
Improving the Accuracy of Cache-Aware Response
Time Analysis Using Preemption Partitioning
Filip Marković
Mälardalen University, Västerås, Sweden
filip.markovic@mdh.se

Jan Carlson
Mälardalen University, Västerås, Sweden
jan.carlson@mdh.se

Sebastian Altmeyer
University of Augsburg, Germany
altmeyer@informatik.uni-augsburg.de

Radu Dobrin
Mälardalen University, Västerås, Sweden
radu.dobrin@mdh.se

Abstract
Schedulability analyses for preemptive real-time systems need to take into account cache-related
preemption delays (CRPD) caused by preemptions between the tasks. The estimation of the CRPD
values must be sound, i.e. it must not be lower than the worst-case CRPD that may occur at runtime,
but also should minimise the pessimism of estimation. The existing methods over-approximate
the computed CRPD upper bounds by accounting for multiple preemption combinations which
cannot occur simultaneously during runtime. This over-approximation may further lead to the
over-approximation of the worst-case response times of the tasks, and therefore a false-negative
estimation of the system’s schedulability. In this paper, we propose a more precise cache-aware
response time analysis for sporadic real-time systems under fully-preemptive fixed priority scheduling.
The evaluation shows a significant improvement over the existing state of the art approaches.

2012 ACM Subject Classification Computer systems organization→ Real-time system specification;
Software and its engineering → Real-time schedulability

Keywords and phrases Real-time systems, Fixed-Priority Preemptive Scheduling, Preemption delay

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.5

Acknowledgements We want to thank our colleagues Sebastian Hahn, Jan Reineke, and Darshit
Shah, who provided us with the evaluation data derived from the code-level analysis of benchmark
programs. Also, we are very grateful to Davor Čirkinagić who borrowed his powerful computing
system for performing schedulability evaluation.

1 Introduction

Fully-preemptive scheduling is used in many real-time embedded systems in order to e.g.,
overcome the limitations of non-preemptive scheduling which can introduce significant
blocking on high priority tasks from lower priority ones. Fully-preemptive scheduling allows
for an interruption (preemption) of the task’s execution whenever a task with a higher
priority is released. However, as shown by Pellizzoni et al. [21], a preemption can introduce a
significant preemption related delay, even up to 33% of the task’s worst-case execution time.

In embedded systems employing a cache-based architecture, one of the major causes of
preemption delay is cache-related preemption delay (CRPD), as shown by Bastoni et al. [7].
CRPD represents the longest time needed by a resuming task to reload the memory cache
blocks which it had loaded prior to the preemption. Since CRPD may significantly increase

© Filip Marković, Jan Carlson, Sebastian Altmeyer, and Radu Dobrin;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3210-3819
mailto:filip.markovic@mdh.se
mailto:jan.carlson@mdh.se
mailto:altmeyer@informatik.uni-augsburg.de
mailto:radu.dobrin@mdh.se
https://doi.org/10.4230/LIPIcs.ECRTS.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

the worst-case execution time of a task, its tight estimation is very important and therefore
a new field of timing analysis, called cache-related preemption delay analysis, has emerged in
the research of real-time systems.

In the context of CRPD analysis for fixed-priority fully-preemptive scheduling, many
different approaches have been proposed in the last few decades, of which we describe a
selection of the most recent ones. Tomiyama et al. [31], and Busquets-Mataix et al. [11]
proposed analyses which are based on the over-approximation that a single preemption
causes the CRPD equal to the time needed for reloading all the evicting cache blocks from
a preempting task. These analyses neglected the fact that not every eviction results in a
cache block reload. Contrary to this, Lee et al. [20] proposed the analysis that bounds the
CRPD by accounting for the cache blocks which may be reused at some later point in a
task, called the useful cache blocks. However, their analysis did not account for the fact that
although useful, some cache block cannot be evicted, and thus cannot result in a cache block
reload. These two opposite approaches defined the two main branches in CRPD analysis:
ECB-based CRPD and UCB-based CRPD.

Later, Tan and Mooney [30] proposed the UCB-union approach, which accounted for the
limitations of the above-described approaches. In this approach, CRPD is computed using
the information about all possibly affected useful cache blocks along with the evicting cache
blocks from the tasks which may evict them. Opposite to that, Altmeyer et al. [3] proposed
the ECB-union approach, where the all possibly evicting cache blocks are analysed along
with the useful cache blocks from the tasks that may be preempted.

The latest and in overall the most precise CRPD approaches are proposed by Altmeyer et
al. [4], called ECB-union multiset and UCB-union multiset approaches. Those approaches are
improvements over the UCB-union and ECB-union because they account for a more precise
estimation of the nested preemptions. The multiset approach was also used by Staschulat et
al. [28] for the periodic task systems where they accounted that each additionally accounted
preemption of a single preempting task may result in a smaller CRPD value compared to
the previous preemptions. In the context of periodic systems, Ramaprasad and Mueller
[23, 22] investigated the possibility of tightening the CRPD bounds using preemption patterns.
However, in this paper, we consider a sporadic task model which constrains such analysis.

Furthermore, in recent years, several cache-aware analysis were proposed in the contexts
of: cache partitioning by Altmeyer et al. [26, 5], cache-persistence by Rashid et al. [25, 24]
and Stock et al. [29], write-back cache by Davis et al. [12] and Blaß et al. [9].

In all of the above-mentioned CRPD analyses, the resulting upper bounds are overly
pessimistic mainly because they account for CRPD obtained from preemption combinations
which cannot occur simultaneously during runtime.

In this paper, we propose a cache-aware response-time analysis that accounts for the
above-mentioned source of pessimism, and a few more, in the context of fixed priority
fully-preemptive scheduling (FPPS). The evaluation shows a significant improvement over
the existing state of the art approaches.

In the remainder of the paper, we first define the system model in Section 2. In Section
3, we overview the existing SOTA UCB-union and ECB-union based methods, including
the multiset variants. In Section 4, we discuss the pessimism in the current state of the
art cache-aware analyses. The proposed analysis is defined in Section 5, and the evaluation
results are shown in Section 6. The paper is concluded in Section 7.

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:3

2 Task Model, Terminology and Notation

In this paper, we consider a sporadic task model, with preassigned fixed task priorities, under
fully-preemptive scheduling. A taskset Γ consists of n tasks sorted in a decreasing priority
order, where each task τi generates an infinite number of jobs, characterised with the following
task parameters 〈Pi, Ci, Ti, Di〉. Task priority is denoted with Pi and we assume disjunct
priorities among the tasks. The worst-case execution time without accounted preemption
delays is denoted with Ci. Ti denotes the minimum inter-arrival time between the two
consecutive jobs of τi, and the relative deadline is denoted with Di.

We also consider single-core systems with single-level direct-mapped caches, extending
the task model by accounting for detailed knowledge about the cache usage. In addition, we
describe a possible adjustment in subsection 5.8, thus also considering LRU set-associative
caches. For each task τi, the information about the accessed cache blocks within the task’s
execution is assumed as derived, and based on that we define the following cache block sets:
ECBi – a set of evicting cache blocks of τi, such that cache-set s is in ECBi if and only if a
memory block from s may be accessed during the execution of τi.
UCBi – a set of all useful cache blocks throughout the execution of τi. As proposed by Lee et
al. [20], and superseded by Altmeyer et al. [2], a cache-set s is in UCBi, if and only if τi
accesses a memory block m in s such that: a) m must be cached at some program point P
in the execution of τi, and b) m may be reused on at least one control flow path starting
from P without the eviction of m on this path.

In the remainder of the paper, we use the following notations for different sets of tasks:
hp(i) A set of tasks with priorities higher than τi
hpe(i) A set of tasks with priorities higher than τi, including τi, i.e. hpe(i) = hp(i) ∪ {τi}
lp(i) A set of tasks with priorities lower than τi
aff (i, h) A set of tasks with priorities higher than or equal to τi and lower than τh, i.e.
aff (i, h) = hpe(i) ∪ lp(h)

3 Background

Cache-related preemption delay is computed as the upper bound on the number of cache
block reloads that can be caused due to preemptions and potential evictions of memory
contents that are used by the preempted tasks. In this paper, CRPD is denoted with γ and is
computed as the multiplication of the upper bound on cache block reloads with the constant
BRT , which is the longest time needed for a single memory block to be reloaded into cache
memory, i.e. block reload time. The general formula is γ = #reloads × BRT .

In this section, we briefly describe the most relevant CRPD-aware analyses for under-
standing the contributions of this paper. We describe UCB-union approach [30], ECB-union
approach [3], and their multiset variants [4].

UCB-union and ECB-union approaches are computed as the least-fixed points of the
following equation for the worst-case response time:

R
(l+1)
i = Ci +

∑
τh∈hp(i)

dR(l)
i /The × (Ch + γi,h) (1)

In Equation 1, γi,h represents the CRPD due to a single job of a higher priority task τh
executing within the worst-case response time of task τi. This term is computed differently
for each of the CRPD approaches.

ECRTS 2020

5:4 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

UCB-Union approach computes γucbui,h with the following equation, accounting that a job
of τh causes a reload of each cache block which it may access and which is useful during the
execution of at least one of the tasks from the range [τh+1, τh+2, ..., τi].

γucbu
i,h =

∣∣∣(⋃
τk∈aff (i,h)

UCBk

)
∩ ECBh

∣∣∣× BRT (2)

ECB-Union approach computes γecbui,h with the following equation, accounting that a job
of τh is preempted by all of the tasks with higher priority than τh, after the job directly
preempted one of the tasks from the range [τh+1, τh+2, ..., τi]. In this case, the preemption
resulting in the highest number of evicted useful cache blocks is considered.

γecbu
i,h = max

τk∈aff (i,h)

{∣∣(⋃
τh′∈hpe(h)

ECBh′
)
∩UCBk

∣∣}× BRT (3)

Improving the above two approaches, Altmeyer et al. [4] introduced UCB-Union multiset and
ECB-Union multiset which are computed as the least-fixed points of the following equation:

R
(l+1)
i = Ci +

∑
τh∈hp(i)

(dR(l)
i /The × Ch + γi,h) (4)

where γi,h represents the CRPD due to each job of a higher priority task τh executing within
the the worst-case response time of task τi.

ECB-Multiset approach computes γecbum
i,h accounting that τh can preempt each task

τk | h < k ≤ i the maximum number of times a single job of τk can be preempted by jobs of
τh, for each job of τk that can be released within Ri, i.e. dRk/The × dRi/Tke times. This is
accounted by the multiset Mi,h, which consists of the maximum CRPDs from jobs of τh on
each preemptable job which can be released within Ri (] represents multiset union):

Mi,h =
⊎

τk∈aff (i,h)

(⊎
dRk/The×dRi/Tke

∣∣UCBk ∩
(⋃
τh′∈hpe(h)

ECBh′
)∣∣) (5)

Based on the above multiset, γecbum
i,h is computed as the sum of the maximum dRi/The values

from Mi,h, accounting that only dRi/The jobs of τh can directly preempt and cause CRPD
on the preemptable jobs accounted in Mi,h.

UCB-Multiset approach computes γucbum
i,h by first computing the multiset Mucb

i,h which
consists of all possibly useful cache blocks from jobs which can be released within Ri, and
have priority higher than or equal to τi, and lower than τh.

Mucb
i,h =

⊎
τk∈aff (i,h)

(⊎
dRk/The×dRi/Tke

UCBk

)
(6)

Next, this approach computes the multiset Mecb
i,h which consists of all possibly evicting

cache blocks within jobs of τh that can be released within Ri. The following equation includes
an instance of evicting cache block from τh for each job of τh that can be released within Ri:

Mecb
i,h =

⊎
dRi/The

(
ECBh

)
(7)

The upper bound on CRPD from jobs of τh preempting all jobs from τh+1 to τi is equal
to the size of intersection of those multisets, with accounted block reload time:

γucbum
i,h = |Mucb

i,h ∩Mecb
i,h | × BRT (8)

The Combined-Multiset approach first computes the worst-case response time Recbum
i

using Equation 4 and γecbum
i,h , and similarly does with UCB-Union multiset, using Equation 4

and γucbum
i,h thus deriving Rucbum

i . Then, the final result is computed as min(Recbum
i , Rucbum

i).

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:5
!"

!#

!$

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

Nested preemptions

Direct preemptions

{1,2}

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

{3,4,5,6,7,8}

!"

!#

!$

{3,4,5,6}{3,4,7,8}

567859 6:;7 = 8

567859 6:;7 = 8

!"

!#

!$

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

Nested preemptions

Direct preemptions

{1,2}

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

{3,4,5,6,7,8}

!"

!#

!$

{3,4,5,6}{3,4,7,8}

567859 6:;7 = 8

567859 6:;7 = 8

!"

!#

!$

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

Nested preemptions

Direct preemptions

{1,2}

%&'()&'(
{1,2,3,4,5,6} {1,2,3,4,5,6}

{1,2} {1,2,3,4,7,8}

{3,4,5,6,7,8} {3,4,5,6,7,8}

{3,4,5,6,7,8}

!"

!#

!$

{3,4,5,6}{3,4,7,8}

567859 6:;7 = 8

567859 6:;7 = 8

Actual cost =	8 Actual cost =	8

,-

,.

,/
,0

Figure 1 Example of the pessimistic CRPD estimation in both, UCB- and ECB-union based
approaches. Notice that the worst-case execution time (black rectangles) is in reality significantly
larger than CRPD, but the focus of the figure is rather on preemptions and CRPD depiction.

4 Pessimism in CRPD analyses based on UCB- and ECB-union
approaches

In this section, we present the identified problems considering CRPD over-approximation
when using UCB- and ECB-based approaches, including the multiset variants.

I Problem 1. Combined approach over-approximates the CRPD bounds because all preemp-
tions that may occur within a response time Ri are treated the same, with at most one method
at a time. However, within all preemptions that may occur within Ri, different preemption
sub-groups may be analysed with different analyses, thus the CRPD may be further reduced by
computing the bounds for different preemption sub-groups individually instead of computing
it with one method at a time for a single group of all preemptions.

I Problem 2. Combined approach accounts for CRPD from many different preemption
combinations, which cannot occur together. This is presented with the following example.
In Figure 1, we present three tasks τ1, τ2, and τ3 with their respective sets of evicting and
useful cache blocks. In the example, it is assumed that tasks τ1 and τ2 can be released at most
once during the execution of τ3 and that block reload time is equal to 1. Based on this, only
two preemption combinations which result in the worst-case CRPD bound are possible: 1) A
job of τ2 directly preempts a job of τ3, and a job of τ1 directly preempts a job of τ2 (nested
preemptions), 2) A job of τ2 directly preempts a job of τ3, and a job of τ1 directly preempts a
job of τ3 (direct preemptions).

For each task, black rectangles in the figures represent the worst-case execution time,
grey rectangles represent CRPD, whereas the sets of integer values above the grey rectangles
represent the cache sets whose reloads must be accounted.

Considering the given cache block sets, the actual worst-case CRPD, based on the
separately analysed preemption combinations, is:

8 (nested preemption): This is the case because τ2 evicts cache blocks 3, 4, 7, and 8 which
are then reloaded during the post-preemption execution of τ3. After that, τ1 evicts blocks
1 and 2 when preempting τ2, which are reloaded during the post-preemption execution of
τ2, and also τ1 evicts cache blocks 5 and 6 which are reloaded during the post-preemption
execution of τ3. Notice that although τ1 also potentially evicts blocks 3, and 4 from τ3,
they are accounted as reloads only once within τ3, because τ3 is interrupted once and thus
only one reload of each useful cache block within remaining execution of τ3 is possible.
8 (direct preemptions): This is the case because τ2 evicts cache blocks 3, 4, 7, and 8 from
τ3, and τ1 evicts cache blocks 3, 4, 5, and 6 from τ3.

Since any other preemption combination can be derived only by removing one of the
preemptions accounted in the two above, the worst-case CRPD is equal to 8. However,

ECRTS 2020

5:6 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

UCB-union based approaches (including the multiset variant) compute the following CRPD:

γucbu
i,h =

∣∣(⋃
τk∈aff (i,h) UCBk

)
∩ ECBh

∣∣
γucbu

3,1 =
∣∣(UCB3 ∪UCB2

)
∩ ECB1

∣∣ = 6 , γucbu
3,2 =

∣∣UCB3 ∩ ECB2
∣∣ = 4

γucbu
3,1 + γucbu

3,2 = 4 + 6 = 10 , accounted reloads for blocks: 1, 2, 3, 3, 4, 4, 5, 6, 7, 8

UCB-union based approaches compute CRPD upper bound of 10 reloads, thus approximating
two block reloads over the safe upper bound (8 reloads) illustrated in Figure 1. Compared
to the leftmost case from Figure 1, the accounted infeasible reloads are for blocks 3 and 4.
Compared to the rightmost case, the accounted infeasible reloads are for blocks 1 and 2.

ECB-union based approaches (including the multiset variant) compute the CRPD upper-
bound as follows:

γecbu
i,h = max

τk∈aff (i,h)

{∣∣(⋃
τ ′
h
∈hpe(h) ECBh′

)
∩UCBk

∣∣}
γecbu

3,1 = max
τk∈{2,3}

{
|(ECB1) ∩UCBk|

}
= max

{
|ECB1 ∩UCB2|, |ECB1 ∩UCB3|

}
= 4

γecbu
3,2 = max

{
|
(
ECB1 ∪ ECB2

)
∩UCB3|

}
= 6

γecbu
3,1 + γecbu

3,2 = 4 + 6 = 10

Similarly to UCB-union based approaches, ECB-union based approaches compute CRPD
upper bound of 10 reloads, thus approximating two cache block reloads over the safe bound.

Even when the lowest bound of the two is selected, CRPD bound is over-approximated
by accounting for two cache block reloads which cannot occur in a single combination of
preemptions during runtime. CRPD over-approximation is further increased when multiple
jobs of each task are introduced. In this paper, we propose a novel method for computing
the CRPD and the worst-case response time, accounting for the above-described problems.

5 CRPD-aware Response-Time Analysis

In the remainder of the paper, when we refer to the term preemption we consider both,
indirect (nested) and direct preemptions. We start with defining a cache-aware worst-case
response time equation, slightly different than the existing ones. Formally, the response time
analysis is defined as the least fixed-point of the following equation:

R
(l+1)
i = Ci + γ(i, R(l)

i) +
∑

τh∈hp(i)

⌈
R

(l)
i

Th

⌉
Ch (9)

Notice that unlike in the existing approaches, Equation 9 computes the CRPD upper bound
γ(i, t), which is a function that implicitly accounts for all preemptions that can occur within
duration t, between the first i tasks of Γ. A CRPD upper bound on all preemptions that can
occur within duration t can be computed more accurately by applying the following four
steps that we describe in more detail in the remainder of this section:
1. Derive all possible preemptions which can occur within duration t, between the jobs of

the first i tasks of Γ, (described in Subsection 5.1).
2. Divide the possible preemptions into partitions such that each partition accounts for

single-job preemptions between the tasks, (described in Subsection 5.2)
3. Compute the CRPD bounds for each partition individually, (described in Subsection 5.3).
4. Sum the CRPD bounds of all partitions to obtain the cumulative CRPD bound on all

possible preemptions within duration t, (described in Subsection 5.4).

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:7

𝑼𝑪𝑩𝒊𝑬𝑪𝑩𝒊
{1,2,3,4,5,6}{1,2,3,4,5,6}

{1,2}{1,2,3,4,7,8}

{3,4,5,6,7,8}{3,4,5,6,7,8}

𝑡 = 46 𝑪𝒊 𝑻𝒊
6

6

16

26

49

50

𝑫𝒊
7

20

46𝜏6

𝜏7

𝜏8

𝝉𝒊

Figure 2 Worst-case preemptions for τ3 during the time duration t = 46.

To show an overview of how the proposed analysis works, we provide the running example
from Figure 2, and we compute the upper bound on CRPD within the time duration t = 46.
The analysis computes the bound as follows:

1. Derive all possible preemptions which can occur within duration t, between the jobs of
the first i tasks of Γ.
Example: Given the tasks from Figure 2, during the 46 time units, task τ1 can preempt
τ3 at most two times, and it can preempt τ2 at most once. Also, τ2 can preempt τ3
at most once. More formally, a single preemption from a job of τh on a job of τj is
represented with an ordered pair (τh, τj). Thus, all possible preemptions, within 46 time
units, can be represented by the following multiset of ordered preemption pairs:{

(τ1, τ3), (τ1, τ3), (τ1, τ2), (τ2, τ3)
}

(10)

2. Divide the possible preemptions into partitions such that each partition accounts for
single-job preemptions between the tasks.
Example: To represent the partitions, we generate the multiset Λ which consists of all
possible preemptions, divided into partitions that account for single-job preemptions
between the tasks. Given the possible preemptions from the multiset derived in the
previous step, the multiset Λ of all partitions is:

Partition 1 Partition 2
↓ ↓

Λ =
{

{(τ1, τ2), (τ1, τ3), (τ2, τ3)} , {(τ1, τ3)}
}

The multiset Λ consists of two partitions (each represented as a set of preemptions), such
that the first partition consists of the following preemptions {(τ1, τ2), (τ1, τ3), (τ2, τ3)},
meaning that it is possible that τ1 preempts τ2, that τ1 preempts τ3, and that τ2 preempts
τ3. Jointly, the preemptions consist of all possible preemptions among the three tasks
within a duration of 46 time units.

3. Compute the CRPD bounds for each partition individually.
Example: As we showed in the previous section, when a single job of each task may
preempt the other jobs with lower priority, the upper bound on CRPD is 8 time units. This
is the upper bound on all preemptions accounted in Partition 1. Considering Partition 2,
it consists of a single preemption, from a job of τ1 on τ3, and in this case the upper bound
is 4 time units since the preemption may lead to the reloads of cache blocks 3, 4, 5 and 6.

4. Sum the CRPD bounds of all partitions to obtain the cumulative CRPD bound on all
possible preemptions within duration t.
Example: The sum of upper bounds for Partition 1 and Partition 2 is 8 + 4 = 12, which
is the upper bound on all preemptions within 46 time units of the three shown tasks.

ECRTS 2020

5:8 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

In the remainder of this section, we formally define the introduced terms, and prove that
the proposed analysis results in a safe CRPD upper bound. The running example remains
and it serves for better understanding on how the above values are computed and what they
formally represent. This section is divided into the following subsections: 5.1 – describes the
computation of upper bounds on the number of preemptions, 5.2 – describes the preemption
partitioning, 5.3 – computation of CRPD bound for single partition, 5.4 – computation
of CRPD bound for all preemptions, 5.5 – correctness proof for the computation of the
worst-case response time, 5.6 – time complexity, and 5.7 – the additional computation for
CRPD bound for single partition, based on finding the worst-case preemption combination.

5.1 Computing the upper bounds on the number of preemptions
I Definition 1. An upper bound Ehj (t) on times a task τh can preempt τj (h < j) within
duration t is defined with the following equation:

Ehj (t) =


⌈
t

Th

⌉
,

⌈
t

Th

⌉
≤
⌈
t

Tj

⌉
⌈
t

Tj

⌉
×
⌈
Rj
Th

⌉
,

⌈
t

Th

⌉
>

⌈
t

Tj

⌉ (11)

I Proposition 2. Ehj (t) is an upper bound on number of possible preemptions from τh on τj
within duration t.

Proof. Let us consider the following cases:
d tTh e ≤ d

t
Tj
e: Each job of τh can preempt τj at most once, therefore the number of τh jobs

which can be released within duration t is a safe bound on the number of preemptions from
τh on τj within t.
d tTh e > d

t
Tj
e: An upper bound on preemptions from jobs of τh on a single job of τj is equal

to dRjTh e since it is also an upper bound on number of times that jobs of τh can be released
within the worst-case response time Rj of a single job. Since Equation 11 applies the bound
dRjTh e on each job of τj which can be released within t, the proposition holds. J

5.2 Preemption partitioning
Once the all possible preemptions which can occur within duration t are identified, we divide
them into partitions, such that no partition accounts for the same preemption pair of the
first i tasks in Γ, and such that all partitions jointly account for all possible preemptions.

I Definition 3. A multiset Λi,t of partitions consisting of all possible preemptions that can
occur within duration t, between the jobs of the first i tasks of Γ.

Λi,t = {λ1, λ2, ..., λz} such that λr = {(τh, τj) | r ≤ Ehj (t)} (12)

In Equation 12, Λi,t is defined as a multiset of of sets (partitions). Each set λr consists of
possible preemptions and each preemption is represented as an ordered pair (τh, τj) where
the first element represents the preempting, and the second element represents the preempted
task. The multiset Λ is formed of exactly z partitions, where z = max{Ehj (t) | 1 ≤ h < j ≤ i}.
Each partition consists of disjunct preemptions, meaning that no partition contains two same
preemptioin pairs.
Example: Given the taskset from the running example in Figure 2, the multiset Λ3,46 is
computed as follows.

Λ3,46 = {λ1, λ2} where λ1 = {(τ1, τ2), (τ1, τ3), (τ2, τ3)} and λ2 = {(τ1, τ3)} (13)

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:9

It is important to notice that the multiset union (]) of all partitions in Λ3,46 results in the
multiset of all possible preemptions, e.g.,

λ1] λ2 = {(τ1, τ2), (τ1, τ3), (τ2, τ3)}] {(τ1, τ3)} = {(τ1, τ2), (τ1, τ3), (τ2, τ3), (τ1, τ3)}

I Proposition 4. Multiset Λi,t consists of all possible preemptions that may occur within
duration t, between the jobs of the first i tasks of Γ.

Proof. Directly follows from Proposition 2 and Equation 12 since Equation 12 includes each
possible preemption, occurable within duration t between the first i tasks of Γ, in one of the
partitions of Λi,t. J

5.3 CRPD bound on preemptions from a single partition
As suggested in Section 3, considering the Problem 1 of CRPD over-approximation, computing
a bound for different preemption partitions individually, instead of computing it for all
preemptions at once, may result in more precise CRPD estimations.

To achieve this, once the multiset Λi,t of preemption partitions is computed, an upper
bound on CRPD resulting from preemptions of a single partition λr ∈ Λi,t can be computed
by selecting the minimum CRPD bound among the results from UCB-Union and ECB-Union
approaches. Here, we describe the improvements and adjustments on those approaches to
compute CRPD bound from preemptions contained within a partition.

In the following equations, aff (i, h, λr) represents a set of tasks with priorities higher than
or equal to τi and lower than τh which can be preempted by τh according to preemptions
represented in λr. Formally: aff (i, h, λr) = {τk | (τh, τk) ∈ λr ∧ τk ∈ hpe(i)}. Also, with
hp(i, λr) we denote a set of tasks with priorities higher than τi such that for each τh ∈ hp(i, λr)
there is (τh, τi) ∈ λr.

First, we improve and adjust the ECB-Union approach, proposed by Altmeyer et al. [4].
In that approach, for a job of τh, it is accounted that it directly preempts one of the tasks
from aff (i, h, λr) set such that the maximum possible number of UCBs are evicted. In order
for this approach to be correct, it is also accounted that tasks that can preempt τh also
contribute to the evictions of useful cache blocks of the preempted task. This scenario is
represented by a CRPD bound γecbp

i,h . We further improve this formulation by accounting
that a preemption from a single job of τh on any job of τk from aff (i, h, λr) cannot cause
more cache-block reloads than the maximum number of UCBs that can be evicted at a single
preemption point of τk. The maximum number of UCBs at a single preemption point of τk
is represented by ucbmax

k . The above translates to Equation 14.

γecbp
i,h (λr) = max

τk∈aff (i,h,λr)

{
min

(∣∣∣(⋃
τh′∈hp(h,λr)∪{τh}

ECBh′

)
∩UCBk

∣∣∣ , ucbmax
k

)}
(14)

We build the correctness of the proposed computation on the correctness of the standard
ECB-Union method [4].

I Proposition 5. γecbp
i,h (λr) is an upper bound on number of reloads that may be imposed by

a direct preemption from τh on one of the tasks within aff (i, h, λr) set.

Proof. A direct preemption from τh on one of the tasks within aff (i, h, λr) set cannot cause
more reloads than the maximum number of UCBs of a preemptable task, which can be
evicted by τh and all the tasks that may preempt τh. Also, such bound cannot be greater
than the maximum number of useful cache blocks ucbmax

k that may be present at a single
preemption point within a preemptable task, which concludes the proof. J

ECRTS 2020

5:10 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

The ECB-Union based upper bound on all preemptions from λr is computed by summing all
γecbp
i,h terms for each possibly preempting task, from τ1 to τi−1:

γecbp
i (λr) =

∑i−1
h=1 γ

ecbp
i,h (λr) (15)

I Proposition 6. γecbp
i (λr) is an upper bound on number of reloads that can be caused by

preemptions from the partition λr.

Proof. For each direct preemption from the preempting jobs of tasks from τ1 to τi−1 in λr,
Equation 15 accounts that the upper-bounded number of cache-blocks is reloaded in one of
the preemptable jobs, as follows from Proposition 5. Therefore, the proposition holds. J

Next, we adjust the UCB-Union approach, proposed by Tan and Mooney [30]. In this
approach, for a job of τh, it is assumed that it can evict useful cache blocks from each task τk
from the aff (i, h, λr) set. However, since a single job of τh can directly or indirectly preempt
each τk at only one of its preemption points, this cost can at most be equal to the sum of
the number of maximum useful cache blocks at single preemption point of each task τk from
aff (i, h, λr). The above is formally represented with γucbp

i,h in the following equation:

γucbp
i,h (λr) = min

(∣∣∣(⋃
τk∈aff (i,h,λr)

UCBk

)
∩ ECBh

∣∣∣ , ∑
τk∈aff (i,h,λr)

ucbmax
k

)
(16)

We build the correctness of the proposed computation on the correctness of the standard
UCB-Union method [30].

I Proposition 7. γucbp
i,h (λr) is an upper bound on number of reloads within all tasks from

aff (i, h, λr), that may be imposed because of the cache-block accesses from a single job of τh.

Proof. A job of τh cannot impose more than one cache block reload per cache-memory block
m, such that m ∈ ECBh, and m ∈ UCBk for any τk such that τk ∈ aff (i, h, λr), as follows
from UCB-Union [30]. Also, since each task τk from aff (i, h, λr) can be preempted by τh
at only one of its preemption points, the maximum number of reloads from τh cannot be
greater than the sum of the maximum numbers of useful cache blocks that may be present
at a preemption point within each such task. This concludes the proof. J

The UCB-Union based upper bound on all preemptions from λr is also computed by
summing all γucbp

i,h terms for each possibly preempting task from τ1 to τi−1:

γucbp
i (λr) =

∑i−1
h=1 γ

ucbp
i,h (λr) (17)

I Proposition 8. γucbp
i (λr) is an upper bound on number of reloads that can be caused by

preemptions from the partition λr.

Proof. For each possibly preempting job from τ1 to τi−1 in λr, Equation 17 accounts that
the job leads to upper-bounded number of cache-block reloads in its possibly preemptable
jobs, as follows from Proposition 7. Therefore, the proposition holds. J

The final upper bound γi(λr) on CRPD from possible preemptions given in λr, between
single jobs of the first i tasks from Γ, is defined as the least bound of the two.

γi(λr) = min
(
γecbp
i (λr) , γucbp

i (λr)
)
× BRT (18)

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:11

I Proposition 9. γi(λr) is an upper bound on CRPD from possible preemptions given in the
partition λr.

Proof. Follows from Propositions 6 and 8 since Equation 18 results in the least bound. J

5.4 CRPD bound on all preemptions within a time interval
Now, we define a computation for the CRPD bound on all preemptions which can occur
within duration t, between the first i tasks of Γ.

I Definition 10. An upper bound γ(i, t) on CRPD of all preemptions, which can occur within
duration t between the first i tasks of Γ, is defined with the following equation:

γ(i, t) =
|Λi,t|∑
k=1

γi(λr) (19)

I Proposition 11. γ(i, t) is an upper bound on CRPD of all preemptions which can occur
within duration t between the first i tasks of Γ.

Proof. Directly follows from Propositions 4 and 9, since Equation 19 is a sum of CRPD
upper bounds of preemption partitions that jointly consist of all preemptions within t. J

5.5 Worst-case response time
In this subsection, we prove that the computed worst-case response time is an upper bound.

I Theorem 12. Ri is an upper bound on worst-case response time of τi.

Proof. By induction, over the tasks in Γ in a decreasing priority order.
Base case: R1 = C1, because hp(i) = ∅. Since Ci is the worst-case execution time of τ1 the
proposition holds.
Inductive hypothesis: Assume that for all τh ∈ hp(i), Rh is an upper bound on worst-case
response time of τh.
Inductive step: We show that Equation 9 computes the worst-case response time of τi.
Consider the least fixed point of Equation 9, for which Ri = R

(l)
i = R

(l+1)
i . At this point,

the equation accounts for the following upper bounds and worst-case execution times:
� Ci, which is the worst-case execution time of τi, assumed by the system model.
� γ(i, Ri), which is proved by Proposition 11 to be an upper bound on CRPD of all jobs

which can be released within duration Ri, and have higher than or equal priority to τi.
�
∑
∀τh∈hp(i)dRi/TheCh, which is the worst-case interference caused by execution of all

jobs of tasks with higher priority than τi without CRPD. Since we proved for all the factors
which can prolong the response time of τi that they are accounted as the respective execution
and CRPD upper bounds in Equation 9, then their sum results in an upper bound. J

5.6 Time complexity
The time complexity of the proposed analysis can be improved since in its current form
Equation 12 explicitly creates all partitions which can lead to re-computation of CRPD
bounds for many identical partitions. For this reason, we first define the matrix Ai,t, from
which it is possible to identify how many repeated partitions there are, and compute CRPD
bound for each distinct partition only once, as introduced in Algorithm 1.

ECRTS 2020

5:12 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

I Definition 13. A matrix Ai,t of upper bounds on number of preemptions between each
pair of tasks with higher than or equal priority to Pi which can occur within duration of t, is
defined with the following equation:

Ai,t = (aj,h) ∈ Ni×i | aj,h =
{

0 , j ≤ h
Ehj (t) , j > h

(20)

I Proposition 14. Ai,t stores an upper-bounded number of preemptions, which can occur
within t, between each pair of tasks with higher than or equal priority to Pi.

Proof. Proposition 14 follows directly from Proposition 2 and the fact that τj cannot preempt
any task τh of higher priority, or τj itself (j ≤ h). J

Equation 20 defines a square matrix Ai,t such that the number of rows and columns is
equal to i, and each entry of the matrix represents the maximum number of preemptions
from a task τh on τj within duration t.
Example: Given the taskset from Figure 2, a matrix of preemptions during 46 time units
looks as follows:

A3,46 =

τ1 τ2 τ3[]0 0 0 τ1

1 0 0 τ2

2 1 0 τ3

(21)

The element a(2, 1) = 1 represents the maximum number of preemptions from τ1 on τ2
during 46 time units (note R2 = 14).

Algorithm explanation: In a matrix Ai,t, there are at most n∗(n−1)
2 values representing

different numbers of possible preemptions among the tasks. Therefore, there are at most
n∗(n−1)

2 distinct partitions to be generated. In Algorithm 1, we define the procedure that
first generates Ai,t (line 3), and then generates distinct partitions one by one (lines 4 – 10).
For each distinct partition, we compute the number sp of times a partition is repeated, then

Algorithm 1 Algorithm for computing the cumulative CRPD during a time interval of
length t.

Data: Time duration t, task index i, Taskset Γ
Result: CRPD upper bound ξ on all jobs with priority higher than or equal to Pi,

which can be released within duration t.
1 fn γ(i, t)
2 ξ ←− 0
3 Ai,t ←− generate the matrix of maximum preemption counts between the tasks

(Equation 20)
4 while Ai,t 6= 0i×i do
5 sp ←− minimum value from Ai,t, greater than zero
6 λ←− {(τh, τj) | sp ≤ aj,h}
7 γi(λ)←− compute the CRPD upper bound from the preemptions in λ
8 ξ ←− ξ + sp × γi(λ)
9 Ai,t ←− decrease all values, greater than zero, by sp

10 end
11 return ξ

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:13

compute the partition (line 6), and account for its CRPD bound sp times in the cumulative
CRPD bound ξ that is updated for each distinct partition (lines 7 and 8). After this, the
partitioned preemptions are removed (line 9), and the next distinct partition is computed
until no more preemptions are left to be partitioned. Formally, termination criteria is satisfied
when Ai,t equals to the zero matrix 0i×i. At the end, the algorithm results in the same
CRPD bound as Equation 19. Using this algorithm, the time complexity is O(n3 ∗ x), where
the complexity of computation at line 6 is O(x).

5.7 CRPD computation using preemption scenarios
In this section, we propose an alternative computation for the upper bound γi(λ) on CRPD
of preemptions in the partition λ. The goal is to compute the CRPD bound from a single
worst-case preemption combination among the preemptions from λ, addressing Problem 2
from Section 4. To achieve this, we first formally define the following terms:

Preemption scenario (τi,PT), and its CRPD upper bound γ(τi,PT),
Preemption combination Πc

λ, and its CRPD upper bound γ(Πc
λ).

Informally, we define a preemption combination as a set of feasible preemptions where
only one job of each task is involved, such that all accounted preemptions are present in a
partition λ. Before being able to formally define a preemption combination, we first formally
define a preemption scenario.

I Definition 15 (Preemption scenario (τi,PT)). A preemption scenario represents a single
interruption due to preemption of a task and it is defined as an ordered pair (τi,PT), where
τi represents the preempted (interrupted) task, and PT is a set of preempting tasks which
execute after the interruption at τi and before the immediate resumption of τi. Formally, for
each preemption scenario (τi,PT) it holds that PT ⊆ hp(i).

Example: Given the example from Fig. 2, the first preemption scenario in τ3 is (τ3 , {τ1, τ2}),
and the second preemption scenario is (τ3 , {τ1}). Also, in the same figure, τ2 is preempted
once and this preemption scenario is (τ2 , {τ1}).

In order to compute the upper bound on CRPD on τi, resulting from one interruption
scenario, the ordering of the preempting tasks is not important. All of them are equally
capable of evicting cache blocks of τi between its preemption and resumption, regardless of
their ordering.

I Definition 16 (CRPD of a preemption scenario γ(τi,PT)). An upper bound γ(τi,PT) on
the CRPD of a preempted task τi resulting from a preemption scenario (τi,PT) is:

γ(τi,PT) = |UCBi ∩
⋃

τh∈PT
ECBh| × BRT (22)

I Proposition 17. γ(τi,PT) is an upper bound on the CRPD of a preempted task τi resulting
from a preemption scenario (τi,PT).

Proof. Since Equation 22 accounts that each UCB from τi is definitely reloaded with the
worst-case block reload time if there is a corresponding evicting cache block from any of the
preempting tasks within a scenario, the proposition holds. J

Example: Given the preemption scenario (τ3 , {τ1, τ2}), the upper bound on CRPD of τ3 is:

γ(τ3 , {τ1, τ2}) = | UCB3 ∩ {ECB1 ∪ ECB2} | = 6

ECRTS 2020

5:14 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

A safe upper bound on CRPD of τi resulting from a preemption scenario (τi,PT) can be
tightened even more if the low-level task analysis can provide more detailed information on
UCBs and ECBs at different program points. In such case, the bound is computed as the
maximum intersection of UCBs from a single point within τi and the evicting cache blocks
of tasks in PT . This is the case because Equation 22 considers a single preempted point
and tasks which may evict cache blocks before preempted task resumes to execute. On the
other hand, many existing approaches consider multiple preemption scenarios at once, and
therefore this improvement is not applicable in their case, as shown by Shah et al. [27].

Given the formal definition of preemption scenarios, now we can define a preemption
combination. With this definition, we need to insure that a preemption combination consists
only of preemption scenarios which account for interactions between a single job of each task.
Therefore, we need to insure that a preemption combination does not include two preemption
scenarios which are mutually exclusive, given the constraint of using only single jobs.

I Definition 18 (Preemption combination Πc). A preemption combination Πc is defined as a
set of disjoint non-empty preemption scenarios between single jobs of tasks in Γ such that:

1) If there are two preemption scenarios (τj ,PT j) and (τl,PT l) in Πc such that τh ∈
PT j ∩ PT l and Pl < Pj , it implies that τj ∈ PT l.

2) Each preempting task τh ∈ PT , where (τj ,PT) ∈ Πc, can be in at most one preemption
scenario imposed on τj.

The first constraint refers to a case: If a single job of task τh preempts single jobs of tasks
τj and τl, where Pj > Pl, then that job of τl is definitely preempted by the τj job.
The second constraint accounts that an additional preemption scenario with τh implies
that Πc accounted for two jobs of τh preempting a job of τj , while the definition accounts for
at most one job of each task.
Example: Given a definition of a preemption combination, one possible combination is:
{(τ3 , {τ1}) , (τ3 , {τ2})} which describes the preemption scenario where τ1 directly
preempts τ3 at one preemption point, while τ2 directly preempts τ3 at another preemption
point. However, the set {(τ3 , {τ1}) , (τ2 , {τ1})} is not a preemption combination, because
it describes the case where a job of τ3 is preempted by a job of τ1, and a job of τ2 is preempted
by a job of τ1, while a job of τ2 does not preempt a job of τ3. Since this is the case, more
than two jobs of τ1 are accounted, which violates Definition 18.

I Definition 19 (Preemption combination consistent with λ). We say that Πc is a preemption
combination consistent with the preemption partition λ iff for any preemption scenario
(τj ,PT) ∈ Πc the preemptions captured by the scenario are possible, i.e. present in λ.
Formally: ∀(τj ,PT) ∈ Πc

i : ∀τh ∈ PT : (τj , τh) ∈ λ.

Example: Given the preemption partition λ = {(τ1, τ2), (τ1, τ3), (τ2, τ3)}, a preemption
combination consistent with λ is {(τ3 , {τ1}) , (τ3 , {τ2})} since it describes preemption
scenarios made of preemptions that are possible, i.e. present in λ.

I Definition 20 (CRPD γ(Πc) of a preemption combination). An upper bound γ(Πc) on the
CRPD of a single preemption combination Πc is defined as the sum of upper bounds of all
preemption scenarios in Πc. Formally, it is defined as:

γ(Πc) =
∑

(τk,PT)∈Πc
γ(τk,PT) (23)

I Proposition 21. γ(Πc) is an upper bound on CRPD of preemptions accounted within Πc.

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:15

Proof. A combination consists of a number of preemption scenarios representing the preemp-
tions from preempting tasks on different preemption points. Following from Proposition 17,
a sum of CRPD upper bounds of each task interruption in a combination is an upper bound
on CRPD of all preemptions accounted in a combination, which concludes the proof. J

Example: Given the preemption combination of two direct preemptions from Figure 1,
CRPD upper bound is: γ

(
{(τ3 , {τ1}) , (τ3 , {τ2})}

)
= γ(τ3 , {τ1}) + γ(τ3 , {τ2}) =

4 + 4 = 8. Given the preemption combination of a nested preemption from the figure, it is:
γ
(
{(τ3 , {τ1, τ2}) , (τ2 , {τ1})}

)
= γ(τ3 , {τ1, τ2}) + γ(τ2 , {τ1}) = 6 + 2 = 8.

Now, we can imagine a set which consists of all possible preemption combinations which
are consistent with preemptions enlisted in λ. Then, among all the generated preemption
combinations, we find one which results in the worst-case CRPD and declare that as a safe
upper-bound, since that is the maximum obtainable CRPD value among all the possible
preemption combinations.

However, to generate such complete set of all possible preemption combinations is
computationally inefficient. A potential solution can come from the fact that it is enough to
compute a subset of the complete set of combinations, as long as we are sure that no greater
CRPD value can be obtained in the remaining, unaccounted combinations. We show this with
the following example: Given a set of possible preemptions λ = {(τ1, τ2), (τ1, τ3), (τ2, τ3)}
from Figure 1, let us consider the following set of two combinations:

Π3,λ =
{ {

(τ3 , {τ1}) , (τ3 , {τ2})
}

,
{

(τ3 , {τ1, τ2}) , (τ2 , {τ1})
} }

Π3,λ consists of: 1) a combination of direct preemption scenarios, and 2) a combination of
nested preemption. Any other possible preemption combination, from preemptions in λ, can
only be derived by omitting at least one preemption from a preemption scenario from one of
the two combinations given in Π3,λ. E.g. preemption combination {(τ3 , {τ1, τ2})} is equal
to and results in the same CRPD as {(τ3 , {τ1, τ2}) , (τ2 , ∅)}. Also, all of the preemption
scenarios from {(τ3 , {τ1, τ2})} are already included in the second combination. Therefore,
all the other possible combinations cannot result in a greater CRPD value than those in
Π3,λ, meaning that this subset is sufficient to compute a safe CRPD.

A preemption combination which is constructed by adding a preemption scenario to
any of the combinations in Π3,λ cannot be obtained. This is the case because in the first
combination, it is accounted that τ3 is preempted by both tasks, at two different points,
accounting for all preemptions in λ where τ3 can be preempted, i.e. (τ1, τ3) and (τ2, τ3). In
this case, τ2 cannot be preempted considering preemption (τ1, τ2) ∈ λ as shown in Definition
18. In the second combination, τ3 is interrupted once while both tasks preempt it, and τ2 is
preempted by τ1, meaning that all preemptions from λ are accounted.

In order to define a safe set of combinations Πi,λ, such that at least one of those combin-
ations may result in the worst-case CRPD, we first introduce a term of set partitioning1
in order to represent different ways one task may be preempted by the others. Example:
Given the task τ3, set partitions of a set {τ1, τ2} of its potentially preempting tasks are: 1)
{{τ1, τ2}}, and 2) {{τ1}, {τ2}}.

Given a preemptable task τk, and a set of its possibly preempting tasks PT , all set
partitions of PT represent all the ways τk may be preempted such that each task from
PT preempts τk. This is the case because set partitions represent all the ways a set can

1 Set partitioning is a mathematical concept sometimes also known as Bell partitioning [1, 18] named
after Eric Temple Bell. There are many fast algorithms for generating set partitions, e.g. [13, 14].

ECRTS 2020

5:16 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

be grouped in non-empty subsets, such that each set element is included in exactly one
subset. Analogically, in this paper, each set partition is transformed into a preemption
combination defining one way how a task (e.g. τ3 above) can be preempted. Each set
partition consists of subsets, and each subset represents a preemption scenario on the
preempted task. This transformation is formally defined in function generateCombs(PT , τk)
in Algorithm 2. Example: Considering different ways τ3 can be preempted, set partition
{{τ1, τ2}} consists of a single subset, and forms a preemption combination {(τ3, {τ1, τ2})},
while set partition {{τ1}, {τ2}} consists of two subsets and forms a preemption combination
{(τ3, {τ1}), (τ3, {τ2})} with two preemption scenarios: (τ3, {τ1}), and (τ3, {τ2}).

I Proposition 22. Given a preemptable task τk, and a set of possibly preempting tasks PT ,
any combination of preemptions on τk will result in a less than or equal CRPD than any
combination generated from generateCombs(PT , τk).

Proof. By contradiction: Let us assume that there is a preemption combination Πc
l represent-

ing the ways how τk can be preempted by tasks from PT , and that Πc
k can result in a greater

CRPD than any combination derived from generateCombs(PT , τk). The combinations gener-
ated from generateCombs(PT , τk) represent all the ways τk may be preempted such that each
task from PT preempts τk since set partitions represent all the ways a set can be grouped in
non-empty subsets, such that each element is included in exactly one subset. Thus, Πc

k must
omit at least one preemption, compared to at least one preemption combination derived
from generateCombs(PT , τk). The initial assumption therefore contradicts Proposition 21
because Πc

k cannot impose larger CRPD than the corresponding preemption combination
from generateCombs(PT , τk), which accounts for the same preemptions as in preemption
scenarios from Πc

k and at least one additional preemption compared to Πc
k. J

Using the concept of set partitioning to represent the ways a single task may be preempted,
we generate a set Πi,λ of preemption combinations on how all tasks from τi to τ1 can interact
among each other:

I Definition 23. By Πi,λ we denote the result from Algorithm 2, i.e. the set of preemption
combinations between the first i tasks of Γ such that each combination is consistent with λ.

We describe Algorithm 2 in more details and we use a running example from Figure 2
to show the algorithm walk-through in Figure 3. As stated before, for each τk, from τi to
τ1, the algorithm first generates possible combinations on how τk can be preempted, using
set partitioning (line 3). This process is defined in function generateCombs (line 7) and it
translates the set partitions of possibly preempting tasks on τk, into different ways τk can be
preempted, which is represented with a set of preemption combinations (line 16). Then, for
each of those combinations, the algorithm performs extendCombs (line 4), which is a function
that updates the existing preemption combinations, with further preemption scenarios that
are possible on the preempting tasks of τk. Take for example the preemption combination
Πc, given in Figure 3.

The combination represents the case where τ4 is preempted at one preemption point, by
all of its three possibly preempting tasks (τ1, τ2, τ3). In the figure, this is represented by one
arrow (standing for one preempted point of τ4) and tasks preempting a point (above the
arrow). Function extendCombs() further computes possible ways of preempting τ3 since τ3 is
the lowest-priority preempting task from the preemption scenario (τ4, {τ1, τ2, τ3}). Those
ways are represented with a set Π′3 of preemption combinations. After this, the function
updates the preemption combinations with a Cartesian product of the two. Therefore, on the
right side of the figure, you may notice that now we have two new combinations, updating the
Πc with different ways τ3 can be preempted. The topmost combination can be updated further
on, since preemption scenario (τ3, {τ1, τ2}) can be updated with additional scenario on how τ2
can be preempted by τ1. This is eventually computed within the algorithm because condition

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:17

in line 18 insures that all combinations are updated until no new preemption scenario can be
added to any of the existing preemption combinations. More formally, this criteria is satisfied
when for each preemption scenario (τx,PT) within any preemption combination from Πi,λ,
function extended?((τx,PT)) yields true (>), meaning that all preemption scenarios are
extended.

I Proposition 24. Πi,λ is a safe set of preemption combinations between the single jobs of
the first i tasks in Γ, i.e. there is no preemption combination consistent with λ with a higher
CRPD than the maximum CRPD of the combinations in Πi,λ,

Algorithm 2 Algorithm that generates
a set Πi,λ of preemption combinations.

Data: Set of possible preemption pairs λ,
task index i

Result: A set Πi,λ of preemption
combinations consistent with λ

1 Πi,λ ←− ∅
2 for k ← i to 2 by −1 do
3 Π′

k,λ ←− generateCombs(hp(k) , τk)
4 Πi,λ ←− Πi,λ ∪ extendCombs(Π′

k,λ)
5 end
6 return Πi,λ
7 fn generateCombs(PT , τk)
8 Πk,λ ←− ∅
9 PTk,λ ←− remove those tasks from

PT that cannot preempt τk according
to λ

10 partitions(PT)←− generate all
possible partitions of a set PTk,λ,
representing ways a job of τk can be
preempted.

11 for each partition ∈ partitions(PT)
12 Πck ←− ∅
13 for each subset ∈ partition
14 Πck ←− Πck ∪ {(τk, subset)}
15 Πk,λ ←− Πk,λ ∪Πck
16 return Πk,λ
17 fn extendCombs(Πq,λ)
18 while ∃Πc ∈ Πq,λ : ∃(τr,PT) ∈ Πc |

extended?((τr,PT) , Πc) = ⊥ do
19 τl ←− lowest-priority task in PT
20 Π′

l ←− generateCombs(PT \ τl , τl)
21 for each

Πc ∈ Πq,λ | (τr,PT) ∈ Πc
22 Πq,λ ←− Πq,λ ∪ (Πc ×Π′

l)
23 Πq,λ ←− Πq,λ \Πc
24 end
25 return Πq,λ
26 fn extended?((τr,PT) , Πc)
27 τl ←− lowest-priority task in PT
28 if ∃(τx,PT ′) ∈ Πc | τx = τl then
29 return >
30 else return ⊥;

Data: λ = {(τ1, τ2), (τ1, τ3), (τ2, τ3)}, i = 3
Algorithm run:
Π3,λ ←− ∅
for k = 3
for Π′

3,λ ←− generateCombs(hp(3), τ3)
for Π′

3,λ ←− { {(τ3, {τ1}) , (τ3, {τ2})} ,
for Π′

3,λ ←− { {(τ3, {τ1, τ2})} }
for Π3,λ ←− ∅ ∪ extendCombs(Π′

3,λ)
for Π3,λ ←− { {(τ3, {τ1}) , (τ3, {τ2})} ,
for Π′

3,λ ←− { {(τ3, {τ1, τ2}) , (τ2, {τ1})} }
for k = 2
for Π′

2,λ ←− generateCombs(hp(2), τ2)
for Π′

3,λ ←− { {(τ2, {τ1})} }
for Π3,λ ←− { {(τ3, {τ1}) , (τ3, {τ2})} ,
for Π′

3,λ ←− { {(τ3, {τ1, τ2}) , (τ2, {τ1})} }
for Π′

3,λ ←−∪ { {(τ2, {τ1})} }
return Π3,λ

𝚷𝐜 = {(𝜏', {𝜏), 𝜏*, 𝜏+})}

𝚷𝟑/ = {
{ 𝜏+, {𝜏), 𝜏*} },

{ 𝜏+, {𝜏)} , 𝜏+, {𝜏*} }

𝚷𝐜×𝚷𝟑/ = {
{ 𝜏', {𝜏), 𝜏*, 𝜏+} ,
𝜏+, {𝜏), 𝜏*} },

{ 𝜏', {𝜏), 𝜏*, 𝜏+} ,
𝜏+, {𝜏)} , 𝜏+, {𝜏*} }

𝜏)

𝜏'

𝜏* 𝜏+

𝜏) 𝜏*

𝜏+

𝜏) 𝜏*

𝜏+

𝜏)

𝜏'

𝜏* 𝜏+

𝜏) 𝜏*

𝜏)

𝜏'

𝜏* 𝜏+

𝜏) 𝜏*

}
}

Figure 3 Top: Algorithm walktrough with an
example from Figure 2. Bottom: Example for
extending the combination Πc of four tasks.

Proof. By contradiction: Let us assume that there is a preemption combination Πc
o between

the single jobs of the first i tasks, consistent with λ, which can result in a higher CRPD than
any of the combinations in Πi,λ. For each task τk such that (1 < k ≤ i), it is accounted that
τk experiences the worst-case CRPD at one of the generated combinations, as follows from

ECRTS 2020

5:18 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

Proposition 22 and line 3. Each such a combination is extended in line 4, accounting for
further worst-case preemption scenarios on how all the preempting tasks can be preempted,
and Algorithm 2 stops only when no more preemption scenarios can be generated and added
to a set of preemption combinations Πi,λ. This further implies that Πc

o must omit at least
one preemption from at least one of its preemption scenarios compared to any combination
from Πi,λ. Moreover, by construction of Algorithm 2, there is a preemption combination
Πc
w in Πi,λ which is a superset over the Πc

o, i.e. there is a mapping of preemption scenarios
between Πc

w and Πc
o such that each preemption scenario of Πc

w includes same preemptions as
the respective scenario in Πc

o, but may also include additional ones not accounted by Πc
o. As

follows from Propositions 21 and 22, Πc
o can only result in CRPD less than or equal to the

one from Πc
w. This contradicts the initial assumption. J

Finally, we can compute an upper bound on CRPD resulting from the worst-case pre-
emption combination consisting of the preemptions in λ, with the following equation:

γi(λ) = max
Πc∈Πi,λ

γ(Πc) (24)

I Proposition 25. γi(λ) is an upper bound on CRPD from preemptions given in the partition
λ, between the single jobs of the first i tasks from Γ.

Proof. Equation 24 computes the maximum upper bound from all preemption combinations
accounted by Πi,λ. Then, following from Propositions 21 and 24, the proposition holds. J

Example: Given a set of possible preemptions λ = {(τ1, τ2), (τ1, τ3), (τ2, τ3)} from Figure 1
and continuing from the example after Proposition 21, the upper bound on CRPD resulting
from preemptions in λ is computed as γ(λ) = max({8, 8}) = 8.

5.8 Adjustment for LRU caches
The proposed methods can also be used for set-associative LRU caches with a single modific-
ation, as shown by Altmeyer et al. [4, 6]. In case of LRU set-associative cache, a cache-set
may contain several useful cache blocks, e.g., UCB2 = {1, 2, 2, 2} means that τ2 contains
three cache blocks in cache-set 2, and one UCB in cache set 1. Upon preemption, one ECB
of the pre-empting task may suffice to evict all UCBs of the same cache-set, meaning that
ECB1 = {1, 2} may evict all cache blocks of τ2. Therefore, the current notion of the ECBs
and UCBs of a task may remain unchanged if a bound on CRPD due to preemption from τh
on τi is defined as: UCBi ∩

′ ECBh where the result is a multiset that contains each element
from UCBi if it is also in ECBh, e.g. UCB2 ∩

′ ECB1 = {1, 2, 2, 2} ∩′ {1, 2} = {1, 2, 2, 2}. In
case of FIFO and PLRU cache replacement policies, the concepts of useful and evicting cache
blocks cannot be applied, as shown by Burguiere et al. [10].

6 Evaluation

In this section, we show the evaluation results. The goal of the evaluation was to investigate
to what extent the proposed method is able to identify schedulable tasksets upon the analysis
of the cache-related preemption delays. We compared the state-of the art analyses for CRPD:
(ECB-Union Multiset), (UCB-Union Multiset) methods, and (Combined Multiset), with two
versions of the proposed method, i.e. (Partitioning-ver1) which computes CRPD according to
Section 5.3, and the version (Partitioning-ver2) which computes CRPD from the worst-case
preemption combination, presented in Section 5.7.

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:19

Table 1 Task characteristics obtained with LLVMTA [17] analysis tool used on Mälardalen [16]
and TACLe [15] benchmark tasks.

Task (TACLe Bench.) WCET ECB UCB Max
app/lift 13592762 250 125 23
app/powerwindow 55842069 256 120 25
kernel/binarysearch 2860 43 19 18
kernel/bsort 3332496 42 30 29
kernel/complex_update 8190 36 28 27
kernel/countnegative 260303 78 45 45
kernel/fft 493123975 103 87 52
kernel/filterbank 38302875 164 151 66
kernel/fir2dim 86737 212 197 116
kernel/iir 3307 41 32 31
kernel/insertsort 16148 50 35 28
kernel/jfdctint 9043 115 107 54
kernel/lms 1758977 82 56 23
kernel/ludcmp 97908 173 137 44
kernel/matrix1 248058 48 43 42
kernel/md5 367421931 256 149 72
kernel/minver 67700 254 173 46
kernel/pm 141189221 256 247 45
kernel/prime 386343 80 54 41
kernel/sha 28380272 253 185 31
kernel/st 1763900 161 80 43
sequential/adpcm_dec 52530 233 145 59
sequential/adpcm_enc 58861 236 158 75
sequential/audiobeam 6434692 256 212 46
sequential/cjpeg_transupp 535718162 256 256 103
sequential/cjpeg_wrbmp 1610145 138 80 38
sequential/dijkstra 39781181581 151 80 46
sequential/epic 7423276281 256 256 107
sequential/g723_enc 22919200 256 154 81
sequential/gsm_dec 3744323 256 236 69
sequential/gsm_encode 2115350 256 256 118
sequential/h264_dec 24979237 256 166 29
sequential/huff_dec 9360435 254 144 44
sequential/mpeg2 130756234186 256 256 154
sequential/ndes 996427 253 167 39

...continuation WCET ECB UCB Max
sequential/petrinet 39951 256 92 2
sequential/ri._dec 1811372648 256 173 44
sequential/ri._enc 39467989 256 181 44
sequential/statemate 1949343 256 91 1
sequential/susan 2051176771 256 255 79

Task (Mälardalen Bench.) WCET ECB UCB Max
adpcm 82492494 256 230 103
bs 3052 43 23 20
bsort100 3146185 57 40 30
cnt 127558 123 58 44
compress 1090099 247 150 63
cover 74509 256 38 15
crc 1376054 121 62 30
edn 739866 256 222 123
expint 2161270 117 47 29
fdct 10258 126 113 62
fft1 271733 222 154 63
fibcall 8406 28 16 16
fir 12413071 94 42 21
insertsort 11291 29 16 15
janne_complex 33778 39 28 27
jfdctint 21742 132 122 54
lcdnum 6100 51 11 9
lms 10178805 242 134 38
ludcmp 116312 210 168 44
matmult 1447379 85 51 31
minver 67157 256 178 47
ndes 1050163 253 176 38
ns 126865 55 37 34
nsichneu 201969 256 183 2
prime 7782800 75 47 33
qsort. 163089 142 83 39
qurt 71655 130 40 26
select 6306 159 73 55
sqrt 22436 53 21 12
st 3701746 192 95 52
statemate 41579 256 105 1
ud 355318 194 151 39

As shown by Shah et al. [27], an evaluation of the CRPD-aware methods should consider
task parameters derived by using the existing low-level analysis tools. Therefore, in this paper
we use the suggested task parameters that are derived with LLVMTA analysis tool [17], used
on Mälardalen [16] and TACLe [15] benchmark tasks. The derived task characteristics are
shown in Table 1, and they are: worst-case execution time, expressed in terms of wall-clock
time, set of evicting cache blocks, set of definitely useful cache blocks (shown in the table as
the size of the respective sets – ECB and DC-UCB), and the maximum number (Max DC-
UCB) of definitely useful cache blocks per any program point of a task. The characteristics
were derived with assumed direct-mapped instruction cache and a data scratchpad. The
assumed cache memory consists of 256 sets with line size equal to 8 bytes, while block reload
time is equal to 22 cycles. For more details about the low-level analysis refer to [27].

Tasksets are generated by randomly selecting a subset of tasks from one of the two
benchmarks, Mälardalen or TACLe, specified in each figure. We generated 1000 tasksets
for each pair of selected utilisation and taskset size. Since the task binaries were analysed
individually, they all start at the same address (mapping to cache set 0). In a multi-task
scheduling situation this can hardly be a case because the ECB and UCB placement is
determined by their respective locations in memory. We took this into account by randomly
shifting the cache set indices, e.g. the ECB in cache set i is shifted to the cache line equal to
(i+random(256)) modulo 256. Task utilisations were generated using U-Unifast algorithm, as
proposed by Bini et al. [8]. Minimum inter-arrival times were then computed using equation
Ti = Ci/Ui, while the deadlines are assumed to be implicit, i.e. Di = Ti. Task priorities
were assigned using deadline-monotonic order.

In Figure 4, on the leftmost plot, we show the schedulability results of an experiment
where we generated tasksets of size 9, from the Mälardalen tasks (top left), and TACLe tasks
(bottom left). For each generated taskset, its utilisation was varied from 0.5 to 1, by step
of 0.01. The results show that Partitioning-ver2 and Partitioning-ver1 identify the highest
number of schedulable tasksets, even up to 23% more for Partitioning-ver2, and 20% more
for Partitioning-ver1, compared to Combined multiset.

ECRTS 2020

5:20 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

85 90 95 100

Utilisation

0

20

40

60

80

100
S

ch
ed

u
la

b
le

 t
as

k
se

ts
 (

%
)

3 4 5 6 7 8 9 10

Taskset size

0.5

0.6

0.7

W
ei

g
h

te
d

 m
ea

su
re

85 90 95 100

Utilisation

0

20

40

60

80

100

S
ch

ed
u

la
b

le
 t

as
k

se
ts

 (
%

)
Mälardalen Benchmark

3 4 5 6 7 8 9 10

Taskset size

0.55

0.6

0.65

0.7

0.75

0.8

W
ei

g
h

te
d

 m
ea

su
re

TACLe Benchmark

UCB-Union Multiset
ECB-Union Multiset
Combined Multiset
Partitioning-ver1
Partitioning-ver2

Figure 4 Left: Schedulability ratio at different taskset utilisation. Right: Weighted measure at
different taskset size.

To increase the exhaustiveness of the performed evaluation and the respective results, for
the rightmost plots from Figure 4 we used the weighted schedulability measure in order to
show a 2-dimensional plot which would otherwise be a 3-dimensional plot, as proposed by
Bastoni et al. [7]. In those figures, we show the weighted schedulability measure Wy(|Γ|), for
schedulability test y as a function of taskset size |Γ|. For each taskset size (in range from
3 to 10), this measure combines data for all of the tasksets generated for each utilisation
level from 0.85 to 1, with step of 0.1, since for utilisation levels from 0 to 0.85 all of the
compared methods deem almost all tasksets to be schedulable. For each taskset size |Γ|, the
schedulability measure Wy(|Γ|) is equal to Wy(|Γ|) =

∑
∀Γ(UΓ ×By(Γ, |Γ|))/

∑
∀Γ UΓ, where

By(Γ, |Γ|) is the binary result (1 if schedulable, 0 otherwise) of a schedulability test y for
a taskset Γ and taskset size |Γ|. Weighting the schedulability results by taskset utilisation
means that the method which succeeds to produce a higher weighted measure, compared to
the others, is more prone to identify tasksets with higher utilisation as schedulable.

The results show that Partitioning-ver2 is able to identify more schedulable tasksets
compared to the others for any given taskset size, immediately followed by Partitioning-ver1.
Also, as the taskset size increases, the multiset-based methods deteriorate more in identifying
schedulable tasksets compared to the proposed methods. This means that partitioning-based
methods are able to identify more tasksets as schedulable with an increase of the taskset size
and utilisation.

Next, we report the worst-case computation time results since Partitioning-ver2 uses set
partitioning which is known to be a computation with quadratic/exponential complexity,
depending on the algorithm type. The results, reported in the left-most plot in Figure 5,

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:21

0

200

400

600

800

3 4 5 6 7 8 9 10

C-M

Taskset size

W
or

st
-c

as
e

tim
e

(s
)

SPT-alver1 SPT-ver2

 0 0

 0

 0 0

 0

0

Set A
(0)

Set B
(0)

Set C
(0)

0
0

0

83312

0 5568

348

Combined-Multiset Partitioning-ver1

Partitioning-ver2

 0 0

 0

 0 0

 0

0

Set A
(0)

Set B
(0)

Set C
(0)

0
0

0

69324

0 9087

1059

Combined-Multiset Partitioning-ver1

Partitioning-ver2

TACLe Benchmark Mälardalen Benchmark

Figure 5 Leftmost: The worst-case measured analysis time per taskset, at different tasket
size. Center and rightmost: Venn Diagrams[19] representing schedulability result relations between
different methods, over 120000 analysed tasksets per each – TACLe Benchmark and Mälardalen
Benchmark.

were computed on MacBook Pro (Retina, 13-inch, Early 2015) version, with Intel Core
i5 processor of 2,9 GHz, and DDR3 RAM memory of 8 GB, and 1867 MHz. We used a
sequential set partitioning algorithm, and as shown in the graph, in this case exponential
complexity is evident for Partitioning-ver2. However, the proposed method is intended to be
used offline, and its performance can be improved using the algorithm from [14], and even
more with parallel computing, e.g. set partitioning algorithms proposed by Djokic et al. [13].
In contrast, Partitioning-ver1 has a low worst-case time measured for each experiment for
different taskset sizes, similar to the the Combined-multiset approach.

Finally, we show the relations between the results in Figure 5 (central and rightmost fig-
ures). In the central figure, it is evident that all tasksets from TACLe benchmark, that are iden-
tified as schedulable by Combined-multiset, are also identified as schedulable by Partitioning-
ver1 and Partitioning-ver2. However, partitioning-based approaches identify 5568 (and
9087) additional schedulable tasksets depending on the benchmark, while Partitioning-ver2
identifies additional 348 (and 1059) schedulable tasksets compared to Partitioning-ver1. In
conclusion of the evaluation, we notice that the proposed partitioning-based algorithms
outperform existing state of the art Combined-Multiset approach. Also Partitioning-ver2
outperforms Partitioning-ver1, however this comes with the expense of time complexity.
The complexity of Partitioning-ver2 can be further decreased by narrowing down the task
interactions for which the preemption combinations should be generated. This remains as
a part of the future work as well as the formal proof of the dominance relations between
the methods. Finally, the proposed approaches allow for a hybrid, joint use of the two
proposed algorithms, while Partitioning-ver1 significantly outperforms the existing multiset
approaches without the expense of time complexity.

7 Conclusions

In this paper, we proposed a partitioning based cache-aware schedulability analysis for precise
and safe estimation of cache-related preemption delays in the context of fully-preemptive
scheduling of real-time systems with sporadic tasks with fixed priorities. The proposed
methods are based on a precise analysis of: 1) different preemption subgroups, and 2)
different preemption combinations that may occur within a system, and therefore they are
able to compute more precise cache-related preemption delay estimations compared to the
state of the art approaches. The evaluation was performed using the realistic task parameters

ECRTS 2020

5:22 Improving the Accuracy of Cache-Aware RTA Using Preemption Partitioning

from well-established benchmarks, obtained with a low-level analysis tool, and it showed
that the proposed approaches manage to identify significantly more schedulable tasksets
compared to the other preemption-cost aware approaches.

In future work, we will apply the proposed method in the context of limited preemptive
scheduling since for such task model partitioning-based consideration of preemptions can
lead to a more precise computation of cache-related preemption delay. We will also apply
the proposed methods to other cache architectures and replacement protocols since many
existing analyses inherit the overly pessimistic estimations which are identified in this paper.
Finally, we will define a more precise static analysis on number of cache block reloads that
are possible during the execution of a task since the existing useful cache block concept
significantly over-approximates cache-block reloadability.

References
1 Martin Aigner. A characterization of the bell numbers. Discrete mathematics, 205(1-3):207–210,

1999.
2 Sebastian Altmeyer and Claire Burguiere. A new notion of useful cache block to improve

the bounds of cache-related preemption delay. In Real-Time Systems, 2009. ECRTS’09. 21st
Euromicro Conference on, pages 109–118. IEEE, 2009.

3 Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Cache related pre-emption delay aware
response time analysis for fixed priority pre-emptive systems. In 2011 IEEE 32nd Real-Time
Systems Symposium, pages 261–271. IEEE, 2011.

4 Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Improved cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
48(5):499–526, 2012.

5 Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I Davis. On the effectiveness
of cache partitioning in hard real-time systems. Real-Time Systems, 52(5):598–643, 2016.

6 Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tightening the CRPD
bound for set-associative caches. In ACM Sigplan Notices, volume 45, pages 153–162. ACM,
2010.

7 Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability. Proceedings of
OSPERT, pages 33–44, 2010.

8 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

9 Tobias Blaß, Sebastian Hahn, and Jan Reineke. Write-back caches in wcet analysis. In
29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

10 Claire Burguière, Jan Reineke, and Sebastian Altmeyer. Cache-related preemption delay
computation for set-associative caches-pitfalls and solutions. In 9th International Workshop
on Worst-Case Execution Time Analysis (WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2009.

11 José V Busquets-Mataix, Juan José Serrano, Rafael Ors, Pedro Gil, and Andy Wellings.
Adding instruction cache effect to schedulability analysis of preemptive real-time systems. In
Real-Time Technology and Applications Symposium, 1996. Proceedings., 1996 IEEE, pages
204–212. IEEE, 1996.

12 Robert I Davis, Sebastian Altmeyer, and Jan Reineke. Response-time analysis for fixed-priority
systems with a write-back cache. Real-Time Systems, 54(4):912–963, 2018.

13 Borivoje Djokić, Masahiro Miyakawa, Satoshi Sekiguchi, Ichiro Semba, and Ivan Stojmenović.
Parallel algorithms for generating subsets and set partitions. In International Symposium on
Algorithms, pages 76–85. Springer, 1990.

14 MC Er. A fast algorithm for generating set partitions. The Computer Journal, 31(3):283–284,
1988.

F. Marković, J. Carlson, S. Altmeyer, and R. Dobrin 5:23

15 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
Taclebench: A benchmark collection to support worst-case execution time research. In 16th
International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2016.

16 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen wcet
benchmarks: Past, present and future. In 10th International Workshop on Worst-Case
Execution Time Analysis (WCET 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2010 .

17 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Proceedings of the 24th international conference on real-time networks and
systems, pages 299–308. ACM, 2016.

18 Paul R Halmos. Naive set theory. Courier Dover Publications, 2017.
19 Henry Heberle, Gabriela Vaz Meirelles, Felipe R da Silva, Guilherme P Telles, and Rosane

Minghim. Interactivenn: a web-based tool for the analysis of sets through venn diagrams.
BMC bioinformatics, 16(1):169, 2015.

20 Chang-Gun Lee, Joosun Han, Yang-Min Seo, Sang Luyl Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong Sam Kim. Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Transactions on Computers, 47(6):700–713,
1998.

21 Rodolfo Pellizzoni, Bach D Bui, Marco Caccamo, and Lui Sha. Coscheduling of CPU and
I/O transactions in COTS-based embedded systems. In Real-Time Systems Symposium, 2008,
pages 221–231. IEEE, 2008.

22 Harini Ramaprasad and Frank Mueller. Bounding worst-case response time for tasks with
non-preemptive regions. In 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 58–67. IEEE, 2008.

23 Harini Ramaprasad and Frank Mueller. Tightening the bounds on feasible preemptions. ACM
Transactions on Embedded Computing Systems (TECS), 10(2):27, 2010.

24 Syed Aftab Rashid, Geoffrey Nelissen, Sebastian Altmeyer, Robert I Davis, and Eduardo
Tovar. Integrated analysis of cache related preemption delays and cache persistence reload
overheads. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages 188–198. IEEE, 2017.

25 Syed Aftab Rashid, Geoffrey Nelissen, Damien Hardy, Benny Akesson, Isabelle Puaut, and
Eduardo Tovar. Cache-persistence-aware response-time analysis for fixed-priority preemptive
systems. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages 262–272.
IEEE, 2016.

26 Altmeyer Sebastian, Douma Roeland, Lunniss Will, and I Davis Robert. Evaluation of cache
partitioning for hard real-time systems. In proceedings Euromicro Conference on Real-Time
Systems (ECRTS), pages 15–26, 2014.

27 Darshit Shah, Sebastian Hahn, and Jan Reineke. Experimental evaluation of cache-related
preemption delay aware timing analysis. In 18th International Workshop on Worst-Case
Execution Time Analysis (WCET 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

28 Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling analysis of real-time systems
with precise modeling of cache related preemption delay. In Real-Time Systems, 2005.(ECRTS
2005). Proceedings. 17th Euromicro Conference on, pages 41–48. IEEE, 2005.

29 Gregory Stock, Sebastian Hahn, and Jan Reineke. Cache persistence analysis: Finally exact.
In Real-Time Systems Symposium (RTSS), December 2019.

30 Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitasking real-time
systems with caches. ACM Transactions on Embedded Computing Systems (TECS), 6(1):7,
2007.

31 Hiroyuki Tomiyama and Nikil D Dutt. Program path analysis to bound cache-related preemp-
tion delay in preemptive real-time systems. In Proceedings of the eighth international workshop
on Hardware/software codesign, pages 67–71. ACM, 2000.

ECRTS 2020

	Introduction
	Task Model, Terminology and Notation
	Background
	Pessimism in CRPD analyses based on UCB- and ECB-union approaches
	CRPD-aware Response-Time Analysis
	Computing the upper bounds on the number of preemptions
	Preemption partitioning
	CRPD bound on preemptions from a single partition
	CRPD bound on all preemptions within a time interval
	Worst-case response time
	Time complexity
	CRPD computation using preemption scenarios
	Adjustment for LRU caches

	Evaluation
	Conclusions

