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Application of a long short-term memory for deconvoluting
conductance contributions at charged ferroelectric domain
walls
Theodor S. Holstad 1, Trygve M. Ræder 1,2, Donald M. Evans 1, Didirk R. Småbråten 1, Stephan Krohns 3, Jakob Schaab4,
Zewu Yan5,6, Edith Bourret5, Antonius T. J. van Helvoort7, Tor Grande1, Sverre M. Selbach1, Joshua C. Agar 2 and Dennis Meier 1✉

Ferroelectric domain walls are promising quasi-2D structures that can be leveraged for miniaturization of electronics components
and new mechanisms to control electronic signals at the nanoscale. Despite the significant progress in experiment and theory,
however, most investigations on ferroelectric domain walls are still on a fundamental level, and reliable characterization of
emergent transport phenomena remains a challenging task. Here, we apply a neural-network-based approach to regularize local
I(V)-spectroscopy measurements and improve the information extraction, using data recorded at charged domain walls in
hexagonal (Er0.99,Zr0.01)MnO3 as an instructive example. Using a sparse long short-term memory autoencoder, we disentangle
competing conductivity signals both spatially and as a function of voltage, facilitating a less biased, unconstrained and more
accurate analysis compared to a standard evaluation of conductance maps. The neural-network-based analysis allows us to isolate
extrinsic signals that relate to the tip-sample contact and separating them from the intrinsic transport behavior associated with the
ferroelectric domain walls in (Er0.99,Zr0.01)MnO3. Our work expands machine-learning-assisted scanning probe microscopy studies
into the realm of local conductance measurements, improving the extraction of physical conduction mechanisms and separation of
interfering current signals.
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INTRODUCTION
The observation of electrically conducting ferroelectric domain
walls in BiFeO3 (ref. 1) has triggered tremendous interest in the
field of domain-wall engineering and pushed the idea to develop
nanoelectronics based on domain walls2–5. Since then, the
enhanced electronic transport at domain walls has been identified
and studied in a broad range of ferroic materials. First proof-of-
concept studies demonstrated that ferroelectric walls can readily
be created, manipulated and erased6,7, and serve as active
elements in multi-level resistors8 and non-volatile memory9,10.
Recently, it was shown that individual domain walls can be used
to emulate the behavior of elementary electronic components,
such as digital switches11 and diodes12, opening the door towards
atomic-scale devices and domain-wall-based nanocircuitry.
Despite the significant progress in experiment and theory, most

investigations on ferroelectric domain walls are still fundamental
in character, aiming to understand their complex nano-physics
and tailor their local electronic properties2,13–16. One of the main
challenges lies in the nanoscale characterization of transport
phenomena. For example, in conductive atomic force microscopy
(cAFM), an electrically biased probe is scanned line-by-line across
the material’s surface, measuring the local conductance with
nanoscale spatial precision. Alternatively, conductance maps can
be reconstructed from I(V)-spectroscopy measurements, where
the tip moves from point to point in a pre-defined grid recording
I(V) curves at each point. Although cAFM imaging and I(V)
spectroscopy are powerful approaches for conductance mapping

at domain walls, the interpretation of collected data can be
challenging. This is mainly because they are two-probe measure-
ments where multiple conduction contributions are simulta-
neously measured in ways that are difficult to deconvolute
analytically. In addition, emergent transport mechanisms may
deviate from existing models and, hence, elude conventional
analysis approaches. The challenges associated with the evalua-
tion of local conduction measurements, and possible deviations in
mechanisms of response from established models, create a need
for advanced tools that can assist with, and improve, the
information extraction.
Recently, advances in large structured databases, efficient

computation, and machine-learning algorithms have allowed the
extraction of physically meaningful information based on statis-
tical analysis17. This approach has become pervasive in scanning
probe microscopy (SPM) measurements, where it has provided
important insight into the switching processes of ferroelectric
domain structures18,19, improved effective signal-to-noise ratios20,
and was utilized to identify tip degradation artifacts21. These
investigations showed the potential of combining multidimen-
sional SPM with statistical methods of machine learning to better
understand nanoscale functional responses and pathways.
The need for improved information extraction from local

transport measurements and the recent progress in machine
learning motivate the present work. Here, we explore advantages
associated with a neural-network-based analysis of local conduc-
tion measurements, considering ferroelectric domains and domain
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walls in (Er0.99,Zr0.01)MnO3 as an instructive example. We
demonstrate how to leverage a special class of deep-learning
algorithms, so-called long short-term memory (LSTM) recurrent
neural-network (RNN) autoencoders to glean additional insights
from local I(V)-spectroscopy measurements. Using the donor
doped hexagonal manganite (Er0.99,Zr0.01)MnO3 as a model
system, we conduct a comprehensive cAFM study, revealing an
unusual evolution of the local conduction contrast. We then use
the developed neural network approach to extract complemen-
tary insight from I(V)-spectroscopy data, which allows us to
disentangle different emergent conductivity contributions and to
isolate extrinsic conduction contributions from the intrinsic
domain-wall responses. While the measured physical effects are
specific to the model system, the neural-network-based approach
is not bounded by existing models and theories. It thus provides a
less biased and complimentary approach to enhance information
extraction from local conduction measurements, independent of
the material under investigation.

RESULTS AND DISCUSSION
Electronic bulk properties
We begin our discussion with the electronic bulk properties of our
model system, (Er0.99,Zr0.01)MnO3 single crystals, which we deter-
mine by frequency-dependent dielectric spectroscopy measure-
ments and density functional theory (DFT) calculations as
summarized in Fig. 1 (see Supplementary Fig. 1 and Supplementary
Fig. 2 for further details). Figure 1a shows the frequency-dependent
conductivity for ErMnO3 (green) and (Er0.99,Zr0.01)MnO3 (red). The
dielectric spectroscopy data allows for extracting the intrinsic dc
conductivities and dielectric constants: The data is fitted to the
equivalent circuit sketched in the inset to Fig. 1a as explained in
refs. 22,23. To model the bulk response, we use an RC-circuit with an
additional frequency-dependent resistivity, which is connected in
series with two RC-circuits, simulating the dielectric response of thin
insulating layers (black lines in Fig. 1a indicate the corresponding
fits). While our measurements reveal similar values for the intrinsic
dielectric constant in ErMnO3 and (Er0.99,Zr0.01)MnO3 (ε′ ≈ 10–30, see
Supplementary Fig. 1), significant differences are observed in
conductivity. The dc conductivity, σDC, is extracted from the plateau
in σ′(ν) in Fig. 1a, occurring above 100 kHz for ErMnO3 and above
1MHz for (Er0.99,Zr0.01)MnO3 (an additional increase in conductivity
towards higher frequencies can be assigned to contributions from
frequency-dependent ac conductivity24,25). We determine via the
equivalent circuit analysis σDC(ErMnO3)= 4.8 ∙ 10-6Ω−1 cm−1 and
σDC((Er0.99,Zr0.01)MnO3)= 2.0 ∙ 10−3Ω−1 cm−1, which indicates a sig-
nificant increase in conductivity of about three orders of magnitude
in the Zr-doped material.
To understand the microscopic origin of the enhanced

conductivity, we use DFT to calculate the relevant defect
formation energies and the electronic density of states (DOS)
with respect to doping and oxygen content (see Supplementary
Note 2 and Supplementary Fig. 2 for details). Based on the
calculated defect formation energy for A- or B-site substitution
with Zr4+ (Supplementary Fig. 2), we observe a significant energy
preference (0.67 eV) for A-site substitution. Respective atom-
resolved DOSes are presented in Fig. 1b. As the Zr-doping affects
the defect formation energy for oxygen interstitials, O00

i (Supple-
mentary Fig. 2), during post-synthesis cooling26,27, we consider the
effect of oxygen off-stoichiometry on the electronic structure and
DOS. From Fig. 1b we conclude that Zr-doping reduces a fraction
of the Mn3+ to Mn2+, which corresponds to electron doping,
rendering Zr-doped ErMnO3 n-type. However, adding one O00

i per
Zr-dopant not only charge compensates the Zr4+ donor dopant,
but also leads to the formal oxidation of one Mn3+ to Mn4+

thereby rendering the material p-type. The DFT calculations
highlight a strong correlation between the concentrations of Zr4+

and oxygen interstitials. As the Zr-doping changes the oxygen
content, (Er1-x,Zrx)MnO3+δ compositions can either have n-type
(x > 2δ) or p-type (x < 2δ) conductivity (as δ is unknown, we keep
the simplified notation (Er1–x,Zrx)MnO3 in the following).
The level of complexity arising from this competition renders

(Er0.99,Zr0.01)MnO3 an ideal model system for demonstrating
advantages associated with the neural-network-assisted evalua-
tion of I(V)-spectroscopy data. As Fig. 1 reflects, the interpretation
of the conductivity data is non-trivial at the bulk level, with
additional challenges arising in local transport measurements due
to the two-probe principle used in cAFM, combined with the
inhomogeneous electric field distribution under the probe tip and
uncertainties caused by variations in the tip-sample contact. In
addition, the cAFM technique is sensitive to contributions from
the surface and surface near regions, where pronounced
deviations in stoichiometry can emerge due to the thermal and
atmospheric history28, making it difficult to rationalize the exact
electronic transport behavior. Similar difficulties occur for internal
interfaces, such as grain boundaries and domain walls, where the

 (MHz)

Fig. 1 Electronic bulk properties of (Er1−xZrx)MnO3. a Frequency-
dependent conductivity for ErMnO3 (green) and (Er0.99,Zr0.01)MnO3
(red) at 300 K. The inset depicts an equivalent circuit consisting of an
intrinsic bulk contribution in series with two RC-layers representing
barrier layers at interfaces (see Supplementary Notes for details).
Black lines are fits using this equivalent circuit. b Calculated atom-
resolved electronic density of states (DOS) with respect to doping
and oxygen content. While stoichiometric ErMnO3 is an intrinsic
semiconductor with a band gap of 1.6 eV (upper panel), Zr-doping
raises the Fermi level, EF, into the conduction band, leading to n-
type conductivity (middle panel). Adding one O00

i per Zr-dopant
yields a non-bonding defect state at the top of the conduction band
and p-type conductivity.
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local strain, polar discontinuities, crystallographic defects, and
confinement effects can alter the electronic structure12,29 and
complicate the analysis.

Electronic conductance at charged ferroelectric domain walls
The ferroelectric domain structure of (110)-oriented ErMnO3 and
(Er0.99,Zr0.01)MnO3 is resolved in the piezoresponse force micro-
scopy (PFM) images in Fig. 2a, b, respectively. Domains of opposite
polarization direction (indicated by the arrows) can be distin-
guished by their contrast. Both materials exhibit the typical
domain structure of hexagonal manganites30,31 with slightly
smaller domains in (Er0.99,Zr0.01)MnO3, which we attribute to faster
cooling after synthesis32.
cAFM scans obtained at the same position as the PFM data are

presented in Fig. 2c, d. In ErMnO3, we measure enhanced
conductance at the tail-to-tail domain walls (Fig. 2c), which is
consistent with previous work33 and can be explained based on its
p-type semiconducting properties: mobile hole carriers accumu-
late at the tail-to-tail walls to screen the negative bound charges,
giving rise to a higher carrier density and conductance than in the
bulk. In contrast, (Er0.99,Zr0.01)MnO3 exhibits a different cAFM
response at comparable voltages. Here, enhanced conductance is
observed near positively charged head-to-head domain walls (Fig.
2d). This behavior is qualitatively different from ErMnO3 and
cannot be explained within the framework of p-type bulk
conductivity; in fact, it is more akin to n-type systems34,35.
To characterize the conducting features seen in Fig. 2d, we

perform comprehensive cAFM experiments as a function of
voltage and with varying tip coating as presented in Fig. 3 and
Supplementary Fig. 3. Figure 3a–f show selected voltage-
dependent cAFM scans gained with bias voltages between 8
and 14 V (applied to the back-electrode) using a diamond-coated

probe. Analogous to Fig. 2d, the data in Fig. 3a shows locally
enhanced conductance near the positively charged head-to-head
domain walls. At higher voltage (Fig. 3b, c), conductance contrast
arises between +P and -P domains, which inverts as the voltage is
enhanced further (Fig. 3d–f). Interestingly, the cAFM images
gained at 12 V and higher show the same domain-wall properties
as ErMnO3 (Fig. 2c), that is, insulating head-to-head and
conducting tail-to-tail walls. Using Pt-coated probes (Supplemen-
tary Fig. 3), we find qualitatively the same conduction behavior as
function of voltage, but conducting features are already resolved
at lower voltages. Figure 3g shows a detailed analysis of the
voltage-dependent scans, evaluated for the cross-section marked
in Fig. 3d. A closer inspection of the data in the I(V) waterfall plot
reveals that the enhanced (Fig. 3a) and suppressed (Fig. 3f)
conductance signals associated with head-to-head walls are
actually detected in different spots. While the suppressed
conductance is observed symmetrically around the head-to-
head wall positions, as determined by PFM, the enhanced
conductance occurs asymmetrically next to the walls with only
one side having enhanced conductance (see inset to Fig. 3g and
Supplementary Fig. 3).
All observations in Fig. 3a–g and Supplementary Fig. 3 can be

categorized into two characteristic regimes as presented in Fig. 3h:
In regime ①, current signals are measured in domain regions,
emerging first next to the head-to-head domain walls. The
insulating nature of the head-to-head walls themselves, however,
is not resolved in regime ①. Regime ② is defined as the voltage
regime where we record suppressed conductance at the head-to-
head walls.
In summary, the cAFM study reveals the existence of two

distinct conduction regimes ① and ②. The transition from ① to ② is
observed at ≳11 V with diamond-coated probes and ≳4 V when
using Pt-coated probes, indicating the significance of the tip-
sample contact. Furthermore, the transition is reversible (Supple-
mentary Fig. 3h), excluding pronounced effects due to tip
wearing. From the voltage-dependent cAFM maps alone, how-
ever, it is difficult to separate the different conduction contribu-
tions, which is crucial in order to rationalize the transition between
regime ① and ②. In particular, due to the noise level and
pronounced point-to-point variations, a less biased extraction of
general trends seems virtually impossible.
To learn more about regime ① and ② and the intermediary

transition, we conduct hyperspectral I(V)-spectroscopy measure-
ments (an I(V) curve at each pixel). Figure 4a shows a cAFM image,
overlapping with the area presented in Fig. 3a–f. Coarse
conductance maps recorded at the same position from I(V)-
spectroscopy measurements are displayed in Fig. 4b, c. Indepen-
dent of the method, cAFM or I(V) spectroscopy, qualitatively
equivalent results are observed as a comparison of Fig. 4a, c
shows. The two conductance maps are recorded at 12 V, revealing
conducting tail-to-tail walls and insulating head-to-head walls.
From the I(V)-spectroscopy data, it is possible to identify different
regions of interest and evaluate the respective local I(V) curves as
shown in Fig. 4d. Consistent with the voltage-dependent cAFM
maps (Fig. 3a–f), a crossover is observed at about 12 V, where the
conductance at the head-to-head domain walls falls below that of
the bulk. The data itself in Fig. 4d, however, is noisy and usually
only a few representative I(V) curves are compared in this type of
conductance studies, which causes ambiguity. This ambiguity can
be eliminated by the application of a neural-network analysis,
providing the opportunity for less biased generalization from the
high-dimensional I(V)-spectroscopy data as presented in the next
section.

Neural-network-based generalization of I(V)-spectroscopy data
To produce less biased projections from the I(V)-spectroscopy data
(Fig. 4), we train a LSTM autoencoder neural network. Briefly, the

Fig. 2 Ferroelectric domain structure and conductance maps. a
and b PFM data taken on (110)-oriented ErMnO3 and (Er0.99,Zr0.01)MnO3,
respectively. The scans (in-plane contrast) show domains with opposite
ferroelectric polarization direction, indicated by the white arrows. Scale
bars are 2 μm and 500 nm, respectively. c and d cAFM conductance
maps recorded at the same position as the PFM data above, showing
conducting features associated with the tail-to-tail domain walls in
ErMnO3 and with the head-to-head walls in (Er0.99,Zr0.01)MnO3. Both
cAFM images are recorded using Pt-coated probes. Scale bars are 2 μm
and 500 nm, respectively.
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developed neural-network analyses the spectra in the voltage
domain learning a sparse representation of the most statistically
important characteristic responses. These statistical descriptors
can be visualized in the spatial domain (i.e., by reconstructing
images). The identified spectral characteristics can be visualized by
generating the resulting spectra when traversing the learned
latent space.
The neural-network architecture was inspired by the practical

problem of identifying statistical trends in hyperspectral images.
To include voltage-sequence awareness, the encoder and decoder
use recurrent neurons that process the data recurrently (sequen-
tially) through time. The LSTM recurrent neurons include learnable
logic for memory, forgetfulness, and new state determination. This
internal structure allows LSTMs to preserve long- and short-term
temporal information, and thus they are used in natural language
processing where consideration of the sequence and order of
words is essential. To make the latent representation interpretable,
we imposed three constraints on the embedding layer. First,
because our encoder uses LSTM neurons, we can compress
information in the time domain by extracting just the last time
step from the encoder. Secondly, we impose a non-negativity
constraint by using a rectified-linear activation function (ReLU)
f xð Þ ¼ maxð0; xÞ. Third, we apply strong L1 activity regularization
λ
Pp

i¼j Zj
�
�

�
� on the embedding layer defining the latent space. In

this equation, λ represents a hyperparameter that balances the
trade-off between the global optimization based on the mean

squared reconstruction error (MSE) and the regularization
constraint. In L1 regularization, because the iso-surface is non-
convex, the minimum defined by the intersection of the MSE and
regularization results in sparsity. This sparsity serves to extract
unique features from the data without human directive or bias.
Specific details regarding the network architecture are provided
openly on Zenodo36,37. We note that neural networks have many
tuneable hyperparameters that are co-dependent on the data
distribution. We conducted an exhaustive hyperparameter search;
the practical conclusions derived in the subsequent analysis were
robust when non-extremal hyperparameters were selected. It is
worth noting that deep autoencoders, as a consequence of
stochastic mini-batching, impose a natural mechanism to denoise
the data via random averaging.
After training the neural network, we identify a sparse latent

space defined by three characteristic components (representing
trajectories in the latent manifold) that statistically explain the I(V)-
spectroscopy measurements (Fig. 5). We note that we conducted
an exhaustive parameter search where we modified the number
of neurons in the embedding layer and the λ parameter that
determines the sparsity. Upon convergence, all models contained
latent representations indistinguishable from the components we
present. The first component (Fig. 5a) is capturing a response that
is highest in the yellow areas (coinciding with the position of the
tail-to-tail walls; green dashed line) and lowest in dark blue areas
(including the domains and head-to-head domain walls; red

Fig. 3 Voltage-dependent cAFM maps recorded with diamond-coated probes. a–f Selected cAFM scans from a voltage-dependent image
series taken on (Er0.99,Zr0.01)MnO3 (in-plane polarization). Increased conductance is first observed within +P domains next to the head-to-head
domain walls (8 V), evolving into a pronounced conductance contrast between +P (bright) and −P (dark) domains (10 and 11 V). At higher
voltages (12, 13, and 14 V), we record conducting tail-to-tail and insulating head-to-head walls, and slightly enhanced conductance in −P
domains compared to +P domains. Scale bar 200 nm. g Waterfall plot showing the evolution of the conductance contrast at a head-to-head
wall, evaluated for the cross-section marked by the orange dashed arrow in d. The position of the insulating head-to-head wall is marked by
the gray plane. The inset presents the current signal at 8 V. Scale bar 50 nm. h Evolution of the conductance at a head-to-head wall (I(wall))
relative to the domains (I(+ P) and I(−P)), evaluated for the positions marked by the white circles in d. For voltages ≤ 11 V, no difference in
conductance is resolved. In contrast, for voltages ≥12 V, we observe suppressed conductance at the head-to-head walls. The two voltage
regimes with qualitatively different response are defined as regime ① and regime ②, respectively. Error bars represent the standard deviation
of ΔI.
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dashed line). The color scales are determined by the activation of
the neural network, encoding characteristic features of the
dataset. Thus, one could say that the first component (Fig. 5a)
represents a metric for how much the response in a certain region
resembles the response at tail-to-tail walls. We emphasize that the
neural network does not understand physical concepts or
magnitudes besides what is hard-coded into its structure. Instead,
it just holistically looks at the distributions in data.
The second component (Fig. 5b) identifies a characteristic

response that is lowest at the position of the head-to-head walls
(yellow in the inset), corresponding to supressed conductance
relative to the domains and the tail-to-tail walls. In particular, no
signature that could be associated with enhanced conductance at
head-to-head domain walls is observed in regime ①.
In addition to the domain-wall-specific transport response

curves, the network identifies a third contribution that correlates
with the domain distribution. The spatial distribution of this
contribution is shown in the inset to Fig. 5c, where yellow/green
regions coincide with –P domains and blue areas with +P
domains. This domain-related component has a more complex
response curve: We find that below ≈13 V the +P domains exhibit
a higher conductance than –P domains, which inverts for higher
voltages, reproducing the contrast inversion observed for the
domains in the cAFM maps in Fig. 3a–f. Furthermore, as the
comparison in Fig. 5d verifies, the onset voltage of the signal from
+P domains is lower than for the head-to-head walls.
The fact that the required voltage for cAFM imaging depends on

the tip coating already indicated that the domain-related contribu-
tions are due to workfunction differences at the tip-sample contact
(see Fig. 3 and Supplementary Fig. 3). Conceivable sources are
Schottky-barriers in imperfectly (110)-oriented surfaces, giving rise to a
small out-of-plane component of the ferroelectric polarization38 and
electrostrictive effects. Anomalous mechanical properties may
enhance the latter near the head-to-head walls39, providing a possible
explanation for the conducting features in Figs. 2d and 3a. We note

that this interpretation is a hypothesis; to connect the results back to
physical concepts, additional experiments are required.
Most important for the scope of this work, Fig. 5 demonstrates

how the neural networks enables a clear separation of different
conduction contributions, yielding generalized and noise-free data
that improve the analysis significantly and, hence, assist with the
interpretation of complex local conduction measurements.
Furthermore, the neural network allows for an assessment of
emergent mixing of different contributions, with the color scale in
the activation maps indicating to what extent a certain response
contributes to the measured conductance at each pixel. For
example, the highly conducting tail-to-tail domain wall in the top
left of the cAFM scan in Fig. 4a shows a high response (yellow) in
Fig. 5a and a medium response (green) in Fig. 5c. This observation
is consistent with the calculated spreading of the tip-injected
current and previous experimental data14,33 and demonstrates
that the locally measured signal contains both domain-wall and
domain contributions, which becomes crucial when extracting
quantitative information from I(V) spectroscopy measurements.
In summary, we employed a deep long short-term memory neural

network to analyze transport measurements and demonstrated how
a less biased generalization can be achieved, leading to response
curves free from the noise of individual I(V) curves and ambiguities
from local data analysis. Using (Er0.99,Zr0.01)MnO3 as model system,
we used an LSTM autoencoder to analyze I(V)-spectroscopy data,
separating domain-wall intrinsic transport properties from extrinsic
effects. The analysis clarified the impact of contributions related to
the tip-sample contact, which cover the intrinsic domain-wall
behavior in (Er0.99,Zr0.01)MnO3 at low voltages (regime ①).

0 5 10 15
0

100

200

300

400

500

10 12
0

50

100

C
ur

re
nt

 [p
A

]

 Head-to-head
 Domain (-P)
 Tail-to-tail

Voltage [V]

8 V

12 V

12 V
I(V)

cAFM I(V)ba

c d

Fig. 4 Comparison of conductance maps gained by cAFM and I(V)
spectroscopy. a cAFM scan collected on (Er0.99,Zr0.01)MnO3 at 12 V
overlapping with the area scanned in Fig. 3. Arrows indicate the
direction of the spontaneous polarization. I(V)-spectroscopy grids
taken at the same position as in a are used to construct the current
maps in b (8 V) and c (12 V). The dashed red and green lines indicate
the head-to-head and tail-to-tail domain walls, respectively. Scale
bar 100 nm. d Representative local I(V) curves recorded at the
positions marked by the colored circles in c.

Fig. 5 Decoder generated current–voltage response. a–c Decoder
generated I(V) curves for three components corresponding to
currents. Colors indicate the relation to pixel positions in the spatial
maps shown as insets. The dashed red and green lines indicate the
head-to-head and tail-to-tail domain walls, respectively, positioned
at the same pixel positions as in Fig. 4c. a The first component shows
the highest response (yellow) in positions that correlate with the
tail-to-tail domain walls. b The second component captures regions
with low-response curves that coincide with the head-to-head
domain walls. c The third component represents a more complex
response, which can be associated with the -P domains (yellow) and
+P domains (blue). d Response curves associated with domain
regions (red) and the head-to-head domain walls (black). The
comparison shows that for voltages below 10 V, the domain
response can dominate the domain-wall signals.
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Our study demonstrates how machine learning can accelerate
and increase the veracity of the analysis of spatially resolved
conduction measurements and complement conventional macro-
scopic and local transport measurements. Such machine-learning-
assisted measurements are particularly helpful for the character-
ization of functional domain walls, and nanoscale objects in
general, where emergent conduction phenomena fall outside the
pre-existing empirical models and mixing of multiple conduction
contributions may occur. In addition to disentangling qualitatively
different conduction mechanisms, the neural network can discover
additional mechanisms of response not bounded by the existing
theories and help avoiding to either miss information or provide
incorrect results. The deconvolution of current contributions pixel
by pixel can improve both physical property extraction and spatial
resolution in SPM-based conductance measurements, facilitating
the detailed input required to refine existing theories and develop
our understanding of conduction phenomena at the nanoscale.

METHODS
Sample preparation
Single crystals of hexagonal (Er0.99,Zr0.01)MnO3 are grown by the
pressurized floating-zone method40. The parent material, ErMnO3, shows
improper ferroelectricity below 1470 K with a polarization P ≈ 6 μC cm−2

(P ║[001]) and as-grown crystals exhibit p-type semiconducting behavior
with a band gap of about 1.6 eV (refs. 11,41–44). All data presented in this
work is measured on oriented, disk-shaped samples (diameter and
thickness of about 1mm) with the spontaneous polarization lying in-
plane. To achieve the high-quality surfaces required for our SPM studies,
the samples are polished using a chemo-mechanical silica slurry, which
gives smooth surfaces with a RMS roughness of ≈0.5–1.5 nm.

Electrical characterization
SPM characterization is conducted at ambient conditions in a NT-MDT
NTEGRA Prima SPM using Pt-coated (MikroMasch NSC35/Pt) and diamond-
coated (TipsNano DCP20) conductive probes, with samples mounted on a
metallic disk using conductive silver paste. For PFM, an ac voltage is
applied to the metallic disk (ω= 40 kHz, URMS= 5 V); two Stanford
Research 830R lock-in amplifiers are used to monitor the amplitude and
phase of the deflection and torsion of the cantilever. For cAFM and I(V)-
spectroscopy measurements, a dc voltage is applied to the metallic disk.
I(V) spectroscopy is done in a 0.8 × 0.8 μm square with 20 nm distance
between each point and a voltage ramp rate of 5 V s−1.
In order to perform macroscopic dielectric measurements, silver-paint is

used as metal electrode contact on the top and bottom of our plate-like
samples. An Agilent 4294A and a Novocontrol AlphaAnalyser are used to
measure the frequency-dependent dielectric response ranging from 40 Hz
to 110MHz and from 1 Hz to 10MHz, respectively. The latter measure-
ments are conducted in vacuum and in a closed-cycle refrigerator covering
the temperature range from 50 to 300 K.

Density functional theory calculations
The site preference of Zr4+ and changes in the electronic properties with
oxygen content are determined by density functional theory (DFT) calculations
with the projector augmented wave method45 (PAW) as implemented in
VASP46,47. 2x2x1 supercells with one Zr4+ or one Zr4++O00

i defect pair per
supercell, with the corresponding stoichiometries (Er1-x,Zrx)MnO3,
Er(Mn1-x,Zrx)MnO3, and (Er1-x,Zrx)MnO3+δ (x= d= 1/24≈ 0.04), are investigated.
The Er_3, Mn_pv, O and Zr_sv pseudopotentials supplied with VASP are used
together with a plane-wave energy cutoff of 550 eV. Brillouin zone integration
is done on a Γ-centered 2 x 2 x 2 k-point mesh for geometry optimization and
increased to 4 x 4 x 4 for density of states (DOS) calculations. PBEsol+U48,49

with U= 5 eV applied to Mn 3d, combined with a collinear frustrated
antiferromagnetic50 ordering on the Mn sublattice, is used to reproduce the
experimental lattice parameters51 and band gap43,44. Lattice positions are
relaxed until the residual forces are below 0.005 eV Å−1, and the lattice
parameters are fixed to relaxed bulk values. The defect formation energies are
calculated by Efdef ¼ Edefect � Eref �

P

i
niμi , where Edefect and Eref are the

energies of a defect cell and a reference cell, respectively, ni is the number of
species i added to the reference cell, and μi is the chemical potential of species
i. The chemical potentials of the cations are defined by the chemical equilibria

with the cations, oxygen, and the respective binary oxides Er2O3, Mn2O3 and
ZrO2, and μo is assumed to range within the calculated chemical stability
window of the prototypical YMnO3 (ref.

52). Charge neutral cells are considered
in this work due to the high doping concentration and the large capacity of
hexagonal manganites for oxygen non-stoichiometry53.

Machine learning
A LSTM recurrent neural network (RNN) autoencoder36,37,54 is employed to
investigate voltage-dependence of the local currents measured by I(V)
spectroscopy. An autoencoder is a model that learns an identify function
(i.e., a function that reproduces the input), which consists of an encoder
and a decoder. The encoder derives a feature vector from the input and
the feature vector is then used by the decoder to generate the input
spectra. Feature maps are generated from the activation (value) of a
feature at each real-space position. The properties associated with each
feature is visualized by using the decoder to generate I(V) curves as the
latent space defined by the feature vector is transversed. We note that
training of the network in meaningful ways requires the use of
regularization (in the form of dropout and L1 regularlization to the
embedding layer) to prevent overfitting and increase interpretability
through sparsity. Further information regarding the neural network can be
found in refs. 19,36
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