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Abstract
Background: Common ragweed has been spreading as a neophyte in Europe. Elevated 
CO2 levels, a hallmark of global climate change, have been shown to increase ragweed 
pollen production, but their effects on pollen allergenicity remain to be elucidated.
Methods: Ragweed was grown in climate-controlled chambers under normal (380 ppm, 
control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pol-
len extracts (RWE) from control- or CO2-pollen were administered in vivo in a mouse 
model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro 
systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and 
HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and 
CO2-RWE were investigated using ELISA and untargeted metabolomics.
Results: In vivo, CO2-RWE induced stronger allergic lung inflammation compared to 
control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus 
hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased 
indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1β, and IL-6). 
In contrast, supernatants from CO2-RWE-stimulated HNECs, compared to control-
RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production 
in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. 
The metabolome analysis revealed differential expression of secondary plant metab-
olites in control- vs CO2-RWE. Mixes of these metabolites elicited similar responses 
in DCs as compared to respective RWEs.
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1  | INTRODUC TION

Common ragweed (Ambrosia artemisiifolia L.) is native to North 
America, where 26% of the population is sensitized to its pollen,1,2 
causing hay fever, asthma, and allergic rhinitis. In recent decades, this 
invasive neophyte has been spreading in Europe.3,4 In 2016, around 
33 million Europeans were sensitized to ragweed and these numbers 
are estimated to more than double by 2041-2060.5 Because weed 
pollen are highly allergenic, even low exposure induces strong aller-
gic reactions.6

This is important for understanding future health burdens, 
which will be heavily increased by climate change.7 As a result of 
rising temperatures and favorable precipitation, we will experi-
ence a more widespread distribution of ragweed across Europe, 
expanding from Central toward Northern and Eastern European 
countries.8-10 Rising temperatures lead to earlier pollen seasons of 
anemophilous plants in the Northern hemisphere, thereby increas-
ing the abundance of airborne allergenic pollen.11,12 Additionally, 
rising atmospheric CO2 levels are driving forces of climate change, 
which resulted in higher ragweed biomass and pollen production 

in an experimental Intergovernmental Panel on Climate Change 
(IPCC) scenario.13,14 Likewise, elevated CO2 levels combined with 
drought stress increased the amount of ragweed allergens (Amb a 
1, Amb a 8 and Amb a 9) at the protein and transcriptional level.15,16

The allergenic potential of pollen is also determined by pol-
len-associated lipid mediators (PALMs) and low molecular weight 
compounds.17 PALMs, such as phytoprostanes, shift dendritic 
cell-mediated T-cell polarization toward a Th2 response.18 Also, 
pollen-derived lipids of the linoleic acid pathway act as chemoat-
tractants for granulocytes.19 Additionally, low molecular weight 
compounds and lipid mediators such as PGE2 and LTB4 enhance 
cutaneous reactions and nasal allergic inflammation to common 
allergens.20

Research determining whether and to what extent rising CO2 
levels influence the potential of ragweed pollen to induce pulmo-
nary allergic disease is lacking. We used a combined approach of an 
in vivo mouse allergy model, human in vitro tests, and untargeted 
metabolomics to investigate whether elevated ambient CO2 levels 
representative of climate change scenarios lead to enhanced allerge-
nicity of ragweed pollen.
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Conclusion: Our results indicate that elevated ambient CO2 levels elicit a stronger 
RWE-induced allergic response in vivo and in vitro and that RWE increased allergenic-
ity depends on the interplay of multiple metabolites.
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G R A P H I C A L  A B S T R A C T
Pollen from ragweed grown under elevated CO2 levels (700 ppm, based on RCP4.5 scenario) elicit a stronger allergic inflammatory response in 
vitro and in vivo by: Enhancing pro-inflammatory cytokine release in DCs stimulated with RWE or RWE-conditioned HNEC supernatants and 
increasing lung inflammatory infiltrate and serum total IgE. Increased allergenicity of CO2-RWE depends on the interplay of multiple metabolites.
Abbreviations: DC, human monocyte-derived dendritic cells; HNEC, human nasal epithelial cells; RWE, ragweed pollen extract; ILC, innate 
lymphoid cells; TNF, tumor necrosis factor; IPCC, Intergovernmental Panel on Climate Change; RCP, representative concentration pathway
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2  | METHODS

2.1 | Growth of ragweed plants in climate chambers

In 2013, ragweed plants were cultivated as previously described.21 
Plants were grown under ambient (380 ppm) or enriched (700 ppm, 
based on IPCC scenario RCP4.5)22 CO2 levels for the whole vegeta-
tion period. Aqueous ragweed pollen extracts (control-RWE and 
CO2-RWE) were prepared as previously described.23 Here, concen-
trations of RWE correspond to the amount of pollen used for the 
extraction. For more information on plant cultivation and aqueous 
pollen extract preparation, see online supplement.

2.2 | Murine sensitization model

Experiments were conducted according to federal guidelines 
for the use and care of laboratory animals and approved by the 
Government of the District of Upper Bavaria and the Animal Care 
and Use Committee of the Helmholtz Zentrum München (Approval 
# 55.2-1-54-2532-156-12).

An adjuvant-free ragweed sensitization protocol was performed 
as previously described.24 In short, female, 6- to 10-week-old BALB/c 

mice received intranasal (i.n.) instillations of control-RWE (10 mg/
mL, 10 µL/nostril), CO2-RWE (10 mg/mL, 10 µL/nostril), or PBS 
(10 µL/nostril) on 3, 8, or 11 consecutive days. Mice were sacrificed 
24 hours after the last instillation (Figure 1A). Blood samples were 
taken prior to the first instillation and at sacrifice. Measurements 
of airway hyperresponsiveness, performed after 11 RWE instilla-
tions and bronchoalveolar lavage (BAL), occurred as previously de-
scribed.24 Lung tissue was prepared for histology and FACS analysis.

2.3 | Blood and nasal cell donors

Isolation, culture, and stimulation of primary cells for this study were ap-
proved by the ethical committee of the Medical Faculty of the Technical 
University Munich (ethics statement code: 54/17 S) and the consulta-
tive commission of the Augsburg University Medical School (ethics 
statement code: 2016-7). Blood samples or human nasal epithelial cells 
(HNEC) from turbinoplasty surgery of healthy non-atopic donors were 
collected after written informed consent. Atopy status of blood or nasal 
cell donors was determined by measuring total serum IgE and allergen-
specific IgE by serum ImmunoCAP (ThermoFisher, Massachusetts, 
USA). An overview of the donors, specifying gender, age, total IgE, and 
RAST classes for the measured aeroallergens is available in Table 1.

F I G U R E  1   Pollen of ragweed plants grown under elevated CO2 levels elicits stronger allergic inflammation in vivo. A, Experimental 
setup. B, BAL cell analysis. C, Airway hyperresponsiveness measured 24 hours after 11× intranasal exposures. n = 5 mice/group; **P < .01, 
***P < .001 vs PBS at same methacholine concentrations. D, Total IgE levels in vivo after 11 instillations and (E) ex vivo. In vivo: n = 5 mice/
group; ***P ≤ .001. Representative data of two independent experiments; Mann-Whitney U test, except AHR: ANOVA with post hoc 
Bonferroni test. Ex vivo: n = 7 mice/group; Wilcoxon signed-rank test; *P < .05, dashed line represents unstimulated control
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2.4 | Human nasal epithelial cells stimulations

HNEC isolation was performed as recently described.25 For details, 
see online supplement.

Submerged monolayer cultures of second passage HNECs 
were seeded in 48-well plates at a density of 2 × 104 cells/well 
in complete Airway Epithelial Cell Growth Medium (PromoCell, 
Heidelberg, Germany) and incubated at 37°C, 5% CO2 for five days. 
At 80% confluence, the medium was changed to Airway Epithelial 
Cell Growth Medium without hydrocortisone (PromoCell) and cells 
were stimulated with control-RWE or CO2-RWE (0.3 to 2.5 mg/mL). 
After 24 hours, supernatants were collected and subjected to IL-8, 
IL-1β, TNF, CCL2, CCL22 (BDOptEIA, BDBioscience Pharmingen, 
San Diego, CA, USA), IL-33 (R&D Systems, Wiesbaden, Germany), 
and IL-6 (eBioscience, San Diego, CA, USA) ELISA.

2.5 | Human monocyte-derived dendritic cells 
stimulations

Dendritic cells (DCs) were isolated from PBMCs as previously de-
scribed.26 For details, see online supplement. A total of 105 day 5 
immature DCs were stimulated with control- or CO2-RWE (2.5 mg/
mL), single pollen-derived compounds (3 × 10−7M, Table 1), or 
corresponding compound mixes (3 × 10−7M, Table 1). For DC 
stimulation with RWE-conditioned HNEC supernatants, HNEC su-
pernatants of all donors were pooled and supernatants from cells 
stimulated with the two lowest (0.3 and 0.6 mg/mL) or highest 
(1.25 and 2.5 mg/mL) concentrations were combined resulting 
in 0.5 mg/mL (low) and 1.8 mg/mL (high) RWE stimulus concen-
trations, respectively. Unstimulated DCs correspond to DCs 
incubated with medium-stimulated HNEC. After 24 hours, super-
natants were analyzed by ELISA for IL-10, IL-1β, TNF (BDOptEIA), 
CCL17 (R&D Systems), and IL-6 (eBioscience) secretion and DC 
maturation markers were analyzed by flow cytometry. For details, 
see online supplement.

2.6 | Untargeted metabolome analysis

The metabolome of control-RWE and CO2-RWE was analyzed using 
ultra high-resolution mass spectroscopy (ICR-FT/MS) as previously 
described.21 For details, see online supplement.

2.7 | Statistical analysis

In vivo and in vitro data are shown as boxplots indicating mini-
mum, 25% percentile, median, 75% percentile, and maximum, or as 
mean ± SD. Statistical significance of the in vivo data was deter-
mined by Mann-Whitney U test or by two-way ANOVA with post 
hoc Bonferroni test for lung function analysis. In vitro data were 
normalized to unstimulated controls, mean ± SD of raw values is 
available in Tables S2 and S3. Wilcoxon signed-rank test was used 
to compare two treatment groups of non-normally distributed data. 
Repeated measures one-way ANOVA with Sidak's post hoc test or 
Friedman using Dunn's correction was applied for multiple com-
parisons. Statistical analysis and graph design were performed using 
GraphPad Prism version 8.4.1. Spider plots for cytokine profiles 
were created in Excel (2013), using normalized data. Metabolomics 
data were analyzed using MetaboAnalyst 4.0.27

3  | RESULTS

3.1 | Pollen of ragweed plants grown under elevated 
CO2 levels elicit stronger allergic inflammation in vivo

The impact of elevated CO2 exposure during plant growth on the 
allergenic potential of ragweed pollen was analyzed in an adjuvant-
free mouse model of allergic lung inflammation.24 To assess the ki-
netics of the allergic response on lung cell infiltration, mice were i.n. 
instilled on 3, 8, or 11 consecutive days with either PBS, control-
RWE, or CO2-RWE (Figure 1A). Increasing numbers of RWE instil-
lations showed the typical shift from an early, neutrophil-based, to 
a later, eosinophil-based lung inflammation (Figure 1B). Contrary to 
control-RWE, in the CO2-RWE-treated group both neutrophil and 
eosinophil numbers were significantly elevated after 3 (neutrophils; 
P < .05) and 11 (eosinophils; P < .05) i.n. instillations (Figure 1B). 
Total serum IgE measured 24 hours after 11× i.n. instillations was 
significantly increased in the CO2-RWE-treated group compared to 
the other groups (P < .001, Figure 1D), including control-RWE. Ex 
vivo IgE production of mouse splenic B cells was also elevated upon 
CO2-RWE stimulation compared to control-RWE (P < .05, Figure 1E). 
Eleven i.n. instillations of RWE significantly increased airway resist-
ance in both treatment groups compared to PBS control (P < .01 for 
CO2-RWE and P < .001 for RWE, Figure 1C), but no difference was 
detected between control-RWE and CO2-RWE.

Gender
No. 
Donors Age

Total IgE kU/
ml (mean)

Aeroallergens (RAST class; HDM/Cat/
Dog/Oat/Grasses/Rye/Penicillium/
Cladosporium/Aspergillus/Alternaria/
Botrytis/Alder/Birch/Hazel/Ash/
Mugwort/Buckhorn)

Female 23 20 - 61 37.00 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

Male 13 32 - 67 68.78 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0

TA B L E  1   Overview of cell donors for 
this study. A total IgE of <100 kU/mL and/
or RAST class 0 for common airborne 
allergens was considered non-atopic
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Flow cytometric analysis of lung tissue retrieved 24 hours after 
the last i.n. instillation revealed a significant increase in eosinophils 
after 8× and 11× instillations in the CO2-RWE group, confirming 
the BAL data (P < .05, Figure 2A, top). Furthermore, 8× instilla-
tions increased type 2 innate lymphoid cells (ILC2s) in lung tissues 
of mice treated with control-RWE and CO2-RWE compared to 3× 
(P < .05) whereby the increase in CO2-RWE was higher compared to 
control-RWE, but not significantly. 8× instillations increased Treg 
numbers in lung tissues of mice treated with control-RWE (P < .001 
vs 3× and P < .05 vs PBS control, Figure 2A, middle). An increased 
percentage of CD11b+DCs in lung tissue was detected in the CO2-
RWE group after 11× instillations compared to the other groups, 
although significantly only vs PBS (P < .05, Figure 2A, bottom).

ILC2s were significantly increased in cervical lymph nodes of 
mice treated with CO2-RWE vs control-RWE, although at a later 
time point compared to lung tissue (11×, P < .01 vs PBS, P < .05 vs 
control-RWE, Figure S2). Tregs in the same lymph nodes showed 

no significant differences between the treatment groups, whereas 
higher percentage of DCs was detected after 8× instillations in the 
CO2-RWE vs control-RWE group (P < .05, Figure S2).

Histopathological analysis of H&E- and PAS-stained lungs after 
11x instillations revealed increased perivascular and peribronchiolar 
inflammatory cell infiltration (ICI) and mucus hypersecretion in con-
trol-RWE and CO2-RWE mice, with CO2-RWE scoring highest (mucus 
hypersecretion: P < .01 and ICI: P < .001 for PBS vs. CO2-RWE and 
P < .05 for PBS vs. control-RWE in both parameters, Figure 2E,F). 
Analysis of Th1/Th2 and pro-inflammatory cytokines, as well as 
chemokines, revealed significant increases of IL-17A (P < .001) and 
IL-17F (P < .01) after 11× instillations and CCL22 (P < .05) after 3× 
instillations in CO2-RWE vs PBS. In control-RWE, only IL-17A after 
11× instillations and CCL17 after 3× instillations were significantly in-
creased to PBS (P < .05; Figure 3, Figure S2). All other mediators were 
higher in CO2-RWE, but did not reach statistical significance, apart 
from chemokines regulating neutrophil recruitment (CCL3, CCL4, 

F I G U R E  2   Pollen of ragweed plants 
grown under elevated CO2 levels elicit 
stronger allergic inflammation in vivo. 
A, Flow cytometric analysis of lung 
tissue. B-D, Representative PAS-staining 
of lung sections from mice instilled 
11x with pollen extract (B: PBS, C: 
control-RWE, D: CO2-RWE). Arrows: 
inflammatory infiltrate; arrowheads: 
mucus hypersecretion; scale bar: 100 µm. 
E and F, Histological scores after 11x 
instillations. n = 5 mice/group; Mann-
Whitney U test; *P < .05; **P < .01; 
and ***P < .001 vs PBS, same number 
of instillations (if applicable). #P < .05; 
###P < .001 vs same experimental group, 
3x instillations
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and CXCL1), which were slightly higher in control-RWE (Figure 3 and 
Figure S3).

3.2 | RWEs induce pro-inflammatory responses in 
human nasal epithelial cells

To analyze the allergenic potential of the different RWEs in a human 
in vitro system, we stimulated nasal epithelial cells as first port 
of entry for pollen into the body. Control- and CO2-RWEs signifi-
cantly increased IL-8 (control-RWE: P < .01 and P < .001; CO2-RWE: 
P < .01), IL-1β (P < .01, P < .001) and IL-6 (control-RWE: P < .01; 
CO2-RWE: P < .05) secretion compared to the unstimulated con-
trol (Figure S4B,D,E). CCL2 and CCL22 secretion were unchanged 
(Figure S4A,C). Only TNF release was differentially regulated by 
CO2-RWE and control-RWE, being increased by low CO2-RWE and 
high control-RWE concentrations (P < .001, P < .01 vs control-RWE 
and P < .01 vs CO2-RWE, Figure S4F). IL-33 could not be detected 
in the supernatants.

3.3 | RWEs induce pro-inflammatory responses 
in human dendritic cells stimulated with RWE-
conditioned epithelial cell supernatants

Because epithelial cells are important modulators of immune responses 
in the lung,28 we investigated the effect of HNEC supernatants after 
RWE stimulation downstream of the nasal epithelium. Immature DCs 
were stimulated with the above characterized HNEC supernatants 
subsequently pooled in RWE-low and RWE-high, and the cytokine/
chemokine profile and maturation markers were analyzed. IL-6 and 
CCL17 secretion was significantly higher than the baseline across all 
treatments (Figure 4C, IL-6: P < .001; Figure 4E, CCL17: P < .001 RWE-
high, P < .0001 RWE-low, P < .05 unstimulated HNEC supernatants). 
CO2-RWE-treated HNEC supernatants increased IL-6 (P < .05) and 
CCL17 (P < .01) secretion compared to unstimulated HNEC superna-
tants. IL-10 (Figure 4A) was increased by unstimulated- and CO2-RWE-
treated HNEC supernatants (P < .01) and strongly increased by high 
control-RWE-treated HNEC supernatants (P < .0001). TNF (Figure 4B) 
secretion was higher upon stimulation with CO2-RWE-treated HNEC 

F I G U R E  3   Inflammatory mediators in BAL fluid. All mediators were measured 24 hours after 3×, 8×, or 11× i.n. instillations with pollen 
extract. n = 5 mice/group; Mann-Whitney U test; *P < .05; **P < .01; and ***P < .001 vs PBS, same number of instillations
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supernatants than control-RWE (P < .01). IL-1β was only increased 
by supernatants from unstimulated or CO2-RWE-stimulated HNECs 
(P < .05, Figure 4D). Overall, the cytokine profile induced by CO2-
RWE-treated HNEC supernatants was strongly pro-inflammatory 
(Figure 4F). CD80 and CD86 were increased by supernatants from 
CO2-RWE-stimulated HNECs (P < .05, P < .0001, Figure S5B,D), 
whereas no difference in CD40 and HLA-DR was shown (Figure S5A,E). 
CD83 (Figure S5C) was elevated by unstimulated HNEC supernatants 
(P < .01) and reduced by CO2-RWE-stimulated HNEC supernatants 
compared to unstimulated (P < .01).

3.4 | CO2-RWE induces a more pro-inflammatory 
response profile in human dendritic cells

Lastly, we analyzed the direct effect of RWEs on dendritic cell cy-
tokine/chemokine secretion and surface marker expression. IL-10 
was significantly less secreted by DCs stimulated with CO2-RWE 
than control-RWE (P < .05, Figure 5A). In contrast, CO2-RWE sig-
nificantly increased TNF levels (P < .05, Figure 5B). No differences 
were detected for IL-1β, IL-6, and CCL17/TARC (Figure 5C-E). Similar 
to the above described co-culture experiments, CO2-RWE induced a 
pro-inflammatory cytokine profile (Figure 5F). Both RWEs induced 
maturation profiles distinct from the unstimulated control, but simi-
lar between the treatments (Figure S6, bottom). Expression of CD86 
was increased by both RWEs (P < .05), while CD80 was only higher 
in control-RWE-treated DCs (P < .05), (Figure S6, top).

3.5 | Extract analysis reveals candidate substances 
for enhanced allergenic potential of RWE

Pollen-derived substances act as immune modulators or have pro-
inflammatory properties.18-20,24 As such, LTB4, PGE2, adenosine, and 
LPS were slightly, although non-significantly, higher in CO2-RWE 
(Figure 6A). The content of the major allergen Amb a 1 did not dif-
fer between control- and CO2-RWE (Figure 6A). To gain insight into 
secondary metabolites present in the RWEs, we used untargeted 
mass spectroscopy. The metabolite profile of the extracts was dis-
tinctly different as revealed by principal component analysis (PCA) 
(Figure 6C). We observed six candidate substances present only in 
control-RWE and 13 candidate substances present only in CO2-RWE 
(Figure 6D) and chose the ones commercially available or their ana-
logues to stimulate moDCs (Table 2).

3.6 | Pooled, but not single substances are 
responsible for the cytokine profiles of dendritic cells 
induced by control- and CO2-RWE

We used the compounds either separately or in two combina-
tions as present in control- or CO2-RWE (Table 2) to stimulate DCs 
and compared the resulting cytokine response to whole RWEs. 

Pelargonidin and malvidin enhanced IL-10 secretion (P < .0001 and 
P < .01 vs unstimulated), whereas pC4OG decreased IL-10 secre-
tion (P < .05 vs. unstimulated) (Figure S7A). Malvidin (P < .001) 
and 9-OTrE (P < .05) increased IL-1β secretion (Figure S7D), and 
lumicrome decreased IL-6 secretion (P < .05 vs. unstimulated, 
Figure S7C). Compared to a relatively low response to single 
substances, DCs stimulated with a compound pool mimicking 
CO2-RWE secreted less IL-10 (P < .05, Figure 6E) and more IL-1β 
(P < .01, Figure 6H) than with the control-RWE compound mix. 
TNF and IL-6 secretion did not differ between the two compound 
mixes.

4  | DISCUSSION

Climate change poses a considerable threat to global health in the 
foreseeable future.29 Elevated CO2 levels are part of the driving 
forces behind our changing climate.30 CO2 naturally contributes to 
plant growth, and doubling ambient CO2 levels have led to increased 
pollen production of ragweed plants,13,14 raising their impact on al-
lergic patients.31-33

Here, we investigated whether doubling ambient CO2 levels to 
700 ppm, a still rather conservative IPCC scenario, could also affect 
the allergenic potential of pollen.

We observed that pollen extracts from plants grown under 
700 ppm CO2 induced a stronger allergic phenotype in a mouse 
model, characterized by higher serum IgE levels, enhanced lung 
inflammatory cell recruitment, and mucus hypersecretion, key hall-
marks of allergic inflammation.34,35 Moreover, we observed mod-
erately increased inflammatory mediators in BAL fluid. In lung and 
cervical lymph nodes, numbers of dendritic and ILC2 cells, which 
play a critical role in mounting Th2 responses via IL-33/ST2 signal-
ing under acute and chronic ragweed allergen exposure,36 were in-
creased. Airway hyperresponsiveness was increased by both RWEs 
compared to PBS control, but no difference was detected between 
them probably because of the overall moderately increased cytokine 
response in this study.

To translate our mouse-based results to humans, we used differ-
ent in vitro models to simulate the pollen passage through different 
immune checkpoints. As a first barrier, the nasal epithelium plays a 
key role in the allergic sensitization to airborne allergens, respond-
ing to pollen stimulation with inflammasome-related cytokines IL-18 
and IL-1β.25 RWEs also activate the inflammasome in keratinocytes 
by IL-1β secretion and caspase-1 activation.37 In our study, RWEs 
induced IL-1β together with pro-inflammatory cytokines in HNECs, 
irrespectively of the plant growth conditions. In the absence of IL-12, 
IL-1 family cytokines have been shown to promote Th238,39 and, in 
the presence of TGF-β, Th9 differentiation40 as well as proliferation 
of Th2 clones.41,42 IL-1 has also been shown to be required for aller-
gen-specific Th2 cell activation and airway inflammation in a mouse 
model of asthma.43 Indeed, secretion of IL-1β in our RWE-stimulated 
HNECs potentially contributes to the Th2 promoting effect down-
stream of the nasal epithelium.
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It is important to note that we used submerged HNEC mono-
layer cultures instead of air-liquid interface. Although we did 
not measure tight junctions in our cultures, a characteristic of 
differentiated epithelia, they have been detected in confluent 
monolayer cultures of non-atopic donors, similarly to air-liquid 
interface.25,44

Contrarily to the results obtained by stimulating HNECs with 
RWEs directly, we report stronger effects of plant treatments upon 
activation of DCs as downstream effector cells with HNEC superna-
tants. DCs incubated with supernatants from CO2-RWE-stimulated 
HNECs produced more pro-inflammatory cytokines, especially Th2-
cell attractant CCL17 and pro-inflammatory IL-6 and TNF, compared 
to DCs stimulated with control-RWE-treated HNEC supernatants.

Direct stimulation of DCs with pollen extracts clearly demon-
strates that CO2-RWE, which induced allergic airway inflammation 
in vivo more potently, induced less IL-10 in human DCs in vitro com-
pared to control-RWE. IL-10 is the hallmark cytokine for DC-induced 
Treg differentiation.45 This cytokine was reduced in vitro by CO2-
RWE and by the CO2 compound mix, consistent with reduced pul-
monary Treg numbers upon sensitization with CO2-RWE in vivo. Our 

results are in line with a recent study indicating IL-10 signaling in DCs 
as essential for efficient tolerance induction.46

TNF is another critical factor in allergic sensitization,47,48 acting 
as an adjuvant in house-dust mite allergic sensitization49 and exacer-
bating allergic asthma.50 CO2-RWE induced TNF consistently in our 
in vitro experiments, but unfortunately we could not detect this cy-
tokine in BAL fluid in vivo. IL-6 secretion, which was upregulated in 
DCs stimulated with CO2-RWE-conditioned HNEC supernatants, is 
also implicated in facilitating Th2 polarization and simultaneous Th1 
inhibition by activating NFAC and upregulating SOCS-1 expression 
in naïve CD4+ T cells.51

Expression of CD80 and CD86 on antigen-presenting cells is im-
portant for Th2 differentiation.52 Both markers were increased by 
CO2-RWE-stimulated HNEC supernatants or by both RWEs by direct 
DCs stimulations. The role of CD83 on DCs is controversial,53 but 
seems to be important for CD4+ T-cell activation.54 CD83 was down-
regulated by CO2-RWE-stimulated HNEC supernatants compared to 
unstimulated. Combined with the expression of CD80/CD86, our 
findings emphasize the importance of the mode of DC stimulation, 
either by RWE directly or indirectly via HNEC supernatants.

F I G U R E  4   Co-culture of moDCs with supernatants of CO2-RWE-stimulated HNECs elicits pro-inflammatory cytokine profile. A-E, IL-10, 
TNF, IL-6, IL-1β, CCL17/TARC secretion, and (F) cytokine profile of moDCs after 24-h stimulation with RWE-conditioned HNEC supernatants 
(corresponding to 0.5 and 1.8 mg/mL RWE). Dashed line indicates baseline cytokine production of moDCs. n = 35 independent experiments 
using cells from different donors; A, C, D-E RM one-way ANOVA with Sidak's correction for multiple comparisons, B Friedman's test with 
Dunn's correction; **P < .01; ***P < .001; ****P < .0001 vs baseline unless indicated otherwise
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In addition to activating epithelial-DC cross-talk, RWE acts di-
rectly on B cells, increasing IgE secretion under Th2-mimicking 
conditions.55 We demonstrate that CO2-RWE increased the IgE re-
sponse ex vivo as well as in vivo compared to control-RWE. Thus, 
RWEs appear to act on several levels of the immune response con-
tributing to the clinical phenotype of ragweed allergy, that is, DC-
mediated sensitization and B cell-mediated IgE production, which 
are both enhanced under exposure to CO2-RWE.

To identify one or more substances responsible for the ob-
served CO2-RWE-induced increased allergic response, we first 
analyzed PALMs, known pollen-derived immune modulators.18,20 
Pollen-derived adenosine appears to be protective during allergic 
sensitization by inducing regulatory responses in dendritic-primed 
T cells in vitro,26 whereas it mediates exacerbation of allergic lung 
inflammation in vivo.24 Slightly elevated PALMS and adenosine in 
CO2-RWE can only partly explain the increased inflammatory re-
sponse following CO2-RWE exposure. Therefore, we broaden the 
analysis investigating the pollen metabolome. Here, we found a 
plethora of secondary plant metabolites differentially regulated 
by growth conditions. Metabolites which were exclusively present 
in CO2-RWE (malvidin, pelargonidin, catalposide, and 9-oxo-OTrE) 
or in control-RWE (lumichrome, Q3OS and p-Coumaryl-alco-
hol-4-O-glucoside), exhibiting mostly anti-inflammatory/tolero-
genic characteristics56-63 were employed for in vitro stimulations 

of DCs. Pelargonidin and malvidin alone were anti-inflammatory, 
while the opposite was seen for p-Coumaryl-alcohol-4-O-gluco-
side, and the other substances had almost no effect. We showed 
synergistic effects of the compound mixes, which induced a 
cytokine profile comparable to whole pollen extracts. Indeed, 
substances with known anti-inflammatory properties exhibited 
pro-inflammatory properties when applied as a mix. Metabolomic 
screening was performed in a non-targeted, semi-quantitative 
manner, providing a global overview of the pollen metabolome 
without delivering absolute quantities of the significantly modu-
lated compounds. The substances were annotated by their exact 
mass and elemental composition and chosen according to their 
immunological properties and commercial availability in case of 
multi-annotation. Nevertheless, we can conclude that more than a 
single adjuvant substance in the allergen matrix is needed to trans-
mit an integrated signal via DCs to downstream effectors of the 
adaptive immune response, that is, T and B cells.

In summary, we showed that CO2-RWE elicits a stronger allergic 
response compared to control-RWE and that allergenicity cannot 
be confined to a single factor, but rather stems from the interplay 
of different mediators. Given that IPCC reports predict a rise in at-
mospheric CO2 from currently around 400 ppm to a range of 730-
1020 ppm expected by the year 2100, 30 it should be noted that the 
impact of most pessimistic IPCC scenarios (eg, 1000 ppm CO2) might 

F I G U R E  5   Pollen of ragweed plants 
grown under elevated CO2 levels induce 
pro-inflammatory cytokine profile in 
moDCs. A-E, IL-10, TNF, IL-6, IL-1β, 
and CCL17/TARC were measured in 
cell culture supernatants after 24-h 
stimulation with 2.5 mg/mL control- 
or CO2-RWE, and the results were 
summarized in a profile (F). Dashed line 
indicates unstimulated control. n = 24 
independent experiments using cells 
from different donors; A, RM one-way 
ANOVA with Sidak's test for multiple 
comparisons. B-E, Friedman's test 
with Dunn's correction for multiple 
comparisons;*P < .05 and **P < .01 
comparison between treatment groups

F I G U R E  6   Metabolome analysis of RWEs reveals differentially expressed clusters of substances. A, PALMs, LPS, adenosine, and Amb a 
1 measured in extracts of single plants (n = 10). B, Heatmap of substances present in RWE are clustered using Euclidean distance measure 
and Ward's linkage-clustering algorithm. C, Principal component analysis (PCA). D, Univariate volcano plot analysis of all metabolites. n = 3 
control-RWEs and n = 4 CO2-RWEs for metabolome analysis. E-H, Cytokines measured in DC supernatants 24 hours after stimulation with 
compound mixes (concentration 3 × 10−7 M, Table 1). n = 27 independent experiments using cells from different donors; Wilcoxon signed-
rank test; *P < .05 and **P < .01 comparison between treatment groups
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further enhance not only pollen biomass, but also pollen allergenic-
ity, which will most probably contribute to an increase of allergic re-
sponses to ragweed in the population. Together with our previous 
research on effects of climate change scenarios on pollen,16,64 we 
demonstrate that climate change affects plants and pollen allerge-
nicity, emphasizing the importance of viewing climate change as an 
existential threat to our health.
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