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Abstract—Most current supervised learning systems require
large quantities of labelled data, limiting their applicability in
domains where labelled data is scarce and hard to obtain. We
introduce a novel approach for incorporating additional, user-
given areas of interest during training by which the learning
process can be guided. The provided guiding attention is incor-
porated in the training phase as a form of data augmentation,
which ensures that input dimensions do not vary between train
and test/deployment time, when no guiding attention is present.
We evaluate this approach by extending the CIFAR-10 dataset
with prototypical information and ascertain, that our approach
reduces the required amount of samples by up to 44.89%,
when combined with traditional data augmentation techniques.
This would enable the use of learning systems in parts of
manufacturing such as commissioning, where additional samples
are scarce and costly to obtain while providing guiding attention
is a matter of seconds.

Index Terms—expert knowledge, artificial neural networks,
data augmentation, guiding information

I. INTRODUCTION

In the producing industry, there is a continuous interest
in self-adapting and self-optimizing production processes [1].
The scope spans from single machines to complete production
lines, thriving to produce parts with the best possible quality,
using the least possible amount of resources. In recent years,
data-driven methods have received increased interest in the
production domain [2], [3]. Machines produce, besides the
physical products, also large amounts of unstructured data
and thus employing data driven methods seems promising.
In today’s factories, the products are usually inspected by
the machines’ operators (or specialized quality assurance
personnel; we subsume the different roles as ’operator’ here
for the sake of simplicity), cf. Figure 1. The data produced
by machines is oftentimes also inspected by operators on the
shopfloor, e.g. using supervisory control and data acquisition
(SCADA) systems for aggregation and visualization. The
use of reinforcement learning methods is being investigated
in the manufacturing context [4]. In theory, this approach
(cf. Figure 2) could take operators out of the loop, creating
fully autonomous self-x systems. However, the introduction is
challenging in practice, as it either involves blocking machines
for a significant amount of time and wasting production
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resources during the training phase, or needs simulation envi-
ronments with adequate precision, which is often not feasible
for complex production processes.

This paper focuses on the use of supervised learning ap-
proaches, addressing the unique constraints present in the
manufacturing domain. The goal is to work on data and
products generated during the normal production duty cycle
and/or during commissioning of machines. The challenge here
is often the limited availability of the right data—in particular,
that of problematic production runs—in sufficient quality and
quantity. Since supervised learning systems operate solely on
problems and their solutions, they require vast amounts of
labelled data. This is in strong contrast to human learning,
where psychological studies have illustrated the importance of
strong guidance of the learner [5] through explanations, such
as explanatory solution paths [6] and previous knowledge [7].
Drawing inspiration from these aspects of human learning, we
propose to get humans to provide additional information which
can serve to explain relationships between input data and its
label, thereby guiding the model’s learning process in the right
direction.

Perspectively, we aim to build a socio-technical system
consisting of human operators and a supervised learning agent
that can give increased decision assistance to the operator over
time, while improving its performance based on labels and
guiding information provided by the operator (cf. Figure 3).
The explicit integration of the operator will lead to an in-
creased robustness of the system compared to current SCADA
systems. Specifically, it will exhibit self-improving charac-
teristics in regards to prediction quality, which is improved
by the operator’s guiding information. Self-adaptiveness is
increased through the interplay between the learning system’s
recommendations to the operators and the operator’s expert
knowledge that is passed to the learning system.

In this paper, we fundamentally examine the effect of
employing guiding information—more specifically guiding
attention—in a supervised learning setting. To get an initial
grasp on what is achievable by this kind of augmentation in
principle, we chose the setting for our study as follows:
• Guiding attention is supplied during the data labelling

process, where experts give additional information about
their attention focus during the labelling. The long-term
goal is to collect such information during the operators’



Fig. 1. Operator-in-the-loop in today’s pro-
ductions.

Fig. 2. Self-x production using agent trained
with reinforcement learning. Fig. 3. Assisted production using agent trained with

supervised learning during operation.

idle times or extract it from interaction data between
operators and machines.

• We start with a standard image dataset (CIFAR-10) [8]
and thus extend an image labelling workflow. We chose
CIFAR-10 because it seemed easy for a laymen to provide
the required guiding attention. Once we have a good
understanding of the possibilities and limitations of this
approach, we aim for a transfer to production datasets
and labelling workflows of our industrial partners. The
proposed approach is not limited to images but could
also be applied to time-series, natural language texts and
parameter sets among others, and is directly applicable
to industrial settings e.g. by assisting the operator during
quality assurance.

• The focus is explicitly not on competing with state of the
art accuracy on this kind of dataset. Instead, we purely
focus on the effect of additional guiding attention applied
as data augmentation.

We address the following research question in this work: Can
we compensate the lack of more training data by augmenting
the existing data with information about where the expert’s
attention was focused when deriving the label?

The remainder of this work is structured as follows: Sec-
tion II gives an overview of related approaches. Section III
presents the methodology used in the presented approach. The
dataset used for evaluation is explained in Section IV, while
Section V details the experimental setup used. Section VI goes
into detail about the achieved results until now. An outlook and
conclusions are given in Section VII and Section VIII.

II. RELATED WORK

To the best of our knowledge, this approach of incorporating
more labels to be used as an augmentation technique has
not been investigated before with research typically focusing
on: (1) Boosting the available labelled data through various
means such as data augmentation [9] (rotations, mirroring,
gray-scaling etc.); (2) utilizing unlabelled additional samples,
e. g. to obtain a better initialization by pre-training in an
unsupervised setting [10] or requesting labels from experts
for edge cases in Active Learning [11], [12], or (3) by
learning representations on other related and similar datasets

and transferring the knowledge onto the existing task [13].
However, there are multiple branches of research that are
conceptually related.

There are multiple ways of combining expert knowledge
and learning systems such as artificial neural networks. Most
research has been focused on knowledge-base completion for
which knowledge graph embeddings have been frequently
used to solve tasks such as link prediction and entity classifi-
cation [14]–[17]. Another approach are Graph Convolutional
Networks, that directly operate on undirected graphs [18].
As knowledge-graphs are often directed to further specify
relations between entities, they have been extended to operate
on directed knowledge-graphs [19] and used for knowledge-
base completion. Embeddings of knowledge bases have been
successfully applied to increase performance of neural net-
works for text understanding [20], [21] and recommendations
[22]–[25]. Tandon et al. have illustrated that common-sense
knowledge is crucial to allow the application of learning
systems to reasoning tasks [26]. All these works focus on
relational rather than procedural or rule-based knowledge.
Also, they depend on the complete additional knowledge to
be present in a structured knowledge graph, that is assumed
to be created before their application. This sets them apart
from our approach, which is able to work with a fractioned
knowledge representation and perspectively aims to acquire
additional knowledge in an unobtrusive fashion.

Conceptually, our approach is related to attention mech-
anisms, that have proven beneficial in tasks such as image
captioning [27], machine translation [28] and tracking [29].
However, in contrast to these works the attention present in
our approach is given by humans.

On a very high level of abstraction, our approach is re-
lated to active learning as described by Settles [12], insofar
as active learning approaches query information during the
learning process and consequently also deal with incomplete
information.

III. METHODOLOGY

A supervised learning system is generally defined as a
function fθ : X → Y, where X ⊆ RDX and Y ⊆ RDY

with DX , DY > 0 are input- and output space, respectively.



Fig. 4. Distribution of user-given guiding attention by class name.

Importantly, it is assumed that X and Y remain unchanged
throughout training and test time (and also after deployment).
In the scenario as outlined in Section I this is not directly the
case as guiding attention is provided voluntarily and therefore
inherently intermittent. To be able to build upon the achieve-
ments of learning systems research, we propose to introduce
the guiding attention through augmentations of the training
set. Let XA = {x | ax ∈ A} denote the subset of the complete
input data X for which guiding attention a ∈ A ⊆ BDX

is present, then X ′ = {X, aug(XA, A)} denotes the new -
extended - training data and aug : (X ,A) → X a suitable
function for augmenting each x ∈ XA with the corresponding
a ∈ A. This leads to an increase in training data by |A|,
|X ′ | = |X| + |A|. Note that, XA ⊆ X and therefore x ∈ X
for which no guiding attention might be available can exist
and still be incorporated into the learning process as the input
space X remains unchanged. Also, aug(x, a) is specific to
the chosen domain and data format. As such, it is described
in Section V.

IV. DATASET

To evaluate our methodology we extended the CIFAR-10
dataset [8] with user-given guiding attention. The original
dataset incorporates 60000 32x32 pixel color images, evenly
distributed over ten distinct classes. There has been a plethora
of research regarding CIFAR-10 with state of the art results
at around 99% correctly classified images1. Some quite recent
examples forming this impressive state of the art include BiT
[13], GPipe [30] and EfficientNet [31]. However, in contrast
to our neural architecture (cf. Section V) they rely on very
intricate, vastly more complex designs and/or prior knowledge
(transfer learning) rather than just the dataset itself.

We expanded on the original CIFAR-10 data by having
two persons independently give guiding attention for 2000
samples each, highlighting areas which they deemed relevant
for the respective classification, thereby mimicking an atten-
tion mechanism. The general idea is to point the learning

1https://paperswithcode.com/sota/image-classification-on-cifar-10

Fig. 5. Samples of the dataset and the applied preprocessing visualized.
Columns (a) and (b) show the original images and their user-given guiding
attention, respectively. Column (c) shows the mask obtained by applying d(x).
The resulting images that are augmented to the training set are shown in
Column (d).

system to where it should derive its decision from through
guiding attention, limiting the influence of noisy or irrelevant
background features. The selection of an area of interest
was done by selecting the pixel that constitutes the center
of the respective area of interest. The amount of areas of
interest was not restricted per image and could be corrected by
deleting previously highlighted areas of interest, if applicable
adjusting their position by re-placing them. After an image
was confirmed the users had to choose between correcting
it and continuing with the next image. This information was
appended to the dataset, which now has the properties X, y,A,
where a ∈ A is the user given guiding attention for an image.

The distribution of the 4000 samples including guiding
attention is shown in Figure 4. The slight imbalance between
classes that can be observed there is deliberately included as
slight class imbalances are very common in real-world use-
cases. To alleviate a strong impact, the disparity is kept to
a relatively low amount of samples with guiding attention.
Columns (a) and (b) in Figure 5 show the original image
and a visualization of the selected centers of areas of interest,
respectively. Overall an average of 13.82 areas of interest were
selected per image.

V. EXPERIMENTAL SETUP

To integrate the user-given guiding attention as data aug-
mentation cf. Section III we need to find a suitable function
aug(x, a) to preprocess the data. Since the guiding information



in our case derives from the users’ attention towards certain
areas of interest, we decided to apply blur to the parts of an
image the user deemed unimportant. This removes, or at least
reduces, possibly distracting irrelevant information contained
in the background of the object to be classified. Therefore,
we compute a mask that encodes the differing degrees of
importance of each pixel of an input image. This is done by
determining the distance to the nearest center of a highlighted
area fA(xi) = min{|xi − ai| : ai ∈ a, ai = 1}, and passing
that distance to a function d(xi) = max(0,−0.1xi + 1). The
resulting mask is then used to blur the original image by
multiplying and scaling it with the average color information.
The result can be seen in Figure 5, where Columns (c)
and (d) show the computed mask and its application to the
original image, respectively. Relevant areas are visible but the
discernible area is substantially reduced and the background
blurred, indicating that there are fewer edges to detect by the
models, which we assume results in a reduction of complexity.

The model’s architecture is a relatively shallow convo-
lutional neural network (CNN)—implemented in Tensor-
flow [32]—with two subsequent blocks of Convolution (3x3
kernel), ReLu Activation, Convolution (3x3 kernel), ReLu
Activation, MaxPooling (2x2 pools) and Dropout with 0.25.
This is followed by a Fully Connected Layer, ReLu Activation,
Dropout with 0.5, another Fully Connected Layer and a
Softmax Activation to map the output to the respective classes.
The model’s architecture is deliberately kept comparatively
simple, as we aim to investigate the fundamental effects of
introducing guiding attention through data augmentation.

All models are trained for 15 epochs where convergence
was reached most of the time. The learning rate was set to
0.001 and a batch size of 64. Hyperparameter optimization was
omitted, since we want to illustrate the data augmentation’s
effect and therefore the model’s exact performance is not
relevant. Each experiment was executed 20 times to limit
stochastic influences.

VI. EVALUATION

To evaluate our approach we present three experiments. The
first validates whether the dataset extension is viable at all, the
second inspects how different amounts of normal to augmented
data affect accuracy and the third evaluates the approach in
combination with traditional data augmentation.

A. Validate Dataset Extension

To validate that the user-given guiding attention is indeed
suited to be applied as data augmentation, this experiment
compares the performance of the chosen architecture on both
a subset of unaugmented, normal CIFAR-10 data, as well as
a set where both training and test data are augmented with
preprocessed data to contain guiding attention cf. Section V.
Therefore, the respective datasets are limited to the 4000 sam-
ples which constitute XA, that is for which guiding attention
is present. Both were split to 2666 training and 667 validation
and test data, respectively.

Fig. 6. Results of Experiment A: Accuracy for datasets consisting of only
preprocessed images and normal, non-preprocessed images, respectively.

The results are shown in Figure 6. They are comparable
with regards of medians of 50.74% and 50.24% accuracy, re-
spectively. It has to be noted, however, that standard deviation
for the augmented dataset is higher than for the unaugmented
one with 4.10% and 2.26%, respectively.

These results illustrate two things. Firstly, that the chosen
preprocessing does not have a detrimental effect on the pre-
diction task. In extension to this observation we can assume
that the user-given attention indeed still contains valuable
information. Secondly, since the uninteresting parts of an
image are blurred in the augmented dataset and performance
is still comparable we can conclude that the unaugmented
model was not focusing on features of the images that do
not pertain to the actual object in question, such as clouds in
the background of birds.

B. Effect of Different Percentages

To evaluate the effect of additional information on the
learning process we present this experiment, which com-
pares achievable accuracy for separate amounts of nor-
mal images (|X|) and images that are augmented (|XA|)
by applying the preprocessing as described in Section V
with the user-given guiding attention. As in industrial use-
cases—on which this approach will be tested and realized
in the future—low data availability is prevalent we chose
to focus on comparatively small amounts of normal im-
ages. Specifically, N = {4000, 6000, 8000, 10000, 20000}
and I = {0, 1000, 2000, 3000, 4000}, where N is amount of
normal images, and I the amount of preprocessed images
serving as data augmentation. i = 0 serves as a baseline,
since it indicates that no preprocessed images are included
in the training data X ′, leaving it unmodified and unguided.
All combinations are validated on the test portion of CIFAR-
10, i.e. the last 10000 images, which are evenly distributed
among classes.

The results of the runs for each configuration are shown in
Figure 7. The x-axis displays the amount of normal images,
while the y-axis illustrates the accuracy on the validation set
achieved by the respective combinations of n and i. These
are displayed as box-plots containing data of 20 runs using



Fig. 7. Accuracy on test set for varying amounts of unaugmented, normal
images by amount of images containing guiding attention. No traditional data
augmentation was applied.

different random seeds. One can observe that in general
accuracy increases with increasing training size. This is to be
expected since more samples (usually) offer a wider variety
of data and as such better generalization to the test set.
However, it should be noted that the x-axis steps are not
completely evenly-spaced, therefore the jump in accuracy
increase between n = 10000 and n = 20000 is not surprising.
In fact, the increase can be characterized as asymptotic,
slowing with greater n. If we consider the different quantities
of preprocessed images, we can observe that generally the
accuracy also increases with increasing amounts of guiding
attention used in training. n = 4000 / i = 1000 and n = 20000
/ i = 2000 are the only significant exceptions from this
trend. The maximum increase in median accuracy for each
n ∈ N is limited to 1.8, 2.9, 2.2, 1.6 and 1.2 percentage
points, respectively. For all combinations of n and i > 0 a
mean median benefit on accuracy of 1.21 ± 0.68 percentage
points was achieved over the baseline i = 0. The largest mean
median increase in accuracy was at i = 4000 with 1.88±0.68
percentage points.

While these relatively small numbers might seem a bit
disenchanting it is useful to have a look at what these numbers
imply. As previously observed, the accuracy asymptotically
increases with growing training sizes. Therefore, we calcu-
late how many samples of unaugmented training data are
corresponding to the achieved accuracies, where augmented
samples were used. To achieve this, we first fit a logarithmic
function to the median baseline of unaugmented runs. This
results in a(n) = −0.2895+0.1021 ln(n), that maps a number
of unaugmented images to its expected accuracy. We can
reformulate this as n

′
(a) = exp(a+0.2895

0.1021 ), which gives us
the expected required amount of unaugmented training images
for a median given accuracy. Based on n

′
(a), the percentage

of how many data samples that could be saved by applying
our methodology can be calculated. The resulting relative

Fig. 8. Relative sample reduction in %, illustrating how much additional
unaugmented data would be required to achieve a comparable result. No
traditional data augmentation was applied.

percentages are shown in Figure 8.
We can observe that there seem to exist better performing

ratios between i and n, as for all i the percentage improves
up to a certain n and then begins to decrease, with higher
accuracies for higher amounts of augmented guiding images.
A probable cause for the increase is that for low n a substantial
amount of preprocessed images is added. This could lead
to worse accuracy as the weights that are adjusted during
the learning process are likely to substantially adapt to the
changed semantic of the input images, especially since the
test-images are not augmented with guiding attention. Also, it
has to be noted, that the proposed metric only measures the
impact through the indirection of model performance and as
such can be influenced by other hyperparameters that influence
the models accuracy and scale differently with the number
samples used in training. Most notable of those is the number
of epochs, which we assume is responsible for the decreasing
improvement with increasing amount of normal images since
generally larger training sets can be trained for longer without
overfitting. Nonetheless, we achieve a stable improvement of
over 15% sample reduction in the lower regions of available
sample data which fits our targeted domains. The highest
reduction is recorded at n = 6000 / i = 4000 with 28.82%.
We also observe an outlier at n = 4000 / i = 1000, that was
also an outlier in the relative trend of improvement through
augmentation.

C. Effect in relation to Traditional Data Augmentation

To evaluate the effect of our approach in combination and
in contrast with traditional data augmentation techniques, we
repeated Experiment B while including traditional data aug-
mentation and compare the results. In the following, we will
differentiate between the terms augmented and traditionally
augmented which refer to augmentation via our approach
and traditional data augmentation, respectively. Preliminary



Fig. 9. Accuracy on test set for varying amounts of unaugmented, normal
images by amount of images containing guiding attention. Traditional data
augmentation was combined with our approach.

experiments have shown that rotation and shear have a negative
effect on the CIFAR-10 dataset, probably due to the small
image sizes. Therefore, we limited traditional augmentation
in this experiment to horizontal mirroring. Figures 9 and 10
illustrate the results. Due to the different results for the
baseline, n

′
(a) = exp(a+0.2358

0.0974 ) was used as a basis to
calculate sample reduction.

Using this technique, the median accuracy improves by
an average of 2.01 ± 0.73 for all combinations of n and
i > 0 over the baseline i = 0. The best increase over the
baseline is achieved for n = 4000 / i = 4000 with 4.25
percentage points, which translates to a sample reduction of
44.89%. In general, the combination resulted in increased
sample reduction rates for n compared to Experiment B. The
only exception is n = 20000, which is likely due to the
percentage of added guided attention getting smaller although
sub-optimal hyperparameters are also a possible issue.

To quantify the effect of traditional data augmentation
we compare the baseline obtained in Experiment C to the
unaugmented baseline of Experiment B (i = 0; no traditional
data augmentation). We observe a benefit in classification
accuracy of 1.17 ± 0.49 percentage points averaged over all
the medians of all training sizes. The largest increase in
accuracy is at n = 8000 with 1.70 percentage points. To
compare our approach to traditional data augmentation we
note, that the average benefit of traditional data augmentation
is slightly smaller than the mean median benefit of 1.21±0.68
percentage points that was achieved with our approach in
Experiment B, indicating that guided attention is able to
achieve better results than the employed traditional technique.
Both, our augmentation approach and traditionally augmented
data combined lead to a mean median increase of 2.05± 0.08
percentage points for all combinations of n and i > 0 over
the results from Experiment B. This translates to an increase
in mean sample reduction of 11.77 ± 2.24 percentage points

Fig. 10. Relative sample reduction in %, illustrating how much additional
unaugmented data would be required to achieve a comparable result. Tradi-
tional data augmentation was combined with our approach.

over the results from Experiment B.

VII. FUTURE WORK

We currently plan on investigating the effect of our approach
on state of the art models and multiple data sets that allow
more aggressive traditional data augmentation methods to be
used. Also, we would like to further investigate the effect of
varying numbers of areas of interest as well as providing users
with the ability to define them without geometric constraints.
Furthermore, the approach’s effect on different model archi-
tectures should be researched to quantify our notion that it is
model-agnostic.

The positive results presented in Section VI encourage
us to try and adapt our approach to challenging domains,
e. g. manufacturing, in the future. A first step could be the
application to complex image recognition tasks, that require
context knowledge. A second, more complex adaption is to
non-image datasets, i. e. machine parameters, environmental
conditions and resulting part quality. This would necessitate
more fundamental changes to aug(x, a). In the industrial con-
text, the combination with eye trackers could be investigated
to unobtrusively gather guiding attention.

To strengthen the socio-technical aspect of such systems and
give the user a more fulfilling role than simply providing labels
and parameters, the combination of our approach and active
learning could be investigated. This would lead to interesting
query strategies, since the learners would gain the ability to
differentiate between requesting labels or explanations.

VIII. CONCLUSION

In this paper we investigated the effect of incorporat-
ing guiding attention into a classification task through data
augmentation. Guiding attention is provided by humans and
indicates where relevant information to derive the correct label
from is located in a sample. We collected guiding attention



on 4000 randomly selected images of the CIFAR-10 dataset
in form of a bit mask where centers of areas of interest
result in a True value. We then used this guiding attention
by increasingly blurring pixels based on their distance to
the nearest center. In three experiments we showed: Firstly,
that training with only those augmented images achieves
comparable results to using the same 4000 images without
the guiding attention. Secondly, that the proposed approach
increases performance equal to using up to 28.82% additional
traditionally labelled samples—an effect that was especially
prominent for small numbers of available training samples.
Lastly, we combined our augmentation with traditional data
augmentation techniques, again showing that our approach to
incorporate guiding attention improves results and can even
save up to 44.89% standard samples.

The main application of this technique is in industrial
settings where sample generation is often quite costly while
machine operator knowledge can be provided mid-production
without impacting throughput. E. g. when testing a parameter
change results in producing a new batch of product, or
quantifying the actual result involves substantial mechanical or
biochemical analysis. However, given the results we showed in
this preliminary work towards a socio-technical systems we are
confident that the application of guiding attention can perform
well on the small, labelled data sets prevalent in specific areas
of manufacturing.
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