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Abstract
On June 24th 2018 one of the largest UK wildfires in recent history broke out on Saddleworth
Moor, close to Manchester, in north-west England. Since wildfires close to large populations in the
UK have been relatively small and rare in the past, there is little knowledge about the impacts. This
has prevented the development of effective strategies to reduce them. This paper uses a
high-resolution coupled atmospheric-chemistry model to assess the impact of the fires on
particulate matter with a diameter less than 2.5 µm (PM2.5) across the region and the impact on
health from short-term exposure. We find that the fires substantially degraded air quality. PM2.5

concentrations increased by more than 300% in Oldham and Manchester and up to 50% in areas
up to 80 km away such as Liverpool and Wigan. This led to one quarter of the population
(2.9 million people) in the simulation domain (−4.9–0.7◦E and 53.0–54.4◦N) being exposed to
moderate PM2.5 concentrations on at least one day, according to the Daily Air Quality Index
(36–53 µg m−3), between June 23rd and 30th 2018. This equates to 4.5 million people being
exposed to PM2.5 above the WHO 24-hour guideline of 25 µg m−3 on at least one day. Using a
concentration-response function we calculate the short-term health impact, which indicates that in
total over the 7-day period 28 (95% CI: 14.1–42.1) deaths were brought forward, with a mean daily
excess mortality of 3.5 deaths per day (95% CI: 1.8–5.3). The excess mortalities from PM2.5 from
the fires represented up to 60% of the total excess mortality (5.7 of 9.5 excess deaths), representing
an increase of 3.8 excess mortalities (165% increase) compared to if there were no fires. We find the
impact of mortality due to PM2.5 from the fires on the economy was also substantial (£21.1 m).

1. Introduction

The Saddleworth Moor fire in June 2018 was the
largest UK wildfire in recent decades, with over
double the burnt area of themost recent large wildfire
in 2011, in Swinley, Berkshire (RBFARS 2011). It led
to the evacuation ofmany residents from their homes,
and caused elevated atmospheric pollutant concen-
trations across the Greater Manchester urban region
(BBC). The fires began on June 24th 2018 and burned
for three weeks over Saddleworth Moor (1.96◦W,
53.54◦N) and Winter Hill (2.52◦W, 53.63◦N) (figure
1). The fires, which are thought to have been delib-
erately started, peaked in size on 27th June, covering

8 km2 with flames reaching 4 m in height (GMCA).
The fires burned on moorland that was dominated
by heather with an underlying layer of peat (GMCA)
(figure S1). Peat is exceptionally vulnerable to igni-
tion during periods of drought and once alight it is
extremely difficult to control and extinguish because
it is a well oxygenated fuel source (Rappold et al
2011). As a result, peat fires can smoulder under-
ground for long periods, re-emerging away from the
original source (Rappold et al 2011). Fuel consump-
tion is relatively large in peat fires, emissions per
unit area are much higher than for other fuel types
(Geron andHays 2013). Consequently, peat fires emit
large dense ground level plumes, meaning that local
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populationsmay bemore susceptible to smoke expos-
ure than for other wildfire types (Tinling et al 2016).
Alongside this, although other studies have suggested
that flaming smoke may be more toxic than smoul-
dering smoke on a mass basis (Kim et al 2018, 2019),
peat burning producesmore smoke and so it has been
suggested that the toxicity of smoke from peat fires is
different to other wildfires (Reisen et al 2015, Tinling
et al 2016), however there is currently limited research
on this topic.

June 2018 was anomalously warm and dry across
the UK. Average daily maximum temperatures were
between 18 ◦C and 22 ◦C (2.5 ◦C warmer than
the 1981–2010 average) (UKMO 2018) and less than
75 mm rainfall fell during the month (50% of the
1981–2010 average rainfall). There were fewer than
4 d with >10 mm rainfall (UKMO 2018). These con-
ditions led to the peat on the moor becoming partic-
ularly susceptible to ignition.

Wildfires emit large amounts of pollutants and
have substantial impacts globally on the radiative bal-
ance Hodzic et al 2007; Rappold et al 2011), cloud
microphysical properties (Lu and Sokolik 2013, Jiang
et al 2016), air quality (Jaffe and Wigder 2012; Red-
dington et al 2014, Crippa et al 2016) and therefore
health (Rappold et al 2011, Johnston et al 2012, Liu
et al 2015, Jones et al 2015). Wildfires are an increas-
ing environmental and health concern that are projec-
ted to occur more frequently, become more intense
and spread much more quickly in the future (IPCC
2014). It is projected that by 2080 the combination of
higher temperatures, decreased summer rainfall and
drier soils could led to a 30%–50% increase in UK
wildfire risk (UK CC Risk Assessment 2012, 2012).
Peat bogs, which account for over 22 000 km2 of UK
land cover (Xu et al 2018), are particularly vulnerable
to wildfire.

As a result of the predicted increase in wild-
fires, population exposure to pollutants from fires is
also expected to increase. Substantial evidence sup-
ports the association of short-term exposure to PM2.5

from fires and respiratory and cardiac morbidity
and mortality from both epdiemiological (Zanobetti
et al 2009, Delfino et al 2009, Johnston et al 2011,
Reid et al 2016) and toxicology studies (Naeher et al
2007). However, there is a large amount of conflict-
ing research on the toxicity of different species and so
equal toxicity between PM components is still com-
monly assumed (Atkinson et al 2014) but is an act-
ive area of research. The health burden of fires in
the tropics and United States, Australia and Canada
is well documented in the literature (Johnston et al
2011, 2012, Reisen et al 2011; Finlay et al 2012, Liu
et al 2015, Crippa et al 2016, Reid et al 2016, Landis
et al 2018) and is significant. The large wildfires dur-
ing 2015 in Equatorial Asia led to 69 million people
being exposed to unhealthy levels of PM2.5 and are
estimated to have caused 11 880 excessmortalities due
to short-term exposure (Crippa et al 2016).

Alongside the significant health impacts of wild-
fires there is also a large associated socioeconomic
cost (Kochi et al 2012, Fann et al 2018). The concept
of Value of Statistical Life, how much society is will-
ing to pay to preserve a life or extend it, is used by
studies to estimate the economic value of short-term
excess deaths and hospital admissions during wild-
fires. Using this method it is estimated that in the US
between 2008 and 2012 the economic cost of short-
term exposure to wildfire air pollutants was $63bn
(95% CI $6bn-$170bn), while for long-term wildfire
air pollutant exposure the cost was $450bn (95% CI
$42bn-$1200bn) (Fann et al 2018).

Since wildfires close to highly populated areas are
relatively rare in the UK, little research into the health
and economic impacts of UK wildfires has been car-
ried out. However, as fires are predicted to increase
with the warming climate and land-use change it is
becoming increasingly important to examine wild-
fires in aUKcontext. Previous studies elsewhere in the
world have found that public health tools and edu-
cational programmes to reduce exposure yield sig-
nificant health benefits from reduced mortality and
exacerbations of underlying illnesses (Rappold et al
2014). Many countries also have both ‘Fire Danger
Ratings’ and ‘Fire Warning Systems’. These are used
to inform the public of the daily fire risk, based
on weather forecasts and fuel loading, and provide
updates on current active fires. Other countries also
often have severe penalties for arson, with high con-
viciton rates every year, and high rewards for inform-
ation on suspected arsonists (up to $50 K (DFES
2018)). However, at present, a lack of knowledge
about the impacts of wildfires in the UK prohibits
the development of effective strategies to reduce their
impacts.

In this paper we use the Saddleworth Moor Fires
in June 2018 as a case study to calculate the potential
health and economic impacts of exposure to PM2.5

from wildfire on the UK population using a high res-
olution air quality model. The results of this study
aim to quantify the population’s exposure to PM2.5

from the fires and the subsequent health impact.
This will help to inform legislation makers, based on
the impacts of the Saddleworth Moor Fires, whether
there is a need to introduce preventitivemeasures and
emergency planning for fires to reduce the popula-
tion’s exposure to harmful pollutants.

2. Method

2.1. WRF-Chem
This study usesWRF-Chemv3.7.1 (Grell et al 2005), a
fully coupled atmospheric chemistry model at 10 km
resolution, to simulate hourly PM2.5 concentrations
during the Saddleworth Moor fires 2018. The study
domain covers northern England (−4.9–0.7◦E and
53.0–54.4◦N) and a population of 14 million people.
Our simulations are performed using the samemodel
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Figure 1. Population count (km−2) (2015) in the model domain with the Automated Urban and Rural Network (AURN) sites
used in the model evaluation over plotted (table S1). Sites where elevated PM2.5 was observed are indicated by red stars and those
where concentrations remained below 50 µg m−3 by black circles. The locations of Saddleworth Moor and Winter Hill are
indicated by black triangles. Fire emissions, from FINNv1.5 (time-varying scaling), between June 23rd and June 30th are
indicated by red circles—each circle represents a fire hotpot from MODIS, while the size of the circles is relative to the mass of
PM2.5 emitted in kg day−1 (scale on left). The area over which scaling was applied to the FINN fire emissions is also shown by the
blue box. More details on AURN sites can be found in table S1.

version and set-up as Conibear et al (2018a), Red-
dington et al (2019) and Kiely et al (2019). For a
more detailed model description refer to Conibear
et al (2018a).

Meteorological initial boundary conditions (IBC)
were provided by the National Centers for Environ-
mental Prediction (NCEP) Global Forecasting Sys-
tem (GFS) reanalysis (meteorology) at 6-hour time
steps and 0.5◦ resolution. Chemical IBC are from
the Whole Atmosphere Community Climate Model
(WACCM) (Marsh et al 2013) (NCAR 2018). An
updated MOZART-4 (Emmons et al 2010) scheme
is used to calculate gas-phase chemical reactions.
Aerosol dynamics and processes were represented
by the Model for Simulating Aerosol Interactions
and Chemistry (MOSAIC), which included aqueous
chemistry and extended treatment of organic aerosol
(Hodzic and Knote 2014). Four bins were used rep-
resent aerosol size: 0.039–0.156 µm, 0.156–0.625 µm,
0.625–2.5 µm and 2.5–10 µm. WRF was nudged on
all 33-vertical terrain following levels every 3 h in

order to keep mesoscale meteorology in line with
the reanalysis meteorology from GFS (NCEP 2007).
Variables nudged included horizontal and vertical
wind, potential temperature and water vapour mix-
ing ratio.

Monthly anthropogenic emissions were from the
Emission Database for Global Atmospheric Research
with Task Force on Hemispheric Transport of Air
Pollution version 2.2 (EDGAR-HTAP2) (Janssens-
Maenhout et al 2015) at 0.1◦ resolution for 2010 (see
SM section 3.2 formore information). Biogenic emis-
sions were calculated online by the Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN)
(Guenther et al 2006). Dust emissions are also cal-
culated online using the GOCART with Air Force
Weather Agency (AFWA) modifications (LeGrand
et al 2019).

We calculate the contribution of the fires between
June 16th and July 14th 2018 on PM2.5 surface
concentrations by comparing simulations with and
without fire emissions included.

3



Environ. Res. Lett. 15 (2020) 074018 A M Graham et al

2.2. Wildfire emissions
Wildfire emissions are taken from the Fire Inventory
from NCAR version 1.5 (FINNv1.5). The FINNv1.5
emissions dataset combines satellite observations,
land cover, biomass consumption estimates and
emissions factors to calculate fire emissions glob-
ally at 1 km resolution every day. Satellite observa-
tions from the MODIS Thermal Anomalies Product
provide detections of active fires with a nominal hori-
zontal resolution of ~1 km2. Burned area is assumed
to be 1 km2 for each fire identified and scaled back
based on the density of vegetation from the MODIS
Continuous Fields (VCF) (i.e. if 50% bare =0.5 km2

burned area). The type of vegetation burned during
a detected fire is determined using the MODIS Col-
lection 5 Land Cover Type (LCT). This assigns each
fire pixel to one of 16 possible land cover/land use
classes and also the density of vegetation at 500m res-
olution, scaled to 1 km. The 16 land cover types are
then aggregated into 8 generic categories towhich fuel
loadings are applied (Wiedinmyer et al 2011). Fuel
loadings are fromHoelzemann et al (2004) and emis-
sions factors are from Akagi et al (2011), McMeek-
ing (2008) and Andrae and Merlet (2001). FINNv1.5
includes all emissions from above ground vegetation
but not from the combustion of peat (Kiely et al
2019).

We compare the FINN burned area (1 km res-
olution) with MODIS burned area (500 m res-
olution) in order to evaluate whether the resolu-
tion of the MODIS hotspot data used within FINN
to estimate emissions is able to represent the fire
size correctly, and thus emissions. We find the
burned areas to be very similar for FINN (9.77 km2)
and MODIS (8.43 km2) and the datasets to be in
agreement spatially. The burned area in FINN is
likely to be slightly higher than MODIS because
of the lower resolution of the dataset. Since the
Saddleworth Moor fires occurred on an area that
is dominated by peat bog, with overlying vegeta-
tion including heather, grass and juniper (GMCA;
Xu et al 2018) (figure S1), we are confident the
need for scaling emissions is due to the missing
peat emissions rather than an error relating to fire
size.

We therefore scale all FINN emissions over the
Saddleworth Moor region (figure 1 and figure S1) to
account for the underestimation of emissions in the
dataset due to the missing peat emissions. Scaling is
performed equally across all FINN emission species,
and is altered daily to match the daily mean observa-
tions of PM2.5 at AURN sites (see table S2 for AURN
sites). We scale emissions by a factor 5 on June 26th
and a factor 10 on 27th, 28th and 29th. On all other
days, we use the original unscaled FINN emissions.
More details on the evaluation of FINN scaling can
be found in the supplementary material (SM sections
2 and 4 and figures S2 and 3).

2.3. Model evaluation
Hourly observations of PM2.5 from the Automated
Rural and Urban Network (AURN) in the UK are
used to evaluate the model’s performance at hourly
and daily temporal resolution.We evaluate the model
against all AURN sites in the north-west and York-
shire and Humber regions of England, which are
mostly urban sites (see table S1 and figure 1 for more
details). Daily means are calculated from hourly data
for days where >90%of data is available at a given site.

2.4. Health impact assessment
The health impact from short-term exposure to elev-
ated pollutants from the Saddleworth Moor fires can
be calculated using an exposure response function:

Em =
N∑
i=1

Bd.popi.AFi (1)

where:

AF=

(
RR− 1

RR

)
(2)

and:

RR= expβ(X−X0) (3)

Em represents the excess mortality caused by expos-
ure to PM2.5 over the safe limit of exposure (X–X0)
each day. N is the number of days within the simula-
tion and i is the day in simulation, Bd is the baseline
death rate, pop is the population exposed and AF is
the attributable fraction of mortality due to exposure
to PM2.5. The AF is calculated using the concept of
relative risk (RR), this is the probability of mortality
from a disease endpoint within an exposed popula-
tion compared to the probability of mortality within
an unexposed population (ß). The concentration a
population is exposed to is given by X and the safe-
limit of exposure is X0. Since there is little evidence to
suggest a safe-limit of exposure to PM2.5 we assume
X0 to be zero (Holgate 1998, Schmidt et al 2011,
Macintyre et al 2016).We use beta values fromAtkin-
son et al (2014) for PM2.5 (1.04% (95% CI: 0.52%,
1.56%) per 10 µg m−3 increase). Since short-term
health impacts are assumed to be equal across ages,
we use baseline mortality rates for all ages and pop-
ulation for all ages in the calculations (Atkinson et al
2014).

The health impact assessment is carried out using
the ‘subtraction’ method, which is the one most
commonly used in short-term health impact stud-
ies (Macintyre et al 2016; Crippa et al 2016). This
method calculates the excess mortality from fires
(Em FIRES ONLY) to be the difference between the excess
mortality from PM2.5 in the simulation with fires on
(Em FIRES ON) and excess mortality from PM2.5 when
there are no fires in the simulation (Em FIRES OFF)
(equation (4)).
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Figure 2. Hourly observed and simulated surface PM2.5 between June 16th 2018 and July 14th 2018. Modelled values are from the
time-varying scaling simulation (see sections 2.2, 3 and table 2), in magenta, and observations from AURN sites are in black.
Locations where PM2.5 observations are elevated are shown by red stars and time series site names in red. The period when the
Saddleworth Moor and Winter Hill fires occurred is indicated in grey shading.

EmFIRESONLY = EmFIRESON − EmFIRESOFF (4)

We use population count data from the Grid-
ded Population of the World, Version 4.11 (CIESIN
2018) for 2015 at 5 km resolution. The dataset is
created by the Centre for International Earth Science
Information Network (CIESIN) and was accessed
from the National Aeronautics and Space Adminis-
tration (NASA) Socioeconomic Data and Applica-
tions Centre (SEDAC). The dataset uses estimates of
human population based on the national census and
population registers. Input data from 2005–2014 are
extrapolated to produce estimates of population for
5-year increments. A map of this population data in
the north-west of England is available for reference
(figure 1). Baseline mortality rate data for north-west
England is taken from the Global Burden of Disease
for 2015 (IMHE 2018).

2.5. Economic cost of fires
The economic cost ofmortality caused by exposure to
PM2.5 from the fires is calculated using the ‘Value of
Prevented Fatality’ (VPF) from the UK Department
for Transport. The VPF was initially used to evaluate
transport projects which entail expected reductions
in fatalities (Guria et al 2005). However, in recent
years, many other government sectors, such as theUK
Environment Agency and Health Protection Agency,
have begun to utilise the concept (Deloitte 2009). Sev-
eral other studies have used this method to quantify
the benefits of air quality improvements from reduced
mortality (Krupnick et al 1996, US EPA 1997). There
is a large range in estimates for VPF so we use values

from the Department for Transport since these are
based on UK costs of mortality and lie within the
range of other estimates (see SM table S4 and SM
section 6 for more details). The estimates are broken
down into human costs, medical costs, lost output
and other costs. Values are given in GBP for 2008,
which we scale to 2018 values in line with inflation
(Bank of England 2019). The human cost compon-
ent reflects the pain and suffering felt by the victim
and relatives and the reduction in life quality during
the period of injury. Thus, the human cost is derived
from the ‘Willingness to Pay’ of the population to
reduce this risk. Medical costs represent all treatment
costs and lost output represents working days lost and
therefore, the total expected lost earnings before tax,
as well as national insurance payments. Other costs
represent emergency services and benefits.

3. Results

3.1. AURN observations
AURN observations (figure 2) indicate PM2.5 con-
centrations at 5 locations in the north-west exceeded
100 µg m−3 between June 16th and July 14th 2018.
As expected, concentrations were highest at sites
near to Saddleworth Moor, reaching 140 and 225 µg
m−3 on June 27th and 28th at Manchester Piccadilly
and Salford Eccles respectively (figure 2). They also
reached >175 µg m−3 at Wigan Centre, 50 km from
the fires. Other sites in the network were relatively
unaffected by the fires, with little variation in concen-
trations during the fires (figure 2).
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Table 1.Model evaluation statistics for WRF-Chem simulations with different FINNv1.5 options for daily mean PM2.5. Statistics shown
are the mean value of Pearson correlation coefficient (r), mean bias (MB), normalised mean bias (NMB), root mean squared error
(RMSE), mean absolute error (MAE) and normalised mean absolute error (NMAE) at each AURN site for the entire simulation (June
16th 2018 to July 14th 2018). Simulations shown are for FINNv1.5 with no alterations (no scaling), FINN v1.5 with factor 10 scaling
over Saddleworth Moor (10x scaling), FINN v1.5 with changing scaling to account for the different stages of the fire (time-varying
scaling) and simulations with (no fire emissions). See section 2.2 and figure S1 for more details on time-varying scaling.

Daily Evaluation Statistic Time-varying Scaling 10x Scaling No Scaling No Fire Emissions

Pearson Correlation (r) 0.77 0.74 0.69 0.62
Mean Bias (MB) −1.59 −0.95 −1.84 −1.98
Normalised Mean Bias (NMB) −0.19 −0.10 −0.22 −0.24
Root Mean Square Error (RMSE) 4.27 4.31 5.06 5.30
Mean Absolute Error (MAE) 2.30 2.22 2.48 2.59
Normalised Mean Absolute Error (NMAE) 0.31 0.31 0.33 0.34

3.2. Model evaluation
The model is evaluated using Pearson correlation
coefficient (r), mean bias (MB), normalised mean
bias (NMB), root mean square error (RMSE), mean
absolute error (MAE) and normalised mean abso-
lute error (NMAE). Firstly, when assessing model
performance at the daily resolution, without scal-
ing FINN fire emissions (no scaling), the model per-
forms relatively poorly (table 1 and figure S2). The
Pearson correlation score is similar to the simula-
tion without fire emissions (no fires) (0.69 and 0.62
respectively). RMSE (5.06 µg m−3), NMB (−0.22)
and NMAE (0.33) are also similar to with no fire
emissions (5.30µgm−3,−0.24 and 0.34 respectively).
Referring to the time series from each AURN site it
becomes clear the poor performance of the model
is dominated by sites where fire emissions are not
being captured well (see figures S2 and S3). When a
factor 10 scaling (10 × scaling) is applied to FINN
emissions over Saddleworth Moor the correlation is
improved (0.74) and NMB is substantially improved
(0.10) (table 1). The RMSE (4.31µgm−3) andNMAE
(0.31) also improve. However, the model still over
predicts PM2.5 in the early stages of the fire (see SM
figure 2). The over prediction may be due to a change
in fuel source through the fire lifetime, from the sur-
face vegetation (heather and grass) initially, which
FINN accounts for, to underlying peat once the sur-
face vegetation has been consumed (GMCA 2019).
Peat has much higher emissions per unit burnt (9.1 g
kg−1 burned (but estimates range from 6–30 g kg−1)
compared with 6.3–15.3 g kg−1 for other vegetation
types burned (GFEDv4)). Alongside this, FINNv1.5
does not account for whether burning is smoulder-
ing or flaming, which can change emissions signific-
antly, particularly in peat fires where emissions are
highest during smouldering due to colder combus-
tion temperatures (Stockwell et al 2016). To try to
account for the change in fuel type we perform a sim-
ulation where we adjust the scaling of the fire emis-
sions each day (see section 2.2 for more details on
scaling). Using a daily time-variant scaling (Time-
varying scaling) we improve RMSE (4.27 µg m−3)
and Pearson correlation (0.77) and find the simula-
tion has a similar NMAE (0.31) when compared with

factor 10 scaling (10× scaling: RMSE= 4.31 µgm−3,
r = 0.74 and NMAE = 0.31) (see table 1). Time-
varying scaling also performs best at hourly time
resolution with improved correlation (0.42), RMSE
(7.11 µg m−3) and NMAE to 0.47 (compared with
factor 10 scaling and no scaling simulations (r= 0.37
and 0.351, RMSE = 7.557 and 7.78 µg m−3))and the
removal of the over prediction at the start of the fires
(see SM figure 2). We therefore use the time-variant
scaling of FINN emissions as our best-estimate (more
details in SM sections 2 and 4)

3.3. Impact on air quality
Using WRF-Chem simulations we calculate the per-
centage increase in PM2.5 at the surface due to fires

as
(

PM2.5 Fires−PM2.5NoFires
PM2.5NoFires

× 100
)
, where PM2.5 from

the simulation with fire emissions is labelled as
PM2.5 Fires and PM2.5 from the simulation without fire
emissions is labelled as PM2.5 No Fires. Between June
23rd and June 30th 2018 model simulations indic-
ate the mean increase in PM2.5 due to fires (fig-
ure 3(c)) is largest in the area surrounding Oldham
(>300% increase). However, there is also a 150%–
200% increase in PM2.5 in Manchester, Bolton and
Wigan. Areas as far away as Liverpool, Preston and
Warrington are also affected with 10%–50% increases
in PM2.5 observed. Daily mean percentage increase
in PM2.5 from fires indicates that the largest increase
in PM2.5 observed is due to the Saddleworth Moor
fires (figure S6) on the 26th and 27th June. Results
indicate PM2.5 increases of >600% in Manchester,
Bolton and Wigan and >1000% in Oldham were due
to the fires (figure S6). Large areas of the north-west
also experience >350% increase in PM2.5, including
Wigan, 50 km from the fires, and a 100% increase
is observed as far west as the Irish Sea. Simula-
tions indicate the Winter Hill fires on June 29th and
30th were also associated with PM2.5 increases of 100
to >600% in Bolton, Wigan and Southport (40 km
away) (figure S6). The Winter Hill fire was sub-
stantially smaller and occurred further north where
the population density is lower. In summary, WRF-
Chem simulations ofwildfire impacts on atmospheric
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composition indicate an extensive area in which par-
ticulate matter concentrations were enhanced, far
above normal regional and UK levels.

3.4. Daily air quality index andWHO guideline
To put these results into the context of air quality
guidelines, we use theDaily AirQuality Index (DAQI)
values and the World Health Organisation (WHO)
24-hour guideline for PM2.5 combined with popula-
tion count to estimate the population exposure (fig-
ures 3(a) &(b)). A limitation of this method is that
it assumes the population living in the affected area
is exposed to PM2.5 from the fires, however this may
vary based on whether the environment they are in
provides any passive or active filtration (e.g. indoor
air filtration) and does not account for how much
time is spent outdoors. TheDAQI is used to advise the
UK population on recommended behaviour changes
during air pollution events. For example, the advice
for PM2.5 within the very high DAQI band is for
everyone to reduce outdoor activity, and for those
with asthma to be aware for the potential need for
increased medication (see table S2 for more details
on DAQI bands). Between June 23rd and June 30th
0.8 million people were exposed to the highest DAQI
band (very high: >71 µg m−3) in areas close to the
Saddleworth Moor fire (figure 3(a)). This exposure
was dominated by PM2.5 on June 27th (0.5 million
exposed) but 0.2 million people were also exposed
to very high levels of PM2.5 on June 26th (see fig-
ure S4) (note totals may not add up due to round-
ing). 0.8 million people were exposed to concentra-
tions above 54 µg m−3 (high DAQI: 54–70 µg m−3)
and 1.3 million people to 36–54 µg m−3 (moderate
DAQI) (figure 3(a)). The degradation in air quality
was dominated by the Saddleworth Moor fires since
exposure to the Winter Hill fire accounted for only
5% of the total moderate DAQI exposure (0.06 mil-
lion tomoderateDAQI levels on June 30th) (see figure
S4). This is likely in part because the area surround-
ing Winter Hill is more sparsely populated. Nonethe-
less, these results indicate almost a quarter of the
population within our simulation domain (22% of
the total 14 million people in the model domain)
were exposed to concentrations of >36 µg m−3 on
at least one day between June 23rd and 30th due to
the Saddleworth Moor and Winter Hill fires. When
we compare these results with the PM2.5 No Fires sim-
ulation (figure S7), in which no day exceeds the
low DAQI, it is clear that the fires are responsible
for the degradation in air quality during this time
period.

We also frame our results in the context of the
WHO 24-hour guideline of 25 µg m−3 (figure 3(b)).
Results show that 4.5 million people were exposed to
PM2.5 above this guideline for at least one 24-hour
period between June 23rd and 30th. The impact was
widespread, affecting Oldham, Manchester, Wigan

and areas of high population on the coast north of
Liverpool (for further detail see figure S5).

In addition, we examine the fraction of the total
annual DAQI high (48–71) and very high (71+)
hourly exceedances which the fires represent at each
of the AURN sites used in this study. We find that
hourly DAQI exceedances during the fire period
(June 23rd–June 30th) represented a large fraction of
the total annual high (48–71) and very high (71+)
DAQI hourly exceedances at many sites (table S5(a)).
At Manchester Piccadilly, Salford Eccles and Wir-
ral Tranmere 31%, 77% and 58% of total annual
hourly DAQI very high exceedances occurred within
the week of the fires (see table S5(b) for more details).
Thus, not only did the fires have a large impact on air
quality between June 23rd and 30th but they also rep-
resented a large fraction of the annual hourly DAQI
exceedances.

3.5. Health impact assessment
Finally, we calculate the short-term mortality burden
due to exposure to PM2.5 from the fires and the eco-
nomic cost, using the subtraction method detailed in
section 2.5. We use the concentration response func-
tion of Atkinson et al (2014) with no assumed safe-
limit of exposure (0 µg m−3) since there is little evid-
ence in the current literature to suggest that there is a
safe level. In total over the 7-day period of the fires
there were 28 (95% CI: 14.1–42.1) deaths brought
forward with a mean daily excess mortality of 3.53
deaths per day (95% CI: 1.77–5.26) (figure 4(a)).
This comprises a large fraction of the total 81 deaths
brought forward over the four-week simulation (16th
June–14th July). When the fraction of daily mortality
from fires is calculated (i.e. Em Fires−EmNo Fires

Em Fires
× 100) the

impact of the fires is evenmore apparent (figure 4(a)).
On June 23rd and 24th, the fraction of total excess
mortality caused by fires is very low (0.08%–0.9%)
but substantially increases during the fires (25th and
26th–11%–39%), peaking at ~60% on June 27th and
33% on June 30th. Thus, the increase in excess mor-
tality observed during June 23rd–30th 2018was dom-
inated by the SaddleworthMoor andWinter Hill fires

In order to make our results comparable to
other research in the literature we also calculate
the percentage increase in excess mortality (Em)
due to short-term exposure to PM2.5 from the fires
only ( EmFires−EmNoFires

EmNoFires
× 100). This gives a result that is

independent of the population size, since the popu-
lation in the domain is relatively small (14 million)
in comparison to other studies. The results indic-
ate that up to 3.8 of 6.4 excess mortalities were due
to exposure to PM2.5 from the fires, representing a
165% (95%CI: 84%–246%) increase in Em across the
region due to exposure to PM2.5 from the fires (fig-
ure 3(b)). While, the Winter Hill fire was associated
with 1.9 of 2.8 total excess mortalities, a 96% (95%
CI: 48%–131%) increase in Em. In total over the 7-day
period of the fires there were 7 (95% CI: 4–11) deaths
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Figure 3. (a) Areas of low (≤ 36 µg m−3), moderate (36—≤ 53 µg m−3), high (54—≤ 70 µg m−3) and very high (> 71 µg
m−3) PM2.5 as defined by the Daily Air Quality Index (DAQI). Coloured numbers correspond to total number of people exposed
to each DAQI level on at least one day between June 23rd and June 30th 2018. See table S2 for more information on the DAQI. (b)
Areas where PM2.5 is above the WHO 24-hour limit of 25 µg m−3 and total population exposed to PM2.5 below (green) and
above (red) this threshold on at least one day between June 23rd–June 30th. (c) Mean increase (%) in PM2.5 due to fires between

June 23rd and June 30th 2018. Calculated as,
(

PM2.5 Fires−PM2.5No Fires
PM2.5No Fires

× 100
)
, where 10 represents a 10% increase in PM2.5.

Locations of large urban areas and Saddleworth Moor (SM) and Winter Hill (WH) are also indicated for reference.
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Figure 4. (a) Total Excess Mortality (Em) across the entire simulation domain from PM2.5 in the fires and no fires simulations.
The fraction of mortality due to fires across the model domain between June 16th–July 14th 2018 is also shown, calculated as
( Em FIRES −EmNO FIRES

Em FIRES
× 100). 95% confidence intervals, based on uncertainty in the concentration-response function, are indicated

by red and blue shading. (b) Percentage increase in excess mortality (Em) due to fires (
Em FIRES −EmNO FIRES

EmNO FIRES
× 100), with the economic

cost of mortality from fires (in millions of pounds (M GBP)) also shown.

Table 2. (a) The economic cost of fatality during the Saddleworth Moor Fires, calculated using the value of protected fatality (VPF) from
the Department for Transport (DfT). The cost is calculated using the lower, mid and upper excess mortality from short-term exposure
to PM2.5 between June 23rd and 30th 2018 and the VPF for 2018 (£1.9 M—see supplementary material table 3(a) for more details). (b)
The cost breakdown is also shown (see table S4(b) for further details), based on the central excess-mortality estimates.

(a) Lower Mid Upper

Excess Mortality Estimate (June 23rd–30th) 4.4 8.6 12.7
Economic Cost of Fatality (using 2018 DfT VPF) £ 10.7 M £ 21.1 M £ 31.3 M

(b) Cost breakdown based on mid excess-mortality values 2018 £

Total VPF 21.1 M
Human Cost 13.9 M
Medical 0.07 M
Lost Output 7.0 M
Other costs 0.15 M

brought forward with a mean daily excess mortality
of 0.9 deaths per day (95% CI: 0.5–1.4) (figure 4(a)).
This comprises a large fraction of the total 20 deaths

brought forward over the four-week period simu-
lated (June 16th–July 14th 2018). Thus, the increase
in excess mortality observed during June 23rd–30th

9
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2018 was dominated by the Saddleworth Moor and
Winter Hill fires.

3.6. Economic impact
The economic cost of mortality caused by expos-
ure to PM2.5 from the fires is calculated using the
‘Value of Prevented Fatality’ (VPF) from the Depart-
ment for Transport. (see section 2.4, table S4 and
supplementary material section 6 for more details).
Our results indicate the fires were associated with a
£21.1m economic cost between 23rd–30th June (95%
CI: £10.7 m–31.2 m based on calculated excess mor-
tality uncertainty (95% CI)) (see table 2(a) for more
details). The estimates are broken down into human
costs, medical costs, lost output and other costs (table
2(b)) (see section 2.4 for more details). This indic-
ates the economic cost of the fires is dominated by the
human cost (£13.9 m) and lost output (£7.0 m). The
estimated economic cost of the fires suggests there
are large economic gains to be made through the
introduction of policies and education programmes
to reduce the population’s exposure to harmful air
pollutants from fires.

4. Discussion and conclusions

In order to contextualise our work, we compare our
results to previous studies on wildfires and UK air
quality. Work by Kollanus et al (2016) calculated the
mortality across Europe from vegetation fires during
2005 and 2008, aggregated by country. They found
that in the UK the total attributable deaths in 2005
and 2008 from vegetation fires were 52 (95% CI: 40
& 65) and 42 (95% CI: 32 & 52) respectively. Equi-
valent to a total of 0.08 (95% CI: 0.06 & 0.11) and
0.07 (95%CI: 0.05& 0.08) deaths per 100 000 popula-
tion. Although our results are not directly comparable
to those of Kollanus et al (2016), due to the Kollanus
et al (2016) estimate being for long-term exposure, it
is still interesting to note that the Saddleworth Moor
andWinter Hill fires alone led to 0.008 deaths per day
per 100 000 population.

Our results also lie within the range of estim-
ates from studies on the short-term health impacts
of fires elsewhere in the world. Hänninen et al
(2009) found that long-range transport of PM from
wildfires in eastern Europe led to an additional
population-weighted exposure of 15.7 µg m−3 for
2 weeks in August 2002. The study estimated the
excess mortality burden to be 17 deaths in a pop-
ulation of 3.4 million during the two-week period.
This equated to 0.0353 deaths per day per 100 000
population—substantially higher than the estim-
ates in this study (0.008). This may be as a res-
ult of Hänninen et al (2009) overestimating expos-
ure in non-urban areas of Finland, since they used
8 monitoring sites to characterise exposure over a
100 000 km2 area with 3.4 million inhabitants. Our
estimates are closer to those of Fann et al (2018) who

calculated the health and economic impact of wild-
fires across the US between 2008 and 2012. The study
used the same method as this study but using the
CMAQ air quality model run with and without fire
emissions. They found that on average 0.00171 excess
mortalities per 100 000 population each day were
caused by PM2.5 exposure from wildfires. A limita-
tion of our work and previous work is that the expos-
ure response function used treats all PM2.5 as equally
toxic and the effects of concentration to be linear. This
is because of a lack of studies in the literature investig-
ating toxicity of PM2.5 and composition. Despite this,
recent toxicology and epidemiological studies suggest
that particulate matter from peat fires causes lung
inflammation and cardiac responses and has a signi-
ficant effect on respiratory and cardiac health (Rap-
pold et al 2011, Kim et al 2014).

Finally, although they are not directly compar-
able, it is important to put the calculated health
impact of the fires into context of the long-term
impact of exposure to ambient pollution in this
region. The long-term impact of ambient PM2.5

on the population in the north-west and Yorkshire
regions is ~4400 deaths per year, based on 2010 PM2.5

concentrations (Gowers et al 2014). This long-term
chronic effect of ambient PM2.5 is somewhat larger
than the calculated impact of the fires, however the
impact of the fire episode represents an important
acute increase in mortality over the short-term.

To conclude, this study is the first to quantify the
impact of the 2018 UK wildfires on human health.
We have shown that the fires had a substantial impact
on air quality in the north-west of England, with
observations of PM2.5 concentrations reaching up to
225 µg m−3 at some locations. This equated to up to
a >1000% increase in PM2.5 and led to 22% of the
population (2.9 million) in the simulation domain
being exposed to PM2.5 concentrations of 36 µg m−3

or above on at least one day during the fires (June
23rd−30th). 4.5 million people (or 32% of the pop-
ulation) were exposed to PM2.5 above the WHO 24-
hour guideline of 25 µg m−3 on at least one day.
When we calculated the excess mortality from fires
we found that there were 81 (28) excess deaths over
themonth (fire week) simulation due to PM2.5 expos-
ure, with 8.6 (8.6) excess deaths attributable to PM2.5

from fires. Daily excess mortality indicated that dur-
ing the fires (June 23rd–30th 2018), up to 60% of
mortality (3.8 of 6.4 excess mortalities) was attrib-
utable to PM2.5 from fires. This represented up to
a 165% increase in excess mortality compared to
without fires. In addition to this, the fires also had
a substantial economic impact (£21.1 m). Previous
studies have found public health tools and educa-
tional programs to reduce exposure yield significant
health and economic benefits from reducedmortality
and exacerbations of underlying illnesses. Since wild-
fires are likely to become more common due to cli-
mate change our work demonstrates the importance
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of the introduction of both public health tools and
educational programs to reduce the impacts of such
events.
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