
Hardware Multiversioning for Fail-Operational
Multithreaded Applications

Rico Amslinger
University of Augsburg
Augsburg, Germany

amslinger@es-augsburg.de

Christian Piatka
University of Augsburg
Augsburg, Germany

piatka@es-augsburg.de

Florian Haas
University of Augsburg
Augsburg, Germany
haas@es-augsburg.de

Sebastian Weis
TTTech Auto Germany GmbH
Unterschleißheim, Germany

sebastian.weis@tttech-auto.com

Theo Ungerer
University of Augsburg
Augsburg, Germany

ungerer@informatik.uni-augsburg.de

Sebastian Altmeyer
University of Augsburg
Augsburg, Germany

altmeyer@es-augsburg.de

Abstract—Modern safety-critical embedded applications like
autonomous driving need to be fail-operational. At the same time,
high performance and low power consumption are demanded.
A common way to achieve this is the use of heterogeneous
multi-cores. When applied to such systems, prevalent fault
tolerance mechanisms suffer from some disadvantages: Some
(e.g. triple modular redundancy) require a substantial amount
of duplication, resulting in high hardware costs and power
consumption. Others (e.g. lockstep) require supplementary check-
pointing mechanisms to recover from errors. Further approaches
(e.g. software-based process-level redundancy) cannot handle the
indeterminism introduced by multithreaded execution.

This paper presents a novel approach for fail-operational
systems using hardware transactional memory, which can also
be used for embedded systems running heterogeneous multi-
cores. Each thread is automatically split into transactions, which
then execute redundantly. The hardware transactional memory
is extended to support multiple versions, which allows the
reproduction of atomic operations and recovery in case of an
error. In our FPGA-based evaluation, we executed the PARSEC
benchmark suite with fault tolerance on 12 cores.

Index Terms—fault tolerance, redundancy, hardware transac-
tional memory, multiversioning, multi-core

I. INTRODUCTION

©2020 IEEE
This is the accepted version of this paper, visit https://ieeexplore.ieee.org/document/9235075 for the final version.
Cite as: R. Amslinger, C. Piatka, F. Haas, S. Weis, T. Ungerer and S. Altmeyer, “Hardware Multiversioning for Fail-Operational Multithreaded Applications,”
2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Porto, Portugal, 2020, pp. 20-27, doi:
10.1109/SBAC-PAD49847.2020.00014.

Embedded applications have a multitude of requirements
for their execution environment. Safety-critical applications
like fully autonomous cars or fly-by-wire electronic flight
controls are required to be fail-operational, as a failure could
directly endanger human lives. If an error occurs, detection and
recovery need to be quick, as deadlines still need to be met. At
the same time, autonomous cars or advanced terrain awareness
and warning systems require high performance for purposes
like image recognition. In addition, embedded systems often
run on batteries, which makes a low power consumption
essential. Therefore, heterogeneous multi-cores, which consist
of fast cores and energy efficient cores executing the same
instruction set, are considered the best option.

It is hard to implement such a high performance, energy
efficient and fail-operational execution with state of the art

This project received funding by Deutsche Forschungsgemeinschaft (DFG).

fault tolerance mechanisms. Dual modular lockstep execution
is a widespread mechanism, which can be found in many off-
the-shelf CPUs like the ARM Cortex-R series [1] or some
Infineon Aurix CPUs [2]. However, lockstep execution fails
to properly fulfill the requirements of embedded systems,
as it can only detect errors, but has to rely on alternative
mechanisms like checkpointing to recover from them [3].
These recovery mechanisms are often not implemented in
hardware and thus result in high overheads, even for an error-
free execution, and might not be fault-tolerant themselves. In
addition, they are often only performed infrequently in order
to limit the overhead, which results in a large loss of progress
when recovering. Multi-core lockstep systems, although there
are some available, are still a kind of rarity.

Triple modular redundancy is an alternative fault tolerance
approach, which is often used in the aerospace industry. While
it solves the error recovery problem of lockstep execution,
it introduces new issues. Needing three instances of the
CPU increases power consumption and production costs in
significant ways. Further, the inherent indeterminism of multi-
threaded applications leads to divergent states in the redundant
processors, which renders such systems unsuitable for parallel
applications [4].

If an appropriate hardware-based redundancy mechanism
is unavailable, developers often rely on software-based fault
tolerance. Apparently, such systems exhibit more vulnerable
parts, since only the redundant application is within the
sphere of replication, where it is protected from errors. The
mechanisms for error detection and recovery are inevitably
susceptible to errors, which could render the system inoperable
or lead to data loss [3]. Additionally, software-based fault
tolerance often suffers from a high performance overhead
and only a few implementations can handle multithreaded
execution. Error detection latencies can also be a problem,
as many implementations trade high error detection latencies
for improved performance.

We present a novel approach for fault tolerance on em-
bedded systems based on multiversioning to mitigate those

https://ieeexplore.ieee.org/document/9235075
https://doi.org/10.1109/SBAC-PAD49847.2020.00014


disadvantages. Both homogeneous and heterogeneous multi-
cores are supported. In our approach, the application is only
executed twice in order to keep the overhead minimal. Hard-
ware checksum calculation ensures that every single-bit error
is caught. Error detection is fast, as transactions offer a quick
validation interval. A transactional memory based rollback
mechanism allows for cheap recovery after an error is detected.
The system also offers conflict detection, which makes the
execution of multithreaded transactional memory applications
possible. Consistency between the redundant executions is
ensured by keeping multiple versions of each data word. A
transactional memory based pthreads implementation ensures
backward compatibility for classic multithreaded applications,
which rely on atomic operations and cache coherence.

Altogether, our approach has the following advantages:
• The system is fail-operational, as it can recover from

errors.
• Homogeneous and heterogeneous multi-cores are sup-

ported.
• Shared memory multithreaded applications can be exe-

cuted redundantly.
• Transactional memory can be used for synchronization.
Our work is structured as follows. First, we present related

work. In Section III, our redundancy concept is explained. In
the next section, we explain the extension to multithreaded
execution using multiversioning. In Section V, we present
the runtime overhead and error detection latency evaluation
of our approach. This section contains an explanation of the
methodology and an analysis of the results. Ultimately, the
paper is completed with a conclusion and an outlook on future
work.

II. RELATED WORK

Process-Level Redundancy [5] is a software-based approach
to provide fault tolerance for singlethreaded applications. The
approach replicates the process multiple times. The processes
are synchronized at every system call and the parameter values
are compared. In order to recover after an error, three instances
are required. The evaluation assumes that a sufficient amount
of free cores is available for the redundant processes. In
addition, we expect the error detection latency to be unsuitable
for embedded systems, as system calls can be far apart.

In our previous work [6], we have already presented a
hardware fault tolerance mechanism for singlethreaded appli-
cations, which is the foundation of this approach. However,
multiversioning, which is essential to realize multithreaded
execution in the current paper, was not used in the previous
paper. Previously, we used the simulator gem5, which required
very long evaluation times. However, to be able to execute
larger benchmarks, we shifted to an FPGA implementation
for this paper. Some optimizations in the previous paper could
also be advantageous for multithreaded workloads, but could
not be realized, as the closed-source cores, which were used
in the FPGA implementation, prevent the necessary changes.
It also evaluates the power consumption of the singlethreaded

approach on heterogeneous cores. We expect the multithreaded
approach to behave similarly.

In another previous work [7], we have described a software-
based fault tolerance approach for utilizing Intel TSX. Major
parts of the approach are required to work around the lim-
itations of Intel TSX. It is necessary to start two separate
processes, as it is not possible to share the same memory for
leading and trailing threads. Intel TSX does not support multi-
versioning, either. There are overheads due to instrumentation,
splitting the execution into transactions, checksum calculation
and transfer.

FaulTM-multi [8] is a hardware fault tolerance implemen-
tation utilizing transactional memory. In contrast to our ap-
proach, FaulTM-multi is tightly coupled. This results in several
restrictions: Firstly, it is not possible to have unequal amounts
of original and backup threads, which restricts parallelism.
Additionally, the cores, on which the threads run, need to
be homogenous to avoid the faster thread blocking at every
transaction commit. Unsettled optimizations like those used
in [6] cannot be used either, as the original thread cannot run
ahead to compensate for any fluctuation.

HAFT [9] is a software fault tolerance implementation
utilizing transactional memory. In contrast to our approach,
HAFT uses instruction-level redundancy. This makes it well
suited for modern high performance out-of-order CPUs, as
they can often execute both instructions in a single cycle and
correctly predict the comparison branch. However, the ap-
proach is less suited for embedded or heterogeneous systems,
as those often feature simple in-order CPUs, which cannot
overlap the execution of the redundant instructions.

Multiversion concurrency control [10] is a method used
by databases to manage concurrent accesses. This technique
is used by PostgreSQL, for example [11]. We suppose that
hardware multiversioning support, like the one provided by
our approach, can be used to accelerate such applications.

III. REDUNDANCY

We assume a standard shared memory hierarchy (Fig. 1)
consisting of multiple (potentially heterogeneous) cores. The

Core 1

Register Snapshot

Core n

Register Snapshot

. . .

Sphere of Replication

Instruction
Cache

Data
Cache

Write Set
Read Set

Instruction
Cache

Data
Cache

Write Set
Read Set

. . .

RAM

Fig. 1. This figure shows our memory hierarchy and the sphere of replication.
The cores and data caches are extended to support transactional memory and
multiversioning. The sphere of replication covers the pipeline in the cores.
Other components are protected by ECC.



Leading:

TX1 TX2 TX3 TX4 TX5 	 TX4 TX5

X X X 7 X
Trailing:

TX1 TX2 TX3 TX4 E 	 TX4 TX5

time

X = checksum-match 7 = checksum-mismatch E = error 	 = rollback

Fig. 2. This figure shows an exemplary redundant execution. The sin-
glethreaded application is split into transactions TXi, which are executed on
a leading core and a trailing core. For some time the checksums match, but
after TX4 a bitflip causes a mismatch. This results in a rollback and a restart
of TX4.

cores are connected to coherent private instruction and data
caches. Optionally more (potentially shared) cache levels
might follow. Finally, all cores can access a common main
memory.

In order to implement multiversioning, we have extended
the memory hierarchy in several spots. The cores themselves
need to be extended with register snapshots to enable rollback.
The data caches store the read and write set. They also
implement the largest part of the logic necessary to handle
version selection and communication. If the code is not self-
modifying, the instruction caches can be left unchanged.

Our goal is to provide fault tolerance for the pipelines of
the cores. We assume that the memory hierarchy is already
protected by means of ECC or similar mechanisms. For
reliable recovery, it is also necessary that the register snapshots
are protected from faults. If the architecture completely copies
the register set, ECC can be used here, too.

Our approach implements a leading/trailing execution con-
cept similar to the one we have used in [6]. The program is
first executed on (a) leading core(s). Their results are then
validated by (a) trailing core(s), which execute the same code.
It is possible to either use a homogeneous or heterogeneous
multi-core for the redundant execution.

To realize this, the execution is split into transactions (TXi
in Fig. 2). Contrary to regular transactions, those automatic
transactions commit by themselves after a given time limit.
The next transaction starts immediately afterwards. However,
manual transactions for concurrency control, whose bounds
are set by the programmer, can also be used if needed.

The most difficult aspect in implementing automatic trans-
actions is determining the bounds. However, our transactional
memory system provides multiple features, which allow for
an easy implementation: If a cache line is evicted, conflict
detection is still possible, as transaction meta data can be
evicted to memory. Additionally, all instructions, which are
necessary for regular execution, can be issued in transactions.
Therefore, it can be guaranteed that every transaction, which
abides to certain limits concerning runtime (in instructions)
and memory operations, will eventually commit. As those
limits are independent of the actual instructions and memory

addresses, they can easily be monitored using simple counters.
Register backup does not require a specific instruction, either,
which makes it possible to start transactions at any time.
Therefore, the bounds can be easily determined with low
hardware costs.

An error cannot propagate to the other core, as both
cores can only see their modifications to the memory. In
the singlethreaded case, the first transaction can be started
simultaneously for the leading and the trailing thread. If the
leading thread is executed on a faster core, it will finish first.
It can then already start the next transaction, as long as it has
sufficient speculative resources.

While the transaction is running, a checksum of every
instruction outcome is calculated. This checksum is then com-
pared after both transactions have completed. If the checksums
match, execution can continue regularly and the checkpoints at
the beginning of the transactions are deleted. If the checksums
do not match (after TX4 in Fig. 2), both cores need to roll
back to the beginning of their transactions. This means, the
leading core might have to roll back multiple transactions at
once. After the rollback, both cores restart their transactions.
If the fault was transient, it should not occur again and the
checksums should match after both transactions have been
repeated.

IV. MULTIVERSIONING

When executing multithreaded applications with fault toler-
ance, multiple complications occur. It is no longer sufficient to
just have a single leading thread and a single trailing thread,
as the transactions of all threads need to be validated. As
all threads in the process use the same address space and
transactions already save the register set, it is possible for
a trailing thread to quickly switch between validating the
transactions of different leading threads. However, it is still
preferred to keep leading and trailing cores associated when
possible, as this will benefit cache locality. This feature has
the additional advantage that I/O operations can be easily
realized. The leading core commits its transaction and leaves
redundant mode to perform the I/O operation alone. After the
I/O operation is finished, resynchronization between leading
and trailing cores happens automatically, as the register set is
transferred anyway and the multiversioning takes care of the
memory content.

The required ratio of leading and trailing cores depends on
the underlying system and the application. For homogeneous
systems, it is usually close to one. However, for a heteroge-
neous system a different ratio can be chosen to accommodate
slower cores. If an application has plenty of waiting time,
the amount of trailing cores can be lowered, as it is useless
to wait on the leading and the trailing. The same can be
done if the platform has means to accelerate the trailing cores
like perfect prefetching or forwarding branch outcomes [6].
The trailing cores will simply switch between validating those
leading cores, which are currently not waiting.

When regular transactions are used, the order of the trans-
actions must be preserved between the leading and trailing ex-



🗋

💾

🗋

💾

🗋

💾

🗋

💾

🗋

💾

Fig. 3. This figure shows an incorrect execution, which can occur if the order
of the transactions is not preserved between leading and trailing. Thread 1
wants to execute a transaction which increments data by 1. Thread 2 wants
to execute a transaction which xors data by 1. If thread 1 is executed first
(leading case in this figure), the final result is 0. On the other hand if thread 2
is executed first (trailing case in this figure), the final result is 2. This causes
a mismatch in checksums and thus a rollback.

ecution to avoid unnecessary and potentially infinite rollbacks
(see Fig. 3). If this situation emerges often, which is to be
expected on high core count out-of-order CPUs, performance
will be poor, as rollbacks are expensive due to the work
that needs to be executed again. It is also necessary to have
consistent rollback checkpoints between all threads. It is not
sufficient to roll back only the transaction in which the error
was detected, as another transaction might have already read
data written by that transaction.

In our approach, the fault-tolerant execution occurs on a
system supporting multiple versions of the same memory
word. This solves the indeterminism problem, as can be seen
in Fig. 4. The transaction, in which the load is executed,
defines which version of a word is read. Every word has a
safe version, which is used for rollback if an error occurs and
is only updated if the trailing cores have validated the new
value and all previous transactions. Additional versions are
used by the leading cores to store speculative values. As soon
as the transaction has committed, those will be made visible to
the other leading cores. The trailing cores generate versions,
too. These are only used by the same core to satisfy reads after
writes in the same transaction. Other cores will never see those
values and they are dropped after the transaction is completed.
If a conflict is detected between two leading transactions,
they behave like regular transactions (i.e. modifications are
not visible to other transactions before commit and in case of
a conflict one is aborted and repeated).

📂

💾

📂

💾

📂

✓

📂

✓

📂

💾

✓

Fig. 4. This figure shows the same application as in Fig. 3, but this time
executed with multiversioning. From the perspective of the software, the
execution on the leading core behaves the same. The result after the first
transaction is stored in version 1 and the result after the second transaction in
version 2. Even if the thread 2 is executed first in the trailing execution, it still
loads version 1 as base. This is possible, as the version is still retained from the
leading execution. Thus the final result is also 0. Version 1 is validated later
and the speculative resources are dropped, as version 2 is already available.

Therefore, it is possible to execute shared memory multi-
threaded applications on our system. The preferred synchro-
nization approach is to use transactions. However, atomic
operations are also supported. All randomness like different
execution orders or pseudo random number generator seeds
are synchronized between leading and trailing cores. Cache
coherency is also maintained.

After a commit, the leading core continues with the next
leading transaction. In addition, a new transaction on a trailing
core is started with the same base version, executing the same
code. Its results are invisible for all other cores and dropped
after the trailing core commits. Once this transaction commits,
the checksum is compared to its leading counterpart. If they
and all previous checksums match, the leading version is
merged with the safe version and all speculative data belonging
to those transactions is freed.

If a mismatch is detected, a global rollback is initiated. To
perform the rollback, all currently running transactions on the
leading and trailing cores are aborted. It is then determined,
which transaction is the last consecutively confirmed. The
memory is restored to the version that was produced by the
commit of this transaction. The register set of the correspond-
ing leading core is reset to the commit of that transaction. All
other leading cores are reset to their last previous commit. The
trailing cores require no explicit reset, as they will receive a
new register set from the leading cores.



As the speculative values within transactions are invisible
for other cores, adjustments to synchronization constructs are
necessary. For the most part, these only happen at the library
level. Changes to the application source code are rarely neces-
sary. Atomic operations can be replaced by a small transaction,
which only encapsulates the memory accesses and correspond-
ing operations, which should be executed atomically. For
example, an atomic increment is replaced by a transaction
containing a regular load, the add instruction and a regular
store. As transactions guarantee atomicity, the semantic of
the operation does not change. By committing the transaction
right away, the modified value becomes visible to other cores
immediately.

Further optimizations can be used to improve performance.
We have replaced all operations in our implementation of the
pthreads library to use native transactions instead of atomic
operations. For example, we have replaced the atomic swap in
the routine to lock a mutex with a transaction, which aborts
if the mutex is already locked. This reduces the amount of
committing transactions significantly in comparison to simply
replacing the atomic operation. Thus, the memory load is
reduced. It is not necessary for the trailing cores to validate
aborted transactions, as they have no influence on the system
state, allowing them to catch up if they fell behind.

One general issue, which affects many transactional mem-
ory applications to varying degrees, is false sharing. False
sharing occurs when two threads access different words in
the same cache line without synchronization. This is also a
minor issue for systems without transactional memory, as it
causes cache line bouncing. This issue mainly occurs, because
applications access an array with their thread id as an index.
It can also occur if different data structures share the same
cache line by chance.

Our system provides several optimizations to minimize this
issue for automatic transactions: If both threads only access
the cache line for reading, the cache line is put into shared
state and no transaction is aborted. If both threads access the
cache line for writing, the first transaction will try to commit
prematurely. This costs some performance, but is better than
aborting. The same happens if the first access is a write and
the second a read. If the first access is a read and the second
is a write, the conflict is silently ignored. Note that this can
cause a checksum mismatch and rollback if the conflict was
actually true (same word in the same cache line).

V. EVALUATION

A. Methodology

We implemented our approach on the Xilinx Virtex Ultra-
Scale+ FPGA VCU118 Evaluation Kit. This board features
the XCVU9P FPGA and two 4 GB DDR4 memories. A USB
port is available for JTAG and UART. The other components
on the board were not used for our evaluation.

Our design features 12 MicroBlaze cores with support for
single precision floating point operations. The cores are con-
nected to coherent private data caches and instruction caches
(each 16 kB, 4x set associative). The caches are interconnected

to both memory controllers and an UART module. Our ex-
tensions are implemented in the caches and addressed by a
memory-mapped interface. Registers are backed up using the
trace port. Thus, no changes to the closed-source MicroBlaze
cores were necessary. The design runs at 50 MHz. The main
limiting factors for the clock rate are the performance counters
and assertions.

We used the PARSEC Benchmark Suite [12] for the evalua-
tion. Note that this is not a throughput evaluation with multiple
singlethreaded processes, but a runtime evaluation, where the
benchmarks are run with multiple synchronized threads. To
support the benchmark execution on the MicroBlaze, we had to
port the pthreads library. As the benchmark freqmine does not
support pthreads execution, it is missing from the evaluation.
fluidanimate and facesim are also missing, as they do not
support arbitrary thread counts. In particular, 12 threads are
not supported. Some other modifications were necessary to
compile the benchmarks, as the MicroBlaze compiler does not
support some old constructs and reserves additional keywords.
We avoided performance affecting changes as good as possi-
ble.

The benchmarks were run in the simmedium configuration.
The limiting factors for input set size are the slow transfer
of the input files via JTAG and the large number of different
configurations. The benchmarks were executed entirely, but
to measure the execution times only the region of interest
was considered. As we only have a single FPGA board
available and due to time constraints, we have executed each
configuration only once. As there is no operating system
and the per benchmark runtime is rather long (1 minute for
streamcluster with 12 threads to 2 hours for swaptions with
1 thread), the variance is quite low. To validate the correct
execution, the outputs were copied back to the host machine
and compared to x86 executions with the same thread count.
We had to add additional outputs to the benchmark raytrace,
as it throws its results away.

B. Execution Time Overhead

We have analyzed the runtime and scalability of our ap-
proach. We expect the execution time of a dual modular
redundant approach to be between the runtime of the non-
redundant variant with half the core count and twice the
runtime of the non-redundant variant with the same core count.

The execution with half the core count forms a lower bound,
as our approach executes the benchmark twice (once on the
leading cores and once on the trailing cores). This estimation is
however overly optimistic, as our approach requires continu-
ous communication. Issues like false sharing, which reduce
the scaling of the non-redundant multithreaded application,
also affect our approach negatively. In theory, it is possible
for our approach to outperform this bound, if the application
blocks frequently due to synchronization, but still scales very
well. However, we consider this kind of application as purely
academically and do not expect it to occur in practice.

Executing the application twice one after another forms an
upper bound for the runtime. A fault tolerance approach should



0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

expected range
without redundancy
with redundancy
with redundancy, optimized (streamcluster only)

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

x264

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

dedup

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

canneal

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

blackscholes

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

ferret

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

bodytrack

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

raytrace

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

vips

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

swaptions

Sp
ee

du
p

Cores

0
1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

streamcluster

Fig. 5. This chart shows the speedup of the various PARSEC benchmarks in the different configurations at a certain core count. All speedups are relative to
the singlethreaded execution without redundancy and consider only the region of interest. For the variant without redundancy, the benchmarks were launched
with the core count as thread count parameter. For the variant with redundancy, half the core count (i.e. the leading core count) was used as parameter. The
lower bound of the expected range is the execution without redundancy repeated twice. The upper bound of the expected range is the execution without
redundancy executed twice in parallel with half the core count. Note that especially at low core counts the expected range is hidden behind the line for
redundancy for some benchmarks, as the runtimes are so close together.

be able to outperform this bound in order to best the naive “ex-
ecute it twice and compare the results” software fault tolerance
approach. Notice that this naive approach does however suffer
from two major disadvantages: The error detection latency is
very long, as it lasts from the first instruction of the first run
to the comparison after the execution of the second run. In
addition, it is not possible to easily implement recovery, as
executing the program a third time takes a long time and the
initial state might not be available anymore.

For 12 cores, the geometric mean of the slowdown com-
paring the redundant variant to the non-redundant baseline is
2.11. Below, we describe the results shown in Fig. 5 in detail.

The benchmark vips behaves as expected. The execution
without redundancy follows Amdahl’s Law. The execution
time with redundancy is in the range, in which one would
expect an approach like ours.

The benchmark blackscholes is embarrassingly parallel.
Some of the used floating point operations are implemented
in software on the MicroBlaze, which results in the threads
having different runtimes. As there is no work balancing
and due to the memory controller acting as a bottleneck, the
benchmark does not reach a perfect speedup. There are minor
false sharing issues with our approach, as the data is split over
multiple arrays with no padding between threads. However,
very little global data is written, which reduces the impact of
this issue.

The benchmark bodytrack uses a thread pool for paralleliza-

tion. As this thread pool contains as many threads as cores and
there is an additional main thread, common context switches
are required. In addition, some parts of the application in
the region of interest are not parallelized. These two aspects
result in a shallow speedup curve. Our approach cannot take
advantage of the lack of parallelization, as the sections are too
long to cover them with the loose coupling. Thus, the speedup
of our approach behaves more similar to the non-redundant
variant, which executes one after the other, than the parallel
one.

The benchmarks dedup, ferret and raytrace are limited by
main memory bandwidth. A large shared l2 cache would most
likely improve the performance for both the baseline and our
approach. Our approach would profit further from it, because
the trailing cores access the same data as the leading cores
with some delay. Thus, a sufficiently large shared l2 cache
would eliminate the trailing memory access altogether.

The benchmark x264 stops scaling at high thread counts
due to synchronization constructs. As the waiting threads do
not consume any resources like memory bandwidth or trailing
runtime, our approach does well.

The benchmark swaptions shows irregular scaling. This is
however unrelated to the platform or the approach, as it is
caused by the small input size. In the simmedium configura-
tion, 32 work items are partitioned between the threads. This
works out well for e.g. 4, 8 and 11, but poorly for e.g. 9, 10
and 12, which results in the steps in the speedup graph.



The benchmark canneal mostly uses a custom synchroniza-
tion mechanism. Pointers are accessed automatically and can
contain a special value to signal that the object is locked for
writing. If the object is locked, busy waiting is performed.
This synchronization approach does not scale well with mul-
tiversioning, as the many explicit atomic operations result in
many small transactions. In addition, the system cannot detect
when a thread is waiting, which means the trailing cores waste
much time to confirm waiting loops. To optimize such an
application for our system, one would need to replace the
atomic operations by transactions. In this case, this would
be easily possible, as the main operation is a simple swap,
which easily fits in a single transaction, eliminating the need
for locking altogether. Note however that regular transactional
memory optimization rules still apply (i.e. those transactions
would most likely be too small).

The benchmark streamcluster uses many barriers. Some-
times barriers follow directly after each other with no code
between them. Barriers are problematic for our approach, as
they can force the leading cores to wait for the trailing cores
to catch up, if just one thread accesses a cache line, whose
available versions have been used up. This cache line can
even be the cache line containing the barrier. If the code
executed between the barriers is too short, the transaction will
not reach its intended length, meaning that even more versions
are consumed. To optimize the benchmark one should try to
reduce the number of barriers needed. For our approach, it is
better to execute short serial work (like adding the result of
all threads) redundantly on all threads instead of just one, as
this benchmark does, to remove additional barriers.

It can also be seen that the benchmark prefers even thread
counts in the multiversioning variant. If all threads try to
write to the same cache line at the same time, the available
speculative versions (two in this implementation) for this cache
line will run out quickly. Further threads then have to wait until
those versions get confirmed by the corresponding trailing
transactions. As this benchmark makes heavy use of barriers,
threads will always reach such code sections at the same time,
which means it will be completed in batches of two. Thus, an
odd thread count will result in another batch, which contains
only one thread. Writing such code should be avoided, as
there will also be some serialization, when executed without
redundancy, due to the cache line bouncing between the cores.
However, a cache miss is significantly cheaper than a trailing
transaction, which makes the effect less prevalent for the
baseline.

The benchmark streamcluster is also a prime example for
the impact of false sharing. The source code contains a
constant called CACHE_LINE, which controls the padding
between the memory regions of the different threads. It is
initially set to 32. However, the cache line size, which is used
in our platform, is 64. Changing this value accelerates the
application by 37.5 %.

Some benchmarks suffer from race conditions. This causes
problems, when those benchmarks are executed redundantly,
as it can no longer be guaranteed that the trailing core reads the

same data as the leading core. The mismatch is then detected
as a transient fault and all cores are rolled back in order to
retry. Depending on the frequency of the race condition, it can
immediately occur again.

The optimal solution would be to fix the source code, as
those race conditions can result in wrong results even on
other architectures. If this is too difficult, it is also possible
to enable conflict detection not just for explicit but also for
automatic transactions. This enables the leading cores to detect
the conflict, before it can affect the trailing cores. Thus, only
a single leading core will roll back instead of the whole
system. However, this does not resolve the race condition
itself, meaning the application might still output wrong results.
Though, it can reduce the frequency of the race condition, as
the transactions produce a coarser interleaving. In addition,
enabling the conflict detection for automatic transactions will
increase the impact of false sharing.

We observed race conditions in two of the tested bench-
marks. Enabling conflict detection for automatic transactions
in those benchmarks results in an additional overhead of 4.1 %
for x264 and 10.7 % for canneal.

C. Error Detection Latency

We have also analyzed the error detection latency. The
average and maximum values are shown in Table I.

The resulting average values clearly reflect the targeted
transaction duration of 10,000 cycles. Many automatic trans-
actions hit this target quiet accurately and a trailing core is
ready right away to validate the transaction. However, for
most benchmarks the average is lower, as synchronization
operations explicitly commit the transaction before the time
limit is reached. Some automatic transactions are longer than
the target. This happens, as we can only commit transactions at
memory instructions. We suffer from this constraint, because
the MicroBlaze is closed-source. In a real implementation,
this would most likely not be an issue. If a benchmark

TABLE I
ERROR DETECTION LATENCY

Benchmark Average [cycles] Maximum [cycles]
vips 9,809 186,071
blackscholes 9,954 27,606
bodytrack 9,812 51,326
dedup 8,570 199,024
ferret 9,649 90,396
raytrace 8,588 32,290
x264 10,310 131,229
swaptions 9,817 36,626
canneal 18,075 138,877
streamcluster 8,407 59,100
overall 10,299 199,024

This table shows the average and maximum error detection latency
in cycles. The average latency is the average time between every
instruction and its corresponding checksum comparison. The maxi-
mum latency spans from the first cycle in a leading transaction to
the checksum comparison of the corresponding trailing transaction.
These values were measured for the whole benchmark with 6 leading
cores and 6 trailing cores.



makes heavy use of software floating point, this constraint can
have a significant impact, as the gcc software floating point
library avoids memory operations whenever possible and some
operations take relatively long. For example, the benchmark
canneal makes heavy use of doubles, which are not hardware
accelerated by the 32-bit MicroBlaze.

The worst case error detection latency is significantly higher
for most benchmarks, as the speculative nature of transactional
memory can result in load spikes on the trailing cores. Those
load spikes result in waiting times before a transaction can be
validated. Another reason for large error detection latency are
threads that switch from one trailing core to another and incur
more cache misses than the corresponding leading transaction.
Thus, the trailing core takes longer than the planned 10,000
cycles to complete validation. These extreme cases occur very
rarely, though, which makes it very likely that an error will
occur during a time, when the error detection latency is short.
Note that there already is a two-fold increase between the
maximum and average latency, as, for each transaction, the
maximum latency spans from first instruction to the checksum
comparison, while the average is taken from the latency
between each instruction and the checksum comparison.

If the error detection latency is too high for the intended
application, it can be lowered by reducing the targeted trans-
action length. This does not only reduce the average, but also
the maximum. One has to expect a decline in performance,
though, as this will cause more transaction boundary overhead.
It can be considered to increase the targeted transaction length
to reduce overhead. However, this will only work for some
benchmarks. If the error detection latency becomes too large,
cache lines will be evicted, before the trailing cores have
validated them, which results in more cache misses. Thus,
increasing the targeted transaction length, will only improve
performance for benchmarks with low cache miss rate.

VI. CONCLUSION & FUTURE WORK

In this paper, we have shown that multiversioning is a
viable approach to implement fail-operational multithreaded
applications. For the evaluation, we have ported the pthreads
library. Atomic operations are supported, too. Therefore, we
assume that most shared memory parallelization libraries could
also be easily ported. Most benchmarks already perform well
(2.11 geometric mean slowdown) even without changes. If
an application runs slowly, simple changes like ensuring
proper padding to avoid false sharing can result in large
performance gains, e.g. 37.5 % in streamcluster. Only if the
application is optimized heavily for execution on a specific
non-transactional-memory architecture, larger changes might
be necessary. The approach also features a low error detection
latency of on average 10,299 cycles, making it suitable for use
in systems, which require common output. Thus, we conclude

that our approach should be applicable to most shared memory
applications on general purpose and embedded systems.

The results, which are presented in this paper, do not
even show the full potential of this approach, as further
optimizations like perfect prefetching and branch outcome
forwarding, which we have already presented in [6] are not
yet included. These optimizations accelerate the trailing cores,
which reduces the amount of trailing cores needed. This
enables a system developer to either improve the performance
by switching them to leading cores or reduce the power con-
sumption by turning them off. Due to our previous work [6],
we see great potential in applying this approach to large
heterogeneous systems to allow for high performance, energy
efficiency and fail-operational execution. Thus, we plan to
replace the currently used closed-source MicroBlaze core with
diverse open-source RISC-V cores in order to integrate the
previously released optimizations. This would also allow us
to isolate the LUTs on the FPGA, which are contained in
the Sphere of Replication, in order to perform fault injection
testing.

REFERENCES

[1] ARM. Cortex-r - arm developer. [Online]. Available: https://developer.
arm.com/ip-products/processors/cortex-r

[2] R. Wegrzyn, S. Gross, V. Patel, A. Bulmus, and C. M. Rimoldi, “Safety
design for modern vehicles - including ev/hev.” [Online]. Available:
https://www.infineon.com/dgdl/Infineon-Safety%20Design%20for%
20Modern%20Vehicles%20Whitepaper-Whitepaper-v01 00-EN.pdf?
fileId=5546d4626cb27db2016d24bcb8b26396

[3] S. Mukherjee, Architecture Design for Soft Errors. Morgan Kaufmann
Publishers Inc., 2008.

[4] B. Döbel and H. Härtig, “Can we put concurrency back into redundant
multithreading?” in Proceedings of the International Conference on
Embedded Software (EMSOFT). ACM, 2014.

[5] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors,
“Using process-level redundancy to exploit multiple cores for transient
fault tolerance,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007.

[6] R. Amslinger, S. Weis, C. Piatka, F. Haas, and T. Ungerer, “Redundant
execution on heterogeneous multi-cores utilizing transactional memory,”
in International Conference on Architecture of Computing Systems.
Springer, 2018.

[7] F. Haas, S. Weis, T. Ungerer, G. Pokam, and Y. Wu, “Fault-tolerant
execution on cots multi-core processors with hardware transactional
memory support,” in International Conference on Architecture of Com-
puting Systems. Springer, 2017.

[8] G. Yalcin, O. S. Unsal, and A. Cristal, “Fault tolerance for multi-
threaded applications by leveraging hardware transactional memory,”
in Proceedings of the ACM International Conference on Computing
Frontiers. ACM, 2013.

[9] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, “Haft:
Hardware-assisted fault tolerance,” in Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems. ACM, 2016.

[10] P. A. Bernstein and N. Goodman, “Multiversion concurrency con-
trol—theory and algorithms,” ACM Transactions on Database Systems
(TODS), vol. 8, no. 4, 1983.

[11] The PostgreSQL Global Development Group. Postgresql:
Documentation: 12: 13.1. introduction. [Online]. Available:
https://www.postgresql.org/docs/12/mvcc-intro.html

[12] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

https://developer.arm.com/ip-products/processors/cortex-r
https://developer.arm.com/ip-products/processors/cortex-r
https://www.infineon.com/dgdl/Infineon-Safety%20Design%20for%20Modern%20Vehicles%20Whitepaper-Whitepaper-v01_00-EN.pdf?fileId=5546d4626cb27db2016d24bcb8b26396
https://www.infineon.com/dgdl/Infineon-Safety%20Design%20for%20Modern%20Vehicles%20Whitepaper-Whitepaper-v01_00-EN.pdf?fileId=5546d4626cb27db2016d24bcb8b26396
https://www.infineon.com/dgdl/Infineon-Safety%20Design%20for%20Modern%20Vehicles%20Whitepaper-Whitepaper-v01_00-EN.pdf?fileId=5546d4626cb27db2016d24bcb8b26396
https://www.postgresql.org/docs/12/mvcc-intro.html

	Introduction
	Related Work
	Redundancy
	Multiversioning
	Evaluation
	Methodology
	Execution Time Overhead
	Error Detection Latency

	Conclusion & Future Work
	References

