
Using digital technology to promote higher education learning: The 

importance of different learning activities and their relations to learning 

outcomes 

Digital technologies can have positive effects on student learning in higher education. 

Based on the ICAP framework, they should be particularly effective when teachers use 

them to encourage student engagement in constructive and interactive as opposed to 

passive and active learning activities. Using a sample of 381 higher education students, 

we investigated if student engagement in these activities depends on whether 

technologies are implemented in class or not, and how engagement in these activities 

affects learning outcomes. Results indicated that when technologies were implemented 

in class, students felt encouraged to engage in more constructive, but also in more 

passive and active activities as compared to when no technologies were used. 

Furthermore, student engagement in active, constructive, and interactive activities was 

positively associated with learning outcomes. 
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Problem statement 

Not just since the Covid19 pandemic, the digitalization of higher education systems has been 

considered a powerful means to promote student learning. However, promoting student 

learning does not appear to be a question of what types of technology are used, but rather 

how technology is used (Chien et al., 2016; R. F. Schmid et al., 2014; Tamim et al., 2011). 

Thus, higher education teachers’ knowledge about how to effectively use technology in their 

courses (Technological Pedagogical Content Knowledge, or, in short: TPACK; Koehler & 

Mishra, 2008; Mishra & Kohler, 2006) seems to play a crucial role for a successful 

implementation of technology in higher education classrooms. In line with constructivist, 

learner-centered assumptions, the Interactive Constructive Active Passive framework (ICAP; 

Chi, 2009; Chi et al., 2018; Chi & Wylie, 2014) proposes that the effectiveness of digital 

technologies depends on the degree to which they prompt student engagement in constructive 

and interactive learning activities. Even though technology use in the higher education 

context has been of interest recently (Bond et al., 2018; Galanek et al., 2018; Marcelo et al., 

2015; Newman & Beetham, 2017; Newman et al., 2018; U. Schmid et al., 2017), it remains 

unclear whether teaching in higher education proves to be more learner-centered when 

technology is used compared to when it is not used. In addition, up to now, studies in the 

context of the ICAP framework have only considered associations between different types of 

learning activities on the one hand and students’ acquisition of domain-specific knowledge 

on the other hand, but not yet of 21st century cross-domain skills (i.e., skills and strategies 

such as self-regulated learning that have a broad range of applications across different 

domains; Vogel et al., 2017) relevant to students’ adaptation to future work environments.  

Given this background, we pursued two research goals with the present study. Firstly, 

we investigated the degree to which higher education students actually feel encouraged by 
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their higher education teachers to engage in different types of learning activities in 

technology-supported course phases as compared to non-technology-supported course 

phases. The second aim was to explore the effects of students’ engagement in different types 

of technology-supported and non-technology-supported learning activities on students’ 

acquisition of domain-specific knowledge and cross-domain skills. 

Higher education teachers’ TPACK  

As meta-analytic results illustrate (Chien et al., 2016; R. F. Schmid et al., 2014; Tamim et al., 

2011), an important precondition for positive effects of technology use on students’ learning 

outcomes seems to be higher education teachers’ knowledge about how to effectively 

implement technology in higher education courses. To this end, Mishra and Koehler (2006, 

also Koehler & Mishra, 2008) introduced the TPACK framework. TPACK refers to teachers’ 

integrated knowledge of technological (TK), pedagogical (PK), and content knowledge (CK) 

that goes beyond each of the individual (TK, PK, CK) and combined knowledge components 

(PCK, TCK, TPK). As such, it is understood as knowledge on how different types of digital 

technologies can enhance or impede different representations of content as well as teaching 

and learning processes.  

The TPACK framework has gained a lot of attention and recognition in the teacher 

research community (Herring et al., 2016). As Harris et al. reported in 2017, more than 1.200 

publications were based on the TPACK framework thus far. Most TPACK-inspired research 

until now can be characterized by the three following aspects: 

Firstly, a lot of research has been dedicated to determine how well TPACK is 

developed among- in- and pre-service teachers. However, research on higher education 

teachers’ TPACK is still rare (Chai et al., 2016; Herring et al., 2016; Willermark, 2018; Wu, 
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2013). Secondly, research on TPACK is predominantly based on self-report measures (Chai 

et al., 2016; Koehler et al., 2012; Voogt et al., 2013; Willermark, 2018) that assess teachers’ 

knowledge outside of actual teaching situations. Much less is known on how teachers bring 

their TPACK to bear in their actual classroom practice (Willermark, 2018). The studies that 

looked into how technology is actually used in higher education classrooms (Bond et al., 

2018; Galanek et al., 2018; Marcelo et al., 2015; Newman & Beetham, 2017; Newman et al., 

2018; U. Schmid et al., 2017), in turn, mostly focused on technology-supported teaching 

itself, i.e. without comparing it to non-technology-supported teaching at the same time. Yet, 

in order to clarify whether the potentials of technology are actually used in higher education 

settings, it is necessary to take intrapersonal differences between technology- and non-

technology-supported teaching into account. And thirdly, with its emphasis on the role 

teachers’ TPACK plays for students’ acquisition of domain-specific knowledge, the TPACK 

framework does not provide any guidance on the question how teachers can use technology 

in classrooms in order to enhance students’ 21st century skills (Brantley-Dias & Ertmer, 

2013), such as creative thinking and collaborative learning (Partnership for 21st Century 

Learning, 2015, 2019). This is surprising, given that digital technologies are often said to 

hold particular potentials for the acquisition of such skills (D. Clark et al., 2010). Against this 

background, many researchers suggest to complement the TPACK framework by adopting a 

more learner-centered, constructivist perspective on TPACK (Angeli & Valanides, 2009; 

Chai et al., 2013; Koh et al., 2017; Olofson et al., 2016). Such a perspective has recently been 

developed by Chi and colleagues in their so-called ICAP framework (Chi, 2009; Chi et al., 

2018; Chi & Wylie, 2014), which will be described in the next section.  
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A learning activity perspective on technology-supported teaching 

The ICAP framework of Chi and Wylie (2014) differentiates between four types of overt 

learning activities and associated knowledge-change processes and their impact on the 

subsequent acquisition of domain-specific knowledge: passive, active, constructive, and 

interactive. Learning activities are understood as passive when no overt learning behavior of 

a student can be observed while dealing with the learning material at hand (e.g., watching an 

online video). At the cognitive level, this type of engagement is assumed to mainly afford 

isolated information-storing processes and allows for not much more than mere recall of 

information, particularly in identical contexts. Yet, transfer and application of this knowledge 

to new situations will typically still be difficult. An active type of engagement refers to 

motoric and physical interactions with the learning material (e.g., pausing or forwarding an 

online video). Active learning activities are believed to allow students to integrate new 

information with their prior knowledge and existing schemes. Thus, active learning activities 

are assumed to facilitate an application of that knowledge at least in contexts that are similar 

to the ones in which this knowledge was acquired. Constructive activities involve the creation 

of new knowledge that goes beyond the initially provided learning material (e.g., creating a 

concept map of online video content). At the cognitive level, an engagement in constructive 

learning activities is thought to hold the potential to result in inferring new knowledge. This, 

in turn should often allow for transfer of knowledge to new contexts. Finally, learning 

activities are defined as interactive when two or more learning partners create new learning 

content together by taking turns during dialogue and thereby referring to each other’s 

utterances (e.g., writing a review of an online video in a small group). This type of 

engagement is supposed to facilitate learners to infer new knowledge due to the activated and 

integrated knowledge acquired from the learning material, and due to the additional input 
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provided by the learning partner (e.g., ideas, elaboration, feedback etc.). Optimally, co-

inferring of knowledge from discussion should not only allow for a transfer of this 

knowledge but also a co-creation of new learning products.  

As, according to Chi and Wylie (2014), the cognitive processes become increasingly 

more elaborated from passive to interactive, the ICAP framework leads to the following 

ICAP hypothesis: Interactive learning activities should facilitate the acquisition of domain-

specific knowledge to a higher degree than constructive learning activities. Constructive 

learning activities in turn should facilitate the acquisition of domain-specific knowledge to a 

higher degree than active learning activities. And finally, active learning activities are 

expected to be stronger associated with the acquisition of domain-specific knowledge than 

passive learning activities. 

Following the ICAP hypothesis, it would be desirable if higher education teachers 

used technology in their courses in a way that encourages students to engage in more 

constructive and interactive activities than in active and passive activities. In a large-scale 

study in Germany, Sailer et al. (2018) asked higher education students to assess to what 

extent their teachers encouraged them to engage in the different types of learning activities 

proposed by Chi and Wylie (2014) when technology was used in courses. Over half of the 

students reported their teachers to at least frequently encourage an engagement in passive 

learning activities, followed by active learning activities. In contrast, only around one out of 

ten students indicated their teachers to encourage them to engage in constructive and 

interactive learning activities.  

In line with these results, in a large-scale study in Spain, Marcelo et al. (2015) found 

higher education teachers to very frequently use technology-supported presentations, 

followed by technology-supported demonstrations and videos. Note that all these activities 
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typically entail a rather passive role of students. Constructive learning activities, such as the 

production of digital resources by students, an engagement in complex problem-solving 

activities, or self-assessment exercises were much rarer. The same was true for interactive 

learning activities such as collaborative work and the use of discussion forums. Also, a 

representative German survey on technology-supported learning (U. Schmid et al., 2017) 

indicated that more than half of the surveyed higher education teachers frequently use 

technology to present content. But only around one third have students frequently actively 

work with certain software or work collaboratively. In addition, almost none of the teachers 

use technology frequently for the moderation of discussions. Similar results were obtained by 

Newman et al. (2018) with a UK teacher sample.  

Taken together, these findings cast doubts on higher education teachers’ abilities to 

use the potentials of digital technology to promote high-quality student learning. 

Nevertheless, it remains unclear whether higher education teachers engage their students in 

more high-level learning activities when they use digital technology compared to when they 

do not in their courses. For the secondary school context, the SITES 2006 study indicated that 

in many of the participating countries, mathematics and science teachers followed more 

constructivist teaching principles when they use digital technologies compared to their 

overall teaching practices (Law & Chow, 2008). Yet, corresponding evidence at the higher 

education level appears to be missing. 

Relations between different (technology-supported) learning activities and the 

acquisition of domain-specific knowledge and cross-domain skills 

Over the past years, first empirical support in favor of the ICAP hypothesis has been found. 

However, relations between an engagement in the different learning activities and students’ 
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learning outcomes have so far been limited to the acquisition of domain-specific knowledge. 

First of all, the ICAP hypothesis was validated by a reanalysis of around 40 existing 

experimental and classroom studies in school and higher education settings (Chi, 2009; Chi 

and Wylie, 2014). However, the included studies only compared some types of learning 

activities (typically pair-wise), not all. Furthermore, Menekse et al. (2013) conducted two 

studies within higher education. In the first study, they investigated all types of (non-

technology-supported) learning activities in a laboratory setting. In the second study, (non-

technology-supported) active, constructive, and interactive learning activities were compared 

in a classroom setting. Results demonstrated that participants’ domain-specific knowledge 

increased from passive to active to constructive to interactive learning activities in the 

laboratory setting. In the classroom setting, Menekse et al. (2013) mostly found an 

engagement in interactive learning activities to be superior than an engagement in active 

learning activities, but not an engagement in constructive learning activities. However, to our 

knowledge, no other studies in higher education have systematically investigated the 

differential effects of the four (non-technology-supported) learning activities in classroom 

settings so far. Thus, further empirical evidence on whether the ICAP hypothesis holds true 

in higher education classroom contexts is still pending. 

As the instructional use of technology seems to be more relevant than the type of 

technology used to promote learning (Chien et al., 2016), we argue that the ICAP hypothesis 

should also apply to technology-supported learning activities. Evidence comes from two 

empirical studies. First, Wang et al. (2016) analyzed the association of the types of higher 

education students’ contributions in a discussion forum and their learning outcome. They 

found students’ constructive and interactive contributions (measured as one factor) to be 

related to learning outcome more closely than their active contributions. In a second study, 



8 

 

Henderson (2019) investigated the relations of an engagement in passive, constructive and 

interactive learning activities and learning outcome integrated within a technology-enhanced 

quiz environment (clicker system). Results illustrated that student engagement in constructive 

and interactive learning activities predicted learning outcomes better than student 

engagement in passive learning activities. However, only an engagement in interactive 

learning activities emerged as a significant predictor. Thus, these findings seem to provide 

support for the ICAP hypothesis in the higher education context. Yet, none of these two 

studies included all types of learning activities. Therefore, in the present study we 

investigated the degree to which the ICAP hypothesis (Chi and Wylie, 2014) applies to the 

acquisition of domain-specific knowledge in classroom settings in higher education for non-

technology-supported as well as technology-supported learning activities.  

Yet, the acquisition of domain-specific knowledge is only one out of several possible 

and desired outcomes of higher education. Over the past years, both researchers and policy-

makers consistently argued that students in higher education are not only expected to acquire 

domain-specific knowledge in order to prepare for their future work environment, but to also 

acquire so-called 21st century skills (Partnership for 21st Century Learning, 2015, 2019). 

Following Vogel et al. (2017), we will label such skills cross-domain skills.   

Indirect evidence that the ICAP hypothesis might not only hold true for the 

acquisition of domain-specific knowledge, but also for the acquisition of cross-domain skills 

comes from research on problem-based learning (PBL). For example, a meta-analysis by 

Leary (2012) revealed a positive moderate effect of PBL on students’ self-regulated learning 

compared to lecture-based approaches. Since PBL is described as an approach that 

particularly aims at actively engaging students in problem solving (very often in groups; see 

Hmelo-Silver, 2004), these effects might be attributed to a high learner engagement in 
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constructive and interactive activities. However, results do not indicate to which degree 

differences between constructive and interactive learning activities are to be expected.  

Further, in two meta-analyses, Chen et al. (2018) and Lou et al. (2001) found a 

moderate effect of computer-supported collaborative learning (CSCL) on students’ cross-

domain skills (like collaboration and metacognitive strategies), as compared to individual 

technology-supported learning. As with PBL though, results on the effects of CSCL only 

point to differences between interactive and all other three types of learning activities. Hence, 

on the basis of these results, no certain claims about differential effects between constructive, 

active, and passive learning activities on the acquisition of cross-domain skills can be made. 

In summary, prior research illustrates that the ICAP hypothesis might apply to an 

engagement in technology-supported and non-technology-supported learning activities. 

Furthermore, there is preliminary evidence that the ICAP hypothesis might not only apply to 

the acquisition of domain-specific knowledge, but also to the acquisition of cross-domain 

skills in the context of higher education. Yet, direct evidence for these effects appears to be 

lacking so far. 

Research questions and hypotheses 

We investigated whether higher education students feel encouraged to engage in more 

constructive and interactive learning activities during technology-supported course phases in 

higher education compared to non-technology-supported phases. Furthermore, we tested 

whether the ICAP hypothesis (Chi and Wylie, 2014) can be validated in higher education 

technology-supported classroom settings and whether it would be applicable to not only the 

acquisition of domain-specific knowledge, but also the acquisition of cross-domain skills. We 

therefore investigated the following two research questions: 
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(1) What are the effects of technology-supported vs. non-technology-supported teaching 

phases on the types of learning activities students feel encouraged to engage in in 

higher education? 

Based on Law and Chow (2008), we assumed that during technology-supported 

teaching phases, students would feel encouraged to engage in more constructive and 

interactive learning activities and in less passive and active learning activities than during 

non-technology-supported teaching phases (H1). 

(2) To which degree is student engagement in passive, active, constructive, and 

interactive learning activities during technology-supported and non-technology-

supported teaching phases associated with students’ acquisition of domain-specific 

knowledge and cross-domain skills? 

Based on the ICAP framework and empirical evidence reported by Chi and Wylie 

(2014) as well as Menekse et al. (2013), we assumed that the association between non-

technology-supported learning activities and domain-specific knowledge would increase 

from passive to interactive learning activities (H2a). Based on the results of Wang et al. 

(2016) and Henderson (2019), we expected a similar pattern for technology-supported 

learning activities (H2b).  

Based on research on PBL (Leary, 2012) and CSCL (Chen et al., 2018; Lou et al., 

2001), we further expected that the association of technology-supported and non-technology-

supported learning activities with cross-domain skills would also increase from passive to 

interactive learning activities for cross-domain skills (H2c). 
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Method 

Sample 

We recruited pre-service teachers from a German university to participate in the study at the 

end of the university term 2016/17 (January/February 2017) within a larger course evaluation 

study. Out of the 577 course attendees taking part in the course evaluation study of 30 

courses, 381 participated in our study part (equaling 66%). All participants were pre-service 

teachers in their 4.69th (SD = 2.44) term. Their average age was 23.17 (SD = 3.94) years and 

79.2% reported being female (20.8% male). Participants filled out a questionnaire concerning 

the respective course they attended. Altogether the sample consisted of participants from 30 

different courses. All courses were administered face-to-face. Some of the courses were 

enhanced by online elements. Courses were situated within a wide range of areas of study. 

Most of the courses were situated in the social sciences (social sciences: 76.7%, languages: 

20.0 %, STEM: 16.7%, humanities: 10.0 %). 26.7% of these courses were interdisciplinary 

and thus addressed two areas of study. The number of study participants in the different 

courses ranged from 2 to 28 participants (M = 12.70, SD = 7.73). In each course, between 

20% to 100% out of the course attendees participated. 

Instruments 

Course instructors administered the study within their respective courses. They received 

written instructions on how to administer the questionnaires. The study was conducted in the 

third from last or second last course session of the term. Course instructors were requested to 

allow students to work on the questionnaire for about 30 minutes. The paper-pencil 

questionnaire consisted of three parts. The first part included demographic questions and 

further questions with regard to the evaluation of the respective course that were not used in 
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this study. In the second part, participants were first asked to rate the degree to which they 

felt encouraged to engage in a range of different learning activities in phases in which 

technology was used within the particular course they attended. After that, the same activities 

were presented to have participants estimate the degree to which they felt encouraged to 

engage in these activities in phases in which no technology was used. In the last step, 

participants were asked to assess the amount of domain-specific content knowledge as well as 

a set of cross-domain skills they have acquired by participating in the course. All items can 

be found in the electronic supplement. 

Engagement in technology-supported and non-technology-supported learning activities 

To assess participants’ engagement in the different learning activities in phases with and 

without technology support, we developed an item pool of 21 items on the basis of the ICAP 

framework by Chi and Wylie (2014). We asked four independent experts highly familiar with 

the ICAP framework to match each of the items to one type of learning activity (passive, 

active, constructive, or interactive). Raters’ judgments indicated that most of the items fit 

well to the learning activity they were intended to measure, while a few items might have 

tapped into more than one type of learning activities. Therefore, we excluded five items. The 

final items that referred to student engagement in technology-supported course phases were 

introduced by the stem “By means of the stated digital technologies I was encouraged to…”. 

“Stated digital technologies” in the stem concerned the used digital technologies in the 

respective course, which participants were asked to state in an introductory question. 

Examples of digital technologies were made in order to create a common understanding of 

the term (namely laptop, smartphone, interactive whiteboard, PowerPoint, YouTube, 

WhatsApp). Items on non-technology-supported learning activities were introduced by the 
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stem “In phases in which no digital technology was used, I was encouraged to…”. Out of the 

final 16 items, which were identical for technology-supported and non-technology-supported 

course phases, three items represented passive learning activities (e.g., “read content”), four 

items active learning activities (e.g., “underline text passages”), five items constructive 

learning activities (e.g., “compare content”), and four items interactive learning activities 

(e.g., “explain content to each other”). The items were presented in a mixed sequence and 

were to be answered on a Likert-type scale from never (1) to very often (5). All internal 

consistencies were acceptable to good (see Table 2). 

To confirm their factorial structure and the distinctness of the four learning activities, 

we conducted confirmatory factor analyses for technology-supported and non-technology-

supported learning activities. We found a four-factor model distinguishing between passive, 

active, constructive, and interactive learning activities to fit the data well (technology-

support: CFI=.92, TLI=.90, SRMR=.05, non-technology-support: CFI=.94, TLI=.92, 

SRMR=.05) and significantly better than alternative models in which we combined the 

measured knowledge facets to form 3- or 2-factor models or a general 1-factor model (all 

Δχ²>45.23, p<.001).  

Domain-specific knowledge 

Students’ self-rated acquisition of domain-specific knowledge was assessed with four items 

that were developed based on Krathwohl’s revised learning taxonomy (2002) for deep 

learning goals, which include the analysis, evaluation, and creation of content (e.g., “This 

course enabled me to analyze the most important course content.”). Items were measured on 

a Likert-type scale from don’t agree at all (1) to totally agree (5). The internal consistency of 

the scale was good (see Table 2)). 
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Cross-domain skills 

Due to a lack of economic cross-domain skill scales for the higher education course context 

(existing inventories like LASSI work with 10 or more scales; see Weinstein et al., 2016), we 

measured cross-domain skills by 15 self-developed items that referred to three types of 

strategic knowledge: metacognitive strategies, motivational strategies, and collaboration 

strategies. Specifically, metacognitive strategies (e.g., “In this course, I have learned how to 

set learning goals for myself.”) were measured with five items focused on skills related to 

planning (e.g., goal setting), monitoring (e.g., assess own knowledge), and regulation (e.g., 

selecting adequate learning strategies) of learning (Boekaerts, 1999; Pintrich, 2000; Schiefele 

& Pekrun, 1996). Motivational strategies (e.g., “By means of this course, I have learned how 

to make the (learning) content interesting for me.”) were measured with five items focused on 

the interest activation, monitoring of interest, and motivation and task persistence, which are 

considered as important factors for students’ regulation of motivation (Pintrich, 2000; 

Wolters, 1998).  Finally, collaboration strategies (e.g., “In this course, I have learned to 

argue for my point of view in discussions.”) were measured with five items focused on 

productive communication (e.g., by mutual attention and respect; H. Clark, 1996; or 

conversation rules; O’Conaill & Whittaker, 1997) and an adequate transmission or 

construction of knowledge (e.g., by adequate arguments; Wecker & Fischer, 2014). For all 

items, a Likert-type scale from don’t agree at all (1) to totally agree (5) was used. The 

internal consistencies of all three scales were good (see Table 2).  

In order to validate the factor structure of domain-specific knowledge and cross-

domain skills as learning outcomes, we performed confirmatory factor analyses. A four-

factor model distinguishing between domain-specific knowledge, metacognitive strategies, 

motivational strategies, and collaboration strategies fitted the data well (CFI=.96, TLI=.95, 
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SRMR=.04) and significantly better than alternative models in which we combined the 

measured knowledge facets to form 3- or 2-factor models or a general 1-factor model (all 

Δχ²>15.24, p<.01). 

Statistical analyses 

As individual-level student answers on their learning activities (level 1) nested in courses 

(level 2) are not independent from each other (Hox et al., 2010), a multi-level approach is 

required to adjust for dependencies of observations (e.g., due to different instructional 

approaches of teachers). Small intraclass correlations of .05 can already lead to biased results 

in conventional regression analyses (Cohen et al., 2003, p. 538). Therefore, we conducted 

two-level modeling to answer our research questions. 

Specifically, Wald χ²-tests were used to test for differences regarding technology-

supported and non-technology-supported learning activities. To test the effects of learning 

activities on learning outcomes, we conducted eight two level regression models. In four of 

the regression models, technology-supported passive, active, constructive, and interactive 

learning activities served as predictors at the student level and domain-specific knowledge, 

metacognitive strategies, motivational strategies, and collaboration strategies were considered 

as outcome variables at the student level. In the other four regression models, non-

technology-supported passive, active, constructive, and interactive learning activities were 

used as predictors at the student level and again domain-specific knowledge, metacognitive 

strategies, motivational strategies, and collaboration strategies were included as outcome 

variables at the student level. Predictors were used at the student level as the reliabilities of 

course means for the learning activities (ICC2) were rather poor indicating that students 

tended to perceive learning opportunities offered by the teacher differently, particularly for 
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non-technology-supported learning activities (see Table 1). To analyze to what degree the 

effects of the different types of learning activities on learning outcomes differ, confidence 

intervals (95%) were computed. 

All multi-level analyses were performed with Mplus 8 (Muthén & Muthén, 2017) 

using MLR as an estimator and grand-mean centered predictors. Missing values due to item 

non-response occurred for around 1.1% of the answers and were dealt with mode-based using 

the expectation-maximization algorithm (Peugh & Enders, 2004). [Table 1 near here] 

Results 

Descriptive results 

Table 2 illustrates descriptive statistics for technology-supported and non-technology-

supported learning activities as well the different learning outcomes. The means of the 

learning activities ranged around the theoretical scale average except for technology-

supported passive learning activities, for which we observed the highest mean. It appears that 

in total, students in higher education courses were encouraged to engage in all different types 

of learning activities. The average means for all learning outcomes revealed that in their 

higher education courses, students perceived themselves to acquire not only domain-specific 

knowledge but also cross-domain skills. The medium to high variances suggest that students’ 

perceptions differed substantially between individuals [Table 2 near here]. 

The low intraclass correlations for learning activities and learning outcomes suggest 

that the configuration of learning activities and learning outcomes were not strongly course-

specific (see Table 1). However, the calculation of design effects indicated the necessity to 

take the variance caused by the course level into account (suggested design effect: > 2; 

Muthén & Satorra, 1995; see Table 1). 
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Differences between technology-supported and non-technology-supported learning 

activities 

Descriptive statistics are illustrated in Table 2. Wald χ²-tests revealed statistically significant, 

small to large differences between technology-supported learning activities and non-

technology-supported learning activities for passive, active, and constructive learning 

activities (Wald χ²passive = 262.52, p < .001, Cohen’s d = 1.49; Wald χ²active = 17.32, p < .001, 

Cohen’s d = 0.30; Wald χ²constructive = 49.78, p < .001, Cohen’s d = 0.55). Students reported all 

these activities as having been stimulated more often during technology-supported phases 

than during non-technology-supported phases. Regarding interactive learning activities, we 

found no significant differences between technology-supported and non-technology-

supported learning phases (Wald χ²interactive = 0.03, p > .05). 

Effects of technology-supported and non-technology-supported learning activities on 

learning outcomes 

The results of the multilevel regression analyses are illustrated in Table 3 [Table 3 near here]. 

Technology-supported as well as non-technology-supported passive learning activities were 

neither found to be significant predictors for the acquisition of domain-specific knowledge 

nor for the acquisition of cross-domain skills. Active learning activities were significant 

predictors for all learning outcomes when they were supported by technology, but not when 

no technology support was present, with the exception of metacognitive strategies. In 

contrast, significant effects of non-technology-supported constructive learning activities were 

rather consistent with regard to the different kinds of learning outcomes (for domain-specific 

knowledge, metacognitive strategies, and motivational strategies, but not for collaboration 
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strategies) and also occurred consistently for technology-supported constructive learning 

activities with regard to domain-specific knowledge as well as all cross-domain skills. And 

finally, technology-supported as well as non-technology-supported interactive learning 

activities were the most powerful significant predictors for the acquisition of domain-specific 

knowledge and cross-domain skills (except for motivational strategies in the case of non-

technology-supported interactive learning activities).  

 Concerning the regression weights, 95%-confidence intervals showed that an 

engagement in active technology-supported learning activities predicted the acquisition of 

metacognitive and motivational strategies significantly better than an engagement in passive 

learning activities (see Table 3 and Figure 1). Also, regression weights of interactive learning 

activities were statistically significantly larger than those of passive learning activities for all 

three cross domain skills in the case of technology-supported learning activities and at least 

for collaboration strategies in the case of non-technology-supported learning activities. A 

significant increase from passive to constructive technology-supported learning activities 

only occurred in the case of motivational strategies. And finally, a significant increase from 

active to interactive non-technology-supported learning activities could only be detected for 

collaboration strategies. Other statistically significant increases could not be observed [Figure 

1 near here]. 

Discussion 

In this study, we aimed to move from a solely technology-oriented to a more learner-oriented 

study approach to get a more nuanced picture of the course-based use of technology and its 

effects on students’ learning outcomes in higher education. We investigated the degree to 

which higher education students feel encouraged to engage in different learning activities in 
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technology-supported teaching phases compared to non-technology-supported teaching 

phases. We also looked into the associations of their self-reported engagement in different 

types of learning activities and students’ perceived acquisition of domain-specific knowledge 

and cross-domain skills. To that end, we built on a learner-centered reference model (ICAP 

framework; Chi & Wylie, 2014) and transferred it to the field of technology-supported 

teaching in higher education. 

With regard to the differences of technology-supported and non-technology-supported 

learning activities, students reported being more strongly engaged in passive, active, and 

constructive learning activities in course phases in which technology support was present 

rather than when it was absent. The engagement in interactive activities did not seem to be 

affected by the presence or absence of technology support. Therefore, hypothesis 1, which 

proposed that technology use would promote student engagement in more high-quality 

learning activities, could only partially be supported. Teachers’ use of technology in higher 

education seems to particularly encourage students to engage in constructive learning 

activities as compared to when they do not use technology, which is a promising result from 

an ICAP point of view (Chi & Wylie, 2014). However, a comparable pattern was not found 

to be true for interactive learning activities.  

This is partly in line with the results of Law and Chow (2008) who showed that 

secondary school teachers often move away from traditional teaching (e.g., presenting 

information) and towards constructivist teaching approaches when using technology support 

compared to when they do not. However, the activity dimensions that Law and Chow (2008) 

used did not comply with the ICAP categories, which may be a reason for the different 

effects. Also, the context (higher education in contrast to secondary school context) might 

have played an important role. In the context of higher education, Marcelo et al. (2015) and 
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U. Schmid et al. (2017) pointed to the dominant use of digital presentations (which might 

mainly trigger an engagement in passive activities) and the work with digital software (which 

might mainly trigger an engagement in constructive activities). This might explain the 

relatively high values for constructive, but also passive technology-supported learning 

activities that we observed in the current study. Reasons for this predominant pattern can be 

found in the IT infrastructure that still mainly addresses a lecture-style and individual use of 

technology or in the ignorance of higher education teachers about its capabilities. 

Furthermore, a lack of IT support for matters of teaching and learning seems to be an issue 

that has to be taken care of (Sailer et al., 2018). Also, previous research has shown that at 

least in Germany, many higher education teachers in general follow an instructional approach 

(Lübeck, 2009) that might mainly afford an engagement in passive and constructive 

activities. Nevertheless, based on the study of Sailer et al. (2018), an even higher degree of 

active learning activities as compared to constructive learning activities might have been 

expected as well. Still, comparisons may only cautiously be made as in all of the outlined 

studies, non-technology-supported learning activities were not contrasted with technology-

supported learning activities. In consequence, it stands to reason that the potentials of 

technology in terms of encouraging students to perform high-quality learning processes might 

still only partially be used. 

With regard to the effects of the different learning activities on students’ acquisition 

of domain-specific knowledge and cross-domain skills, interactive learning activities had the 

strongest relations, while we found no relations between passive learning activities and 

learning outcomes at all. Instead, we observed a significant increase of effects from passive 

learning activities to the other learning activities for some of the learning outcomes, but not 

consistently across all the types of learning activities. Thus, hypotheses 2a, 2b, and 2c can 
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partially be accepted and seem to correspond to other classroom studies in higher education 

that mostly found differential associations of different types of learning activities and 

domain-specific knowledge (Menekse et al., 2013; Henderson, 2019; Wang et al., 2016). By 

and large though, these results seem to support the ICAP hypothesis (Chi & Wylie, 2014) and 

are in line with findings from PBL (Leary, 2012) as well as CSCL (Chen et al., 2018). As a 

result, in higher education courses it should prove effective if higher education teachers 

design their courses in ways that encourage their students to particularly engage in 

(technology-supported) interactive learning activities in contrast to the predominantly 

observed engagement in (technology-supported) passive learning activities.  

Further, we found more statistically significant effects of technology-supported 

learning activities on learning outcomes than of non-technology-supported learning activities. 

Also, technology-supported learning activities explained more variance in the learning 

outcomes than non-technology-supported learning activities, at least descriptively. This might 

be due to reasons such as students’ beliefs regarding the effectiveness of technology. In their 

meta-analysis, R. F. Schmid et al. (2014) observed a small, significant effect of technology 

use in higher education in comparison to no technology use on students’ attitudes in terms of 

their satisfaction with the course and their evaluation of their learning gains. Also, in the US-

based yearly ECAR large-scale study by Brooks and Pomerantz (2017) around 80% of 

students indicated that they learned most in technology-supported courses (ranging from at 

least one online component to complete online courses). In addition, between 70% and 80% 

of students stated that technology helped them to acquire domain-specific knowledge and to 

build relevant cross-domain skills (Brooks, 2016). Thus, it seems that students tend to 

perceive technology as an effective mean to enhance their learning, which might 

consequently moderate the relationship between encouraged learning activities and perceived 
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learning outcomes. Therefore, students’ beliefs should be considered in future studies as a 

possible moderator variable.  

With respect to the replicated main ICAP ideas, it seems necessary to facilitate 

teachers’ knowledge of technology-supported learning activities that afford effective 

knowledge construction processes on the side of students. More concretely, teachers should 

learn about ways to use technology to encourage students to move from more passive 

learning activities (mostly digital presentations) to constructive learning activities (e.g., 

constructing concept maps) and interactive learning activities (e.g., create an explanation 

video in small groups). Consequently, higher education teachers should be supported by their 

institution in various ways (Fabian et al., 2019). One promising approach might be to offer 

professional development in order to develop teachers’ TPACK. Given the importance of 

pedagogical knowledge in order to develop TPACK (Backfisch et al., 2020; Lachner et al., 

2019), we suggest professional development courses to go beyond standalone technology 

courses and particularly concentrate on ICAP as a learner-centered model. Also, such an 

approach might need to be more sustainable than a single ICAP-focused online module in the 

light of its modest outcomes (Chi et al., 2018). Furthermore, (higher education) teachers’ 

conceptions of interactive learning activities should be specifically addressed, as they seem to 

prevent teachers from creating more higher-order learning environments (Chi et al., 2018). 

To address these challenges, in research on higher education teachers’ TPACK development 

design approaches have gained considerable attention (Mourlam, 2017). These approaches 

are mainly based on the constructivist Learning Technology by Design approach (Koehler et 

al., 2004; Koehler & Mishra, 2005) in which higher education teachers and students 

collaboratively develop a technology-enhanced course within a course setting. It incorporates 

elements like collaborative learning, which also plays a central role in the ICAP framework. 
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Thus, the development of a design-based professional development for higher education 

teachers that incorporates the ICAP based design guidelines could be a promising direction to 

follow. 

Limitations and conclusion 

Our study is among the first to investigate differences between technology-supported and 

non-technology-supported learning activities and their effects on students’ perceived domain-

specific knowledge as well as cross-domain skills. Also, the results can be well interpreted on 

the basis of related research. However, several factors have to be addressed that might limit 

the explanatory power of the study.  

First, due to our small sample size it was not possible to include teacher data (such as 

their targeted learning activities and their teaching goals). However, this would have been 

helpful to better understand the relations of the different technology-supported learning 

activities and learning outcomes. Therefore, future studies should aim for a larger sample 

size, especially on the course level.  

Second, our study is solely based on subjective data. In other words, we were not able 

to take the actual learning activities that students performed into account, but rather the 

degree to which they felt encouraged to perform those activities. This might explain the low 

ICC2s as students might have referred to different course situations when rating the learning 

activities. Therefore, future studies should develop methods to measure in-course learning 

activities, as well as students’ learning outcomes in a more objective way, e.g., by using 

video data, time-referenced ratings and objective knowledge tests. Yet, especially video 

ratings always run the danger of being extremely time-consuming. Also, it should be noted 
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that developing reliable measures that are economical to use is a challenging task, especially 

for cross-domain skills (Graesser et al., 2018).  

Nevertheless, the approach that we implemented in the present study to investigate 

technology-supported learning from a more learner- than a technology-centered perspective 

proved to be helpful to better understand technology-supported teaching and its effects on 

learning in the context of higher education. In addition, we made a first step replicating and 

complementing some of the main ICAP ideas (Chi & Wylie, 2014) on the basis of a rather 

economical item-based methodological approach. Consequently, the ICAP model and the 

methodological approach we used in this study might act as a valuable extension of the 

TPACK framework.   

Overall, our study implies that digital technology indeed has a strong potential to 

support learning processes and outcomes of students in higher education. However, results 

indicate that this potential is only partly used in higher education courses, thus suggesting a 

further learner-centered development of higher education teachers’ technology use in courses.  
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Tables and figures 

Table 1. ICC1, ICC2 and design effects for learning activities and learning outcome. 

 ICC1 ICC2 Design effect 

Technology-support    

Passive .07 .52 1.82 

Active .09 .46 2.05 

Constructive .04 .40 1.47 

Interactive .04 .41 1.47 

Non-technology support    

Passive <.01 <.01 1.00 

Active .05 .35 1.59 

Constructive <.01 .18 1.00 

Interactive .01 .22 1.12 

Learning outcome    

Domain-specific knowledge .11  2.29 

Metacognitive strategies .13  2.52 

Motivational strategies .09  2.05 

Collaboration strategies .13  2.52 

Note. N = 381. Presented is the reliability of the proportions of variance at level-2 (ICC1), the 

reliability of the aggregated group-means (ICC2), and the ratio of the variance of the 

parameter in a given sample and the variance of the parameter in a random sample (Design 

effect).



 

 

Table 2. Descriptives and manifest correlations of technology-supported and non-technology-supported learning activities and learning 

outcomes. 

 M SD Min Max Skew Cronb
ach’s 

α 

1 2 3 4 5 6 7 8 9 10 11 

Technology support                  

1. Passive 3.86 0.80 1.00 5.00 –0.72 .65            

2. Active 3.00 0.83 1.00 5.00 –0.28 .65 .47**           

3. Constructive 3.37 0.73 1.00 5.00 –0.49 .76 .53** .59**          

4. Interactive 3.11 0.89 1.00 5.00 –0.35 .80 .34** .47** .68**         
Non-technology support                  

5. Passive 2.77 0.90 1.00 5.00 –0.06 .60 .16** .31** .13* .15**        

6. Active 2.78 0.89 1.00 4.75 –0.25 .72 .10 .43** .18** .16** .66**       
7. Constructive 3.03 0.84 1.00 5.00 –0.35 .83 .11* .29** .27** .28** .63** .67**      

8. Interactive 3.12 0.94 1.00 5.00 –0.23 .85 .08 .26** .21** .39** .46** .51** .77**     

Learning outcome                  
9. Domain specific 

knowledge 

3.33 0.75 1.00 5.00 –0.55 .80 .30** .41** .50** .45** .24** .28** .39** .39**    

10. Metacognitive 
strategies 

3.00 0.89 1.00 5.00 –0.25 .88 .24** .49** .48** .49** .28** .36** .38** .38** .82**   

11. Motivational 

strategies 

2.98 0.85 1.00 5.00 –0.30 .81 .22** .45** .46** .43** .27** .32** .37** .33** .79** .86**  

12. Collaboration 

strategies 

3.29 0.86 1.00 5.00 –0.44 .83 .22** .36** .42** .46** .21** .22** .35** .38** .68** .75** .73** 

Note. N = 381. * p < .05; ** p < 01.



 

 

Table 3. Standardized relations of (non-)technology-supported learning activities and learning outcomes. 

 Learning outcomes 

 Domain-specific 

knowledge 

Metacognitive 

strategies 

Motivational strategies Collaboration strategies 

Technology-supported learning activities 

   Passive .01 [–.10; .13] –.07 [–.16; .03] –.08 [–.17; .01] –.01 [–.13; .11] 

   Active .15* [.04; .26] .30** [.18; .41] .26** [.14; .38] .14* [.02; .25] 

   Constructive .27** [.12; .42] .16* [.00; .31] .22* [.09; .35] .15* [.01; .28] 

   Interactive .18**[.06; .31] .26** [.12; .40] .19** [.07; .31] .30** [.16; .43] 

   R² .28**[.18; .38] .33** [.23; .43] .28** [.20; .36] .24** [.16; .33] 

Non-technology-supported learning activities 

   Passive –.02 [–.13; .09] –.02 [–.12; .08] .00 [–.11; .11] –.01 [–.01; .13] 

   Active .05 [–.11; .20] .19* [.05; .34] .12 [–.02; .26] –.02 [–.17; .13] 

   Constructive .23* [.05; .41] .12* [–.03; .27] .24** [.10; .38] .16 [.033; .30] 

   Interactive .22** [.06; .37] .20** [.06; .34] .09 [–.02; .19] .26** [.15; .37] 

   R² .19** [.11; .27] .19** [.10; .28] .16** [.08; .26] .15** [.09; .22] 

Note. N = 381. Presented are the standardized results of eight two-level regression models with each a technology-supported and non-

technology-supported learning activity as predictor and all learning outcomes as outcome variables. Coefficients with 95%- confidence 

intervals in square brackets. *p < .05; **p < .01. 

 

 

 

 

 



 

 

 

Figure 1. Z-standardized regression weights and 95%-confidence intervals of technology-supported and non-technology-supported 

learning activities for domain-specific knowledge, metacognitive strategies, motivational strategies, and collaboration strategies. 


