
Modular Integration of Crashsafe Caching into a
Verified Virtual File System Switch ?

Stefan Bodenmüller, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany

{stefan.bodenmueller,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. When developing file systems, caching is a common tech-
nique to achieve a performant implementation. Integrating write-back
caches into a file system does not only affect functional correctness but
also impacts crash safety properties of the file system. As parts of writ-
ten data are only stored in volatile memory, special care has to be taken
when integrating write-back caches to guarantee that a power cut dur-
ing running operations leads to a consistent state. This paper shows how
non-order-preserving caches can be added to a virtual file system switch
(VFS) and gives a novel crash-safety criterion matching the character-
istics of such caches. Broken down to individual files, a power cut can
be explained by constructing an alternative run, where all writes since
the last synchronization of that file have written a prefix. VFS caches
have been integrated modularly into Flashix, a verified file system for
flash memory, and both functional correctness and crash-safety of this
extension have been verified with the interactive theorem prover KIV.

Keywords: POSIX-compliant File Systems, Write-Back Caching, Crash-Safety,
Refinement, Interactive Verification

1 Introduction

This paper addresses the modular specification of a caching mechanism to a
virtual filesystem switch (VFS) and the formal verification of crash-safety.

The original VFS is the standard top-level layer of any file system adhering
to the POSIX standard [15] for all file systems used by Linux. Standard file
systems like ext2,3,4 or ReiserFS use it, as well as file systems specific for raw
flash memory, such as JFFS, YAFFS, or UBIFS.

In our Flashix project, we have developed a POSIX-compliant, modular file
system for flash memory, using UBIFS as a blueprint, that was verified to be
functionally correct and crash-safe. This includes a verified implementation of
VFS without caching described in [8, 9]. The implementation is one of ten com-
ponents of the verified development, which altogether generates approximately

? Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).

18k of C-Code that can be run in the Linux kernel or via the FUSE interface.
Initially, the implementation was sequential, in recent work we have developed a
concept for adding concurrency to components [16], which has led to a concur-
rent implementation of wear leveling and garbage collection (both necessary for
Flash memory). Allowing concurrent calls for the top-level POSIX operations is
work in progress.

VFS is responsible for the generic aspects of file systems: mapping direc-
tory paths to individual nodes, checking access rights, and breaking up writing
data into files into updates for individual data pages. VFS is specific to Linux,
although Windows uses a similar concept called IFS.

Our implementation VFS does not use a cache so far. However, since writing
data to a cache in RAM is about two orders of magnitude more efficient than
writing data to flash memory, caching is essential for efficiency: updating a file
(e.g. editing a file with a text editor) several times will write the last version
only when using a cache instead of persisting each update. It also reduces the
need to read data from flash memory significantly.

We have addressed integrating caches into a verified file system before. Write-
through caches are simple as they just store a redundant part of the persistent
data in RAM. On a crash, nothing is lost, and an invariant stating that cached
data are always identical to a part of the persistent data will suffice for verifica-
tion. In [13] we have looked at order-preserving write-back caches that are used
near the hardware level to queue data before persisting them in larger chunks.
We have shown that these can be integrated into the hierarchy of components
still allowing modular verification of each component separately.

Caching in VFS is rather different, since it is not order-preserving, so for
the top-level POSIX operations, a new weaker crash safety criterion compared
to [13] is necessary. We define write-prefix crash consistency, which states, that
individual files still satisfy a prefix property: On a crash, all writes since the last
fsync (that cleared the cache of this individual file) are retracted. Instead, all of
them have written a prefix of their data after recovery from the crash.

This paper also demonstrates, that adding caching to VFS can be done with-
out reimplementing VFS or breaking the implementation hierarchy represented
as a formal refinement tower. In Software Engineering terms, we use the dec-
orator pattern [10] to add VFS caches as a single new component. Functional
correctness then just requires to verify the new component separately. Crash-
Safety however, which is the main topic of this paper, was quite hard to verify,
since VFS uses a data representation that is optimized for efficiency, and has a
specific interface to the individual file systems that exploits it. This interface is
called AFS (abstract file system) in this paper.

Our result has two limitations. First, we assume that concurrent writes to a
single file are prohibited. Without this restriction, very little can be said about
the file content after a crash. Linux does not enforce this, but assumes that ap-
plications will use file locking (using the flock operation) to ensure this. Second,
we assume that emptying caches when executing the fsync-command is done
with a specific strategy that empties caches bottom-up. This strategy is the

default strategy implemented in VFS, but individual file systems can override
this behavior e.g. with persisting the least recently used page first. Within these
limitations, however, our result enables to write applications that use the file
system in a crash-safe way: check-sums written before the actual data can be
used to detect writes, that have not been persisted completely. Such a transac-
tion concept would be similar to using group nodes for order-preserving caches
as used by the file system itself [6].

This paper is organized as follows. Section 2 gives background on the general
concept of a refinement tower: components (“machines”) specified as interfaces
that are refined to implementations, that call subcomponents, which are again
specified and implemented the same way. Section 3 shows the data structures
and operations of the VFS and AFS machines that are relevant for manipulating
file content. Section 4 then shows the extension, that adds caching to VFS.

Section 5 defines the correctness criterion of write-prefix crash consistency
and Section 6 gives some insight into its verification, that was done using our
interactive verification system KIV [5]. We cannot fully go into the details of
the proofs, which are very complex, the interested reader can find the full KIV
proofs online [12]. Finally, Section 7 gives related work and concludes.

2 Formal Approach

The specification of the Flashix file system shown in Fig. 1a is organized into
specifications of machines. An abstract state machine is an abstract data type,
that consists of a state and some operations with inputs and outputs, that mod-
ify the state. Each operation is specified with a contract. Machines are used to
either specify an interface abstractly (white boxes) or to describe an implemen-
tation (gray), from which code is generated. Both are connected by using the
contract approach to data refinement (dotted lines in Fig. 1). The theory has
been extended with proof obligations for crash safety, as detailed in [7].

To specify contracts uniformly, we prefer the style of abstract state machines
(ASMs [2]) over using relational specifications as in Z [4]: we use a precondi-
tion together with an imperative program over algebraically specified data types
that establishes the postcondition. The program is close to real code for im-
plementations, but it may be as abstract as “choose nextstate, output with
postcondition” in interfaces, using the choose construct of ASMs. Implemen-
tations may call operations of submachines (in Fig. 1), which again are
abstractly specified and then implemented as a separate component.

Altogether we get the refinement tower shown in Fig. 1a. At the top-level
is a specification of a POSIX-compliant interface to a file system. This uses
an algebraic tree to represent the directory structure and a sequence of bytes
(or words, the exact size is a parameter of the specification) to represent file
content. The POSIX interface is implemented by VFS, which uses a different data
representation: Directory structure is now represented by numbered nodes, which
are linked by referencing these numbers. Refinement guarantees that the nodes
always form a tree, resulting in a consistent file system.

(a) Without caching layer. (b) With caching layer.

Fig. 1: Flashix refinement tower.

Files are now represented as a header and several pages, which are arrays
of bytes of the same fixed size. Since file content is cached write-back by VFS
while the directory structure only uses write-through caches, which are easy to
verify, we will ignore directory structure in the following: more information can
be found in [8, 9]; the KIV specifications online [12] also have a full list.

VFS calls operations specific to each file system implementation via an inter-
face we call AFS (abstract file system). Again this is specified abstractly, and the
operations relevant for accessing file data will be defined in the next section.

Our implementation of AFS then is specific to flash memory (called FFS in
the figure). Again it is implemented using subcomponents. Altogether we get
a refinement tower with 11 layers. In earlier work, we have verified the various
components [6,14] to be crash-safe refinements according to the theory in [7,16].
The bottom layer of this development is the MTD interface, that Linux uses to
access raw flash memory.

To add caching in VFS, we extend the refinement tower as shown in Fig. 1b.
Instead of implementing AFS directly with FFS, we use an intermediate implemen-
tation Cache of AFS (AFSC in the figure) that caches the data and calls operations
of an identical copy of AFS (called AFSP) to persist cached data. Details on this
implementation will be given in Section 4.

3 Data Representation in VFS

The task of VFS is to implement POSIX operations like creating or deleting files
and directories, or opening files and writing buffers to them by elementary op-
erations on individual nodes, that represent a single directory or file. Each of
these nodes is identified by a natural number ino ∈ Ino, where Ino ' N. The
operations on single nodes are implemented by each file system separately, and
we specify them via the AFS interface.

The state of AFS is specified as abstract as possible by two finite maps
(Key 7→ V alue denotes a map from finitely many keys to values) with disjoint
domains to store directories and files.

state dirs : Ino 7→ Dir files : Ino 7→ File where Ino ' N

Fig. 2: Representation of file contents in POSIX and in VFS.

Since we are interested in adding write-back caches for file content, while direc-
tory structure only uses write-through caches, we just specify files

data File = file(meta : Meta, size : N, content : N 7→ Page)

Details on the representation of a file are shown in Fig. 2. The uniform
representation as a sequence of bytes is broken up into file size, metadata (access
rights), and several pages. Each Page is an array of size PAGESIZE. Byte k of a file
is accessed via offset(k) in page(k), which are the remainder and quotient when
dividing k by PAGESIZE. We also use rest(k) to denote the length of the rest
of the page above offset(k). We have rest(k) = PAGESIZE− offset(k), when
the offset is non-zero. Otherwise rest(k) = 0, k is (page-)aligned, and predicate
aligned(k) is true. The start of page pno is at pos(pno) = pno ∗ PAGESIZE.
The pages are stored as a map, a missing page (e.g. page pno− 1 in the figure)
indicates that the page contains zeros only. This sparse representation allows
to create a file with a large size, without allocating all the pages immediately
(which is important, e.g. for streaming data). Another important detail is that
there may be irrelevant data beyond the file size. It is possible that the page
page(sz) at the file size sz contains random junk data (hatched part of the
page) above offset(sz) instead of just zeros. Extra (hatched) pages with a page
number larger than page(sz) are possible as well. Allowing such junk data is
necessary for efficient recovery from a crash: writing data at the end of a file is
always done by writing pages first, and finally incrementing the size. If a crash
happens in between, then removing the extra data when rebooting would require
to scan all files, which would be prohibitively expensive.

With this data representation AFS offers a number of operations that are
called by VFS, using parameters of type Inode as input and output (passed by
reference). An inode has the form

data Inode = inode(ino : Ino, meta : Meta, isdir : Bool,

nlink : N, size : N)

The boolean isdir distinguishes between directories and files, the nlink-field
gives the number of hard links for a file (nlink = 1 for a directory). size stores
the file size for files, and the number of entries for a directory.

The relevant AFS operations for modifying file content are specified in Fig. 3.
The operations use semicolons to separate input, in/out, and output parameters.
We give a short description, which also gives some preconditions.

afs rpage(inode, pno; pbuf , exists; err) {
exists := pno ∈ files[inode.ino].content;
if exists then

pbuf := files[inode.ino].content[pno];
else

pbuf := ⊥;
err := false;

or err := true;
}

afs wpage(inode, pno, pbuf ; ; err) {
files[inode.ino].content[pno] := pbuf ;
err := false;

or err := true;
}

afs wsize(inode, sz ; ; err) {
files[inode.ino].size := sz ;
err := false;

or err := true;
}

afs fsync(inode; ; err) {
err := false;

or err := true;
}

afs wbegin(inode; ; err) {
let sz = inode.size in
let cont = files[inode.ino].content,

pno = page(inode.size),
aligned = aligned(inode.size) in

if pno ∈ cont ∧ ¬ aligned then
cont[pno] := truncate(cont[pno], sz);

files[inode.ino].content := cont upto sz ;
err := false;

or err := true;
}

afs truncate(n; inode; err) {
let sz = inode.size in
let cont = files[inode.ino].content,

szT = min(n, sz),
pno = page(inode.size),
aligned = aligned(inode.size) in

if sz ≤ n ∧ pno ∈ cont ∧ ¬ aligned then
cont[pno] := truncate(cont[pno], szT);

files[inode.ino].content := cont upto szT ;
files[inode.ino].size := n;
inode.size := n;

err := false;
or err := true;
}

Fig. 3: File operations of AFS.

– afs rpage reads the content of the page with number pno into a buffer
pbuf : Page. The file is determined as the inode number of an inode inode,
that points to a file. If the page does not exist, the buffer is set to all zeros
(abbreviated as ⊥), and the exists flag is set to false. The flag is ignored by
VFS but will be relevant for implementing a cache in the next section.

– afs wpage writes the content of pbuf to the respective page. Note that the
page is allowed to be beyond file size (which is not modified).

– The file size is changed with the operation afs wsize. This operation does
not check, whether there are junk pages above the new file size.

– afs fsync synchronizes a file. If a crash happens directly after this operation,
the file accessed by inode must retain its content. On this abstract level, the
operation does nothing. Its implementation, which uses an order-preserving
write-back cache (see [13]) must empty this cache.

– afs truncate is used to change the file size to n, checking that there are
no junk data that would end up being part of the file below the new file
size. This operation first discards all pages above the minimum szT of n and
the old sz : The expression cont upto szT keeps pages below szT only. For
efficiency, the operation then distinguishes two cases, shown in Fig. 4. The
first case a) is when the new size n is at least the old sz . In this case, the page
page(sz) may contain junk data, which must be overwritten by zeros since
this range becomes part of the file. Overwriting the part above szT = sz
with zeros is the result of the function call truncate(cont [pno], szT). This
call can be avoided, if the part is empty or if the old size was aligned. The
second case b) is when the new file size is less than the old. In this case,
the page above the new filesize simply become junk, it does not need to

(a) Growing truncation (sz ≤ n). (b) Shrinking truncation (n < sz).

Fig. 4: Effects of a truncation to n on a file with size sz .

be modified. The implementation of the afs truncate operation, therefore,
avoids writing pages to persistent store whenever this is possible1.

– afs wbegin is an optimized version of afs truncate for the case n = sz . It
is called at the start of writing content to a file in VFS. It makes sure that
writing beyond the old file size will not accidentally create a page, which
contains junk.

All operations are allowed to non-deterministically (or) return err = true.
This allows the implementation to return errors, e.g. when there is not enough
memory available, which can not be specified on this level of abstraction. The
implementation will resolve the nondeterminism to success whenever possible.

On the basis of the AFS operations, VFS implements two POSIX operations that
modify file content, vfs truncate and vfs write. The first operation changes
file size by just calling afs truncate. Writing a buffer buf (an array of arbitrary
size) of length n at position pos has the following steps:

– afs wbegin is called first, to make sure that writing does not accidentally
read junk data.

– Then the buffer is split at page boundaries, and individual pages are written
by calling afs wpage. Writing starts with the lowest page at page(pos) and
proceeds upwards. If pos is not page-aligned, the first write requires to read
the original page first by calling afs rpage and to merge the original content
below offset(pos) with the initial piece of buf of length rest(pos). Merging
is necessary too for the last page when pos + n is not aligned.

– Writing pages stops as soon as the first call to afs wpage returns an error. If
this is the case, the number n is decremented to the number of bytes actually
written.

– Finally, if pos + n is larger than the old file size, afs wsize is called, to
modify the file size, and vfs write returns the number n of bytes written.

We will see in the next section that when adding caches it is crucially im-
portant that VFS implements writing by traversing the pages from low to high
page numbers. We will also find, that the data representation of VFS, where all
calls are optimized for efficiency, which in particular results in an asymmetric
afs truncate (Fig. 4) is one of the main difficulties for adding caches correctly.

1 deleting a page does not write it, but adds a ”page deleted” entry to the journal.

4 Integration of Caches into Flashix

Initially, Flashix was developed without having caches for high-level data struc-
tures in mind. To add such caches to Flashix we introduce a new layer between
the Virtual File System Switch and the Flash File System, visualized in Fig. 5.
This layer is implemented as a Decorator [10], i.e. it implements the same inter-
face as the FFS and delegates calls from the VFS to the FFS. The VFS commu-
nicates with a Cache Controller which in turn communicates with the FFS and
manages caches for inodes, pages, and an auxiliary cache for truncations.

Fig. 5: Flashix component hierarchy.

The Inode- and Page-Cache com-
ponents internally store maps from
unique identifiers to the correspond-
ing data structures. They all offer
interfaces to the Cache Controller
for adding resp. updating, reading,
and deleting cache entries. The Cache
Controller is responsible for process-
ing requests from the VFS by either
delegating these requests to the FFS

or fulfilling them with the help of
the required caches. It also has to
keep the caches consistent with data
stored on flash, i.e. update cached
data when changes to corresponding
data on flash have been made.

Similar to the Linux VFS, the
caching layer includes further caches for data structures forming the basic struc-
ture of the file system. These caches however only operate in write-through mode
to speed up read accesses. Otherwise, the integrity of the file system tree after
a crash could be compromised since structural operations are usually highly de-
pendent on one another and affect multiple data objects.

Compared to structural operations, updates to file data can be considered
mostly in isolation. This means that in particular reads and writes to different
files do not interfere with each other. Therefore we allow write-back caching of
POSIX operations that modify the content of a file, namely write and truncate.
Hence, the Cache Controller does not forward page writes to the FFS and instead
only stores the pages in the Page Cache. Updates to the size of a file are also
performed in the Inode Cache only as garbage data could be exposed in the event
of a power cut otherwise. To distinguish between up-to-date data and cached
updates, entries of the Page Cache or the Inode Cache include an additional
dirty flag. For the Page Cache, this results in a mapping from inode numbers
and page numbers to entries consisting of a page-sized buffer and a boolean flag.

Fig. 6 lists the central operations of the PCache component using the state
pcache : Ino×Nat 7→ Bool×Page. Analogously the component ICache is defined.
It stores a mapping icache : Ino 7→ Bool× Inode from inode numbers to entries

cache rpage(ino, pno; pbuf , exists; err) {
let hit = false, dirty = false in

pcache get(ino, pno; pbuf , dirty; hit);
if hit then

exists := true, err := false;
else let szT = 0, szF = 0 in

tcache get(ino; szT , szF ; hit);
if hit ∧ min(szT , szF) ≤ pos(pno) then

pbuf := ⊥, exists := false, err := false;
else

afs rpage(ino, pno; pbuf ; exists, err);
if ¬ err ∧ exists then

dirty := false;
pcache set(ino, pno, pbuf , dirty);

}

cache wpage(ino, pno, pbuf ; ; err) {
err := false;
let dirty = true in

pcache set(ino, pno, pbuf , dirty);
}

cache wsize(inode, sz ; ; err) {
err := false;
let dirty = true in

inode.size := sz ;
icache set(inode, dirty);
}

Fig. 7: Cache operations for reading and writing pages and updating file sizes.

containing the inode itself and a dirty flag.

state pcache : Ino× Nat 7→ Bool× Page

pcache set(ino, pno, pbuf , dirty){
let key = ino × pno in

pcache[key] := dirty × pbuf ;
}

pcache get(ino, pno; pbuf , dirty; hit) {
let key = ino × pno in

hit := key ∈ pcache;
if hit then

dirty := pcache[key].dirty;
pbuf := pcache[key].page;

}

pcache delete(ino, pno) {
let key = ino × pno in

pcache := pcache −− key;
}

pcache mark clean(ino, pno) {
let key = ino × pno in

pcache[key].dirty := false;
}

Fig. 6: Core of the PCache compo-
nent.

Writing pages or file sizes results in
putting the new data dirty in the par-
ticular caches. These operations of the
controller component Cache are shown
in Fig. 7 on the right. Reading pages
on the other hand returns the page in
question stored in PCache or, if it has
not been cached yet, it tries to read
it from flash (Fig. 7 on the left). But
reading from flash yields the correct re-
sult only if there was no prior trunca-
tion that would have deleted the rele-
vant page, i.e. an entry for this file ex-
ists in TCache and applying this trunca-
tion would delete the requested page (if
min(szT , szF) ≤ pos(pno), i.e. pno is be-
yond the cached truncate size szT and the
current persisted size of the file szF). If
reading the page from flash is correct and
the page actually stores any relevant data
(exists is true), the resulting page is stored clean in PCache to handle repeated
read requests.

For truncations of files, there are several steps Cache needs to perform. These
steps are implemented with the operations cache truncate and cache wbegin
as shown in Fig. 8 on the left. First, when an actual user truncation is executed,
ICache needs to be updated by setting the size to the size the file is truncated
to. Second, cached pages beyond sz resp. n have to be removed from PCache

and the truncate sizes in TCache have to be updated. For this purpose, the two
subcomponents provide dedicated truncation operations pcache truncate resp.
tcache update. tcache update aggregates multiple truncations by caching the
minimal truncate size n for each file only. Additionally, the persisted size sz of

cache truncate(n; inode; err) {
let ino = inode.ino, sz = inode.size in
let szT = min(n, sz) in
let pno = page(szT), pbuf = ⊥,

hit = false, dirty = true in
cache get tpage(ino, pno; pbuf ; hit, err);
if ¬ err then

pcache truncate(ino, szT);
if hit ∧ sz ≤ n ∧ ¬ aligned(sz) then

pbuf := truncate(pbuf , sz);
pcache set(ino, pno, pbuf , dirty);

tcache update(ino, n, sz);
inode.size := n;
icache set(inode, dirty);

}

cache wbegin(inode; ; err) {
let ino = inode.ino, sz = inode.size in
let pno = page(sz), pbuf = ⊥, hit = false in

cache get tpage(ino, pno; pbuf ; hit, err);
if ¬ err then

pcache truncate(ino, sz);
if hit ∧ ¬ aligned(sz) then

pbuf := truncate(pbuf , sz);
let dirty = true in

pcache set(ino, pno, pbuf , dirty);
tcache update(ino, sz , sz);

}

cache get tpage(ino, pno; pbuf ; hit, err) {
err := false;
let dirty = false in

pcache get(ino, pno; pbuf , dirty; hit);
if ¬ hit then let szT = 0, szF = 0 in

tcache get(ino; szT , szF ; hit);
if ¬ hit ∨ pos(pno) < min(szT , szF) then

afs rpage(ino, pno; pbuf ; hit, err);
}

cache fsync(inode; ; err) {
let szF = 0, sync data = false in

cache fbegin(inode; szF ; sync data, err);
if ¬ err ∧ sync data then

cache fpages(inode; ; err);
if ¬ err ∧ sync data then

cache finode(inode, szF ; ; err);
}

cache fbegin(inode; szF ; sync data, err) {
err := false;
let hit = false, szT = 0 in

tcache get(inode.ino; szT , szF ; hit);
sync data := hit;
if sync data then

if szT < szF then
afs truncate(szT ; inode; err);
szF := szT ;

if ¬ err then
afs wbegin(inode; ; err);

if ¬ err then
tcache delete(inode.ino);

}

cache fpages(inode; ; err) {
err := false;
let ino = inode.ino, pno = 0, pnomax = 0 in

pcache max pageno(ino; ; pnomax);
while ¬ err ∧ pno ≤ pnomax do

let pbuf = ⊥, hit = false, dirty = false in
pcache get(ino, pno; pbuf , dirty; hit);
if hit ∧ dirty then

afs wpage(ino, pno, pbuf ; ; err);
if ¬ err then

pcache mark clean(ino, pno);
pno := pno + 1;

}

cache finode(inode, szF ; ; err) {
if szF < inode.size then

afs wsize(inode, inode.size; ; err)
else

err := false
}

Fig. 8: File truncation (left) and synchronization (right) operations of Cache.

a file is stored in TCache to determine whether it is allowed to read a page
from flash in cache rpage. Finally, if the truncate is growing, i.e. sz ≤ n,
the page at size sz may need to be filled with zeros. The auxiliary operation
cache get tpage is used to determine if this page is existent. This is the case if
the page is either cached in PCache or can be read from flash but would not have
been truncated according to TCache. If necessary, the page is then filled with
zeros beyond offset(sz) using the truncate function and the result is stored
in PCache.

The synchronization of files, i.e. transferring cached updates to the persistent
storage, is also coordinated by Cache. Clients can use the POSIX fsync operation
to trigger synchronization of a specific file. It is common practice that cached
data is also synchronized concurrently, however, this is left for future work.

The implementation of fsync in Cache is shown in Fig. 8 on the right. The
general idea of this implementation is to first remove all pages from flash that

would have been deleted by truncations on this file since the last synchronization
and then mimic a VFS write that persists all dirty pages in PCache and updates
the file size to the size stored in ICache if necessary.

The operation cache fbegin is responsible for synchronizing truncations
and prepares the subsequent writing of pages and updating the file size in
cache fpages resp. cache finode. When using this synchronization strategy,
it is sufficient to aggregate multiple truncations by truncating to the minimal
size the file was truncated to, and only if this minimal truncation size is lower
than the current file size on flash. As truncation is the only possibility to delete
pages (except for deleting the file as a whole), this afs truncate call deletes all
obsolete pages. The following afs wbegin call ensures that the whole file con-
tent beyond szT resp. szF is zeroed so that writing pages and increasing the file
size on flash is possible safely. Since AFS enforces an initial afs wbegin before
writing pages or updating the file size and Cache is a refinement of AFS, it is
guaranteed that there are dirty pages only in PCache or dirty inodes in ICache

if there is an entry in TCache for the file that is being synchronized. Hence there
is nothing to do if hit after tcache get is false.

cache fpages iterates over all possibly cached pages of the file and writes
dirty pages with afs wpage, marking them clean in PCache after writing them
successfully. Similar to the implementation of vfs write explained in Sec. 3,
this iteration is executed bottom-up, starting at page 0 up to the maximal page
cached in PCache (returned by pcache max pageno). Finally, cache finode up-
dates the file size with afs wsize if the cached size is greater than the persisted
size szF .

5 Functional Correctness and Crash-Safety Criterion

Due to our modular approach, verifying the correctness of integrating caches into
Flashix as shown in Fig. 1b requires to prove a single additional data refinement
Cache(AFSP) v AFSC only. The proofs are done with a forward simulation R ⊆
AS×CS using commuting diagrams with states AS ≡ dirsC×filesC of AFSC and
CS ≡ dirsP × filesP × icache × pcache × tcache of Cache(AFSP).

R ≡ dirsC = dirsP ∧ filesC = ((filesP ↓ tcache)⊕ pcache)⊕ icache

Basically, R states that for each (as, cs) ∈ R the cached AFS state as can be
constructed from cs by applying all cached updates to the persistent AFS state,
i.e. pruning all files at their cached truncate size (↓ tcache), overwriting all
pages with their cached contents (⊕ pcache), and updating the cached file sizes
(⊕ icache). As no structural operations are cached, dirsC and dirsP are identical.

While AFSC functionally matches the original specification of AFS, it is easy
to see that AFSC differs quite heavily from AFSP in terms of its crash behavior. A
crash in AFSP, for example, has the effect of removing orphaned files [7], i.e. those
files that are not accessible from the file system tree anymore but still opened in
VFS for reading/writing at the event of the crash. However, if there are pending
writes that have not been synchronized yet, a crash in AFSC additionally may

revert parts of these writes as all data only stored in the volatile state of Cache
is lost.

Usually, we express the effect of a crash in specification components in terms
of a state transition given by a crash predicate ⊆ S × S and prove that the
implementations of these components match their specification. But as soon as
write-back caches - especially non-order-preserving ones - are integrated into a
refinement hierarchy, it is typically not feasible to express the loss of cached
data explicitly. This is the case for AFSC and thus for POSIX, too. So instead of
verifying crash-safety in a state-based manner, we want to explain the effects of a
crash by constructing an alternative run where losing cached data does not have
any effect on the state of AFSC. If such an alternative run can always be found,
crash-safety holds since all regular (non-crashing) runs of AFSC yield consistent
states, and thus a crash results in a consistent state as well.

Definition 1 (Write-Prefix Crash Consistency). A file system is write-
prefix crash consistent (WPCC) iff a crash keeps the directory tree intact and
for each file f a crash has the effect of retracting all write and truncate operations
to f since the last state it was synchronized and re-executing them, potentially
resulting in writing prefixes of the original runs.

This property results from the fact that files are synchronized individually
by the fsync operation. Thus, all runs of operations that modify the content
of a file, either cached or persistent, can be decoupled from runs of structural
operations or operations accessing the content of other files.

To prove that Flashix satisfies WPCC we need to show that for each possible
occurrence of a crash in Cache(AFSP) we can construct a matching alternative
run for each file in AFSC and lift this to runs in VFS(AFSC). As it turns out, for an
arbitrary file f the only critical case is when a crash occurs during the execution
of cache fsync for this file. In all other cases, updates to the content of f have
been stored in cache only, thus the persistent content of f in AFSP is unchanged
since the last successful execution of cache fsync for f . So we can choose a
VFS(AFSC) run in which all writes and truncates to f have failed and hence have
not written or deleted any data. Constructing such a run is always possible as
AFSC is crash-neutral, i.e. all operations of AFSC are specified to have a run that
fails without any changes to the state (see Fig. 3 and [7]).

However, showing that WPCC holds for crashes during cache fsync is hard.
Initially, our goal was to prove this property locally on the level of AFSC resp.
of Cache and AFSP only. For example, one approach was to construct matching
prefix runs of AFSC by commuting and merging of operation calls. While we will
not go into details of the many pitfalls we ran into, the main problem with
these approaches was that the synchronization of aggregated truncates, as states
resulting from prefix runs of cache fsync could not be reconstructed by any
combination of VFS prefixes from the corresponding AFSC run.

For example, given the sequence of three afs truncate calls followed by an
afs fsync call as visualized in Fig. 9, starting with a synchronized file, i.e. the
contents (and sizes) of the affected file are equal in AFSC and AFSP. Considering

Fig. 9: Effect of a sequence of truncate operations and a following fsync on the
states of one file in AFSC (left) and AFSP (right), including intermediate states of
AFSP during fsync. The state of Cache is ommitted.

this run in AFSC on the left, the first truncation shrinks the file to a new size
n0 deleting all pages above page(n0). Since aligned(n0) is false, rest(n0) bytes
of junk data remain in page(n0) for the moment. This junk data is removed
not before the second truncation as it increases the file size then to n1 and the
remainder of page(n0) is filled with zeros. When finally the third truncation
shrinks the file again to n2 with n2 < n0 but page(n0) = page(n2), which yields
a mixed page containing valid data, junk, and zeros.

These truncations do not have any effect on the persistent state of AFSP as
Cache handles all requests. Conversely, a call to afs fsync in AFSC leaves its
state unchanged but its implementation Cache triggers a number of calls to
AFSP. First, the file is truncated to n2, the minimal truncation size since its last
synchronized state. Second, junk data above n2 is removed with afs wbegin to
prepare a potential synchronization of pages beyond n2.

Comparing the state after afs wbegin in AFSP with the state after all trun-
cations in AFSC, one can see that the sizes and the valid part of the content
match but there is some junk data left in AFSC that is not in AFSP. In fact, if a
crash occurs in a state after this afs wbegin call and before the synchroniza-
tion of page(n2) with afs wpage, we cannot construct a VFS prefix run of AFSC
that yields the state of AFSP. Fortunately, the abstraction from VFS(AFSC) to
POSIX ignores bytes written beyond the file size anyway and the implementation
Cache(AFSP) may at most remove more junk data than AFSC, so the implemen-
tation actually matches our crash-safety criterion under the POSIX abstraction
as intended. But in order to prove this, we need to explicitly consider runs of
AFSC in the context of VFS.

In the following section, we give a brief overview of the concrete proof strategy
we pursued to construct such a write-prefix run.

6 Proving Crash-Safety

The main effort for proving that Flashix is actually write-prefix crash consistent
was to show that a crash during cache fsync actually has the effect of write-
prefix runs of VFS. Given the implementation of cache fsync and the fact that
the operations of AFSP are atomic with respect to crashes, effectively two cases
need to be considered, namely a crash occurs

1. between afs truncate and afs wbegin or
2. between persisting pages k − 1 and k with afs wpage.

Two additional cases are crashes before afs truncate or after afs wsize. These
can be viewed as crashing before resp. after the complete cache fsync operation
since no persistent changes happen in these ranges. Note that we do not explicitly
consider crashes immediately after afs wbegin or before afs wsize as separate
cases, but instead we handle these as variants of case 2.

For case 1 finding a write-prefix run is quite obvious. As cache fsync only
executed a single persisting truncation to szT , only vfs truncate calls to szT

were successful in the alternative VFS run as well. For vfs truncate calls to
sizes n greater than szT the run is chosen in which afs truncate fails, so we
get a failing run of vfs truncate too. For vfs write calls the run is chosen in
which the initial afs wbegin fails which results in not calling any further AFSC
operations (cf. Sec. 3).

Verifying case 2 requires more effort. As an example consider the crashed run
shown in the upper half of Fig. 10 . We omit irrelevant arguments of operations
and abbreviate wbegin, wpage, wsize, and truncate with wb, w, ws, and
t, respectively. The run contains vfs truncate and vfs write calls, followed by
an interrupted synchronization fsync . The former operations are performed
in Cache only, so calls to AFSP are performed not until synchronization. fsync
crashes after an ascending sequence w∗|k of wpage operations, which contains
only writes to pages < k. As for case 1, the write-prefix run we construct in the
lower half of Fig. 10 contains successful executions of vfs truncate calls to the
minimal truncate size. In the example, this is the size n0, so the first truncation
is performed as before. For the second truncation to n1 on the other hand we
choose a failing run of vfs truncate (failing operation runs are marked with
ERR), which results in a stutter step τ in Cache, i.e. no operation is executed in
Cache.

The main aspect of WPCC is that alternative vfs write runs write just as
far as the interrupted fsync was able to persist pages. Hence, the alternative
run successfully performs wbegin and a prefix of the original wpage sequence
w∗, namely the prefix of writes w∗|k to pages < k. All other writes to pages
≥ k are again replaced by stutter steps τ in Cache. Depending on the range the
original vfs write has written to, the restricted sequence w∗|k may be empty or
the full sequence w∗. However, the alternative run will not execute (stutter) for
updates of the file size via wsize. With a complete system run constructed this
way, a full fsync run has the same effect as the crashed execution if the original
run (except for differences in junk data resulting from the problematic nature

VFS

Cache

AFSP

trunc(n0) write trunc(n1) fsync

cs
t(n0) wb w∗ ws t(n1) fsync

t(n0) wb w∗|k

VFS

Cache

AFSP

trunc(n0) write trunc(n1)
ERR fsync

cs′
t(n0) wb w∗|k τ τ fsync

t(n0) wb w∗

Fig. 10: Construction of a write-prefix run (lower half) matching a run with a
crash in cache fsync that occurs just before writing page k (upper half).

of synchronizing truncations discussed in Sec. 5), and thus the alternative run
finishes in a synchronized state.

Proving that the runs constructed this way match the original crashed runs
is done with a forward simulation ∼=k ⊆ CS × CS using commuting diagrams.
Relation ∼=k links all vertically aligned states in Fig. 10.

∼=k ≡ ((filesP ↓ tcache)⊕ pcache|k).seq(ino)

= (((filesP
′ ↓ tcache ′)⊕ pcache ′)⊕ icache ′).seq(ino)

where pcache|k restricts pcache to entries for pages i < k and files.seq(Ino)
extracts the content of the file ino as a sequence of bytes up to the current
size of ino in files. Intuitively, two Cache states cs and cs′ are cs ∼=k cs′ if
a synchronization interrupted at page k of cs yields the same content (up to
the file size) as a complete synchronization of cs′. Note that cs ∼=k cs′ enforces
implicitly that the file size of ino is identical in cs and cs′ and hence the cached
truncate sizes in tcache and tcache ′, as well as the cached size in icache ′, must
be equal.

For the wpage calls the commuting diagrams as shown in Fig. 11 in the bot-
tom plane are required. wpage operations of AFS and Cache are denoted wA and
wC, respectively. When writing a page < k, re-executing this operation maintains
∼=k (Fig. 11a). In contrast, writing pages ≥ k maintains ∼=k if the alternative run
stutters (Fig. 11b). Since VFS is defined on AFSC, these commuting properties
must be lifted from Cache to AFSC in order to construct commuting diagrams for
VFS runs. This is why the commuting diagrams are extended by R-corresponding
AFSC runs, yielding the front and back sides of Fig. 11. So in addition we show

that, given a run as0
wA(i)−−−→ as1 as it is part of vfs write or vfs truncate,

there is an R-corresponding run of Cache. Conversely, we have to show that the
resulting alternative run of Cache can be lifted to an R-corresponding run of
AFSC as well. Depending on the operation, up to two versions of this lifting are

as′0 ∃ as′1

cs′0 ∃ cs′1

R R

wA(i)

wC(i)

as0 as1

cs0 cs1

R R

wA(i)

wC(i)

∼=k ∼=k

(a) Successful AFSC run for i < k.

as′0 as′0

cs′0 cs′0

R R

wA(i)
ERR / τ

τ

as0 as1

cs0 cs1

R R

wA(i)

wC(i)

∼=k ∼=k

(b) Failing/stuttering AFSC run for i ≥ k.

Fig. 11: Commuting diagrams of a wpage run writing page i.

necessary if the run is stuttering: an AFSC run that stutters and a failing run of
the AFSC operation. For wpage, the former is used to skip writes of pages > k
while the latter is required to stop the loop of vfs write when trying to write
page k.

To construct a valid alternative VFS run, analogous commuting diagrams for
wbegin, wsize, and truncate have been proven, not all commuting diagrams
were necessary for each operation though. The proofs of commuting diagrams
for vfs write and vfs truncate then base upon the step by step application
of these commutative properties. Considering the final states of the runs shown
in Fig. 10, tcache, pcache|k, tcache ′, pcache ′, and icache ′ do not contain any
dirty data for ino and so applying them to filesP resp. filesP

′ does not have
any effect. Consequently, in theses states cs ∼=k cs′ reduces to filesP.seq(ino) =
filesP

′.seq(ino), which is exactly the property we wanted to achieve.
All in all, the verification of the crash-safety properties alone (not including

earlier attempts) took about two months and comprises approx. 300 theorems.
Most of the time was spent proving the commuting diagrams for ∼=k on the
level of Cache, since many different cases have to be considered. Lifting these to
AFSC could be done mainly by reusing the commuting diagrams for R together
with some auxiliary lemmata over the Cache and AFS operations, which in turn
enabled proving the commuting diagrams for VFS without major issues. For more
details, the full proofs can be found online [12].

7 Related Work and Conclusion

In this paper we have shown how to integrate caching of file content as done by
VFS into the modular development of a verified file system. We have defined the
correctness criterion of write-prefix crash consistency for crash safety, and have
verified it with KIV, thus giving applications a formal criterion that can be used
to verify that applications are crash-safe.

For reasons of space we could not formally address how caching of VFS in-
teracts with the order-preserving cache (called “write buffer” in [13]) as used by

lower levels of the implementation. However, informally the answer is as follows.
AFSP operations are implemented atomically, i.e. a page is either persisted as a
whole or not at all. This is necessary to imply linearizability of AFSP operations
in a concurrent context. Removing the data of the write buffer on a crash has the
effect of undoing some AFSP operations according to [7]. Therefore, discarding
the write buffer has the same effect as crashing slightly earlier, and thus WPCC
still holds.

We have also not discussed concurrent top-level calls of POSIX operations.
We have augmented the specification to allow this, and are working on a veri-
fication using the approach given in [16], which has already been used to allow
concurrent garbage collection. For the theory presented here to work, the im-
plementation ensures that modifications to each file (write, truncate, fsync) are
done sequentially only.

We have discussed lots of related work on verified file systems in general
in earlier work [13, 16], here we discuss two related approaches, that generate
running code and have addressed the correctness of write-back caching in file
systems. These are BilbyFS [1] and DFSCQ [3]. BilbyFS is a file system for flash
memory too. It implements caching mechanisms and gives a specification of the
sync operation on the level of AFS and proves the functional correctness of this
operation. However, the verification of crash-safety or caching on the level of
VFS is not considered.

DFSCQ is a sequentially implemented file system not targeted to work specif-
ically with flash memory. Similar to our approach, structural updates to the file
system tree are persisted in order. DFSCQ also uses a page cache, however, it
does not specify an order in which cached pages are written to persistent store.
Therefore it is not provable that a crash leads to a POSIX-conforming alternate
run. Instead a weaker crash-safety criterion is satisfied, called metadata-prefix
specification: it is proved that a consistent file system results from a crash,
where some subset of the page writes has been executed.

In our context, the weaker criterion should be provable for any (functional
correct) implementation of VFS caches, since we ensure that all AFSP operations
are atomic (calls can never overlap) and the refinement proof of VFS v POSIX

has lemmas for all AFS operations, that ensure that even these (and not just the
VFS operations) preserve the abstraction relation to a consistent file system.

Our earlier crash-safety criterion for order-preserving caches can be viewed as
the sequential case of buffered durable linearizability [11], which allows to undo
a postfix of the history of invokes and responses for operations, thus allowing
pending operations of the resulting prefix to have a new result. The criterion
is also sufficient to specify the AFSC interface in a concurrent context (since the
operations are linearizable). However, it is stronger than the criterion given here,
as it does not allow to re-execute several sequentially executed operations (only
one can be pending in the prefix).

Future work on the file system will be to add a background process that
calls fsync to empty caches when no user operations are executed. To imitate

the behavior of Linux VFS, the crucial extension necessary there will be to allow
fsync-calls of this process to be interrupted when the user calls an operation.

References

1. S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren,
Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and
G. Heiser. Cogent: Verifying high-assurance file system implementations. In Proc.
of ASPLOS, page 175–188. ACM, 2016.

2. E. Börger and R. F. Stärk. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

3. H. Chen, T. Chajed, A. Konradi, S. Wang, A. İleriy, A. Chlipala, M. Kaashoek,
and N. Zeldovich. Verifying a high-performance crash-safe file system using a tree
specification. In Proc. of the 26th Symposium on Operating Systems Principles
(SOSP), pages 270–286, 2017.

4. J. Derrick and E. Boiten. Refinement in Z and in Object-Z : Foundations and
Advanced Applications. FACIT. Springer, 2001. second, revised edition 2014.

5. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV — Overview
and VerifyThis competition. Software Tools for Technology Transfer (STTT),
17(6):677–694, 2015.

6. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a Verified Flash File Sys-
tem: Transactions & Garbage Collection. In Proc. of Verified Software: Theories,
Tools, Experiments (VSTTE), volume 9593 of LNCS, pages 73–93. Springer, 2015.

7. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming, 131:3 – 21, 2016.
Abstract State Machines, Alloy, B, TLA, VDM and Z (ABZ 2014).

8. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. A Formal Model
of a Virtual Filesystem Switch. In Proc. of Software and Systems Modeling (SSV),
EPTCS, pages 33–45, 2012.

9. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Verification of a
Virtual Filesystem Switch. In Proc. of Verified Software: Theories, Tools, Experi-
ments (VSTTE), volume 8164 of LNCS, pages 242–261. Springer, 2013.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, 1995.

11. J. Izraelevitz, H. Mendes, and M. Scott. Linearizability of Persistent Memory
Objects Under a Full-System-Crash Failure Model. In Distributed Computing,
volume 9888 of LNCS, pages 313–327. Springer, 2016.

12. KIV models and proofs for VFS Caching, 2020. URL: https://kiv.isse.de/

projects/VFSCaching.html.
13. J. Pfähler, G. Ernst, S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Veri-

fication of Order-Preserving Write-Back Caches. In IFM: 13th International Con-
ference, 2017, Proceedings, volume 10510 of LNCS, pages 375–390. Springer, 2017.

14. J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal specification
of an Erase Block Management Layer for Flash Memory. In Haifa Verification
Conference (HVC), volume 8244 of LNCS, pages 214–229. Springer, 2013.

15. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2018 Edition. The
IEEE and The Open Group, 2017.

16. G. Schellhorn, S. Bodenmüller, J. Pfähler, and W. Reif. Adding Concurrency to a
Sequential Refinement Tower. In Rigorous State-Based Methods, volume 12071 of
LNCS, pages 6–23. Springer, 2020.

https://kiv.isse.de/projects/VFSCaching.html
https://kiv.isse.de/projects/VFSCaching.html

	Modular Integration of Crashsafe Caching into a Verified Virtual File System Switch

