configuration that satisfies all given tasks
need to include corresponding roles for each capability of
each task. The roles must be distributed among the agents
in a way that each capability of the task is met and that a
valid product flow is represented by matching pairs of pre-
and postconditions.

As an example, let’s consider the system lined out in Fig. 1:
Agent 1 might have a role, that tells him to take products for
a given task and state from AGV 1 (its precondition port),
perform one or several capabilities on the product and hand
the product over to AGV 2 (its postcondition port). AGV 2
then must have the corresponding role that has Agent 1 as its
precondition port.

b) Specification of a system: In the ODP a system is
specified using sets: Each system consists of a set of agents.
An agent has a set of capabilities that it can apply and a set of
roles allocated defining the function of the agent in the system.
The tasks are defined by the conditions that are stored in the
roles of the agents.

c) Processing of products: To keep the system running
and process products according to their tasks, each agent
checks two things periodically:

1) If it has any input requests meaning another agent
finished applying its capabilities to a product and wants
to hand it over to the agent. In this case, the agent
chooses a role which precondition fits one of the input
requests and executes this role.

2) If it has any producer roles. A producer role has a
capability list that consists of or starts with a so-called
produce capability, which adds a product to the system,
e.g., by taking it out of storage. If a producer role exists,
the agent chooses one randomly and executes it.

B. Deadlock control in production systems

Dealing with deadlocks in production systems is a well-
known and widely studied problem. Therefore, only a fraction
of the available literature is covered in this paper. For a
comprehensive survey of graph-theoretic, automata-based, and
Petri Net approaches for controlling deadlocks in production
systems refer to [12]. For a survey on detecting deadlocks in
distributed systems, see [13].

In [14] and [15], Petri Nets are used to generate a restriction
policy to avoid deadlocks in Flexible Manufacturing Systems
(FMS). Both approaches require a global view of the system
to generate these restrictions, therefore they are not suitable
for distributed systems.

Another approach is presented in [16] and [17]. The authors
introduce an algorithm that leverages global knowledge about
the system to detect cycles in the graph representing the
working procedures (tasks). For each event in the system (i.e.
a new product is created or transmitted to another agent) a
central controller unit determines which transactions are save
to execute in the next step. Due to the required central control,
this approach is also not applicable to distributed systems.

A distributed cycle detection algorithm is presented in [18].
It makes use of messages, traveling along the edges of a graph.

Messages are forwarded until they return to the agent that has
sent the message or they hit a sink and can’t be forwarded
further. Although the authors present a well-designed and
lightweight algorithm, it is only capable of deciding if a given
agent is in a cycle. The algorithm cannot determine the agents
in the cycle or the cycle’s size, which is essential for deadlock
avoidance.

In [8], the authors discuss deadlock avoidance for systems
modeled with the Organic Design Pattern (ODP). An algorithm
for distributed systems without central control or knowledge
is introduced. The algorithm is based on cycle detection and
controlling the resource flow at runtime. However, systems
with multiple tasks being processed at the same time are not
considered and left as future work.

IV. APPROACH

In [19] and [20], Wysk et al. study the detection of dead-
locks in manufacturing systems. The authors elaborate on the
idea of circular wait relationships in production systems. They
prove that the following two conditions must be met for a
deadlock to occur:

1) There exists at least one cycle in the product flow graph
2) Each agent in the cycle has to be occupied by a product

In the introduction, we have pointed out that cycles cannot
be completely avoided, therefore in this section, we propose
a decentral deadlock avoidance approach, that addresses the
second condition and ensures that the number of products in
each cycle is lower than the number of agents in the cycle at
any time. To realize this behavior, our approach consists of
two steps.

1) Whenever the configuration of the system changes, e.g.,
because a new type of product enters or an agent breaks
down, cycle detection will be performed. If a cycle is
detected, the algorithm determines how many products
are allowed to enter.

2) At runtime, the agents keep track of the number of
products that are currently in each cycle in a product
counter (pc). They enforce the limits calculated in cycle
detection by coordinating the agents that are entrances
and exits of the cycles. In the following, this step is
referred to as enforcing the limits for products in
cycles.

Before cycle detection and enforcing the limits for products
in cycles are explained in detail, some basic definitions are
introduced.

a) Cycles: Cycles are groups of agents, each of which
can only contain a certain number of products to avoid
deadlocks. This also includes cycles that are not directly
identifiable in the production plan, but are detected by the
combination of cycles. Further detail will be given later on.
For cycles the following information is stored: The agents that
are part of the cycle, the tasks that are responsible for the cycle,
the maximum number of products that the agents in the cycle
can handle without overloading it (maxProducts) and if the
cycle was detected by combining other cycles.

b) Entrance agents: An entrance agent (of a cycle) has at
least one role that places a new product into the cycle. Agents
can detect whether they are an entrance agent locally. An agent
is a potential entrance agent, if the following condition does

apply:

3(r1,7r2) € roles x roles :
ry.precondition.port # ro.precondition.port

V ry.postcondition.port # ro.postcondition.port

An agent is an entrance agent to a cycle c if the following
condition applies:

dr € roles : r.postcondition.port € ¢

A r.precondition.port ¢ c

The other agents in the cycle, however, don’t know the agent’s
roles so they need to be informed, that the agent is an entrance
agent.

A. Cycle detection

Each agent stores the set of cycles it is involved in along
with the entrance agents. To reduce the message overhead,
cycle detection is split into two steps.

Data:

roles : the roles assigned to agent a

Mp: the cycle detection messages that a has to receive
cycles : the cycles stored by a in its context

for (r1,7r2) € roles x roles do
if r1.postcondition.port = ro.precondition.port
then
¢ < new Cycle
c.agents < [a, r1.postcondition.port]
c.mazxProducts < 1
Add ¢ to cycles
Call Alg. 3
end
end
if a is a potential entrance agent then
Mp «]
for r € roles do
m <— new cycle detection message
m.originalSender < a
m.isCycle < True
m.forks < |]
m.cycle <— new cycle
m.cycle.agents < [a]
m.cycle.max Products < 0
Add m to Mg
Send m to r.postcondition.port

end
end
Algorithm 1: Start of the cycle detection.

Data:

m : the cycle detection message received by agent a
Mp : the cycle detection messages that a has to receive
roles : the roles of agent a

cycles : the cycles stored by a in its context

if a = m.originalSender then
if m.isCycle then
Add m.cycle to cycles
Call Alg. 3
end
Add all m.forks to Mg
if received all My then
‘ finish cycle detection and start production
end
end
else
nextAddressees + ||
for r € roles do
if r.postcondition.port ¢
m.cycle V r.postcondition.port =

message.originalSender then
add r.postcondition.port to

nextAddressees

end

end

if nextAddressees is empty then

m.isCycle < False

Send m to m.originalSender

end

else

Add a to m.cycle.agents

m.cycle.maz Products
m.cycle.maxProducts + 1

copies < Create |nextAddressees| — 1 copies
of m

Add all copies to m.forks

Send m to first agent of nextAddressees

Send copies to other agents of
nextAddressees

end

end
Algorithm 2: Receive and forward a cycle detection

message. These steps are performed whenever agent a
receives a cycle detection message.

1) Cycle detection based on local knowledge: With its
local knowledge, an agent detects all cycles it is involved in
consisting of only two agents. If the agent receives a product
from another agent, it is also giving a product to, the agent is
in a cycle with the other agent, meaning that only one of them
can accept a product at a time. Fig. 2 shows a cycle like this.
Both agents are entrance agents to the cycle. These cycles are
based on opposing tasks, so they are referred to as encounter
cycles in the following.

Fig. 2. Cycle with two involved agents. This cycle can be detected without
message overhead, based on local knowledge.

Message #1: no 'c.;ilﬂ.:le, wait for #1.1

Fig. 3. Cycle detection messages. Agent oy is possibly an entrance agent
to a cycle because of its roles of the two tasks which are depicted in yellow
and blue. It initiates a cycle detection message with the identifier #1. This
message is forwarded along the product flow. Agent a3 splits the message
to message #1 and message #1.1. Message #1 eventually returns to agent a1
with the information that it does not represent a cycle but that this message
has been split and that the sender has to wait for message #1.1. As agent a1
receives message #1.1 it knows about the cycle since it was the origin of the
message.

2) Cycle detection based on the analysis of the product
flow graph: Cycles with more than two agents are detected
by sending messages along the product flow. Fig. 3 gives
an overview of this process. Agents send out and forward
detect cycle messages. Alg. 1 shows how and when messages
are created, Alg. 2 explains how agents react when receiving
a message. These messages include a set of agents that
forwarded the message. Each agent forwarding the message
adds itself to this set, before passing the message on. If the
message returns to its sender, the sender is part of a cycle,
and the set of forwarding agents is equal to the agents in the
cycle.

a) Agents that send out cycle detection messages: To
further reduce the number of messages sent, only potential
entrance agents send out cycle detection messages. To check
if an agent is a potential entrance agent, it analyzes its roles
in pairs. If the agent has two roles with different pre- or
postcondition ports, it is a potential entrance. In contrast, an
agent with only one role or the same pre- and postcondition
port for all roles can’t be an entrance-agent. An entrance
agent has to have at least two different pre- and postcondition
combinations thus two roles: One role has to be transporting
products within the cycle or out of the cycle and one has to be
transporting products into the cycle. If the agent is a potential
entrance agent, it is sending out a defect cycle message to
every postcondition port of every role.

b) Receiving and forwarding detect cycle messages: 1If
a detect cycle message is received, the agent checks if it is

the origin of the message. If the agent is not the origin of
the message, it forwards the message to all of its successive
agents according to the product flow. To prevent infinite
looping messages, they are only forwarded under the following
condition: Either the postcondition port of the role is the
message’s original sender or the postcondition port is not yet
in the set of agents of the cycle stored in the message. If the
message has to be forwarded to more than one agent, it is
split into multiple messages which we refer to as forks. The
identifiers of the forks are stored in the original message so
the agent that initiated the message knows for which forks to
wait. When forwarding a message, the agent adds itself to the
set of agents stored in the message because if the message
returns to the original sender, the agent is part of the deadlock
cycle the message represents. If all the postcondition ports of
the agent’s successive roles are in the set of agents already,
the message is running in a loop and the corresponding cycle
has been detected before, so the message is returned to the
original sender with this information.

If the agent is the source of the message it receives, it stores
the message and checks if it received all messages and all forks
of the messages it has initiated.

3) Processing the cycles: Whenever a cycle is stored, a
series of tests, which are described in the following, is applied.
Alg. 3 summarizes these tests.

Data:
c: the new cycle detected
cycles : the cycles stored by a in its context

if nested cycles are contained in c then
Inform every agent of ¢ about all nested cycles

inside ¢
end
if agent is entrance agent of c then
‘ Inform every agent of ¢ about the entrance agent
end
if another cycle exists, which the agents transports
products into when transporting them out of c then
‘ Combine the cycles
end
for ¢’ € cycles do
| Recalculate ¢.maxProducts
end
Remove unneccessary cycles from cycles
Algorithm 3: Tests when agent a detects a new cycle.

1) Check for cycles contained in the new cycle
If a cycle ¢;, is contained in another cycle c it is
important that all the agents of ¢ know ¢ for step
5 (calculating maxProducts). If an inner cycle is
detected, the agent informs all the agents in c that aren’t
in ¢ about ¢

2) Check if the agent is an entrance agent of the new
cycle
The agent checks if it is an entrance to the cycle. If this

3)

4)

5)

is the case, the agent sends a inform entrance message
to all agents in the cycle to inform them about it.
Check for combined cycles

The agent checks its stored cycles and the new cycle
in pairs if a role exists, which transfers a product from
one to another cycle. If a role like this exists, the cycles
need to be combined to a bigger cycle because both
cycles depend on each other. To remove a product of one
cycle, the other one has to have space for the product.
Fig. 4 shows two different types of cycles, where the
second one is detected by combining cycles. Whenever
two cycles are combined, the set of agents, as well as
the set of tasks, are merged. The capacity max Products
of the new cycle is calculated in step 4. Therefore, the
new combined cycle is stored without removing the old
cycles and the agent proceeds to do all the checks of
this list for the new cycle.

Calculate the maximum number of products of each
cycle

The calculation of the maximum number of products
in the cycles is mainly done when detecting them: If an
agent creates a detect cycle message, it initiates the cycle
with maxz Products = 0. Each agent that is added to the
cycle then increases max Products by one. Encounter
cycles are stored with maxProducts = 1. Following
this algorithm, the maximum number of products for
each cycle c is |¢| — 1, where |c| is the number of agents
in the cycle. If some cycles are nested, maxProducts
has to be adjusted. To calculate the final value for
c.mazProducts it is necessary to check if other cycles
are contained in ¢, meaning that the cycle’s agents are a
subset of the agents of c. If there is a product in a cycle
¢'™ that is inside cycle c, all agents of ¢ are reserved
for that product, while the present calculation assumes
that a product only occupies one agent. If that is the
case, c.max Products has to be decreased: Let ¢ be the
cycle observed and C'" the cycles inside of c that are
not combined cycles. Then following formula applies:

c.mazProducts = |c.agents|+

E "™ .maxProducts —
cingQin

U c"".agents| —
cineQin

U ci".agents N cj".agents
(cin cin)eCin x Cin
A

This calculation is evaluated for every cycle whenever
a new cycle is detected. The detection of a new cycle
could have an impact on already known cycles e.g., if
the new cycle is nested inside a known cycle.

Check for unnecessary cycles

The agent checks for all of its cycles if a combination
of cycles (c'™, c°%) exist so that ¢™ is contained in c°%*
and ¢™.mazProducts > c®*.maxProducts. Cycle
¢™ then gets removed from the cycle list because c°%
is more restrictive.

wait for relationship

production

(a) A cycle of wait for relationships because of a cycle in the
product flow. The number of agents in the wait-for cycle is equal
to the number of agents in the product flow cycle.

plan

wait for relationship

/\/\ <

- A
cycle ¢ cycle ca

(b) Agent a2 has to wait for cycle c2 to have a space for a product
before it can hand over a product from agent a; (out of the cycle
c1) to agent az (into the cycle c2). The number of agents in this
wait for relationship is 3 while the number of participants is 2.
The number of products that is allowed to enter this configuration
is 1 in order to avoid a deadlock. The algorithm would combine
c1 and c2 to a new cycle and find max Products = 1.

Fig. 4. Different types of cycles.

B. Enforcing the limits for products in cycles

The following section describes the part of the mechanism
executed at runtime when a role is chosen to be executed
or when other agents send announcements and fake back
messages:

a) Choosing role: Before an agent accepts an input

request to execute a capability or produces a product, it checks
if it can execute the corresponding role without producing
a deadlock. If the agent is an entrance-agent to a cycle,
the agent checks if the locally stored number of products
in the cycle is less than maxProducts by at least one. If
so, it sends an announce product message to every other
entrance-agent of the cycle and waits for all of them to
accept the product. If it receives a declining message, it
will not execute the role but instead, notify all agents that
already accepted the product (take back message). Thus, the
notified agents know the product wasn’t processed and adjust
their product counter respectively. Fig. 5 shows an exemplary
communication sequence of an agent sending out announce
product messages and handling the decline of a product. Take
back messages are necessary since the agents accept a product
and update their product counter optimistically. If the product
can’t be processed, this update has to be rolled back. If all
agents accept an announced product, the announcing agent
can safely execute the role.
After executing a role, an agent that is an exit of a cycle
decreases its product counter and informs the entrance agents
of the cycle to decrease their product counter for this cycle as
well.

b) Handling announce product messages: An agent re-
ceiving an announce product message locally checks if the cy-

cle is capable of handling another product (mazProducts >
pc) and sends back either an accepting message or a declining
message. The necessity of take back messages is rooted
in the concurrency of the system. Ideally an announcement
should not be declined since the announcing agent should
not have asked for permission in the first place because
of its local knowledge. Yet, problems arise, if two agents
announce products at the same time. Then the local counter
was already updated and the product is declined. If the agent
sends back an accepting message it will assume that the
sending agent will put a new product into the cycle and
increase the corresponding product counter.

Apart from checking whether the product can be accepted
regarding deadlocks, fairness between the tasks is brought
into account as well: Each agent keeps track of how often it
executed each role. If the agent has an input request of a role
that has been executed less frequently than the average of all
roles, it declines products belonging to other roles to execute
the underrepresented role in the next choose role iteration.

¢) Handling a take-back message: If an agent receives a
take back message for a cycle it will decrease its local product
counter, as it optimistically increased its product counter for
a product that never entered the cycle. Although take-backs
are very unlikely to occur, this fallback mechanism is needed
due to the concurrent nature of the system: Two or more
agents may decide to execute a role adding a product to a
cycle that can only handle one more product at the same time.
First, they decide locally, and due to the lack of knowledge
about the other agents’ intentions, they assume the role to be
executable. Then they announce the product at the respective
other agents and get a declining response. If an additional
agent is also an entrance-agent to the concerning cycle, this
agent also received a product announcement of the other agents
and has already accepted the product of one of the agents
and optimistically updated the product counter. This additional
agent has to decrease the product counter again.

V. EVALUATION

In this section, we experimentally evaluate, if our approach
presented in Section IV is capable of avoiding deadlocks under
varying conditions. Therefore, we run several simulations with
different system configurations and measure the following
properties:

1) Runtime in seconds

2) Number of deadlocks encountered

3) Number of messages sent
Additionally, we divide the number of manufactured products
by the runtime to calculate the system’s throughput.

This allows us to compare our approach to a conservative
locking algorithm. The conservative locking algorithm uses
the cycle detection mechanism described earlier but does not
consider the combination of cycles. We announce a product
whenever it enters any cycle. That means the agent sends a
message alongside the product flow for every product and
waits until all agents that will eventually handle the product
accept it (they only do if there is space in all of their cycles).

APM

/7
4
/7
/

pc=0

Product
—_

4 \
7 |

APM

!
|
Y

pc=0

\

=A==

APM

\

\
\
\

pc=0

(a) Agent a1 wants to insert a product to a cycle of which the
Agents a2, a3 and a4 are the other entrance agents, so it sends
a announce product message (APM) to all of them.

A==

ACK

/

pc=1

ACK

pe=1

DEC

g ¢

pc=0

(b) Agents a2 and a3 accept the product of a1 and send back
a acknowledge message (ACK) after increasing their product
counter. Agent a4 declines the product of @i, does not increase
pc and sends a declining message (DEC) to aj.

TBM

/7
/

c—()

4
7 |

==

TBM

pc

1
V

pCO

(c) Agent a1 sends a take back message (TBM) to Agents a2
and a3 who update their product counters correspondingly.

Fig. 5. Communication when announcing a product.

If a product is processed completely, the previously reserved
capacity in all cycles is released at once. The difference
between this and our approach described in Section IV is
that, once a product is announced, it has to be processed
completely before the cycles are considered to have capacity
again. Our approach detects combined cycles and thus gets
by with fewer messages. We also assume our approach to
have a higher utilization as it frees reserved capacity earlier.
As another benefit, we expect fewer declines for announced
products.

We also run the simulations without any deadlock avoid-
ance. In this case, only the deadlocks encountered are mea-
sured. The other properties are not comparable as we cannot
quantify the cost for deadlock recovery. Measuring the dead-
locks encountered gives the reader an order of magnitude on
how prone to deadlocks a configuration is and finally stresses
the need for deadlock control.

We formulate the following hypotheses to test in our eval-
uation:

o Hypothesis 1: Both the conservative locking algorithm
and our approach avoid deadlocks effectively in different
configurations with more than one type of product to be
manufactured.

o Hypothesis 2: To do so, our approach requires fewer
messages than the conservative locking approach.

o Hypothesis 3: Our approach outperforms the conservative
locking algorithm in terms of throughput.

A. Experimental setup

To verify our hypotheses experimentally, we examine two
systems configurations depicted in Fig. 6. For each system
configuration, we perform 100 runs and average the results.
Each run simulates the manufacture of 100 products, while
products are split equally among the existing types of products.

Both configurations draw inspiration from manufacturing
furniture, where wooden panels are first taken from storage and
sawn into parts. Then holes for connectors, such as dowels,
are drilled. Afterward, edges are applied to cover the exposed
sides. This process is termed edgebanding. Finally, the product
is assembled and stored, e.g., for shipping. However, often
the order of drilling and edgebanding can be interchanged.
Therefore in Fig. 6a, we present a system with two such types
of furniture products: The first product type requires drilling
before edgebanding (dashed product flow), while the second
type requires edgebanding before drilling (solid product flow).
For each required capability, there is one agent, alongside two
storages.

Fig. 6b introduces Configuration 2 as a variation of Config-
uration 1. In Configuration 2, we assume the manufacturer not
to cut parts himself, but instead, buy cut parts for two different
types of products from suppliers. Parts for different types of
products are stored in different storages. Again, the first type of
product requires drilling before edgebanding (dashed product
flow), while the other product requires edgebanding before
drilling (solid product flow). After assembly, all products are

Storage Saw
-
Drill _ - - Edgebander
 ou -

O o=)
¥ — _—
Assembly - - Storage

L 4 ‘P
] I i

CD:] Processing agent |:|:|:|:| Storage

Product flow

(a) Configuration 1

Storage Storage
Drill Edgebander
| B et 5 R
¥ — _—
Assembly - - Storage
L 4 r -
] I s

CD:] Processing agent |:|:|:|:| Storage

Product flow

(b) Configuration 2

Fig. 6. System configurations for the experimental evaluation. AGVs are omitted for the sake of simplicity. Note the cyclic arrangement of the two tasks

between the drilling and the edgebanding machine.

stored in a third storage. Note the cyclic arrangement between
the drill and the edgebander in both configurations.

B. Experimental results

The results for Configuration 1 in Table I support our hy-
potheses: While we identified 6 deadlocks on average without
deadlock avoidance, conservative locking and our approach
did avoid deadlocks effectively (Hypothesis 1). For this, our
approach required about 70% of the runtime, the conservative
locking algorithm needed, also resulting in higher throughput
(Hypothesis 3). Besides, the difference in terms of message
overhead is notable: While with conservative locking 915
messages were sent, our approach required only 319 messages
with a standard deviation of 0 messages (Hypothesis 2).

Compared to Configuration 1, in Configuration 2 deadlocks
occur more frequently if deadlock avoidance is omitted. We
measured about 28 deadlocks on average with a standard
deviation of 14 deadlocks. The main reason is that the two
storages simultaneously add products to the cycle, while in
Configuration 1 the saw could only add one product at a time.
Therefore, the results for Configuration 2 are slightly more
scattered, yet the analysis in Table I and Fig. 7 confirms our
hypotheses as well: Our approach and the conservative locking
algorithm prevent any deadlocks, reinforcing Hypothesis 1.
Again, our approach requires significantly fewer messages
(Hypothesis 2). While the conservative locking algorithm
required 1065 messages on average, our approach got by with
416 messages on average. As for Hypothesis 3, our approach

Conservative locking |- } } N

Our approach - } m } e

! ! ! ! !
200 300 400 500 600

seconds
T T
Conservative locking - % i
Our approach - % i
L L L L L
400 600 800 1,000 1,200
messages

Fig. 7. In-depth comparison of conservative locking and our approach for
Configuration 2. The plots show the result of 100 runs in terms of runtime
(above) and messages sent (below) for the production of 100 products.
Whiskers denote minimum and maximum values.

outperforms the conservative locking algorithm though the
results are not as conclusive as in Configuration 1.

We, therefore, conclude that our hypotheses hold in the
configurations considered. While the configurations considered
are typical for furniture production, further investigations must
show whether our results also apply to other domains.

TABLE I. EXPERIMENTAL RESULTS OF THE COMPARATIVE EVALUATION OF THE CONSERVATIVE LOCKING AND OUR APPROACH. FOR EACH
CONFIGURATION AND STRATEGY, THE MEASUREMENTS OF 100 RUNS, EACH SIMULATING THE MANUFACTURING OF 100 PRODUCTS, ARE AVERAGED.

No. of deadlocks:

Configuration Strategy

Runtime in seconds:

Throughput in products/s: ~ No. of messages sent:

mean (std) mean (std) mean (std) mean (std)
No deadlock avoidance 6.11 (3.77) - - -
1 Conservative locking 0 (0) 218 (25) 0.46 (0.05) 915 (0)
Our approach 0 (0) 155 (14) 0.65 (0.06) 319 (0)
No deadlock avoidance 27.80 (14.14) - - -
2 Conservative locking 0 (0) 393 (61) 0.26 (0.04) 1065 (36)
Our approach 0 (0) 312 (44) 0.33 (0.04) 416 (21)

VI. CONCLUSION

In this paper, we consider the problem of deadlocks in
self-organizing production systems. Deadlocks can occur in
production systems if there is a cycle in the product flow, and
each agent in this cycle is occupied by a product. Therefore,
we present an approach that detects cycles in the system’s
product flows and controls the number of products in each
cycle. Detecting cycles and controlling the number of products
is realized by sending messages, hence our approach works
without central knowledge or control. Furthermore, our ap-
proach detects cycles arising from the combination of several
product flows and thus is suitable for production systems with
several types of products to be manufactured in parallel.

To demonstrate the effectiveness of our approach, we con-
duct several experiments measuring the time to manufacture
a fixed number of products, the number of deadlocks en-
countered, and the number of messages sent. Our evaluation
indicates that our approach avoids deadlocks in various system
configurations. Compared to a conservative locking algorithm,
our approach requires considerably less message and time
overhead. Therefore, systems using our approach can achieve
higher throughput.

In future experiments, we plan to investigate the effect
of adding buffers in front of and after every agent. Buffers
are well studied in literature and known to increase the
decoupling of machines [21]. Another approach towards the
problem is considering deadlocks in task allocation. Adding
hard constraints to the CSP to prevent cyclic arrangements is
not desirable. But the idea of adding soft constraints to prefer
configurations without cycles seems like a promising way to
relax the problem.

Finally, we strive for a theoretical proof that verifies the
deadlock avoidance property of our approach and confirms
our simulation results.

REFERENCES

[1]1 Y. Koren, The global manufacturing revolution: product-process-
business integration and reconfigurable systems. John Wiley & Sons,
Ltd, 2010.

Y. Chevaleyre, U. Endriss, J. Lang, P. Dunne, M. Lemaitre, N. Maudet,
J. Padget, S. Phelps, J. Rodriguez-Aguilar, and P. Sousa, “Issues in
multiagent resource allocation,” Informatica, vol. 30, pp. 3-31, 2006.
L. Monostori, J. Vancza, and S. Kumara, “Agent-based systems for
manufacturing,” CIRP Annals, vol. 55, no. 2, pp. 697 — 720, 2006.

A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28573-28 593, 2018.

[2]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

P. Leitdo, J. Barbosa, and D. Trentesaux, “Bio-inspired multi-agent
systems for reconfigurable manufacturing systems,” Engineering Appli-
cations of Artificial Intelligence, vol. 25, no. 5, pp. 934 — 944, 2012.
L. Ribas-Xirgo, J. M. Moreno-Villafranca, and I. F. Chaile, “On using
automated guided vehicles instead of conveyors,” in 2013 IEEE 18th
Conference on Emerging Technologies Factory Automation (ETFA),
2013, pp. 1-4.

S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint satisfaction
problems: Algorithms and applications,” European Journal of Opera-
tional Research, vol. 119, no. 3, pp. 557 — 581, 1999.

J.-P. Steghofer, P. Mandrekar, F. Nafz, H. Seebach, and W. Reif, “On
deadlocks and fairness in self-organizing resource-flow systems,” in
Architecture of Computing Systems - ARCS 2010, C. Miiller-Schloer,
W. Karl, and S. Yehia, Eds. = Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 87-100.

E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Computing Surveys (CSUR), vol. 3, no. 2, pp. 67-78, 1971.

H. Seebach, F. Ortmeier, and W. Reif, “Design and construction of
organic computing systems,” in 2007 IEEE Congress on Evolutionary
Computation, Sep. 2007, pp. 4215-4221.

H. Seebach, F. Nafz, J.-P. Steghofer, and W. Reif, “How to design and
implement self-organising resource-flow systems,” in Organic Comput-
ing—A Paradigm Shift for Complex Systems. Springer, 2011, pp. 145—
161.

M. P. Fanti and M. Zhou, “Deadlock control methods in automated
manufacturing systems,” IEEE Transactions on systems, man, and
cybernetics-part A: systems and humans, vol. 34, no. 1, pp. 5-22, 2004.
M. Singhal, “Deadlock detection in distributed systems,” Computer,
vol. 22, no. 11, pp. 37-48, 1989.

Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible
manufacturing systems with concurrently competing process flows,”
IEEE Transactions on robotics and automation, vol. 6, no. 6, pp. 724—
734, 1990.

N. Wu and M. Zhou, “Modeling and deadlock avoidance of automated
manufacturing systems with multiple automated guided vehicles,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 35, no. 6, pp. 1193-1202, 2005.

M. P. Fanti, B. Maione, S. Mascolo, and A. Turchiano, “Event-based
feedback control for deadlock avoidance in flexible production systems,”
IEEE Transactions on Robotics and Automation, vol. 13, no. 3, pp. 347—
363, 1997.

M. P. Fanti, “Event-based controller to avoid deadlock and collisions
in zone-control agvs,” International Journal of Production Research,
vol. 40, no. 6, pp. 1453-1478, 2002.

A. Boukerche and C. Tropper, “A distributed graph algorithm for the
detection of local cycles and knots,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 8, pp. 748-757, 1998.

R. A. Wysk, N.-S. Yang, and S. Joshi, “Detection of deadlocks in flexible
manufacturing cells,” IEEE Transactions on robotics and automation,
vol. 7, no. 6, pp. 853-859, 1991.

H. Cho, T. Kumaran, and R. A. Wysk, “Graph-theoretic deadlock
detection and resolution for flexible manufacturing systems,” [EEE
Transactions on Robotics and Automation, vol. 11, no. 3, pp. 413-421,
1995.

Y. Dallery and S. B. Gershwin, “Manufacturing flow line systems: a
review of models and analytical results,” Queueing Systems, vol. 12,
no. 1, pp. 3-94, Mar 1992.

