
ARTICLE

Bisulfite-free epigenomics and genomics of single
cells through methylation-sensitive restriction
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Single-cell multi-omics are powerful means to study cell-to-cell heterogeneity. Here, we

present a single-tube, bisulfite-free method for the simultaneous, genome-wide analysis of

DNA methylation and genetic variants in single cells: epigenomics and genomics of single

cells analyzed by restriction (epi-gSCAR). By applying this method, we obtained DNA

methylation measurements of up to 506,063 CpGs and up to 1,244,188 single-nucleotide

variants from single acute myeloid leukemia-derived cells. We demonstrate that epi-gSCAR

generates accurate and reproducible measurements of DNA methylation and allows to dif-

ferentiate between cell lines based on the DNA methylation and genetic profiles.
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S ingle-cell multi-omics are revolutionizing our under-
standing of cell-to-cell variability1–4. These techniques offer
to link genomic, epigenomic, and transcriptomic informa-

tion from the same cell, and therefore allow to study cell-to-cell
variability at unprecedented resolution. However, the simulta-
neous analysis of genetic variants and DNA methylation in single
cells remains challenging. The analysis of single-cell DNA
methylation typically relies on methylation-sensitive restriction
enzymes (MSRE) or bisulfite conversion. The latter is considered
the gold standard for genome-wide methylation analysis, but its
application to single cells is hampered by DNA degradation5,
resulting in high dropout levels4. Moreover, the bisulfite-induced
C > T substitutions impact the ability to concurrently detect gene
variants6. MSRE-based single-cell approaches typically rely on
PCR-based readout and are thus limited in the number of eva-
luable loci per cell2.

Here, we report an MSRE-based method with genome-wide
readout, which facilitates simultaneous analysis of DNA methy-
lation and genetic variants of the same cell at base-pair resolution
(epigenomics and genomics of single cells analyzed by restriction;
epi-gSCAR). We devised epi-gSCAR as a multistep single-tube
workflow which minimizes DNA loss and reduces the risk of
contamination. epi-gSCAR features accurate and reproducible
characterization of DNA methylation, while preserving the vast
majority of genetic information with moderate incidence of
dropouts. Thus, epi-gSCAR allows to identify cell-to-cell differ-
ences in the DNA methylation profile, and to assign these dif-
ferences to a given genotype. The latter is of particular
importance for the analyses of leukemias and other cancer spe-
cimens, since the malignant cells usually differ from healthy cells
and among themselves by the genetic aberrations acquired (i.e.,
clonal heterogeneity).

Results
epi-gSCAR workflow. Analogous to previously published
methods2,7, epi-gSCAR employs digestion using the MSRE HhaI,
which results in cleavage of unmethylated recognition sites, while
methylated sites stay intact (Fig. 1a). Terminal deoxynucleotidyl
transferase (TdT) efficiently adds a 3′ poly(d)A tail to the gen-
erated DNA ends, which carry the genome-wide information of
unmethylated recognition sites. The resulting tagged restriction
enzyme scars serve as priming sites for GAT-oligo(dT)12-adap-
ters8 containing a constant nucleotide 5′ sequence9, which are
ligated to the free 5′ scar end (Fig. 1a). Subsequently, a second
adapter carrying the same constant sequence followed by seven
random 3′ nucleotides facilitates quasilinear amplification of the
whole genome, including all tagged DNA ends. Thus, epigenetic
information represented as intact or scar-tagged HhaI sites (i.e.,
methylated or unmethylated sites), and the genetic information
are conserved and amplified. The resulting primary library
amplicons are PCR-amplified, and genetic variants and/or DNA
methylation can be analyzed by conventional or next-generation
sequencing (NGS).

HhaI is particularly well suited for the application in epi-
gSCAR since (i) cleavage generates 3′CG overhangs which are
efficiently tailed by TdT; (ii) HhaI is completely blocked by CpG
methylation on one (hemi-methylation) or both strands, but not
by overlapping methylation (i.e., GCGC)10,11; and (iii) the human
genome contains 1.69 million HhaI recognition sites, providing
superior genome-wide and feature-specific coverage when
compared to the Infinium HumanMethylation450 BeadChip
(450 K) or MethylationEPIC Kit array (Supplementary Fig. 1). In
particular, CpG islands (CGIs) and transcription start sites (TSSs)
are strongly enriched for HhaI sites (Fig. 1b). CGI shores, shelves
and Fantom5 enhancers show HhaI coverage that is comparable

to the aforementioned conventional cell-bulk assays (Supplemen-
tary Fig. 1).

Application of epi-gSCAR to measure site-specific CpG
methylation. First, we applied 27 single cells of the human acute
myeloid leukemia (AML) cell line Kasumi-1 to two variants of the
epi-gSCAR workflow (Fig. 1a). For all single cells subjected to the
epi-gSCAR assay, we could verify successful amplification of
library DNA by agarose gel electrophoresis (Supplementary
Fig. 2a and Supplementary Data 1). Product quality and fragment
size distribution were additionally assessed on a Bioanalyzer
(Agilent) High-Sensitivity DNA chip for selected reactions
(Supplementary Fig. 2b).

In this first set of cells, we tested whether methylation of
individual CpG sites can be assessed by targeted amplification of
the loci of interest from the epi-gSCAR library. For this, we
utilized step-out PCR, which facilitates isolation of amplicon ends
regardless whether the target fragment contains intact HhaI sites
or scar-tagged DNA ends12. This enables a convenient and cost-
effective targeted readout of single-cell DNA methylation by
conventional sequencing. We determined the DNA methylation
status of two individual CGIs located within the promoters of the
long and short isoforms of DLX4 in single cell K_05 (Fig. 1c).
CGI1 was determined to be largely unmethylated, while
CGI2 showed strong methylation (Fig. 1d). The results compared
well with the DNA methylation levels of six other single cells
analyzed by NGS (discussed below), and with Kasumi-1 bulk data
derived from 450 K arrays or previously published whole-genome
bisulfite sequencing (WGBS)13 (Fig. 1d, e).

Application of epi-gSCAR to measure genome-wide CpG
methylation. To examine the potential of epi-gSCAR to measure
genome-wide DNA methylation, we applied NGS to 7 of the 27
libraries (K_01–K_07). These libraries were sequenced at low
depth (10.15–20.78 million mapped reads per cell; 0.41×–0.82×
mean depth), achieving up to 18.8% genome coverage at ≥1×
depth (Supplementary Data 2). NGS data were then analyzed
using a custom bioinformatic pipeline (Supplementary Fig. 3).

To assess the overall quality of the data obtained by epi-
gSCAR, we first analyzed the genome-wide methylation profiles
of CGIs, gene bodies and five histone marks (Supplementary
Fig. 4). The derived profiles were in line with those described in
the literature14,15. We also compared the single-cell methylation
datasets with cell-bulk methylome data obtained from 450 K
arrays and fromWGBS of Kasumi-1 and observed that the single-
cell datasets well resembled the profiles of the cell-bulk controls
(Supplementary Fig. 4). HhaI digestion efficiency as assessed by
the analysis of non-methylated spike-in DNA was ≥98.3%
(Supplementary Fig. 5b–d). Conversely, we confirmed complete
digestion blockage of methylated spike-in DNA (Supplementary
Fig. 5a).

Assessment of epigenetic heterogeneity using epi-gSCAR. We
next assessed the ability of epi-gSCAR to differentiate between
different cell lines based on the DNA methylation profiles. In
addition to Kasumi-1, we selected OCI-AML3 as a second cell
line which harbors a common, AML typical gene mutation in the
DNMT3a gene and features a pronounced hypomethylation
phenotype13. In order to directly compare both cell lines, we
applied epi-gSCAR to 80 single cells of each cell line, which
resulted in successful amplification of library DNA for all reac-
tions as assessed by agarose gel electrophoresis. Based on the
visual verification of single-cell deposition (Supplementary
Data 3), we selected 20 cells (K_08–K_27 and O_01–O_20) for
NGS analysis using our low-coverage approach (13.67–30.85
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Fig. 1 epi-gSCAR workflow schematics and methylation readout for the DLX4 locus. a epi-gSCAR workflow: single-cell isolation is followed by lysis and
chromatin digestion to render DNA accessible for methylation-sensitive restriction enzyme (MSRE) digestion with HhaI (i). Cleavage of methylated HhaI
sites (light blue) is blocked, while unmethylated sites (dark blue) are cleaved; the resulting DNA ends are tagged with poly(d)A tails (red) (ii). Poly(d)A
tails are primed by anchored (GAT-oligo(dT)12-CG, blue–green–gray, assay variant A) or non-anchored adapters (GAT-oligo(dT)12, green–gray, assay
variant B). Anchored adapters were used to limit the length of poly(d)A tails in the library (Supplementary Fig. 8). This is followed by gap filling and
ligation, which results in tagged restriction enzyme scars (iii). Random priming by 7N-GAT adapters (orange–gray) facilitates quasilinear amplification of
the genome (iv). PCR generates amplicons carrying genetic and epigenetic information (v). b HhaI sites in CGIs and around TSSs across 100 bp windows
and 3 kb upstream and downstream. c Methylation analysis of the DLX4 locus by step-out PCR followed by Sanger sequencing. DLX4 locus with CGI1
(green) and CGI2 (red), CpGs (red) and HhaI sites (blue), primer map for analysis of HhaI sites 1–10 (CGI1) and 3–21 (CGI2), and corresponding
sequencing reads. Magnification of reads obtained from single cell K_05 (selected for analysis as it demonstrated satisfactory results in initial suppression
PCR experiments) corresponding to HhaI sites 4–6 in CGI2 showing intact and tagged-scar HhaI sites: intact HhaI sites are called as having been
methylated and poly(d)A-tailed HhaI scar sites unmethylated; presence of both suggests heterozygous methylation. d DNA methylation in single cells
K_01–K_07 at individual HhaI sites for CGI1 (green) and CGI2 (red) of DLX4 assessed by PCR and/or NGS (Supplementary Fig. 3), and comparison with
Kasumi-1 cell-bulk whole-genome bisulfite sequencing (WGBS) data. Using step-out PCR on single cell K_05, CGI1 was unmethylated at all analyzed HhaI
sites (6/6). CGI2 featured high level of heterozygous methylation (14/19 methylated; 5/19 heterozygous methylation). e Mean methylation levels of CGI1
(green) and CGI2 (red) for single cells K_01–K_07 (NGS and PCR), Kasumi-1 WGBS and Illumina 450 K array.
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million mapped reads per cell; 0.62×–1.37× mean depth; Sup-
plementary Data 2). The generated NGS datasets were used to
assess and directly compare DNA methylation and genetic variant
features of the cell lines.

For all analyzed cells, we obtained data on 214,634–506,063
CpG dinucleotides (mean: 373,058), corresponding to 0.78–1.85%
(mean: 1.36%) of all informative CpG dinucleotides and
13.3–31.6% (mean: 23.2%) of HhaI sites (Supplementary Data 2).
For both Kasumi-1 and OCI-AML3, covered CpG dinucleotides
provided information on various genomic features, including CGI
promoters, non-CGI promoters, orphan CGIs, gene bodies, and
intergenic regions, which closely resembled the theoretical
distribution of HhaI sites (Supplementary Fig. 6).

Next, we analyzed the sequencing coverage bias and found that
the bias was slightly higher than that observed for published
MALBAC datasets, while the coverage was more uniform than
that of published multiple displacement amplification datasets
(Supplementary Fig. 7).

For the second batch of single cells (K_08–K_27 and
O_01–O_20), HhaI digestion efficiency was assessed by the
analysis of non-methylated random spike-in control DNA
(Supplementary Data 2). Reads containing spike-in DNA and
covering the unmethylated HhaI control site could be detected in
22 of 40 single-cell libraries. All 22 libraries only contained spike-
in amplicons with tailed HhaI scars, which confirmed complete
digestion (Supplementary Data 2). Complete digestion for all
processed single-cell libraries can be assumed, since incomplete
digestion would inevitably result in stochastic concordance
decrease (see below).

We next generated and compared single-cell DNA methylation
profiles for both cell lines across different histone marks, CGIs, and
gene bodies, and could identify clearly distinct methylation profiles
for both OCI-AML3 and Kasumi-1, respectively (Fig. 2a, b).

Activating histone marks (H3K9ac, H3K4me3, H3K4me2, and
H3K27ac) were associated with low levels of methylation in both
cell lines, which is in accordance with previous reports15. As
expected, the lowest methylation levels were present at H3K4me3
and H3K9ac peaks, which are enriched at active promoters and
associated with increased activation of promoter or enhancer
regions. For both cell lines, the highest methylation values were
measured for Polycomb repression-associated H3K27me3 peaks
(Fig. 2a)14.

Analysis of CGIs revealed the expected depletion of methyla-
tion in Kasumi-1 and OCI-AML3 single cells. All analyzed single-
cell methylomes exhibited low methylation levels around TSSs
and high methylation levels within gene bodies (Fig. 2b).

We then analyzed gene body methylation in correlation with
genome-wide gene expression levels by grouping genes based on
their genome-wide RNA expression levels in cell bulk into three
groups (0–20%, >20–60%, and >60%; Fig. 2b). For both, Kasumi-
1 and OCI-AML3 single cells, methylation profiles were in line
with the described relationship between gene expression and
DNA methylation in gene promoters and gene bodies, i.e., that
the depletion of DNA methylation around TSSs and enrichment
of methylation in gene bodies correlates with higher expression
rates14. Indeed, the most highly expressed genes consistently
showed the lowest levels of methylation around the TSS and the
strongest enrichment of methylation toward the 3′-end of the
gene body, although the latter was less prominent when
comparing the gene groups of >20–60% and >60% expression
in OCI-AML3.

Interestingly, overall DNA methylation levels of profiles for
histone marks, CGIs, and gene bodies were apparently lower for
OCI-AML3 in comparison to Kasumi-1 single cells.

To compare our single-cell data with cell-bulk methylome data
obtained from 450 K arrays and WGBS of Kasumi-1 and OCI-

AML3 cells, we generated synthetic pseudo-bulk samples from
the single-cell datasets (Supplementary Fig. 9). Although the
number of covered CpGs did not reach saturation, 79.38% (n=
1,277,093) and 74.56% (n= 1,198,840) of all informative HhaI
sites were covered, using 20 single cells of Kasumi-1 and OCI-
AML3, respectively (K_08–K_27 and OC_01–OC_20; Supple-
mentary Fig. 9).

Next, we analyzed how well the pseudo-bulk methylomes
(K_08–K_27 and O_01–O_20) resembled the profiles measured
in cell-bulk samples. We observed that the pseudo-bulk profiles
largely resembled those derived from bulk WGBS and 450 K array
data across all genetic features analyzed (Fig. 2a, b). As stated
above, discrepancies in the methylation level between the pseudo-
bulk and the cell-bulk controls (WGBS and 450 K array) are likely
explained by HhaI-based coverage and local sequence context
bias (Fig. 1b and Supplementary Fig. 1).

Analysis of single-cell mean methylation values across the
entire genome confirmed that OCI-AML3 is strongly hypo-
methylated when compared with Kasumi-1 (58.8% vs. 79.8%),
which is in line with the cell-bulk WGBS and 450 K array data
and a previous study13 (Fig. 3a). To study variation among the
single cells, we determined the pairwise CpG concordance across
the single-cell libraries, separately for each cell line. Among
Kasumi-1 single cells, the concordance was 80.3–93.9% (mean:
87.7%; Fig. 3b), and among OCI-AML3 single cells 77.6–85.2%
(mean: 81.0%; Fig. 3c).

To assess global similarities at the CpG level, we compared the
synthetic pseudo-bulk methylomes with the 450 K array, and
WGBS bulk methylation datasets of Kasumi-1 and OCI-AML3.
By calculating Pearson correlation coefficients (R), we found that
the synthetic bulk methylomes highly correlated with the profiles
derived from both cell-bulk assays (Kasumi-1, 450 K R= 0.95,
WGBS R= 0.89; OCI-AML3, 450 K R= 0.93, WGBS R= 0.81;
Fig. 3d). Circos plot representation of genome-wide methylation
profiles confirmed a high concordance of the pseudo-bulk
datasets and the respective WGBS cell-bulk datasets, and
demonstrated remarkably distinct methylation landscapes for
Kasumi-1 and OCI-AML3 at the pseudo-bulk and single-cell level
(Fig. 3e).

To demonstrate that epi-gSCAR can assign a single cell to its
cell line of origin based on the methylation patterns, we first
assessed global similarities by calculating pairwise Pearson
correlation coefficients across all single-cell datasets. Hierarchical
clustering demonstrated that single cells of the respective cell line
clustered together (Fig. 3f). We further confirmed this by
dimension reduction using UMAP16 to project the single cells
in a two-dimensional space. This again revealed clearly defined
Kasumi-1 and OCI-AML3 clusters, and demonstrated that epi-
gSCAR can distinguish cells based on their DNA methylation
signatures (Fig. 3g).

Evaluation of genetic heterogeneity using epi-gSCAR. In order
to show that epi-gSCAR can be applied to identify single cells not
only based on their individual methylation signature, but also
based on genetic variant information we searched for single-
nucleotide variants (SNVs) in cells K_08–K_27 and O_01–O_20
using monovar17. On average, over 800,000 SNVs (range
498,097–1,244,188) were detected per single cell with ≥10× cov-
erage (Supplementary Data 2). Based on the genome-wide SNV
data, we performed UMAP clustering and identified two distinct
single-cell clusters corresponding to the two analyzed cell lines
(Fig. 3g).

Allelic dropout (ADO) rates were estimated to be as low as
20.7% and comparable to ADO rates achieved by commercially
available MALBAC Kits18,19 (Supplementary Data 2, and
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Supplementary Figs. 10 and 11). As expected, the ADO rate
decreased with increasing coverage, indicating that the current
estimates can be reduced by deeper sequencing (Supplementary
Fig. 11). Moreover, AML-specific heterozygous or hemizygous
point mutations were readily detectable in the epi-gSCAR
libraries20–22 (Supplementary Fig. 12).

Discussion
We report the development of epi-gSCAR, a bisulfite-free method
for genome-wide, base resolution analysis of DNA methylation,
and genetic variants at the single-cell level. Applying this method,
we achieved consistent site-specific and genome-wide DNA
methylation profiling in single cells of two leukemia-derived cell
lines. DNA methylation profiles revealed characteristic signatures
across various epigenetic elements and methylation patterns
correlating with transcriptional gene regulation. We furthermore
demonstrate that merged single-cell methylomes highly corre-
lated with cell-bulk data derived from 450 K arrays and WGBS,
and that profiles deduced from merged single-cell datasets were
highly similar to the cell-bulk control profiles. The overall
methylation levels of epi-gSCAR datasets were in accordance with
cell-bulk levels and demonstrated that the Kasumi-1 cell line is
hypermethylated in comparison with the OCI-AML3 cell lines.
Pearson’s-based unsupervised clustering and UMAP analysis
showed clearly distinct methylation signatures for single cells of
the two cell lines, and thus confirmed their epigenetic hetero-
geneity. Moreover, epi-gSCAR allows for the detection of genetic

variants in addition to DNA methylation in single cells and the
discrimination of single cells based on their genetic profile.

Although epi-gSCAR covers a lower number of CpGs com-
pared with single-cell bisulfite sequencing23, we show that cell-
specific epigenetic heterogeneity can be deduced from the epi-
gSCAR datasets based on the ~1–2% of CpGs covered. This is in
line with the recent finding that measurement of a small sto-
chastically sampled fraction of CpGs (<1%) is sufficient to define
the epigenetic state of a single cell24. In contrast to bisulfite
sequencing protocols, the single-tube epi-gSCAR MSRE-based
workflow minimizes nonspecific DNA loss due to bisulfite
treatment and sample cleanup, and avoids C > T substitutions,
thereby preserving genetic information. In comparison with other
published restriction enzyme-based single-cell methods25,26,
which either rely on the combination of methylation-sensitive
and -insensitive restriction enzymes or on depletion of unme-
thylated regions after MSRE digestion and fragment size selec-
tion, epi-gSCAR requires only one MSRE to directly retrieve
methylation information for both methylated and unmethylated
sites at single-nucleotide resolution. This sleek approach to obtain
information on the DNA methylation is combined with an effi-
cient WGA technique, and thus allows for NGS-based genome-
wide readout of DNA methylation and SNV data.

Further development of epi-gSCAR may include the imple-
mentation of a second MSRE in addition to HhaI if, depending on
the specific research context, an increase of information density
on DNA methylation is necessary. Of high interest will be the
integration of epi-gSCAR into current single-cell RNA-
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Fig. 2 Single-cell methylation profiles and comparison of corresponding pseudo-bulk profiles with WGBS and 450 K array cell-bulk profiles.
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RNA expression level in cell bulk as FPKM (fragments per million mapped reads per kilobase exon), and corresponding pseudo-bulk (light blue lines) and
cell-bulk profiles (WGBS, red lines; 450 K array, green lines). For plotting of pseudo-bulk datasets, we used HhaI sites covered in at least 5 of 20 single cells
in order to reduce coverage bias. Shown is the mean methylation across 150 bp windows for each feature set and 3 kb upstream and downstream.
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sequencing protocols, which could be achieved with or without
physical separation of mRNA from genomic DNA prior to
amplification1,3,27. Moreover, the integration of single-cell protein
assays is conceivable, which would allow to simultaneously assess
a complete picture of the genetic, epigenetic, and functional state
of a cell. epi-gSCAR is also readily suitable for combination with a
single-cell isolation technique other than the single-cell printer we
used, such as fluorescence-activated cell sorting or microfluidic
devices.

In conclusion, epi-gSCAR is a multistep bisulfite-free single-
tube workflow for the simultaneous and genome-wide

characterization of DNA methylation and genetic variants in
single cells. epi-gSCAR can readily be applied to assess the phe-
notypic and genotypic characteristics of single cells, and has the
potential to be easily integrated in current and future single-cell
assays to further expand the applications of multimodal profiling
of single cells, for example, in cancer.

Methods
Cell lines. The AML-derived cell lines Kasumi-1 and OCI-AML3 were provided by
the research group of Michael Lübbert (University of Freiburg) who obtained it
from DSMZ (Nos. ACC 220 and ACC 582; Braunschweig, Germany). Both cell
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lines were cultured in RPMI medium plus 10% fetal bovine serum and 1% peni-
cillin/streptomycin in a humidified 5% CO2 atmosphere.

Single-cell isolation. The single-cell printerTM was used as described in detail
elsewhere21,28. Briefly, prior to single-cell dispensing the cells were washed three
times by repetitive centrifugation (400 × g, 2 min) in PBS to yield a final con-
centration between 105 and 106 cells/ml. For each experiment, a new sterile car-
tridge with a 40 μm nozzle was loaded with 30 μl sample and mounted on the
single-cell printer. The piezo stroke length was set to 10 μm and the downstroke
velocity was set to 140 ± 10 μm/s to achieve stable droplets. Individual cells were
printed into the wells of a 96-well low-binding PCR plate (FrameStar 96 Well;
4titude) containing 2 µl lysis buffer. For all reactions selected for NGS, we could
visually verify the deposition of a single cell (Supplementary Data 3).

Lysis buffer was prepared by premixing of CellsDirect Resuspension Solution
with CellsDirect Lysis Enhancer (Invitrogen) at a 10:1 ratio. Electrostatic charges
on the plates were neutralized with an ionizing air blower (minION2, SIMCO-
ION, The Netherlands). Sample loading and instrument preparation took 5 min on
average. Plates were sealed with AlumaSeal II film (Sigma-Aldrich) and frozen at
−80 °C and stored for up to 1 week.

epi-gSCAR. After thawing, the plates were briefly centrifuged at 1300 r.p.m. and then
incubated in a PCR cycler at 75 °C for 10min with heated lid set to 85 °C. Then, the
plate was cooled down on ice and 0.5 µl of Qiagen Protease (2.8 AU/ml) were added
to each well. The samples were centrifuged again and incubated for 90min at 50 °C
followed by 30min at 70 °C (85 °C lid temperature). MSRE digestion and TdT tailing
was performed by addition of 3.1 µl reaction mixture containing 0.32 µl HhaI (20
units/µl; NEB), 0.16 µl TdT (20 units/µl; NEB), 0.56 µl 10× CutSmart Buffer (NEB),
0.5 µl 1mM dATP (Thermo Scientific), and 0.56 µl water. For the first epi-gSCAR
experiment (single cells K_01–K_07), we added 0.5 µl of each methylated and
unmethylated lambda spike-in control template (60 ag/µl, assay variant A,
K_01–K_04; or 6 ag/µl, assay variant B, K_05–K_07; see Supplementary Data 2 for
oligonucleotide sequences). For the second epi-gSCAR experiment, we added 1 µl of
the non-methylated random spike-in control DNA (10 ag/µl, assay variant A,
K_08–K_27 and O_01–O_20). After brief centrifugation and gentle vortexing for
1min, samples were incubated for 120min at 37 °C followed by 20min at 75 °C
(85 °C lid temperature). For assay variant A, 2.4 µl ligation mixture containing 0.8 µl
10× ThermoPol II Mg-free Reaction Buffer (NEB), 0.66 µl 10 µM GAT-12dt-CG
adapter, 0.1 µl Ampligase (5 units/µl; Epicenter), 0.08 µl 50mM NAD (NEB), and
0.76 µl water were added, and the samples were spun down and mixed. To promote
specific annealing and ligation of the anchored adapter, the samples were incubated in
a PCR cycler with the following program: 70 °C for 1min, ramp to 35 °C with 0.1 °C
per min, and 35 °C for 10min. For assay variant B, the reaction mixture contained
0.66 µl of the non-anchored GAT-12dt adapter (10 µM) and additionally 0.05 µl T4
DNA Polymerase Exonuclease Minus (3 units/µl; Lucigen) and 0.33 µl dNTP Solution
Mix (10mM each nt; NEB) in 2.4 µl ligation–gap-filling mixture. To promote specific
annealing of the non-anchored adapter, gap-filling and ligation, the samples were
incubated in a PCR cycler with the following program: 25 °C for 4 min, 28 °C for
15min, and 37 °C for 15min. Then, 10 µl quasilinear amplification reaction mixture
was added to the samples containing 1 µl 10× ThermoPol II Mg-free Reaction Buffer
(NEB), 0.4 µl dNTP Solution Mix (10mM each nt; NEB), 0.9 µl 10 µM GAT-7N
primer, 0.07 µl 100mM MgSO4 Solution (NEB), 0.3 µl Deep Vent (exo-) DNA
Polymerase (2 units/µl; NEB), 0.01 µl SD Polymerase HS (10 units/µl; BIORON),
3.6 µl Q-Solution (QIAGEN), and 3.72 µl water. The samples were centrifuged and
mixed. Plates were incubated for 3min at 94 °C to denature the DNA and immedi-
ately quenched on a 96-well cooling rack (−20 °C). Ten cycles (K_01–K_07) or eight

cycles (K_08–K_27 and O_01–O_20) of quasilinear amplification were performed
(25 °C for 2min, 30 °C for 50 s, 40 °C for 45 s, 50 °C for 45 s, 70 °C for 2min, 92 °C for
30 s, and 64 °C for 20 s). After quasilinear amplification, samples were further PCR-
amplified by addition of 16 µl PCR mix: 1.6 µl 10× ThermoPol II Mg-free Reaction
Buffer (NEB), 0.4 µl dNTP Solution Mix (10mM each nt; NEB), 2.7 µl 10 µM GAT
primer, 0.34 µl 100mM MgSO4 Solution (NEB), 0.2 µl Deep Vent (exo-) DNA
Polymerase (2 units/µl; NEB), and 10.76 µl water. The final sample volume of 34 μl
was incubated in a PCR cycler with the following program: initial denaturation at
95 °C for 1 min, 19 cycles (K_01–K_07) or 16 cycles (K_08–K_27 and O_01–O_20) of
95 °C for 20 s, 60 °C for 30 s, and 72 °C for 4min; final extension at 72 °C for 5min
(100 °C lid temperature). All pipetting steps were performed under constant cooling
on ice. Positive controls contained 30 pg Kasumi-1 or OCI-AML3 gDNA, which were
added to the MSRE digestion and TdT tailing reaction mixture. No template controls
contained no single cell. After PCR, product quality was assessed by agarose gel
electrophoresis and the samples were cleaned up using the Monarch PCR and DNA
Cleanup Kit (NEB), according to the manufacturer’s recommendations. Product
quality was additionally assessed on a Bioanalyzer (Agilent) High-Sensitivity DNA
chip for selected reactions. For the second epi-gSCAR experiment (K_08–K_27 and
O_01–O_20), we chose assay variant A for all reactions, since it resulted in the
absence of template-independent products in the first experiment (Supplementary
Fig. 2).

NGS library preparation. epi-gSCAR libraries K_01–K_07 were selected for NGS
based on amplification success rate of randomly selected loci across the genome
using real-time PCR. A total of 150 ng of purified library DNA were fractionated
according to amplicon size into two pools using custom SPRI beads: amplicons
with a size range of 400–2000 bp were recovered by incubation of the library DNA
with a 15% PEG SPRI bead solution in a ratio of 1:0.75 (6.4% PEG) for 10 min at
RT. Small amplicons (range, 100–600 bp) were recovered from the supernatant by
addition of a 30% PEG SPRI bead solution to a final PEG concentration of 16% and
incubation for 10 min at RT. The large amplicons were then fragmented using 1 µl
NEBNext dsDNA Fragmentase in a total volume of 10 µl in 1× Fragmentase buffer
for 30 min at 37 °C. The reaction was stopped by addition of 2.5 μl 0.5 M EDTA.
Fragmented DNA was then recovered by addition of a 30% PEG SPRI bead
solution to a final PEG concentration of 12.5% and incubation for 10 min at RT.
SPRI beads of all reactions were washed twice with 150 µl 80% ethanol and eluted
with 10 µl NEB Monarch elution buffer. NGS libraries were prepared with the
NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB) using different index
primers for each single cell (NEBNext Multiplex Oligos for Illumina). Each NGS
library was prepared with 10 ng of each pool (small non-fragmented and frag-
mented amplicons), according to the manufacturer’s recommendations with 50%
reduction of reaction volumes and tenfold (1:10) adapter dilution. epi-gSCAR
libraries K_08–K_27 and O_01–O_20 were randomly selected for NGS. A total of
50 ng of purified library DNA of each single cell and each 50 ng of Kasumi-1 and
OCI-AML3 gDNA were sheared in 15 µl 1× TE on a Covaris M220 instrument in a
microTUBE, using the 250 bp Target BP program: 80 s, 20% duty factor, 30W peak
incident power, and 50 cycles/burst. NGS libraries were prepared with 50 ng of
sheared DNA according to the manufacturer’s recommendations with 50%
reduction of reaction volumes using different index primers for each single cell
(NEBNext Multiplex Oligos for Illumina; Unique Dual Index Primer Pairs). For all
NGS libraries, adapters were diluted tenfold (1:10) and fragment size distributions
were verified on a Bioanalyzer (Agilent) High-Sensitivity DNA chip to have an
average product size of ~400 bp. Libraries were sequenced on an Illumina HiSeq
2000 machine using 125 bp paired-end mode (K_01–K_07) and on an Illumina
NovaSeq 6000 System machine, using 150 bp paired-end mode (K_08–K_27 and
O_01–O_20).

Fig. 3 epi-gSCAR performance and validation. a Global single-cell methylation levels of Kasumi-1 (red dots) and OCI-AML3 (blue dots), and
corresponding mean methylation levels (black lines) in comparison to mean methylation levels of WGBS (violet line) and 450 K array (green line) from
cell-bulk samples. b Pairwise CpG concordance for all analyzed Kasumi-1 single cells. c Pairwise CpG concordance for all analyzed OCI-AML3 single cells.
CpG concordance was calculated for all overlapping CpGs between each single-cell pair of each cell line as the fraction of CpGs with the identical
methylation state (0, 0.5, or 1). Calculations are based on 66,588–297,161 CpGs for Kasumi-1 single-cell pairs and 148,932–257,837 CpGs for OCI-AML3
single-cell pairs. d Correlation between the mean pseudo-bulk methylation and the cell-bulk 450 K array, and WGBS datasets for Kasumi-1 and OCI-AML3.
Comparisons consider genome-wide methylation of individual CpGs covered in ≥15 single cells (Kasumi-1 450 K: n= 6,607; Kasumi-1 WGBS: n= 20,000
of 72,142 CpGs covered by epi-gSCAR in ≥15 single cells; OCI-AML3 450 K: n= 11,511; OCI-AML3 WGBS: n= 20,000 of 129,153 CpGs covered by epi-
gSCAR in ≥15 single cells). e Circos plot representation of genome-wide methylation profiles of randomly selected single cells, the pseudo-bulk datasets,
and WGBS controls. The heatmaps show average methylation levels for 200 kb windows. Heatmap colors indicate methylation levels from low (blue) to
high (red). Tracks from inside to outside represent single cells O_01, O_05, O_11, K_11, K_16, and K_17, OCI-AML3 pseudo-bulk (O_01–O_20), OCI-AML3
cell-bulk WGBS, Kasumi-1 pseudo-bulk (K_08–K_27), and Kasumi-1 cell-bulk WGBS. f Hierarchical clustering analysis based on Pearson correlation
coefficients for single cells K_01–K_07 (yellow), K_08–K_27 (red), and O_01–O_20 (blue) across 200 kb windows. g Multidimensional scaling analysis
using UMAP, in which each dot represents a single cell (K_01–K_07, yellow; K_08–K_27, red; and O_01–O_20, blue). Cells are clustered based on the
methylation levels across 200 kb windows covered in all single cells (top; n= 10,555) or based on genetic variants called at positions covered in all
single cells (bottom; n= 7,027). For genetic variant clustering, SNV data was converted into a categorical numeric matrix as an input to compute UMAP
with the R package ggplot.
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Step-out PCR. Step-out PCR was performed with the HotStarTaq DNA Poly-
merase (QIAGEN) Kit in 20 µl containing 0.4 µl dNTP Solution Mix (10 mM each
nt; NEB), 0.4 µl 1 µM GAT-step-out primer, 0.2 µl 10 µM step-out primer, 0.6 µl 5
µM gene-specific primer, 0.16 µl HotStarTaq DNA Polymerase, and 1 ng epi-
gSCAR library template. The reaction was run in a PCR cycler using the following
program: initial denaturation at 95 °C for 15 min, 5 cycles of 94 °C for 30 s, 72 °C
for 150 s; 5 cycles of 94 °C for 30 s, 70 °C for 150 s; 29–35 cycles of 94 °C for 30 s,
68 °C for 150 s; and final extension at 72 °C for 5 min (100 °C lid temperature).
Gene-specific primers were designed using Primer3. Primers were ordered as
cartridge or HPLC purified standard oligonucleotides (see Supplementary Data 2
for oligonucleotide sequences).

NGS bioinformatic analysis. For the extraction of DNA methylation from epi-
gSCAR data, NGS reads were analyzed using a custom bioinformatic pipeline
(Supplementary Fig. 3), which was automated using Snakemake (version 5.3.0)
in Python (version 3.6). After removal of Illumina adapters, overlapping paired-
end reads were merged and nonoverlapping reads were converted to singletons
using BBMerge to obtain single-read information (merge rate for epi-gSCAR
libraries is between 77 and 85%). Merging is beneficial during scar read iden-
tification since each read can be filtered independently of its corresponding pair.
This ensures that only reads carrying a tailed scar are being pooled, while
preserving most of the paired read information. Next, GAT-Adapter sequences
were removed. The resulting preprocessed merged and unmerged reads were
filtered for reads containing either 5′ poly(d)T or 3′ poly(d)A-tailed HhaI scars
separately (motif: GCGAAAAAA or TTTTTTCGC; Hamming distance= 1).
Poly(d)T and poly(d)A tails were removed, resulting in reads containing 5′ or 3′
HhaI scars, respectively (5′-scar file and 3′-scar file). Separately, poly(d)T and
poly(d)A tails were removed from GAT-Adapter-trimmed reads (all-read file).
All trimming and filtering steps were performed using BBDuk. Reads were
subjected to quality control by FastQC and 5′ or 3′ HhaI scar-containing reads
were mapped to the human assembly GRCh37 (hg19) with BWA-MEM sepa-
rately with soft trimming enabled. Samtools was used to remove secondary and
supplementary alignments, and alignments with MAPQ smaller than 10.
Alignment intervals were generated with the bamtobed command of bedtools
and reduced to the outermost three 5′ or 3′ nucleotides, respectively. Scar
intervals were filtered for nucleotide-precise overlap with HhaI sites and CpGs
in the human genome, and assigned as cut HhaI sites. In order to identify uncut
(intact) HhaI sites, the all-read file was aligned accordingly, since all reads can
potentially contain intact HhaI sites. Next, all HhaI sites of the human genome
were expanded by 1 bp on either side as a safety margin, and only completely
covered intervals were assigned as uncut HhaI sites. Intact sites overlapping
with cut HhaI sites (e.g., GCGCG(A)n-3′) were excluded from the output, since
complete digestion of sites close to DNA ends cannot be guaranteed. Overlap of
uncut with cut sites revealed sites of heterozygous methylation. All other uncut
and cut HhaI sites were assigned as methylated or unmethylated, respectively.
All CpG or HhaI sites of the human genome, which were covered by WGBS
datasets of Kasumi-1 or OCI-AML3, respectively, were defined as informative
for epi-gSCAR datasets.

Preparation of unmethylated and methylated spike-in DNA amplicons. For
K_01–K_07, two spike-in amplicons containing each a single HhaI recognition site
were PCR-amplified from lambda DNA and then purified, using the Monarch PCR &
DNA Cleanup Kit (NEB), according to the manufacturer’s recommendations (see
Supplementary Data 2 for oligonucleotide sequences). For use as a methylated control,
1 µg of the spike-in meth lambda PCR product was methylated in 50 µl containing 2 µl
M.SssI CpG Methyltransferase (4 units/µl; NEB) in 1× NEBuffer 4, supplemented with
0.3 µl 200× SAM. The reaction was incubated at 37 °C for 16 h, and another 0.3 µl of
200× SAM and 2 µl M.SssI CpG Methyltransferase were added, and the incubation
was continued for further 6 h. The amplicon was purified and complete protection
from HhaI cleavage was controlled by standard restriction digest protocol with HhaI
followed by agarose gel electrophoresis. For K_08–K_27 and O_01–O_20 a random
300 bp spike-in oligonucleotide (eurofins genomics) containing a single HhaI recog-
nition site was amplified and then purified, using the Monarch PCR and DNA
Cleanup Kit (NEB), according to the manufacturer’s recommendations.

Evaluation of digestion efficiency of spike-in amplicons. Methylated and
unmethylated exogenous spike-in DNA was used to control for digestion efficiency.
Each amplicon contained one HhaI site. For K_01–K_07 we spiked in 30 ag (assay
variant A, single cell K_01–K_04) or 3 ag (assay variant B, single cell K_05–K_07)
of unmethylated and methylated lambda spike-in amplicon. This corresponds to
~110 or 11 and 60 or 6 molecules of unmethylated and methylated amplicons,
respectively. For K_08–K_27 and O_01–O_20, we spiked in 10 ag of randomly
unmethylated control DNA corresponding to ~30 molecules (Supplementary
Data 2). For calculation of the digestion efficiency, the all-read files were filtered for
reads matching corresponding amplicons using BBDuk, and aligned to the
enterobacteria phage lambda reference genome or the random control oligonu-
cleotide sequence with BWA-MEM. Then, local coverage of scar or intact reads at
the control HhaI site was calculated.

ChIP-seq analysis. Quality of raw sequence data was controlled with FastQC
and sequencing adapters were trimmed with Trim Galore in automatic detec-
tion mode, using standard settings. Preprocessed reads were aligned to the
human genome GRCh37 (hg19) using Bowtie2 and peaks were identified with
MACS2 callpeak. Peaks were called relative to the respective input controls
when available.

Analysis of MALBAC and MDA datasets. Publicly available MALBAC and MDA
datasets were downloaded from the European Nucleotide Archive (SRS2062840;
MALBAC, Yikon, Single Cell YK5) and the Sequence Read Archive (SRR617646;
MALBAC, sw480 single cell9, and SRR5219394; Qiagen Repli-g MDA29), mapped
with BWA-MEM to the human reference genome GRCh37 (hg19). Both MALBAC
datasets were downsampled to read numbers comparable to the epi-gSCAR
libraries prior to mapping.

Kasumi-1 and OCI-AML3 bulk RNA-seq analysis. Quality of raw sequence data
was tested with FastQC and sequencing adapters were trimmed with Cutadapt,
using standard settings. Preprocessed reads were aligned to the human genome
GRCh37 (hg19) using RNA STAR, and fragments per million mapped reads per
kilobase exon were determined using FPKM count of the RSeQC package.
Expressed genes were grouped based on their FPKM distribution into three groups
(0–20%, 20–60%, and >60% expression).

DNA methylation analysis using the Illumina 450 K BeadChip array and
WGBS. Illumina 450k Infinium methylation array data was normalized with the
beta mixture quantile algorithm and further analyzed using routines from the
RnBeads software package30,31. For OCI-AML3, publicly available 450 K array data
from the Gene Expression Omnibus (GEO) database were used (GSM1670296).
WGBS of Kasumi-1 and OCI-AML3 was performed, as described elsewhere13, the
data were kindly provided by David H. Spencer (Washington University School of
Medicine, St. Louis, MO, USA).

SNP array analysis, variant calling, and ADO rate estimation. For single cells
K_01–K_07 mapped all-read epi-gSCAR bam files were used as inputs for
variant detection with FreeBayes in simple diploid calling mode. Only mapped
reads with mapping quality >30 and base quality score >20 were utilized for
variant identification. Minimum coverage was set to ≥10× for single-cell
libraries. Calculation of ADO estimates was based on Human SNP Array 6.0
(Affymetrix) data of Kasumi-1 (ref. 21). SNPs with variant allele frequencies
≥0.45 and ≤0.55 were defined as heterozygous. ADO estimates were calculated
as the fraction of SNPs called as heterozygous in SNP array data of Kasumi-1
cell-bulk DNA though called homozygous in single cells for loci with coverage
≥10×. ADO rate estimates were additionally calculated for loci with coverage
≥3× and ≥6× in single cells. For genotyping of single cells K_08–K_27 and
O_01–O_20, we processed the all-read epi-gSCAR bam files with monovar
using standard settings with consensus-filtering step enabled, which removes
variants with support from only one cell. In order to calculate ADO rate esti-
mates, we filtered Kasumi-1 and OCI-AML3 SNP 6.0 datasets for heterozygous
SNPs with high confidence values (0.999). For OCI-AML3, publicly available
Human SNP Array 6.0 array data was downloaded from the GEO database
under accession GSM888549. Genotype calling of SNP 6.0 data was performed
using the R package CRLMM. ADO estimates were calculated as the fraction of
SNPs called as heterozygous in SNP 6.0 datasets, while called homozygous in
single cells for loci with ≥20× coverage.

Statistics and reproducibility. For the generation of Fig. 3f, Pearson correlation
coefficients (R) were calculated using the tool plotCorrelation.py of the deepTools
3.3 package32. For the calculation of Pearson correlation coefficients (R) for Fig. 3d,
we used the function stat_cor in package ggpubr R package (v 0.4.0/R version 3.5.2).
We applied epi-gSCAR to a total of 214 single cells in four independent experiments
and obtained reproducible results among the epi-gSCAR libraries subjected to
sequencing (27 single Kasumi-1 single cells and 20 OCI-AML3 single cells).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequencing data (FASTQ) and processed single-cell DNA methylation data
(BEDGRAPH) have been deposited in the Gene Expression Omnibus (GEO) database
under accession GSE131723. Publicly available ChIP-seq and RNA-seq datasets used in
this study were obtained from the GEO data portal with the following accessions:
GSE29225, GSE62847, GSE83660, GSM1844449, GSM1844483, GSM3024903,
GSM3032904, GSM3024909, and GSM3032912. MALBAC and MDA datasets were
obtained from the European Nucleotide Archive (SRS2062840) and the Sequence Read
Archive (SRR617646 and SRR5219394). Publicly available Human SNP Array 6.0 array
data was downloaded from the GEO (GSM888549). Kasumi-1 Human SNP Array 6.0

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01661-w

8 COMMUNICATIONS BIOLOGY |           (2021) 4:153 | https://doi.org/10.1038/s42003-021-01661-w | www.nature.com/commsbio

www.nature.com/commsbio


array data is available at EMBL-EBI ArrayExpress (E-MTAB-4950). List of figures that
have associated raw data: Figs. 1d, e, 2a, b, and 3a–g, and Supplementary Figs. 4, 6–11.

Code availability
The bioinformatic pipeline used for readout of methylation information from epi-gSCAR
libraries by NGS is illustrated in Supplementary Fig. 3. The code is available from https://
github.com/wehrleju/epi-gSCAR.

Received: 7 June 2019; Accepted: 6 January 2021;

References
1. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & Van Oudenaarden, A.

Integrated genome and transcriptome sequencing of the same cell. Nat.
Biotechnol. 33, 285–289 (2015).

2. Cheow, L. F. et al. Single-cell multimodal profiling reveals cellular epigenetic
heterogeneity. Nat. Methods 13, 833–836 (2016).

3. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and
transcriptomes. Nat. Methods 12, 519–522 (2015).

4. Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome
from a single cell. Genome Biol. 17, 88 (2016).

5. Yong, W.-S., Hsu, F.-M. & Chen, P.-Y. Profiling genome-wide DNA
methylation. Epigenetics Chromatin 9, 26 (2016).

6. Liu, Y., Siegmund, K. D., Laird, P. W. & Berman, B. P. Bis-SNP: combined
DNA methylation and SNP calling for bisulfite-seq data. Genome Biol. 13, R61
(2012).

7. Cheow, L. F., Quake, S. R., Burkholder, W. F. & Messerschmidt, D. M.
Multiplexed locus-specific analysis of DNA methylation in single cells. Nat.
Protoc. 10, 619–631 (2015).

8. Chapman, A. R. et al. Single cell transcriptome amplification with MALBAC.
PLoS ONE 10, e0120889 (2015).

9. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of
single-nucleotide and copy-number variations of a single human cell. Science
338, 1622–1626 (2012).

10. Nygren, A. O. H. et al. Methylation-specific MLPA (MS-MLPA): simultaneous
detection of CpG methylation and copy number changes of up to
40 sequences. Nucleic Acids Res. 33, 1–9 (2005).

11. Korch, C. & Hagblom, P. In-vivo-modified gonococcal plasmid pJD1: a model
system for analysis of restriction enzyme sensitivity to DNA modifications.
Eur. J. Biochem. 161, 519–524 (1986).

12. Matz, M. et al. Amplification of cDNA ends based on template-switching
effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).

13. Chen, D. et al. DNMT3AR882-associated hypomethylation patterns are
maintained in primary AML xenografts, but not in the DNMT3AR882COCI-
AML3 leukemia cell line. Blood Cancer J. 8, 0–3 (2018).

14. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference
human epigenomes. Nature 518, 317–329 (2015).

15. Sharifi-Zarchi, A. et al. DNA methylation regulates discrimination of
enhancers from promoters through a H3K4me1-H3K4me3 seesaw
mechanism. BMC Genomics 18, 1–21 (2017).

16. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform
Manifold Approximation and Projection. J. Open Source Softw. 3, 861
(2018).

17. Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar:
single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507
(2016).

18. Picher, Á. J. et al. TruePrime is a novel method for whole-genome
amplification from single cells based on TthPrimPol. Nat. Commun. 7, 13296
(2016).

19. Huang, L., Ma, F., Chapman, A., Lu, S. & Xie, X. S. Single-cell whole-genome
amplification and sequencing: methodology and applications. Annu. Rev.
Genomics Hum. Genet. 16, 79–102 (2015).

20. Beghini, A., Magnani, I., Ripamonti, C. B. & Larizza, L. Amplification of a
novel c-Kit activating mutation Asn(822)-Lys in the Kasumi-1 cell line: a t
(8;21)-Kit mutant model for acute myeloid leukemia. Hematol. J. 3, 157–163
(2002).

21. Riba, J. et al. Molecular genetic characterization of individual cancer cells
isolated via single-cell printing. PLoS ONE 11, 1–15 (2016).

22. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of
somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811
(2015).

23. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing
for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

24. Hui, T. et al. High-resolution single-cell DNA methylation measurements
reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem
Cell Rep. 11, 578–592 (2018).

25. Viswanathan, R., Cheruba, E. & Cheow, L. F. DNA Analysis by Restriction
Enzyme (DARE) enables concurrent genomic and epigenomic
characterization of single cells. Nucleic Acids Res. 47, e122 (2019).

26. Han, L. et al. Bisulfite-independent analysis of CpG island methylation
enables genome-scale stratification of single cells. Nucleic Acids Res. 45, 1–13
(2017).

27. Han, K. Y. et al. SIDR: simultaneous isolation and parallel sequencing
of genomic DNA and total RNA from single cells. Genome Res. 28, 75–87
(2018).

28. Stosch, J. M. et al. Gene mutations and clonal architecture in myelodysplastic
syndromes and changes upon progression to acute myeloid leukaemia and
under treatment. Br. J. Haematol. 182, 830–842 (2018).

29. Börgstrom, E., Paterlini, M., Mold, J. E., Frisen, J. & Lundeberg, J. Comparison
of whole genome amplification techniques for human single cell exome
sequencing. PLoS ONE 12, 1–15 (2017).

30. Assenov, Y. et al. Comprehensive analysis of DNA methylation data with
RnBeads. Nat. Methods 11, 1138–1140 (2014).

31. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in Illumina Infinium 450 k DNA methylation
data. Bioinformatics 29, 189–196 (2013).

32. Ramírez, F. et al. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

Acknowledgements
The authors thank David H. Spencer (Washington University School of Medicine, St.
Louis, MO) for providing the whole-genome bisulfite sequencing data on Kasumi-1
and OCI-AML3. Moreover, the authors acknowledge the provision of bioinformatic
tools and support by the Freiburg Galaxy team (Björn Grüning and Rolf Backofen;
Dept. of Computer Science, University of Freiburg). The authors also thank Gabriele
Greve (Dept. of Medicine I, Medical Center — University of Freiburg) for the sci-
entific discussions on DNA methylation patterns in cancer. This research was sup-
ported by the Translational Research Training in Hematology of the European
Hematology Association and American Society of Hematology (H.B.); the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG; SPP 1463 LU 429/8-2
[M.L.]; CRC992 MEDEP C04 [M.L.]; FOR 2674 BE 6461/1-1 A05 [H.B.], LU 429/16-
1 A05 [M.L.], LI 2492/3-1 A06 [D.B.L.], and A09 [M.L., C.P.]), the Böhringer
Ingelheim Foundation (Exploration Grant [H.B.]), the German Cancer Aid (Deutsche
Krebshilfe; 111210 [H.B.]; 110461 [R.C.]; and 70112574 [D.B.L.]), the Berta Otten-
stein Fellowship Program of the University of Freiburg (J.W.), the Fördergesellschaft
Forschung Tumorbiologie Liquid-Biopsy Initiative (J.W.), the Federal Ministry of
Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
Eurostars Project E!10257 (Julian Riba), and the German José Carreras Leukemia-
Foundation (Deutsche José Carreras Leukämie-Stiftung; R 14/25 [M.L.], 17 R/2019
[H.B.]).

Author contributions
C.N., J.W., D.B.L., J.D., M.L., and H.B. undertook conception and design of the study,
C.N., Julian Riba, N.R., Janika Rhein, S.B., and J.M.S. performed or assisted with
molecular and cellular experiments, C.N. and J.W. developed computational pipelines
and analyzed the data, P.L. assisted with the computational analyses, R.C., J.D., C.P., P.L.,
D.B.L., M.L., and H.B. provided conceptual advice, M.L. and H.B. secured funding and
supervised the work. C.N., J.W., and H.B. wrote the manuscript. All authors accepted the
final version of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
Julian Riba is an employee of Cytena GmbH, which produces the single-cell printer used
in the study. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-01661-w.

Correspondence and requests for materials should be addressed to H.B.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01661-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:153 | https://doi.org/10.1038/s42003-021-01661-w | www.nature.com/commsbio 9

https://github.com/wehrleju/epi-gSCAR
https://github.com/wehrleju/epi-gSCAR
https://doi.org/10.1038/s42003-021-01661-w
http://www.nature.com/reprints
www.nature.com/commsbio
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01661-w

10 COMMUNICATIONS BIOLOGY |           (2021) 4:153 | https://doi.org/10.1038/s42003-021-01661-w | www.nature.com/commsbio

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Bisulfite-free epigenomics and genomics of single cells through methylation-sensitive restriction
	Results
	epi-gSCAR workflow
	Application of epi-gSCAR to measure site-specific CpG methylation
	Application of epi-gSCAR to measure genome-wide CpG methylation
	Assessment of epigenetic heterogeneity using epi-gSCAR
	Evaluation of genetic heterogeneity using epi-gSCAR

	Discussion
	Methods
	Cell lines
	Single-cell isolation
	epi-gSCAR
	NGS library preparation
	Step-out PCR
	NGS bioinformatic analysis
	Preparation of unmethylated and methylated spike-in DNA amplicons
	Evaluation of digestion efficiency of spike-in amplicons
	ChIP-seq analysis
	Analysis of MALBAC and MDA datasets
	Kasumi-1 and OCI-AML3 bulk RNA-seq analysis
	DNA methylation analysis using the Illumina 450 K BeadChip array and WGBS
	SNP array analysis, variant calling, and ADO rate estimation
	Statistics and reproducibility

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




